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Abstract—Four-rotor micro aerial robots, so called quadro-
tor UAVs, are one of the most preferred type of unmanned
aerial vehicles for near-area surveillance and exploration both
in military and commercial in- and outdoor applications. The
reason is the very easy construction and steering principle using
four rotors in a cross configuration. However, stabilizing control
and guidance of these vehicles is a difficult task because of
the nonlinear dynamic behavior. In addition, the small payload
and the reduced processing power of the onboard electronics
are further limitations for any control system implementation.
This paper describes the development of a nonlinear vehicle
control system based on a decomposition into a nested structure
and feedback linearization which can be implemented on
an embedded microcontroller. Some first simulation results
underline the performance of this new control approach for
the current realization.

I. INTRODUCTION

Unmanned flying robots or vehicles (UAVs) are gain-
ing increasing interest because of a wide area of possible
applications. While the UAV market has first been driven
by military applications and large expensive UAVs, recent
results in miniaturization, mechatronics and microelectronics
also offer an enormous potential for small and inexpensive
Micro-UAVs for commercial use. These Micro-UAVs would
be able to fly either in- or outdoor, leading to completely
new applications. However, indoor flight comes up with some
very challenging requirements in terms of size, weight and
maneuverability of the vehicle that rule out most of the
aircraft types, see [1] for an excellent overview. One type
of aerial vehicle with a strong potential also for indoor flight
is the rotorcraft and the special class of four-rotor aerial
vehciles, also called quadrotor. This vehicle, shown in Fig.
1, has been chosen by many researchers as a very promising
vehicle, see e.g. [1], [2], [3] and [4].
The quadrotor is a mechatronic system with four propellers

in a cross configuration. While the front and the rear motor
rotate clockwise, the left and the right motor rotate counter-
clockwise which nearly cancels gyroscopic effects and aero-
dynamic torques in trimmed flight. One additional advantage
of the quadrotor compared to a conventional helicopter is
the simplified rotor mechanics. By varying the speed of the
single motors, the lift force can be changed and vertical
and/or lateral motion can be created. Pitch movement is
generated by a difference between the speed of the front and
the rear motor while roll movement results from differences
between the speed of the left and right rotor, respectively.

Fig. 1. A commercially available quadrotor.

Yaw rotation results from the difference in the counter-torque
between each pair (front-rear and left-right) of rotors. The
overall thrust is the sum of the thrusts generated by the four
single rotors.
Besides the choice of a suitable aircraft type, combined

in- and outdoor flight also requires a more advanced on-
board automation system. Inside a building, not much space
for maneuvering is available but many obstacles exist and
there is a high possibility that any wireless data link will
fail. Therefore, a very accurate stabilization of the platform,
a highly precise navigation with collision avoidance func-
tionality and the onboard implementation of more cognitive
functions in order to guarantee a higher degree of autonomy
is necessary, see [5]. In addition to this functional complexity,
the algorithms also have to be implemented in the embedded
hardware and have to fulfil realtime requirements while
limited memory and onboard processing capacity have to
be considered.
In this paper, we address the first problem of accurate

stabilization of the quadrotor UAV since the fulfillment of
that task is a precondition for further implementation of other
functionalities in the vehicle. In spite of the four actuators,
the quadrotor is a dynamically unstable system that has to
be stabilized by a suitable control system. Unfortunately,
the dynamic behavior is nonlinear leading to more complex
control algorithms. There are some contributions in the
literature that are concerned with control system design for



small quadrotor vehicles, see e.g. [1], [2], [3], [4] and [5] to
mention only a few. Many of the proposed control systems
are based on a linearized model and conventional PID- or
state space control while other approaches apply sliding-
mode, H∞ or SDRE control [4], [5]. This paper proposes
a control system approach that is first based upon a de-
composition of the overall control functionality into a nested
structure of velocity and attitude control. The attitude control
problem is then solved via feedback linearization which
directly takes the nonlinear dynamics of the vehicle into
account. For velocity control, a proportional controller with
a nonlinear transformation is applied. First simulation results
are promising for the current realization and implementation
of the algorithms.

II. DYNAMIC MODEL OF THE QUADROTOR

The general dynamic model of a quadrotor has been pre-
sented in a number of papers and will not be discussed here
in all details again. For further considerations of modelling,
we refer to [1], [3] or [4]. We consider an inertial frame and
a body fixed frame whose origin is in the center of mass of
the quadrotor as shown in Fig. 2.

