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Nonlinear control for tracking and obstacle

avoidance of a wheeled mobile robot with

nonholonomic constraint
Hongjiu Yang, Xiaozhao Fan, Peng Shi, Fellow, IEEE, and Changchun Hua, Member, IEEE

Abstract—This paper presents a novel control scheme for some
problems on tracking and obstacle avoidance of a wheeled mobile
robot with nonholonomic constraint. An extended state observer
is introduced to estimate unknown disturbances and velocity
information of the wheeled mobile robot. A nonlinear controller
is designed to achieve tracking target and obstacle avoidance in
complex environments. Note that tracking errors converge to a
residual set outside the obstacle detection region. Moreover, the
obstacle avoidance is also guaranteed inside the obstacle detection
region. Simulation results are given to verify the effectiveness and
robustness of the proposed design scheme.

Index Terms—Wheeled mobile robot, trajectory tracking, ob-
stacle avoidance, nonholonomic constraint, extended state ob-
server.

I. INTRODUCTION

Various types of mobile robots will change our lives in

the near further. Environment information is obtained by

sensors in motion control for a mobile robot [1], [2]. As

an important branch of mobile robots, wheeled mobile robots

have better flexibility and larger work space than traditional

industrial robots [3], [4]. Therefore, they are widely used in

complex environments of military and civil occasions in recent

years [5]. Some control problems on a nonholonomic wheeled

mobile robot have been investigated via neural networks in

[6]. Adaptive sliding mode control has been used to deal

with the model uncertainty in wheeled mobile robots [7]. A

radio frequency identification-based control method has also

been proposed for a mobile robot [8], [9]. Moreover, wheeled

mobile robots often encounter obstacles when working in

complex environment [10]. Based on kinematical equations,

some control problems have been studied on tracking and

obstacle avoidance, please refer to [11], [12], [13], [14], and

so on. Note that trajectory tracking and obstacle avoidance

controllers are designed separately in most existing works,

which easily lead to the low work efficiency and cause high

frequency noise [15]. Furthermore, there is still a lot of space

to improve the anti-interference ability of controllers in the

current results.
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The technique of active disturbance rejection control is pro-

posed by Jingqing Han in 1990s [16]. Nowadays, it becomes

a very attractive methodology in the field of automation [17].

Extended state observer is one of an important component

part in the active disturbance rejection control technique [18],

[19]. As a control scheme, the extended state observer has

been well studied and applied successfully in many researches

[20]. The extended state observer is not dependent on the

specific mathematical models of disturbances, and it also does

not need to measure the effects of disturbances directly [21].

A non-smooth feedback function, which is inherently robust

against plant variations, is used to reject the disturbances in

the form of orders of magnitude [22]. All of these special

feedback mechanism make the active disturbance rejection

control technique have a particularly satisfactory performance

[23], [24]. Hence, it is an interesting idea to study trajectory

tracking and obstacle avoidance of a wheeled mobile robot

via active disturbance rejection control, which motivates us to

make an effort in this paper.

Notation: In the following, if not explicity stated, matrices

are assumed to have compatible dimensions. The shorthand

diag{C1 C2 · · · Cn} denotes a diagonal matrix. ℜn×m

denotes n-dimensional configuration space C with generalized

coordinate (q1, · · ·, qn) and subject to m constraints. Note

that ‖ · ‖ represents the 2-norm of a vector. The piecewise

continuous function fal(·) is given as follows

fal(E , α, δ) =

{

|E|α ‖E‖ > δ
E

δ1−α ‖E‖ ≤ δ
(1)

where α and δ are constants, E is a variable. To relax notation,

the fal(·) is used in place of fal(E , α, δ) in this paper.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Obstacle avoidance problem description

Diagram description of obstacle avoidance problem for the

mobile robot tracking the given target is depicted in Fig. 1, in

which [xr yr θr]
T is the target position, and [xi yi θi]

T is the

real-time position and orientation of the mobile robot.
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Fig. 1 Mobile robot avoidance obstacle problem description.

In Fig. 1, assuming that there exist some obstacles between

the target position and the current position.

B. Nonholonomic wheeled mobile robot model

The model of a wheeled mobile robot is shown in Fig. 2.

Fig. 2 The model of two-wheeled nonholonomic mobile robot.

