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In this paper, a new alternative for profiles tracking control considering additive uncertainties is proposed. Based on a previously
presented work about a nonlinear and multivariable controller design for a fed-batch bioethanol production, parametric un-
certainty and process disturbance are taken into account to find a more reliable control strategy for a successful industrial
implementation. To decrease the uncertainties effect, an approach based on the error estimation using Newton’s backward
interpolation is included in the design equations. *e proposed modification assures the error convergence to zero (demon-
stration is shown) despite the uncertainties, which is one of the main contributions of this work. A comparison between the new,
the original proposal, and another methodology is exposed.

1. Introduction

Biological processes are becoming more frequent nowadays
due to the wide variety of products obtained from them [1]
and their possibility of making some processes environ-
mentally friendly while high standard products are obtained
[2, 3]. *e fed-batch operation mode is which most interest
awake for its main benefits [4, 5]. One of the most interesting
advantages is the substrate concentration regulation in the
cultivation medium by a suitable feed rate profile [6],
obtaining better production yields and minimizing the
production costs [5, 7]. However, bioprocesses control is
required to follow a certain feed flow rate and get stability
and the best productivity [8]. Furthermore, the mathe-
matical representation of the process is the key to achieve
good results.

A mathematical model provides a map from inputs to
responses. *e quality of a model depends on how closely its
responses match those of the true plant. However, a model
set that includes the true physical plant can never be con-
structed [9]. Generally, a bioprocess modeling presents
particular difficulty in their parameters determination

caused by the poorly understood microorganism’s dynamics
(multivariable and highly nonlinear dynamics), the strongly
coupled variables, and the presence of numerous external
disturbances, which leads to having many modeling un-
certainties [10]. Furthermore, sometimes those parameters
are determined without a previous model analysis, or their
values are not informed with their respective confidence
intervals [11, 12]. Moreover, time-varying parameters are
usually assumed as constants [13]. Also, the uncertainties
related to the processing technologies parameters are rarely
considered [14]. *e dismissal of all these aspects leads to a
poor real-life representation and, consequently, to a bad
performance with severe risks [15, 16]. *erefore, the main
task to guarantee the bioprocess quality implies finding a
way to control these distortions [17–19]. For this reason, the
development of new control schemes that reduce the effect
of uncertainties in the tracking error has become an at-
tention focus for the scientific community [11, 15].

One of the problems to take into account is the feasibility
of the occurrence of events in systems with uncertainty, for
this, the uncertainty theory was introduced [20]. On the
other hand, a very interesting way to describe uncertainty is
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using the uncertain fractional differential equation (UFDE),
which allows keeping a record of some properties to be
considered a posteriori, which is fundamental in the evo-
lution of uncertainties [21, 22]. Furthermore, the contem-
plation of uncertainties is approached with different
strategies, depending on the nature of the system under
study [22–24]. One of the most used strategies for model
parameter identification and/or estimation involves an
offline optimization using a nominal model of the process
[25–30]; the main disadvantage of this methodology is that
the variability of microorganisms decreases the possibility of
batch-to-batch repeatability. To improve the results of
nominal optimization, a methodology called “run to run”
optimization appears, which uses previous runs information
to optimize the operation of subsequent ones [31–37].
Another strategy is the online optimization of the model
parameters [38–45]. *is kind of optimization is difficult to
perform since the available models might only be locally
valid and thus inappropriate for predicting final concen-
trations [46].

On the other hand, many scientists have developed some
feedback control strategies to deal with bioprocess uncer-
tainties. Optimal control, nonlinear model predictive con-
trol, hybrid control, adaptive control, fuzzy control, tracking
control, and neural network are examples of them [47, 48].
But, due to the online implementation difficulty, the high
computational cost, the imprecise mathematical models, and
online solutions, their use for bioprocesses is limited [7] and
is still a research topic [49].

For the specific case of ethanol production defined by
Hunag et al. [36], Fernández et al. [50] presented a controller
design focused on looking for control actions, to track
predefined concentration profiles. As the controller struc-
ture comes from the mathematical model of the process, it
can be implemented in many systems. *e procedure is
characterized by its simplicity, versatility, and precision.
Besides, only basic knowledge of numerical methods and
linear algebra is needed to implement it. One of the main
contributions of that work was to achieve the tracking error
convergence to zero. Also, the technique was tested against
different disturbances and compared with a typical PID
controller.