Fig. 2. Configuration, inertial and body fixed frame of the quadrotor.

The orientation of the quadrotor is given by the three Euler
angles, namely yaw angle ψ, pitch angle θ and roll angle φ
that together form the vector ΩΩΩT = (φ, θ, ψ). The position
of the vehicle in the inertial frame is given by the vector
rrrT = (x, y, z). The transformation of vectors from the body
fixed frame to the inertial frame is given by the rotation
matrix RRR where cθ for example denotes cos θ and sθ denotes
sin θ:

RRR =

⎛
⎝ cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ

sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ

⎞
⎠ (1)

Since the thrust force generated by rotor i, i = 1, 2, 3, 4 is
Fi = b · ω2

i where b is the thrust factor and ωi is the speed
of rotor i, we obtain a first set of differential equations that
describe the acceleration of the quadrotor:

r̈rr = g ·
⎛
⎝ 0

0
1

⎞
⎠ −RRR · b/m

4∑
i=1

ω2
i ·

⎛
⎝ 0

0
1

⎞
⎠ (2)

With the inertia matrix III (which is a diagonal matrix with
the inertias Ix, Iy and Iz on the main diagonal), the rotor
inertia JR, the vector MMM that describes the torque applied
to the vehicle’s body and the vector MMMG of the gyroscopic
torques we obtain a second set of differential equations:

IIIΩ̈ΩΩ = −
(
Ω̇ΩΩ × IIIΩ̇ΩΩ

)
−MMMG +MMM (3)

The vector MMM is defined as (see Fig. 2)

MMM =

⎛
⎝ Lb(ω2

2 − ω2
4)

Lb(ω2
1 − ω2

3)
d(ω2

1 + ω2
3 − ω2

2 − ω2
4)

⎞
⎠ (4)

with the drag factor d and the length L of the lever. The
gyroscopic torques caused by rotations of the vehicle with
rotating rotors are

MMMG = IR(Ω̇ΩΩ ×
⎛
⎝ 0

0
1

⎞
⎠) · (ω1 − ω2 + ω3 − ω4) (5)

The four rotational velocities ωi of the rotors are the input
variables of the real vehicle, but with regard to the obtained
model a transformation of the inputs is suitable. Therefore,
we define the new artificial input variables as follows:

u1 = b(ω2
1 + ω2

2 + ω2
3 + ω2

4)
u2 = b(ω2

2 − ω2
4)

u3 = b(ω2
1 − ω2

3)
u4 = d(ω2

1 + ω2
3 − ω2

2 − ω2
4) (6)

However, also the gyroscopic torques depend on the ro-
tational velocities of the rotors and hence on the vector
uuuT = (u1, u2, u3, u4) of the transformed input variables.
With

ω1 − ω2 + ω3 − ω4 = g(uuu) (7)

evaluation of (2) and (3) yields the overall dynamic model
in the following form

ẍ = −(cosφ sin θ cosψ + sinφ sinψ) · u1

m

ÿ = −(cosφ sin θ sinψ − sinφ cosψ) · u1

m

z̈ = g − (cosφ cos θ) · u1

m

φ̈ = θ̇ψ̇(
Iy − Iz
Ix

) − IR
Ix
θ̇g(uuu) +

L

Ix
u2

θ̈ = φ̇ψ̇(
Iz − Ix
Iy

) +
IR
Iy
φ̇g(uuu) +

L

Iy
u3

ψ̈ = φ̇θ̇(
Ix − Iy
Iz

) +
1
Iz
u4 (8)



Fig. 3. Overall model of the quadrotor dynamics.

This model can be rewritten in state variable form ẋxx =
fff(xxx,uuu) where xxx ∈ R

9 is the vector of state variables

xxxT = (ẋ, ẏ, ż, φ, θ, ψ, φ̇, θ̇, ψ̇) (9)

Using (7) and (8) we obtain

ẋxx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(cosx4 sinx5 cosx6 + sinx4 sinx6) · u1/m
−(cosx4 sinx5 sinx6 − sinx4 cosx6) · u1/m
g − (cosx4 cosx5) · u1/m
x7

x8

x9

x8x9I1 − IR

Ix
x8g(uuu) + L

Ix
u2

x7x9I2 + IR

Iy
x7g(uuu) + L

Iy
u3

x7x8I3 + 1
Iz
u4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(10)

with I1 = (Iy − Iz)/Ix, I2 = (Iz − Ix)/Iy and I3 =
(Ix − Iy)/Iz . Here it has also been taken into account that
the reference variable of the quadrotor is a desired velocity
vector and not a position vector.
It becomes obvious that the state space model can be

decomposed into one subset of differential equations that
describes the dynamics of the attitude (i.e. the angles) and
one subset that describes the translation of the UAV. From
(10) we obtain the first subset of differential equations, called
submodelM1, that describes the quadrotor’s angular rates as⎛