In this paper, we consider a two-wheeled mobile robot which

is described by the following nonlinear generalized dynamics

system

C(q)q̈ + Bm(q, q̇)q̇ + F(q̇) + τd = E(q)τ − A
T (q)λ (2)

in which C(q) ∈ ℜn×n is a symmetric positive definite

inertia matrix, Bm(q, q̇) ∈ ℜn×n is the centripetal and

coriolis matrix, F(q̇) ∈ ℜn×1 is the surface friction, τd is

bounded unknown disturbances, E(q) ∈ ℜn×r is the input

transformation matrix, τ = [τr τl] ∈ ℜr×1 is the input vector,

A(q) ∈ ℜm×n is the matrix associated with constraints, and

λ ∈ ℜm×1 is the constraint forces vector. There exist some

parameter relations of Fig. 2 to system (2), please refer to [6].

C. Structural properties of a mobile robot

In this subsection, a more appropriate dynamic model of the

mobile robot than system (2) is obtained to achieve control

purpose. The kinematic equation is given as follows

q̇ = S(q)v (3)

where v = [v w]T , v is bounded. S(q) is a Jacobian matrix.

Taking the time derivative of (3), it is obtained that

q̈ = Sqv̇ + (Sq ⊙ q̇)v (4)

where Sq is the partial derivative of each component of

Jacobian matrix S with respect to q, ⊙ is the multiplication

of each component (which is a row vector) of the matrix Sq

with q̇. Now substituting (4) in system (2), we rewrite system

(2) as follows

C(q)v̇ + Bm(q, q̇)v + F + τd = τ (5)

in which C(q) ∈ ℜ2×2 is the symmetric positive definite

inertia matrix, Bm(q, q̇) ∈ ℜ2×2 is the centripetal and coriolis

matrix, F ∈ ℜ2×1 is the surface friction which is assumed

to be bounded, τd denotes bounded unknown disturbances,

τ ∈ ℜ2×1 is the input vector. Then, some fundamental

properties regarding system (5) are summarized as follows.

Property 1: [6] C(q) and ‖Bm(q, q̇)‖ are bounded.

Property 2: [6] Ċ(q) − 2Bm(q, q̇) is skew symmetric.

III. DYNAMIC TRACKING AND AVOIDANCE OBSTACLE

CONTROL FOR MOBILE ROBOT

A. Protential function for obstacle avoidance

From [10], the following potential function is introduced to

solve the problems of obstacle avoidance for a wheeled mobile

robot in this paper

Vob =
(

min
{

0, (L2
rod − d2

d)(L
2
rod − d2

s)
−1

})2
(6)

where dd > ds > 0. Note that ds and dd are two radii of the

avoidance and detection region, respectively. The avoidance

obstacle and detection region of a wheeled mobile robot is

shown in Fig. 3.

Fig. 3 Wheeled mobile robot with avoidance and detection region.

A reference trajectory is given as (xr, yr, θr) which is

bounded. Define the tracking errors ex = xi−xr, ey = yi−yr

and eθ = θi − θr. Moreover, Lrod is the distance between the

robot and the obstacle. Hence, we have the following exact

mathematical expression

Lrod =
√

(xi − xo)2 + (yi − yo)2 (7)

where (xo, yo) denotes the obstacle position, and (xi, yi)
denotes the real-time location position of a mobile robot.

Remark 1: The given trajectory is smooth, and satisfies

|eθ| 6= π
2 . The reference trajectory does not initiate sharp

turns of 90◦ with respect to the current orientation of a mobile

robot. We let a perturbed desired orientation θ̄r be instead of

the desired orientation θr to solve singularity problem. In the

case, there has θ̄r = θr + ε̄θ, in which ε̄θ 6= 0 is a small

perturbation value.

B. Extended state observer design

From (5), we get

v̇ = −C
−1

(q)[Bm(q, q̇)v + F + τd] + C
−1

(q)τ (8)

Letting x2 = −C
−1

(q)[Bm(q, q̇)x1 + F + τd], x1 = v and

u = C
−1

(q)τ , one has that
{

ẋ1 = x2 + u

ẋ2 = h
(9)



JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, MAY 2015 3

in which h is defined as the first-order derivative of extended

state x2. An extended state observer for system (9) is structured

by
{

˙̂x1 = x̂2 − β01r1 + u

˙̂x2 = −β02fal
(10)

in which x̂1 and x̂2 are two estimated values of x1 and

x2, respectively, and r1 = x̂1 − x1 is extended state error.

Parameters β01 and β02 are the regulable gain constants.

According to (9) and (10), the error system is written as

follows
{

ṙ1 = r2 − β01r1

ṙ2 = −β02fal − h
(11)

in which r2 = x̂2 − x2 is extended state error.

Assumption 1: The first-order derivative of x2 is existed and

bounded. That is, ẋ2 = h is bounded.

Remark 2: The variable h denotes change rate of external

force, it is bounded in the wheeled mobile robot with non-

holonomic constraint. Therefore, h is bounded in Assumption

1 as [21], [23], and practical.