*is manuscript aims to improve the control strategy
presented in [50]. In this sense, predefined trajectories can be
tracked while estimating the difference between the model
and the real plant in each sampling time (error estimation).
To reach this objective, another term is incorporated into the
controller structure, which symbolizes model uncertainties
and outside instabilities that are evaded with Newton’s
backward interpolation. Moreover, the higher the interpo-
lation order, the better the estimation and the smaller the
tracking error. Besides, this change guarantees uniformity in
the signal and progressive reduction of tracking error,
achieving improvements of up to 98% in some cases.

In [51], the problem of optimal profiles tracking control
under uncertainties for a fed-batch bioprocess with two
control actions is addressed with excellent results. In that
manuscript, the authors add tracking error integrators in the
control action calculation to reduce the additive uncer-
tainties effect. However, the strategy presented in this paper
has the advantage that adding the additive uncertainty term
does not increase the order of the system, making mathe-
matical development even simpler. Moreover, the ethanol
bioprocess is an underactuated system with only one control
action, so the control challenge is even greater than in [51].
*us, a solution to the real trouble of multivariable and
nonlinear tracking control in the presence of additive un-
certainties is proposed, without increasing the system order.

*e manuscript is presented as follows: first, a summary
of the process under study and the original control technique
is described to contextualize the problem. Second, the
contribution of this work is detailed, including the relevant
demonstrations. *ird, algorithms are tested and compared.
Lastly, conclusions are shown.

2. Process and Control Description

2.1. Mathematical Model of the Process. Hunag et al. [36]
proposed a mathematical model for a fed-batch ethanol
production, using Saccharomyces diastaticus yeast to carry
out the fermentation. *e temperature was fixed at 35.8°C,
airflow at 1.5vvm, and pH at 5.0.*e only system input is the
feed rate (U), which is a 50% glucose and 50% fructose
combination. *e state variables are biomass (X), ethanol
(P1), glycerol (P2), glucose (S1), and fructose (S2) concen-
tration inside the bioreactor:

_X(t) � µ1 + µ2( )X − U
V
X,

_S1(t) � −
q S1/P1( )

Y P1/S1( )
+
q S1/P2( )

Y P2/S1( )

 X + U
V

λSf − S1( ),

_S2(t) � −
q S2/P1( )

Y P1/S2( )
+
q S2/P2( )

Y P2/S2( )

 X + U
V
(1 − λ)Sf − S2( ),

_P1(t) � q S1/P1( ) + q S2/P1( )( )X − U
V
P1,

_P2(t) � q S1/P2( ) + q S2/P2( )( )X − U
V
P2,


(1)

where
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_V(t) � U,

q S1/P1( ) �
]S1P1

S1

KS1P1
+ S1

kS1P1

kS1P1
+ P1

,

μ1 �
μm1

S1

KS1
+ S1 + S

2
1/KS1I

( )
KP1

KP1
+ P1 + P

2
1/KP1I

( ),

q S1/P2( ) �
]S2P2

S2

KS2P2
+ S2

kS2P2

kS2P2
+ P2

,

μ2 �
μm2

S2

KS2
+ S2 + S

2
2/KS2I

( )
KP2

KP2
+ P1 + P

2
1/KP2I

( ) ,

q S1/P2( ) �
]S1P2

S1

KS1P2
+ S1

kS1P2

kS1P2
+ P2

,

q S2/P1( ) �
]S2P1

S2

KS2P1
+ S2

kS2P1

kS2P1
+ P1

.

(2)
V is the volume of culture medium; µ1 and µ2 are the

specific yeast growth rate, qS1/P1 and qS2/P1 are the specific
ethanol production rate, and qS1/P2 and qS2/P2 are the specific
glycerol production rate, in all cases from glucose and
fructose, respectively. U is the control action. Initial con-
ditions for ethanol fermentation are shown in Table 1, while
the nomenclature, description, and values of parameters are
in Table 2.

2.2. Controller Structure Design. In [50], a technique that
finds U to make the system track predefined profiles (ref-
erences) is proposed. For this methodology, design is sup-
posed that both the references and the states are known at
each sampling instant. *is last assertion is far from reality,
so system states were estimated with neural network
state estimators previously designed and published [52]. In
Figure 1, reference concentration profiles and U are shown.
*e following is a brief description of the technique de-
scribed in [50]:

Firstly, the system equation (1) is integrated using nu-
merical methods. Euler is used for its simplicity:

dσ

dt
( ) � σn+1 − σn

TS
. (3)

In (3), σ symbolizes states variables, σn is the current
value of σ measured online, and σn+1 is the σ value in the
next measurement instant. TS is the sampling time (0.1 h)
[53]. *e process total time is 15.7 h (Tf ).