⎝ ẋ7

ẋ8

ẋ9

⎞
⎠ =

⎛
⎜⎝ x8x9I1 − IR

Ix
x8g(uuu) + L

Ix
u2

x7x9I2 + IR

Iy
x7g(uuu) + L

Iy
u3

x7x8I3 + 1
Iz
u4

⎞
⎟⎠ (11)

The Euler angles of the quadrotor, i.e. the state variables
x4, x5 and x6 can then be obtained by pure integration.
These Euler angles as well as the variable u1 are the input
variables of a submodel M2 that describes the velocities of
the quadrotor:⎛
⎝ ẋ1

ẋ2

ẋ3

⎞
⎠ =

⎛
⎝ − cosx4 sinx5 cosx6 − sinx4 sinx6

− cosx4 sinx5 sinx6 + sinx4 cosx6

g − (cosx4 cosx5)

⎞
⎠ · u1

m

(12)
Further integration delivers the position of the vehicle. The
overall structure of the overall model including the sub-
models is shown in Fig. 3. The derived dynamic model
has been implemented in MATLAB/Simulink, in addition an
experimental platform has been designed and the parameters
of this vehicle have been identified via experiments. The
presented model then serves as the basis for the development
of the control system.

III. VEHICLE CONTROLLER DESIGN

From a control engineering point of view, a UAV system
contains two main control loops [5]. The first main and
underlying control loop is the vehicle control loop. This con-
trol loop is responsible for the generation and stabilization
of a currently required movement of the UAV. The second
main loop is the mission control loop that comprises the
stabilized vehicle as a platform for mission related sensors
and actuators and the mission control system. The mission
control loop computes the desired flight path, e.g. given by
waypoints, and commands current required movements to the
vehicle control loop. The remaining question comprises the
type of commands that will be given to the vehicle control
loop. Direct position control as proposed in some papers (see
e.g. [2], [3]) is most often not necessary for vehicle guidance
and position measurement or estimation is most often not
accurate enough for direct feedback control of the position.
For that reason we assume in this approach that the

mission control system commands a desired velocity vector
to the vehicle control system. This required velocity vector
then has to be established and stabilized. In order to obtain
the necessary measurements for this velocity control, the
vehicle control loop must be equipped with a suitable inertial
measurement system (IMU). This IMU delivers the acceler-
ations and angular rates that can be used to further estimate
velocities and Euler angles with the help of a Kalman filter.
The default command from the mission system is the zero
velocity vector, i.e. the quadrotor UAV should hover at the
current position. In this paper the main challenge and focus
is on the vehicle control loop, i.e. the control of a required
velocity vector of the UAV.
The decomposed model structure as shown in Fig. 3

already suggests a nested structure for vehicle control. In
order to achieve and maintain a desired velocity vector,
first the necessary attitude of the UAV has to be stabilized.
Therefore, we propose a decomposition of the control system
in an outer-loop velocity control and an inner-loop attitude
control system. In this structure, the inner attitude control
loop has to be much faster than the outer loop and stabilizes
the desired angles that are commanded by the outer loop.
This nested structure is shown in Fig. 4.

Fig. 4. Nested structure of the UAV vehicle control.

First we consider the inner control loop with controller
C1, the attitude control loop, that has to stabilize the desired
roll, pitch and yaw angle, i.e. the desired vector ΩT

d =
(φd, θd, ψd) = (x4,d, x5,d, x6,d). The corresponding dynamic
model comprises the last six equations of the state variable



model (10) which is a series of the nonlinear submodel M1

and an integrator. Then we derive the outer-loop controller
C2 to stabilize a desired velocity vector.

