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Nonlinear Control of Feedforward Systems
With Bounded Signals

Georgia Kaliora and Alessandro Astolfi

Abstract—The stabilization problem for a class of nonlinear
feedforward systems is solved using bounded control. It is shown
that when the lower subsystem of the cascade is input-to-state
stable and the upper subsystem not exponentially unstable,
global asymptotic stability can be achieved via a simple static
feedback having bounded amplitude that requires knowledge
of the “upper” part of the state only. This is made possible by
invoking the bounded real lemma and a generalization of the
small gain theorem. Thus, stabilization is achieved with typical
saturation functions, saturations of constant sign, or quantized
control. Moreover, the problem of asymptotic stabilization of a
stable linear system with bounded outputs is solved by means of
dynamic feedback. Finally, a new class of stabilizing control laws
for a chain of integrators with input saturation is proposed. Some
robustness issues are also addressed and the theory is illustrated
with examples on the stabilization of physical systems.

Index Terms—Bounded control, bounded-real lemma, for-
warding, nonlinear stabilization.

1. INTRODUCTION

N THIS paper, we study the problem of asymptotic stabi-
lization with bounded control of stable cascades described
by equations of the form

'éj =Jz+h(&)+r(Eu
§=f()+9(&u M

and some related problems. See Section II for the precise for-
mulation and the standing assumptions.

Nonlinear control with saturated signals is a problem that al-
though well studied (see, e.g., [10], [33], [35], [32], and the ref-
erences therein) still gathers a lot of interest [9], [18], [19], [22].
Limitations on available energy impose bounded input signals,
while it is also very common that due to sensors limitations
the outputs of the system are bounded. System (1) belongs to
the family of systems in feedforward form. This class of sys-
tems can be stabilized using the forwarding approach or one
of its modifications; see e.g., [10], [29], [21], [25], and [2]. On
the other hand, nonlinear small gain theorem based approaches
have also been used for the stabilization of these systems [36],
[33], [18], [1]. Finally, (1) can (under some special assumptions)
also be studied from an absolute stability [38] point of view.
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Forwarding is a systematic tool for the stabilization of gen-
eral cascades, a special case of which is the form described by
(1). This methodology requires, in general, the (approximate)
solution of a partial differential equation and tends to generate
complex control laws. Moreover, although forwarding tackles
successfully saturated inputs, it is not a low amplitude design,
so it does not impose restrictions on the control amplitude. The
control Lyapunov function approach can also provide control
laws for stabilization in the presence of input constraints, with
the use of universal formulae [15]. Relevant results are general,
however, large amount of the studies on low amplitude designs
is typically based on small gain considerations. They also re-
quire full state feedback, and in some cases only semiglobal re-
sults are provided [17], [32], [7], [34], [27].

From a structural point of view, for systems described by a
generalized linear [33], [35], [17] or nonlinear [18], [9] chain
of integrators, the control laws consist of a generalization of the
nested saturations scheme of [35] or linear combinations of sat-
urations [33]. These designs also make use of passivity, in the
sense that, at each step of the procedure, the feedback consists of
a function of the state for which is a relative degree one output.
See also [1], where Teel’s nested saturation scheme is robus-
tified against unmodeled dynamics. On the other hand, when
linear versions of system (1) are considered, an analysis based
on absolute stability can be easily implemented and can lead
to simple control laws. This way of thinking also provides flexi-
bility and robustness against some classes of perturbations. This
is made possible, because unlike with passivity based designs,
no phase restriction is imposed.

The results of this paper are motivated by the observation
that under the assumption that the lower subsystem of (1) is
input-to-state stable (ISS)' and locally exponentially stable, an
absolute stability point of view can be used in the design of
stabilizing saturated controllers for linear as well as nonlinear
systems. In a more precise formulation, the results stem from a
general result on the Ly stability of feedback interconnections
found in [26] and from the linear bounded real lemma [8]. The
proposed design requires partial state feedback only, and it bears
no connection to passivity arguments. As a matter of fact, it will
be shown that, in a very clear and natural framework, a number
of stabilization issues for (1), such as global asymptotic and
ISS stabilization (possibly with restrictions), robust stabiliza-
tion, and stabilization with bounded outputs can be addressed.

More specifically, the main contribution of this paper is the
presentation of new class of bounded control laws for (1).

I'This condition can be relaxed to ISS with restrictions or to global asymptotic
stability.
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Following this general result, the linear bounded real lemma
and the generalized small gain theorem of [26] are used to solve
in a unified way the following problems.