*en, σn+1 are approached with

σref,n+1 − σn+1︸������︷︷������︸
errorn+1

� kσ σref,n − σn( )︸�����︷︷�����︸
errorn

⟶ σn+1

� σref,n+1 − kσ σref,n − σn( ),
(4)

where σref are the reference state variables and kσ is the
controller parameter for the variable σ. For this process, the
controller parameters are kX, kP1, kP2, kS1, and kS2. *en,
substituting (4) in (3),

dσ

dt
( ) � σref,n+1 − kσ σref,n − σn( )[ ]︷�����������︸︸�����������︷σn+1

− σn

TS
� Δσn.

(5)

Replacing (5) in (1),

ΔXn � µ1 + µ2( )Xn −
Un
Vn
Xn,

ΔS1,n � −
q S1/P1( )

Y P1/S1( )
+
q S1/P2( )

Y P2/S1( )

 Xn +
Un
Vn

λSf − S1,n( ),

ΔS2,n � −
q S2/P1( )

Y P1/S2( )
+
q S2/P2( )

Y P2/S2( )

 Xn +
Un
Vn

(1 − λ)Sf − S2,n( ),

ΔP1,n � q S1/P1( ) + q S2/P1( )( )Xn −
Un
Vn
P1,n,

ΔP2,n � q S1/P2( ) + q S2/P2( )( )Xn −
Un
Vn
P2,n.


(6)
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Stating (6) as a matrix,

− Xn/Vn( )
λSf − S1,n( )/Vn

(1 − λ)Sf − S2,n( )/Vn
−P1,n/Vn

−P2,n/Vn





︷����������︸︸����������︷An

Un �

ΔXn − µ1 + µ2( )Xn

ΔS1,n +
q S1/P1( )

Y P1/S1( )
+
q S1/P2( )

Y P2/S1( )

 Xn

ΔS2,n +
q S2/P1( )

Y P1/S2( )
+
q S2/P2( )

Y P2/S2( )

 Xn

ΔP1,n − q S1/P1( ) + q S2/P1( )( )Xn

ΔP2,n − q S1/P2( ) + q S2/P2( )( )Xn




︸���������������︷︷���������������︸

bn

.
(7)

System equation (7) must have an exact solution to find
Un. Consequently, bn have to be a linear combination of An

[54]; that is to say, An and bn must be parallel and with the
same sense. One way to accomplish this is

cos An, bn( ) � 〈An, bn〉
‖A‖n ∗ bn





 



| � 1. (8)

In (8), the operation between < > and ||.|| represent the
inner product and the vectors norm in Rn space, respectively.
*e angle betweenA and b is θ� 0°; this implies a positiveUn

value. If θ� 180°,Unwould be negative, which does not make
physical sense because Un is a flow.

As stated in the Introduction, bioprocess systems gen-
erally involve several control objectives that may be con-
flicting, to balance these objectives during the design of the
presented controller, the selection of a “sacrificed variable” is
required. It is denoted as S1ez, which guarantees that (7) has
an exact solution and that the references are followed. For
more details on its selection and calculation, see [50]. Finally,
Un is obtained using least squares [54]:

Un � ATnAn( )−1ATn bn. (9)

2.3. Controller Tuning. In [50], the Monte Carlo algorithm
was used to find the controller parameters that make the
accumulated error minimum. It consists of simulating the
bioprocess N times with random kσ [55]:

N≥ log(1/δ)

log(1/1 − ε)
[ ]. (10)

In (10), δ is the confidence and ε is the accuracy.
However, many other strategies can be used to tune this

controller. In [56], a genetic algorithm and a hybrid one are
proposed.

Next, the “tracking error (||en||)” and “total error (Ep)”
concepts are introduced:

en




 



 �

��������������������������������������������������������������������
Xref,n −Xn( )
maxXref,n

 2

+
P1ref,n − P1,n( )
maxP1ref,n

 2

+
P2ref,n − P2,n( )
maxP2ref,n

 2

+
S2ref,n − S2,n( )
max S2ref,n

 2

√√
, (11)

Ep,1 � Ts∑J
n�1

en




 



, (12)

Ep,2 � Ts ∑J
n�1

en




 



nTs , (13)
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where p represents the simulation in progress, p� 1, 2, ..., N;
subscripts 1 and 2 differentiate between one index and
another; n is the sample instant, n� 1, 2, ..., J; Tf� J TS.

In kσ selection, (12) is the function cost to be minimized.