A. Attitude Control System

For the design of the attitude control C1 we first neglect
the gyroscopic terms in the relevant submodelM1 which are
comparatively small if the rotor inertias are small (as it is the
case here). However, we show later that the derived controller
nevertheless also stabilizes the model with gyroscopic terms.
We obtain the simplified submodel M1 as⎛

⎝ ẋ7

ẋ8

ẋ9

⎞
⎠ =

⎛
⎜⎝ x8x9I1 + L

Ix
u2

x7x9I2 + L
Iy
u3

x7x8I3 + 1
Iz
u4

⎞
⎟⎠ (13)

Now we apply a feedback linearization in order to obtain a
linear system:

u2 = f2(x7, x8, x9) + u∗2
u3 = f3(x7, x8, x9) + u∗3
u4 = f4(x7, x8, x9) + u∗4 (14)

with the new input variables u∗2, u
∗
3, u

∗
4. In order to obtain a

linear system, the following conditions must be fulfilled:

x8x9I1 +
L

Ix
f2(x7, x8, x9) = K2 · x7

x7x9I2 +
L

Iy
f3(x7, x8, x9) = K3 · x8

x7x8I3 +
1
Iz
f4(x7, x8, x9) = K4 · x9 (15)

with the so far undetermined constant parameters
K2,K3,K4. Evaluation of (15) yields the nonlinear
feedback for linearization

f2(x7, x8, x9) =
Ix
L

(K2x7 − x8x9I1)

f3(x7, x8, x9) =
Iy
L

(K3x8 − x7x9I2)

f4(x7, x8, x9) = Iz (K4x9 − x7x8I3) (16)

Using this feedback (13) turns into the linear and decoupled
system ⎛

⎝ ẋ7

ẋ8

ẋ9

⎞
⎠ =

⎛
⎜⎝ K2x7 + L

Ix
u∗2

K3x8 + L
Iy
u∗3

K4x9 + 1
Iz
u∗4

⎞
⎟⎠ (17)

It can be shown that the resulting linearized closed-loop
system is stable even if we consider the gyroscopic terms
in (11). For that purpose we consider u∗2 = u∗3 = u∗4 = 0
and the operating point x7 = x8 = x9 = 0. We define the
Lyapunov function V (x7, x8, x9) which is is C1 and positive
defined around the operating point:

V (x7, x8, x9) = 0.5 · (x2
7 + x2

8 + x2
9) (18)

Now we calculate the first derivative of V using the model
(11) also including gyroscopic terms and the derived feed-
back (14), (16). In addition we assume a perfect cross

configuration of the quadrotor with Ix = Iy which results
in I1 = −I2 and I3 = 0. The derivative of the Lyapunov
function then finally can be calculated as

V̇ = x7ẋ7 + x8ẋ8 + x9ẋ9

= K2 · x2
7 +K3 · x2

8 +K4 · x2
9 (19)

which is also independent from the gyroscopic terms. This
derivative is negative defined if K2,K3,K4 < 0 and this
guarantees that the operating point of the feedback linearized
system is asymptotically stable.
Taking into account that ẋ4 = x7, ẋ5 = x8, ẋ6 = x9

(see (10) it becomes obvious that the dynamics of the angles
using the linearized dynamics and neglecting the gyroscopic
terms again are described by linear decoupled differential
equations of second-order, respectively. See e.g. x4:

ẍ4 = K2ẋ4 + L/Ixu
∗
2 (20)

If x4d is the desired angle, application of a linear controller
u∗2 = w2 · (x4d − x4) with constant parameter w2 leads to a
closed-loop system of second order with the transfer function

F (s) =
X4(s)
X4d(s)

=
w2

Ix/L · s2 −K2Ix/L · s+ w2
(21)

The same considerations hold for the other angles with linear
controllers u∗3 = w3 · (x5d − x5) and u∗4 = w4 · (x6d − x6),
respectively. The dynamics of these closed-loop systems
can now be easily defined by adjustment of the pairs of
parameters (K2, w2), (K3, w3), (K4, w4), respectively, with
the only limitation that the parameters K2,K3,K4 must be
negative. For instance, a choice of K2 = −80 leads to
a settling time of approximately Ts ≈ 0.1 sec, a choice
w2 = (K2/2)2 · Ix/L leads to zero overshoot.