C. Nonlinear controller design

The control objective is to design an appropriate controller,

which assures a mobile robot accurately tracking the given

trajectory with obstacles in complex environment. Let
ˆ̇
θr be

ˆ̇
θr = [Ex(t) ˆ̇

Ey−Ey(t) ˆ̇
Ex](E2

x+E2
y)−1, where

ˆ̇
Ex ≈ [Ex(t+

T ) − Ex(t)]T−1,
ˆ̇
Ey ≈ [Ey(t + T ) − Ey(t)]T−1, for some

small T > 0. Note that both Ex and Ey are smooth. Let an

auxiliary velocity control input vr be given by

vr =
[

−k1

√

E2
x + E2

y cos eθ, − k2eθ +
ˆ̇
θr

]T

(12)

in which k1 > 0 and k2 > 0 are two adjustable parameters.

Then, the auxiliary velocity error is obtained as follows

ev = vr − v (13)

Using (5) and differentiating (13), the mobile robot dynamics

is rewritten as

C(q)ėv = −Bm(q, q̇)ev − τ + x2 (14)

in which x2 = C(q)v̇r + Bm(q, q̇)vr −F(q) + τd. Hence, the

actual controller is designed as

τ̄ = x̂2 + k3fal(ev, α, δ) (15)

where k3 is a sufficiently large positive constant.

IV. EFFECTIVENESS ANALYSIS OF SYSTEM CONTROLLER

A. Convergence of second-order extended state observer

Theorem 1: Consider the error system given by (11) under

Assumption 1. Choose the non-smooth function fal as in (1)

which closes to the derivative of the system’s nonlinearities.

There exists appropriate positive matrices β01 and β02 which

are defined in (10). By adjusting parameter β02 such that r1 ≃
(hβ−1

02 )2 holds, which shows that estimate error r1 is bounded.

Based on (11), it is easy to know that r2 is also bounded.

Then, the observation accuracy of extended state observer is

guaranteed.

Proof 1: Consider the following Lyapunov function

V (r1, r2) = M |r1|
3

2 − Or1r2 + Nr2
2 (16)

in which M , O and N are constants which are satisfied with

M > 0, O > 0, N > 0, O2 − 4MN < 0 (17)

Hence, it is obtained that (16) is positive. The par-

tial derivatives of equation (16) with respect to r1 and

r2 is given as follows ∂V
∂r1

= 3
2M |r1|

1

2 sign(r1) − Or2

and ∂V
∂r2

= −Or1 + 2Nr2. One has that V̇ (r1, r2) =
(

3
2M − 2Nβ02 + Oβ01|r1|

1

2

)

|r1|
−

1

4 |r1|
3

4 sign(r1)r2−Or2
2−

(

3
2Mβ01 − Oβ02

)

|r1|
2( 3

4
) + Ohr1 − 2Nhr2 The above equa-

tion is regarded as the form of a quadratic function with

variables |r1|
3

4 sign(r1) and r2. It is rewritten to the following

form

V̇ = −p|r1|
2( 3

4
) + q|r1|

3

4 sign(r1)r2 − or2
2 + Θ (18)

in which p is a constant, q is a function of the variable r1,

with q = ( 3
2M−2Nβ02+Oβ01|r1|

1

2 )|r1|
−

1

4 , p = ( 3
2Mβ01−

Oβ02) and o = O, Θ denotes the variable Ohr1−2Nhr2. The

quadratic part of the equation (18) is negative if and only if

p > 0, q > 0, o > 0, q2 − 4po < 0. Let constants a = Oβ01,

c = 3
2M − 2Nβ02, b =

√

O
(

3
2Mβ01 − Oβ02

)

and variable

φ = |r1|
1

4 . There exists c + aφ2 < 2bφ which holds for any

φ, if and only if inequality b2 − ac > 0 is satisfied. Inequality

q2 − 4po < 0 holds, if and only if φ in the quadratic equation

aφ2 − 2bφ + c = 0 is taken the value in the following set

{φ| φ1 < φ < φ2 }, where φ1 = a−1(b −
√

b2 − ac), φ2 =

a−1(b+
√

b2 − ac) are two roots of aφ2−2bφ+c = 0. Form

inequality b2 − ac > 0, we have

Oβ02(2Nβ01 − O) > 0 (19)