Theorem 1. If the discrete system is given by equation (1), the
control action is calculated with equation (9), and kσ take
values between zero and one (0 < kσ < 1); then, the tracking
error convergence to zero when n tends to infinity is achieved.

Demonstration [50]:
Substituting the sacrificed variable in (7) and expressing

the matrix system generically,

a1

a2

a3

a4

a5




︸��︷︷��︸
A

Un �

b1

b2

b3

b4

b5




︸��︷︷��︸
b

.
(14)

Appling least squares to (14),

Un � ATA( )−1ATb � a1b1 + a2b2 + a3b3 + a4b4 + a5b5
a21 + a

2
2 + a

2
3 + a

2
4 + a

2
5

.

(15)
From (14),

a1
a2
�
b1
b2
⟶ b2 �

a2
a1
b1,

a1
a3
�
b1
b3
⟶ b3 �

a3
a1
b1,

a1
a4
�
b1
b4
⟶ b4 �

a4
a1
b1,

a1
a5
�
b1
b5
⟶ b5 �

a5
a1
b1.

(16)

Placing (16) in (15),

Un �
a1b1 + a22b1( )/a1( ) + a23b1( )/a1( ) + a24b1( )/a1( ) + a25b1( )/a1( )

a21 + a
2
2 + a

2
3 + a

2
4 + a

2
5

�
b1( )/a1( ) a21 + a22 + a23 + a24 + a25( )

a21 + a
2
2 + a

2
3 + a

2
4 + a

2
5

�
b1
a1

�
Vn Xref,n+1 − kX Xref,n −Xn( ) −Xn( )/TS( ) − μ1 S1ez,n, P1,n( ) + μ2 S2,n, P1,n( )( )Xn( )

−Xn

.

(17)

Replacing (17) in (7),

Xn+1 � Xref,n+1 − kX Xref,n −Xn( )
+ TS μ1 S1ez,n, P1,n( ) − μ1 S1,n, P1,n( )[ ]Xn.

(18)

Before, the tracking error for X is defined as

eX,n+1 � Xref,n+1 −Xn+1. (19)

Substituting (18) in (19),

eX,n+1 � kX Xref,n −Xn( ) − TS μ1 S1ez,n, P1,n( )[
− μ1 S1,n, P1,n( )]X.n

(20)

*e µ1(S1n, P1n) Taylor approximation in the desired
value µ1(S1ez n, P1n) is

μ1 S1,n, P1,n( ) � μ1 S1ez,n, P1,n( ) + dμ1 S1, P1,n( )
dS1 | S1n − S1ez,n( )

S1�Sez,n+θ S1,n−S1ez,n( )�Sθ

,

where⟶ 0< θ< 1
(21)

Placing (21) in (20),

eX,n+1 � kX Xref,n −Xn( ) − TS μ1 S1ez,n, P1,n( )[
+
dμ1 S1, P1,n( )

dS1 |
Sθ

S1n − S1ez,n( )︸�����︷︷�����︸
−eS1 ,n

−μ1 S1ez,n, P1,n( )Xn,

eX,n+1 � kX Xref,n −Xn( ) + TSdμ1 S1, P1,n( )
dS1

|
Sθ
eS1 ,nXn.

(22)

Table 1: Initial conditions for ethanol fermentation.

Variable Initial value

X (g/L) 1.5
P1 (g/L) 5.3
P2 (g/L) 0.0001
S1 (g/L) 8.6
S2 (g/L) 8.6
V (L) 1.35
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Table 2: Nomenclature, description, and values of parameters.