B. Velocity Control System C2

If the inner-loop attitude control is sufficiently fast as
previously designed, we can assume that desired values of the
roll, pitch and yaw angle, i.e. x4d, x5d, x6d, are achieved very
fast compared with the outer velocity control loop. Therefore
the closed inner attitude control loop can be approximately
considered as a static block that just transfers the desired
values of roll, pitch and yaw angle to the next model M2.
According to (12), we can then describe model M2 by the
following set of nonlinear differential equations:

ẋ1 = −(cosx4d sinx5d cosx6d + sinx4d sinx6d) · u1/m

ẋ2 = −(cosx4d sinx5d sinx6d − sinx4d cosx6d) · u1/m

ẋ3 = g − cosx4d cosx5d · u1/m (22)

where all x4d, x5d, x6d and u1 are input variables. Equation
(22) can be interpreted in a way that all differential equations
are of the form

ẋ1 = ũ1 = f1(x4d, x5d, x6d, u1)
ẋ2 = ũ2 = f2(x4d, x5d, x6d, u1)
ẋ3 = ũ3 = f3(x4d, x5d, x6d, u1) (23)

with the new input variables ũ1, ũ2, ũ3 that depend on the
other four input variables in a nonlinear form. However,



regarding these new input variables, the control task is very
simple because it comprises the control of three indepen-
dent systems of first order which might be solved by pure
proportional controllers, respectively:

ũ1 = k1 · (x1d − x1)
ũ2 = k2 · (x2d − x2)
ũ3 = k3 · (x3d − x3) (24)

Herein the controller parameters k1, k2 and k3 could be
chosen in a way that the outer loop is sufficiently fast but
not too fast with respect to the inner loop attitude control.
In a next step, these transformed input variables ũ1, ũ2, ũ3

must be used to obtain the real input variables x4d, x5d, x6d

and u1 by evaluating (22).
First of all it becomes obvious that any desired velocity

vector can be achieved without any yaw rotation and there-
fore we can set x6d = ψd = 0 which simplifies (22):

ũ1 = − cosx4d sinx5d · u1/m

ũ2 = sinx4d · u1/m

ũ3 = g − cosx4d cosx5d · u1/m (25)

These nonlinear static equations however can be solved
analytically by first applying the following substitution:

α = sinx4d ⇒ cosx4d = ±
√

1 − α2

β = sinx5d ⇒ cosx5d = ±
√

1 − β2 (26)

Insertion in (25) yields

ũ1 = ∓
√

1 − α2 · β u1

m

ũ2 = α
u1

m

ũ3 = g −
(
∓

√
1 − α2 · ±

√
1 − β2 · u1

m

)
(27)

If ũ1 �= 0 we obtain the following solution:

β = ±
[(

g − ũ3

ũ1

)2

+ 1

]− 1
2

u1 = ±m ·
√
ũ2

1

β2
+ ũ2

2

α = ũ2 · m
u1

(28)

Since u1 is always positive (see (6)), we obtain the unique
solution

u1 = +m ·
√
ũ2

1

β2
+ ũ2

2 (29)

Then α is also unique and hence x4d = arcsinα is uniquely
obtained in the interval [±π/2]. In the same way, we achieve
x5d = arcsinβ, but β and thus x5d could be positive or
negative. However, let us consider

ũ1 = − cosx4d sinx5d · u1/m (30)

Since the first cosinus term is always positive in [±π/2] and
the last term is also always positive, we see that x5d must be

negative if ũ1 is positive and vice versa. All further special
cases (e.g. ũ1 = 0) can all be solved analytically too after
careful consideration.

C. Overall Control System

The overall control system consist of the derived inner
attitude and the outer velocity control loop, forming the
structure as shown in Fig. 4. The two control systems
determine the four input variables u1, u2, u3 and u4 and
(6) is used to calculate the required angular rates of the
rotors, namely ω1, ω2, ω3 and ω4. The main advantage of
the overall control system is the fact that the feedback
linearization and the controllers are comparatively easy to be
implemented, while taking the full nonlinear behavior of the
vehicle into account. That leads to a fast computation even
on standard embedded micro-controller systems. However,
the overall control algorithm requires the measurement of
all state variables, i.e. all velocities, Euler angles and rates
of the Euler angles. These measurements must be provided
by the inertial measurement unit with sufficient accuracy.