In order to obtain a large interval between the two roots φ1

and φ2 such that the smaller root approaches to zero, inequality

(19) have to be large enough. Therefore, we need to take a

large O, and choose N to make inequality 2Nβ01 − O be

large. According to the above analysis, we have the conclusion

that coefficient M , O and N of equation (16) are satisfied

with 3Mβ01 > 2Oβ02, 3M > 4Nβ02 and 2Nβ01 > O,

where β01 and β02 are two given parameters. Giving a large

O > 0, and closing N > O
2β01

, M > 4
3Nβ02, which also

satisfy inequality (17), one has that M > 2Oβ02

3β01

holds. Hence,

equation (16) is positive and its derivative along the system

trajectories is negative in a wide range of variables r1 and

arbitrary r2. Therefore, the error system (11) is stable at its

equilibrium point. Based on (18), we suppose V̇ = V̇1 − V̇2,

where V̇1 = −p|r1|
2( 3

4
) + q|r1|

3

4 sign(r1)r2 − or2
2, V̇2 =

−Ohr1 + 2Nhr2. After selecting the coefficients M , O and

N by the above-described manner, function (18) is positive

in the region of the intersected upper portion of parabolic V1

and flat plane V2. Both the magnitude of r1 and the root of

equation p|r1|
2( 3

4
) = Ohr1 are in the same order, i.e., r1 ≃

((Ohp−1)2. Furthermore, it is known that p and Oβ02 are in
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the same order from p = ( 3
2Mβ01−Oβ02). Hence, there exists

r1 ≃ (Ohp−1)2 ≃ (hβ−1
02 )2. The error r1 is bounded. Thus

there exists a constant R1 with R1 ≤ 1 such that r1 ≤ R1 ≤ 1
by adjusting parameter β02. There exists ṙ1 = 0 when the error

system (11) is stable. Note that r1 and r2 are satisfied with

r2 = β01r1, so the estimation error r2 is also bounded. There

also exists a known R2 max such that ‖r2‖ ≤ R2 max.

B. Stability analysis of closed-loop system

Theorem 2: Consider the system of a nonholonomic mobile

robot (5), the extended state observer (10), the error system

(11), the nonlinear controller τ̄ in (15), the non-smooth func-

tion fal as in (1) and Theorem 1. By adjusting parameters such

that the following two inequalities

‖e‖ > ‖d‖K−1
min(M), ‖eθ‖ > ǫθK

−1
2 min,

‖ev‖ > max
{

δ1−αR2 maxK
−1
3 min, R2 maxK

−1
3 min

}

hold. Then, both e and ev converge in a residual set. That is,

we have (i) the signals in the closed-loop system are bounded;

(ii) the auxiliary velocity error is arbitrarily small value; (iii)

the steady state tracking errors ex, ey and eθ are uniformly

ultimately bounded.

Proof 2: Consider the following Lyapunov function

V3 =
1

2
(e2

x + e2
y + e2

θ) +

(

min

{

0,
L2

rod − d2
d

L2
rod − d2

s

})2

+ V4

where V4 = 1
2eT

v C(q)ev . The derivative of the Lyapunov

function V3 is given by

V̇3 = exėx + ey ėy + eθ ėθ +
∂Vob

∂xi

ẋi +
∂Vob

∂yi

ẏi + V̇4 (20)

Applying (14) and (15), taking the manipulate of derivative

for V4, one has that

V̇4 =
1

2
eT
v

(

Ċ(q) − 2Bm(q, q̇)
)

ev − eT
v k3fal + eT

v r2

By Property 2, the first term of the right-hand side in V̇4 is

zero. Thus, there exists

V̇4 = −eT
v k3fal + eT

v r2 (21)

Substituting (1) into equation (21), one has that

V̇4a < −‖ev‖
2K3 minδα−1 + ‖ev‖R2 max ‖ev‖ ≤ δ

V̇4b < −‖ev‖
2K3 min + ‖ev‖R2 max ‖ev‖ > δ

in which R2 max is the maximum value of r2, K3 min is the

minimum value of k3. We have that V̇4a is guaranteed negative

as long as the following condition

‖ev‖ > δ1−αR2 maxK
−1
3 min (22)

holds. Furthermore, it is obtained that V̇4b is guaranteed

negative as long as the following condition

‖ev‖ > R2 maxK
−1
3 min (23)

holds. Based on (22) and (23), we take

‖ev‖ > max{δ1−αR2 maxK
−1
3 min, R2 maxK

−1
3 min} (24)

in this subsection.