Parameter Description Value

µm1 Maximum specific growth rate coefficient for yeast on glucose (h−1) 1.8823
µm2 Maximum specific growth rate coefficient for yeast on fructose (h−1) 1.7098
YP1/S1 Yield coefficient for ethanol from glucose 0.5085
YP2/S1 Yield coefficient for glycerol from glucose 0.5331
YP1/S2 Yield coefficient for ethanol from fructose 0.5098
YP2/S2 Yield coefficient for glycerol from fructose 0.4462
KS1 Saturation coefficient for cell growth on glucose (g/L) 159.75
KS1I Inhibition coefficient for cell growth on glucose (g/L) 94.233
KP1 Saturation coefficient for cell growth on ethanol (g/L) 238.39
KP1I Inhibition coefficient for cell growth on ethanol (g/l) 2.7378
KS2 Saturation coefficient for cell growth on fructose (g/L) 0.0726
KS2I Inhibition coefficient for cell growth on fructose (g/L) 9.0048
KP2 Saturation coefficient for cell growth on glycerol (g/L) 35.958
KP2I Inhibition coefficient for cell growth on glycerol (g/L) 9.9722
KS1P1 Saturation coefficient for ethanol production on glucose (g/L) 1.3409
kS1P1 Inhibition coefficient for ethanol production on glucose (g/L) 18.612
KS2P1 Saturation coefficient for ethanol production on fructose (g/L) 0.9129
kS2P1 Inhibition coefficient for ethanol production on fructose (g/L) 1000
KS1P2 Saturation coefficient for glycerol production on glucose (g/L) 6.7116
kS1P2 Inhibition coefficient for glycerol production on glucose (g/L) 0.5863
KS2P2 Saturation coefficient for glycerol production on fructose (g/L) 0.4310
kS2P2 Inhibition coefficient for glycerol production on fructose (g/L) 1.150
]S1P1 Coefficient of maximum specific ethanol production rate for yeast on glucose (h−1) 1.5051
]S2P1 Coefficient of maximum specific ethanol production rate for yeast on fructose (h−1) 0.3321
]S1P2 Coefficient of maximum specific glycerol production rate for yeast on glucose (h−1) 0.0023
]S2P2 Coefficient of maximum specific glycerol production rate for yeast on fructose (h−1) 0.1609
λ Proportion of glucose and fructose 0.5
Sf Sugar total feed concentration (g/L) 300
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Figure 1: Cells, ethanol, glycerol, and fructose reference concentrations along the process. Reference feed flow rate.
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Following the same procedure for the other variables and
joining the final expressions,

eX,n+1

eS1 ,n+1

eS2 ,n+1

eP1 ,n+1

eP2 ,n+1
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
�

kX 0 0 0 0

0 kS1 0 0 0

0 0 kS2 0 0

0 0 0 kP1
0

0 0 0 0 kP2
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eX,n

eS1 ,n

eS2 ,n

eP1 ,n

eP2 ,n
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
︸������������������︷︷������������������︸

L

+TSXn

dμ1 S1, P1,n( )
dS1

|
Sθ

0

0

−
dq S1/P1( ) S1, P1,n( )

dS1
|
Sφ

−
dq S1/P2( ) S1, P2,n( )

dS1
|
Sα
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︸�������������︷︷�������������︸

NL

eS1 ,n. (23)

In equation (23), L is a linear system andNL is a bounded
nonlinearity [50]. Note that if kσ � 0, the reference is reached
in one step. *us, if 0 < kσ < 1, the tracking error tends to
zero when n⟶∞ [50, 57].

2.4. Steps to Implement the Controller

Step 1. Define Ts, σref, and σn.

Step 2. Discretize differential equations using some nu-
merical methods, equation (3).

Step 3. Obtain the state variables in n+1 with equation (4).

Step 4. Define and calculate the sacrificed variable.

Step 5. Determine Un with least squares, equation (9).
Figure 2 outlines the control diagram.

3. Control Structure Design under
Additive Uncertainties

3.1. ControllerDesign underUncertainty. Next, uncertainties
effect in the tracking error are considered by adding the
terms Eσ,n in (7):

− Xn/Vn( )
λSf − S1,n( )/Vn

(1 − λ)Sf − S2,n( )/Vn
−P1,n/Vn

−P2,n/Vn




Un �

ΔXn − µ1 + µ2( )Xn

ΔS1,n +
q S1/P1( )

Y P1/S1( )
+
q S1/P2( )

Y P2/S1( )

 Xn

ΔS2,n +
q S2/P1( )

Y P1/S2( )
+
q S2/P2( )

Y P2/S2( )

 Xn

ΔP1,n − q S1/P1( ) + q S2/P1( )( )Xn

ΔP2,n − q S1/P2( ) + q S2/P2( )( )Xn
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−
1

TS

EX,n

ES1 ,n

ES2 ,n

EP1 ,n

EP2 ,n




︸���︷︷���︸

En

. (24)

Additive uncertainty (En) can be used to model several
kinds of uncertainties as well as external perturbations
(measurement errors are not considered). It might depend

on the state variables and the system input. Moreover,
considering a real plant like zn+1� f (zn,un), therefore the
additive uncertainty can be expressed as En� f (zn,un) –f̂
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(zn,un), where f̂ (zn,un) is the discrete-time nonlinear system
model. If z and u are assumed to be bounded and f is
Lipschitz [58], then Eσ,n can be modeled as a bounded
uncertainty [59, 60].