IV. SIMULATION RESULTS

In order to implement the derived control system, a simu-
lation model as well as an experimental setup has been devel-
oped. The experimental setup is based upon the commercially
available quadrotor manufactured by Draganfly Innovations,
Inc. (see also http://www.rctoys.com). The original elec-
tronics is removed and replaced by our own hardware. In
addition, a commercially availabe Micro IMU from Xsens
(www.xsense.com) is implemented. The parameters of the
experimental setup are determined following the experiments
given in [2] and led to the identified parameters given in
Table I. The quadrotor model (8) using the parameters of
Table I is then implemented in MATLAB/Simulink for a
simulation. The parameters of the velocity controllers are
chosen as k1 = k2 = k3 = 5 while the design parameters of
the inner loop attitude controller are K2 = K3 = K4 = −80
and w1 = w2 = w3 = 38, see also the previous section.
In a first simulation, we assume an initial deviation of the

angles ΩT = (φ = 30◦, θ = −20◦, ψ = 10◦) where the
control goal is to stabilize a hovering position, i.e. vvvd = 000.
The obtained control result is shown in Fig. 5 as a time
plot of all angles of the quadrotor. There is a very short

TABLE I

IDENTIFIED PARAMETERS OF THE QUADROTOR

Parameter Value Unit

g 9.81 m/s2

m 0.5 kg

L 0.2 m

Ix = Iy 4.85 · 10−3 kg · m2

Iz 8.81 · 10−3 kg · m2

IR 3.36 · 10−5 kg · m2

b 2.92 · 10−6 kg · m
d 1.12 · 10−7 kg · m2



Fig. 5. Angles during attitude control.

transition phase with small under- and overshoots and the
hovering state is reached after t ≈ 0.6 sec.
In a second simulation, we choose the initial velocity ẋ =

0.8m/sec while the other two velocities are both zero. The
desired state which has to be achieved by the control action
is again the hovering state where all angles and all velocities
are zero. The simulation result for the compensation of the
initial velocity deviation is shown in Fig. 6 as a time plot of
ẋ(t). It becomes obvious that the velocity controller perfectly
compensates the deviation while the overall velocity control
is a little bit slower than pure inner loop attitude control.
In Fig. 7, the angular velocities during that simulation are
presented.

Fig. 6. Velocity in x-direction during velocity compensation.

A last simulation presented here covers the control of a
given desired velocity vector. Therefore we assume that the
quadrotor starts in the hovering state (i.e. all velocities are
zero). The control task now comprises the stabilization of
a desired velocity vector with ẋd = ẏd = żd = 0.5 m/sec
and to generate a linear movement. The plot of all velocities
during the control action is presented in Fig. 8. Again, the
desired state is achieved after a short transition phase and
the quadrotor is moving with constant velocity. During that
constant flight the angles are also kept constant and hence the
angular rates are all zero after the initial transition. Currently
the control algorithms are implemented in the experimental
setup for further testing.

Fig. 7. Angular velocities during velocity compensation.

Fig. 8. Velocities during velocity control.

V. CONCLUSIONS AND FUTURE WORKS

This paper presents a vehicle control system for a quadro-
tor Micro-UAV based on a combined control strategy in-
cluding feedback linearization to cope with the nonlinear
dynamic behavior of the vehicle. Both an inner-loop atti-
tude controller and an outer-loop velocity controller have
been developed during the proposed work. The dynamic
model of the quadrotor is derived and implemented in a
Matlab/Simulink simulation model. With the help of that
simulation, the nonlinear vehicle control system is tested
and its efficiency demonstrated. In our ongoing work we are
currently implementing the proposed control system in the
real quadrotor UAV.

REFERENCES

[1] S. Bouabdallah, R. Siegwart, “Backstepping and Sliding-mode Tech-
niques Applied to an Indoor Micro Quadrotor”, in Proc. of the IEEE
International Conference on Robotics and Automation, 2005, pp. 2247
2252.

[2] A. Tayebi, S. McGilvray, “Attitude Stabilization of a VTOL Quadrotor
Aircraft”, in IEEE Transactions on control systems technology, 2006,
Vol. 14, 2006, pp. 562 - 571.

[3] P. Castillo, A. Dzul, R. Lozano, Real-time stabilization and tracking
of a four-rotor mini rotorcraft, IEEE Trans. on Control Systems
Technology, VOL.12, No. 4, July 2004, pp. 510 - 516.

[4] H. Voos, “Nonlinear State-Dependent Riccati Equation Control of
a Quadrotor UAV”, in Proc. of the IEEE Conference on Control
Applications, Munich, Germany, 2006.

[5] H. Voos, Nonlinear and Neural Network-based Control of a Small
Four-Rotor Aerial Robot, in Proc. of the IEEE/ASME Int. Conference
on Advanced Intelligent Mechatronics, Zurich, CH, 2007.