Considering the error dynamics ėx, ėy and ėθ, using the

expressions cos(eθ) = Ex(E2
x + E2

y)−1, sin(eθ) = Ey(E2
x +

E2
y)−1 and substituting (12) into the first five terms of equation

(20), we have that

V̇5 ≤ k1 cos2(eθ)(E
2
x + E2

y) − ‖eθ‖(k2‖eθ‖ − ǫθ) − ζ (25)

in which ζ = exẋr − ey ẏr. When the robot is outside the

detection region, i.e., Lrod > dd, we have ∂Vob

∂xi

= ∂Vob

∂yi

= 0
and the inequality (25) becomes

V̇5 = −





ex

ey

eθ





T

M





ex

ey

eθ



 +

∥

∥

∥

∥

∥

∥





ex

ey

eθ





∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥





ẋr

ẏr

−ǫθ





∥

∥

∥

∥

∥

∥

for the reason of that cos2(eθ) is not equal to zero. Hence,

V̇5 < 0 holds if the following inequality holds

‖e‖ > ‖d‖K−1
min(M) (26)

where e = [ex ey eθ]
T , d = [ẋr ẏr ǫθ], and

M =





k1 cos2(eθ) 0 0
0 k1 cos2(eθ) 0
0 0 k1





From the analysis above, we know that the tracking errors is

bounded when the conditions (24) and (26) are satisfied. Thus

the stability of the error dynamics (14) is guaranteed outside

the detection region. When the robot is inside the detection

region, i.e., ds ≤ Lrod < dd, there exists ẋr = ẏr = 0 such

that inequality (25) becomes V̇5 ≤ k1 cos2(eθ)(E
2
x + E2

y) −

‖eθ‖(k2‖eθ‖− ǫθ). We have that V̇5 is negative if and only if

‖eθ‖ > ǫθK
−1
2 min (27)

where K2 min is the minimum value of k2. As shown in [10],

if V̇ is negative definite, then V is non-increasing inside the

detection region. Since limVob = ∞ as ‖z−zo‖ → r+, where

z = [xi yi]
T and zo = [xo yo]

T . Collision avoidance is

guaranteed inside the detection region when the conditions

(24) and (27) are satisfied.

V. SIMULATION RESULTS

To illustrate the effectiveness of the designed control

scheme, some simulation results are implemented based on

the system (5), the extended state observer (10), and nonlinear

controller (14). The physical parameters of wheeled robot in

Fig. 2 are set as m = 10.0kg, b = 0.22m, lG = 0.17m,

r = 0.05m and Jd = 0.75kg × m2. The reference trajectory

is a straight line with initial coordinates (1.2, 0.0) and orien-

tation 45◦, respectively. The desired velocity and angular are

respective vr = 0.2m/s, wr = 0.0rad/s and the initial velocity

and angular are respective vo = 0.35m/s, wo = 0.2rad/s. The

initial coordinates and orientation of the vehicle are (1.0, 1.5)

and 60◦, respectively. The parameters of observer are chosen

as β01 = diag{50, 50} and β02 = diag{135, 135}.

The position errors based on the proposed nonlinear con-

troller and PD controller is shown in TABLE I.

Remark 3: In Fig. 5, the position, the shape and the size of

the obstacle can be arbitrarily set through changing m, n and r
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Fig. 5 Tracking and obstacle avoidance results of the mobile robot
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Fig. 6 Trajectory tracking errors of the mobile robot
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Fig. 7 State tracking errors of ESO and the distance between the robot and the obstacle, and the avoidance region.
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Fig. 8 Tracking and obstacle avoidance results based on nonlinear controller in complex environment.
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TABLE II
COMPARISONS OF THE OBTAINED RESULTS WITH OTHERS

References Contributions

[11] Adaptive control no considering external disturbances at the kinematic level

[12] Model-reference control without external disturbances

[13] An integrated method and path following no considering external disturbances

[14] Binary logic controller and FLC without external disturbances

This paper Nonlinear controller with considering external disturbances at the dynamic level

TABLE I
THE COMPARISON BETWEEN PD CONTROLLER AND NONLINEAR

CONTROLLER.

ex(m) ey(m) eθ(rad) Jitter

PD 0.447 0.446 3.1400 Yes

This paper 0.400 0400 3.1400 No

according to the actual needs. In this paper, an extended state

observer is introduced to estimate the unknown disturbances,

which will be compensated in controller (15). The extended

state observer has strong anti-interference ability [24], so the

proposed control scheme in this paper has strong robustness.

Some comparison results are given in TABLE II. Therefore,

there exists some interesting content in this paper.

VI. CONCLUSION

In this paper, we have proposed a nonlinear controller for

tracking and obstacle avoidance of a wheeled mobile robot

with nonholonomic constraint. The proposed nonlinear control

scheme for a wheeled mobile robot at the dynamics level has

been designed without the assumption on the prefect velocity

tracking. Simulation results demonstrate for the proposed

scheme have been indeed feasible and effective.
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