*e uncertainties terms in (24) affect the error con-
vergence to zero of the tracking error [50]. *is can be
observed following the same procedure as in Section 2.3
*eorem demonstration:

eX,n+1

eS1 ,n+1

eS2 ,n+1

eP1 ,n+1

eP2 ,n+1
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�

kX 0 0 0 0

0 kS1 0 0 0

0 0 kS2 0 0

0 0 0 kP1
0

0 0 0 0 kP2
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dμ1 S1, P1,n( )
dS1 |

Sθ

0

0

−
dq S1/P1( ) S1, P1,n( )

dS1 |
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dq S1/P2( ) S1, P2,n( )

dS1 |
Sα
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En

.
(25)

Comparing (25) with (23), the error nonconvergence to
zero is noticed due to En presence.

*erefore, the next step is Eσ,n estimation to reduce their
effect on the tracking error, achieving the convergence to
zero.

3.2. Uncertainty Estimation. *e following procedure, as
the main contribution of this work, develops a control

strategy based on linear algebra that reduces the effect of
uncertainty in tracking error by its estimation using
Newton’s backward interpolation [61]. *e advantage is
the estimation development with an easy-to-understand
numerical procedure, which does not add further com-
plexity to the control methodology previously presented.
*us, En is estimated with Ên. *en, Ên is added in the
control action calculation:

Linear algebra
controller

System

References

Xref

P1ref

P2ref

S1ref

S2ref

Xn

P1n

P2n

S1n

S2n

Un

Control action

Figure 2: Control system diagram.
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− Xn/Vn( )
λSf − S1,n( )/Vn

(1 − λ)Sf − S2,n( )/Vn
−P1,n/Vn

−P2,n/Vnn
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Un �

ΔXn − µ1 + µ2( )Xn

ΔS1,n +
q S1/P1( )

Y P1/S1( )
+
q S1/P2( )

Y P2/S1( )

 Xn

ΔS2,n +
q S2/P1( )

Y P1/S2( )
+
q S2/P2( )

Y P2/S2( )

 Xn

ΔP1,n − q S1/P1( ) + q S2/P1( )( )Xn

ΔP2,n − q S1/P2( ) + q S2/P2( )( )Xn
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ÊX,n
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ÊP1 ,n

ÊP2 ,n
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Taking into account that Eσ,n is unknown, but it is as-
sumed as a polynomial, its differences can be defined as

δEσ,n � Eσ,n+1 − Eσ,n,

δ2Eσ,n � δ δEσ,n( ) � δ Eσ,n+1 − Eσ,n( ) � Eσ,n+2 − 2Eσ,n+1 + Eσ,n,

δqEσ,n � δ δq−1Eσ,n( ).
(27)

3.2.1. Constant Uncertainty. If Eσ,n is assumed as a constant,
δEσ,n� 0. *e uncertainty estimation is represented by

Eσ,n � σn+1 − σ̂n+1. (28)

where σ is the real state variable and σ̂ represents the state
variable calculated with equation (3). *en, the uncertainty
is estimated with a zero-order approximation:

Êσ,n � Eσ,n. (29)

Demonstration of error convergence to zero when un-
certainties are considered:

Replacing the control action given by equation (26) in
(24) and applying the same steps described in Section 2.3
demonstration,

eX,n+1

eS1 ,n+1

eS2 ,n+1

eP1 ,n+1

eP2 ,n+1
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kX 0 0 0 0

0 kS1 0 0 0

0 0 kS2 0 0

0 0 0 kP1
0

0 0 0 0 kP2
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dμ1 S1, P1,n( )
dS1

|
Sθ

0

0

−
dq S1/P1( ) S1, P1,n( )

dS1
|
Sφ

−
dq S1/P2( ) S1, P2,n( )

dS1
|
Sα
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


︸���︷︷���︸

En

−

ÊX,n

ÊS1 ,n

ÊS2 ,n

ÊP1 ,n

ÊP2 ,n




︸���︷︷���︸

Ên

.
(30)

Remark 1. If Eσ,n� c, where c is a constant value, and Êσ,n is
calculated with equation (29), then δEσ,n� 0.

*us, if En is unknown and each component is
an m-order polynomial, En � Ên, then En and Ên can
be simplified from (30). *erefore, it is demonstrated
that the tracking error tends to zero with the process
progress.

3.2.2. Linear Uncertainty. If Eσ,n is supposed as a linear
function, then δ2Eσ,n� 0. Following the same reasoning as in
3.2.1, Êσ,n is defined as

Êσ,n � Eσ,n + Eσ,n − Eσ,n−1. (31)

Following the same steps of 3.2.1, the error convergence
to zero is demonstrated.
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3.2.3. Polynomial Uncertainty. In this case, Eσ,n is supposed
as an m-order polynomial function. *en, if q>m,
δqEσ,n� 0. Using the same procedure explained before, the
representation of Êσ,n is generically expressed as

Êσ,n �∑m
j�0

∑j
i�0

j

i

 (−1)iEσ,n−i−1
j!

. (32)

3.3. Controller Parameter Selection. To select the best kσ
values (between zero and one for stability guarantee), as
many authors recommend [62–64], the Monte Carlo algo-
rithm is used following the procedure described in 2.3.
*erefore, 1000 simulations were done to find the param-
eters for three different controllers, the original, described in
[50] (C1), other with a zero-order estimator (C2), and the
last with a first-order estimator (C3). Figure 3 shows the
difference between the three controllers. Note the error
improvement evidenced with both indexes ((12) and (13)),
with C2, the total error Ep, 1 decreases by 22.22% and Ep, 2 by
19.31% compared to C1, while with C3, the total error is
reduced by 52.38% and 48.73%, respectively, concerning C1.
Due to the results similarity with both indexes, from now on
only Ep,1 will be used to evaluate the algorithms.

4. Results and Discussion

In the following section, two important tests are developed
to demonstrate the proposed estimation effectiveness. First,
the Monte Carlo Algorithm is applied to test the controller

operation under parametric uncertainty. Second, two dif-
ferent perturbations in the control action are added. Fur-
thermore, both above tests are performed simultaneously
and are compared with the performance of two other
controllers using another methodology [65]. In this section,
the original controller is noted as C1, the controller with a
zero-order estimation is C2, and the controller with a first-
order estimator is C3.

4.1. Simulation under Parametric Uncertainties. In all bio-
process, model parameters may vary in an unpredictable way
[66]. *is can lead to structural instability in the system
dynamical behavior [15]. *erefore, a strict and efficient
control system is required to deal with this problem.

In several research fields, probabilistic methods are
useful for dealing with problems related to the robustness of
systems affected by uncertainties [55]. Particularly, Monte
Carlo Randomized Algorithm has been used for uncertainty
quantification in many applications [67–69]. In this paper,
the Monte Carlo Randomized Algorithm is applied using the
procedure described in 2.3. *e number of simulations,
N� 1000, is obtained with equation (10), adopting a con-
fidence (δ) of 0.01 and an accuracy (ε) of 0.005. *erefore,
the following test demonstrates the technique success from a
statistical point of view [70–72].

In a simulation, a way to quantify uncertainties and
perturbations is to specify the parameters real range of
variation instead of using a constant value with greater error
[73]. Hunag et al. [36] specified, in Table 1 of their work, the
parameters confidence intervals for the ethanol process
under study. For this test, in each simulation, all the system
parameters are randomly changed by ±10% of their original
range value (Table 1 of [36]). *en, the total error is cal-
culated with equation (12). Table 3 shows the error range for
each controller. Note how the total error range considerably
decreases and maintains bounded to lower values when the
estimation order increases. Figure 4 shows the total error for
1000 simulations to evaluate the three-controller
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Figure 3: Controllers comparison. Total error decrease: (a) Ep 1 (12); (b) Ep 2 (13).

Table 3: Parametric uncertainty of ±10%.

Controller Total error range

C1 0.5267–0.0098

C2 0.2958–0.0056

C3 0.0812–0.0049
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Figure 4: Total error for 1000 simulations under parametric uncertainty (±10%). (C1) Original controller; (C2) controller with a zero-order
estimation; and (C3) controller with first-order estimator.
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Figure 6: Total error decrease when the controllers are tuned considering the worst situation of C1 (total error: C1� 0.1334, C2� 0.0633,
C3� 0.0585).
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Table 4: Total error comparison under normal conditions.

C1 C2 C3

Total error
a) 0.0063 0.0049 0.0030
b) 0.1416 0.0062 0.0031

a) Tuned in normal conditions; b) tuned considering the worst situation of 4.1 for C1.
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Figure 8: (a) Controllers response to a step perturbation addition in the control action. (b) Total error comparison (C1� 1.5968,
C2� 0.1523, C3� 0.0801).
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performance under parametric uncertainty. As can be seen,
the total tracking error range is visibly reduced.

Expressing the total error for each case into a per-
centage can easily quantify the controller improvement
when estimators are incorporated. Figure 5 suggests the

better performance of the controllers C2 and C3 over C1.
*e worst case presented for C2 has a total error of 43.83%
lower than that of the worst situation of C1, while the
maximum error presented with C3 is 84.58% less than that
of C1.
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Figure 9: (a) Controllers response to a step and ramp perturbation addition in the control action. (b) Total error comparison (C1� 6.9351,
C2� 0.6542, C3� 0.1977).
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Figure 10: (a) Controllers response to parametric uncertainty and a step and ramp perturbation addition in the control action. (b) Total
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Considering *eorem 1 of [55], as the tracking error
(equation (11)) for 1000 simulations remains bounded, C2
and C3 controllers operation will be satisfactory with 99% of
probability while the parameters vary within a ±10% range.

4.2. Simulation forUncertaintiesPrevention. In the following
test, controllers are tuned taking into account the worst
possible situation presented in 4.1 for C1, to prevent it.
Figure 6 shows the total error decreases when each controller
is tuned. Note how even considering the most problematic
situation of the system, the performance error can be re-
duced by 52.55% just by adding a zero-order estimator and
by 56.15% with a first-order one.

*en, the controllers using the chosen parameters were
tested under normal operation conditions, demonstrating
that their performance is not negatively affected. Figure 7
compares the accumulated error for the three controllers.
Moreover, total errors (C1� 0.1416, C2� 0.0062,
C3� 0.0031) contrast is shown.

*is test demonstrates another advantage of the pro-
posed estimation technique. Table 4 compares the errors of
Figure 3 with those of Figure 7. In both cases, the controllers
are tested under normal conditions; however, the difference
lies in the tuning conditions considered. Analyzing Table 2,
it can be observed that C2 and C3 controllers present similar
results, which does not happen with C1. *erefore, it can be
said that the operation of C2 and C3 will have a minimum
error over the entire range of possible uncertainties between
the nominal system parameters values and their worst
variation.

4.3. Simulation Adding Perturbations in the Control Action.
In this test, a hypothetical situation that may produce an
unexpected variation in the production is simulated. Firstly,
a -30% step perturbation in the bioreactor feed rate is added
to evaluate the response of controllers. Secondly, a ramp
disturbance is added to the step perturbation previously
presented. Figures 8 and 9 show the control action variation
compared to the reference and the percentage error, con-
sideringC1 error as 100%. Note how the total error improves
when the new algorithm is applied. In the first test, it is
reduced by 90.46% with C2 and by 94.99% with C3, while in
the second test, the results are improved 91.87% with C2 and
97.15% with C3.

4.4. Simulation Adding Parametric Uncertainties and Per-
turbations in the Control Action. *is latest test aims to
demonstrate how the controllers can fix a large drift. In this
way, 4.1 and 4.3 disturbances are considered simultaneously.
Besides, the methodology proposed in [55] was also
implemented to this ethanol bioprocess [65] and the results
obtained are compared with those of the proposed tech-
nique. Figure 10 shows the biomass and ethanol profiles
obtained with each controller throughout the process and a
comparison of the errors. Here, C4 refers to a controller with
one integrator and C5 with two ones. An improvement can
be seen with the use of estimators concerning integrators

(C1� 100%; C2�12.5%; C3�1.9%; C4�13.1%; C5� 2.4%).
Furthermore, the error estimation has the advantage that it
does not increase the order of the system by incorporating
the estimation term and does not modify the form tuning as
it does the integrators methodology, making mathematical
development simpler.

5. Conclusions

*is paper presents an improvement for a tracking control
strategy previously published [50]. *is technique lets
tracking reference concentration profiles, even in the
presence of model uncertainties and external perturbances.
To consider those uncertainties, a new term is included in
the mathematical model. *e error estimation is approxi-
mated with Newton’s backward interpolation. In this
manuscript, the main contribution is to decrease additive
uncertainties effect on the tracking error without increasing
the controller mathematical complexity. Moreover, the
controller tuning is simpler than in conventional controllers,
since varying the parameters between zero and one the error
convergence to zero is achieved.

*eMonte Carlo Randomized Algorithm is used to tune
the controllers and carry out the tests with parametric
uncertainty. *ose tests show the effectiveness of this
methodology, which was demonstrated in Sections 3 and 4.

Comparing with other methodologies that deal with
similar uncertain control problems, such as [74–79], the
proposed controller presents the advantage of avoiding the
stochastic modeling needed to deal with parameters under
perturbation of white noise. Besides, this nonlinear control
does not require a great mathematical effort and does not
add significant complexity to the original controller.
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control of fed-batch processes for growth rate regulation,”
Journal of Process Control, vol. 22, no. 4, pp. 789–797, 2012.
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