* Robust stabilization of a particular class of systems (1)
with partial state feedback in the presence of time delays.
Under the present framework, these perturbations can be
accommodated in a natural way, unlike the case where pas-
sivity-based controllers are used. See, for example, [20],
where some robustness issues of the nested saturations
scheme have been studied.

* Asymptotic stabilization with control of constant sign.

* Practical stabilization with quantized control, i.e., it will
be shown that a control input taking values in a discrete
set can drive the state of the closed loop system in an ar-
bitrarily small neighborhood of the origin.

In addition, the problem of global asymptotic stabilization for
stable linear systems with bounded output is solved via dynamic
linear feedback. Stabilization with feedback of perturbed and
bounded outputs was achieved via time varying control in [6],
[14], and [23], and via dynamic control, that includes state ob-
servation, in [16] and [22]. The dynamic law presented here is
not based on state estimation and it is applicable to minimum
and nonminimum phase systems, providing a partial answer to
the question raised in [16] about the stabilizability of output
feedback systems with unstable zeros in the presence of satu-
rated outputs.

Another byproduct of the main result is a new globally
asymptotically stabilizing control law for a chain of integrators
in the presence of input saturation which is obtained with re-
cursive application of the main result. This is conceptually and
structurally different from the ones of [35], [33], [18], and [9].
Moreover, the stabilization of mechanical systems is addressed
as an application of the main results. In particular, the trans-
lational oscillator with a rotational actuator (TORA) [3], is
globally asymptotically stabilized by output feedback. Various
constructive nonlinear control methodologies have been tested
on this system (see, for example, [11], [22], and [29]), while in
[24] the problem was set in a Euler-Lagrange framework and a
passivity based output feedback controller was proposed. With
the exception of this last reference, all proposed stabilizing
controllers either require full state feedback or utilize some
kind of state observer. In this paper, it will be shown that a
simple dynamic output feedback controller of dimension one
can globally asymptotically stabilize the TORA, which may be
compared with the elaborate stabilization scheme of [11]. Also,
a preliminary result on the stabilization of underactuated ships
moving on a linear course is presented.

As mentioned previously, the majority of the results that are
presented in this paper are established from an interconnections
point of view, i.e., they are proven with the application of a
generalization of the small gain theorem. However, all of them
can be phrased in Lyapunov stability and invariance principle
arguments.

In what follows, the construction of the bounded con-
trol signals—or the mathematical description of a bounded
output—will be achieved with the use of saturation functions.
More specifically, we will use three different types of such

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 11, NOVEMBER 2004

nonlinearities, all belonging to the sector [0, 1],2 the simplest of
which, denoted with o(-),04(-), and o (), are

0s(y) = sign(y) min{ly|,1} o4 (y) = max{0,05(y)}

oo(y) = 0, for |y| < 1
a\¥) = sign(y), elsewhere.

(@)

For the rest of this paper, we use the general symbol o(-) to
denote any of the functions (2).

The paper is organized as follows. In Section II, we present a
preliminary result on the stabilization of a cascade consisting of
anISS-locally exponentially stable (LES) system driving an inte-
grator. In the same section we formulate precisely the two main
problems that are addressed and solved. In Section III, we present
and prove two useful Lemmas about the solvability of a matrix
inequality. In Section IV, we elaborate on our main result on the
stabilization of nonlinear feedforward systems with a bounded,
partial state feedback control law. Motivated by the results in Sec-
tions IIT and IV, a dynamic control law that solves the problem
of asymptotic stabilization of a linear stable single-input—single-
output (SISO) system with bounded output is presented in Sec-
tion V.InSection VI, we give some applications of our mainresult.
Finally, in Section VII, we provide some conclusions.

Comment: With the exception of the saturation functions de-
fined in (2), it is assumed that all mappings and functions are at
least C*, throughout the paper. Note that the saturation functions
(2) are piecewise C*. Moreover, whenever linear approximations
are used these are always considered at the origin and for func-
tions and mappings that are C* at the origin. It will become clear
that all statements that involve o( - ) can be applied iteratively.

Notation: The symbol ||s|| is used to denote the Euclidean
norm of a vector s.

II. MOTIVATING RESULT AND PROBLEM FORMULATION

In this section, we show how stabilization of a simple cascade
can be obtained using bounded partial state feedback, and we
state formally the problems studied in this paper. Consider a
system described by equations of the form

5= ()
€= (&) +9(&)u &)

with z € R, ¢ € R”, and v € R and assume that the lower sub-
system is LES and ISS with respect to u. We now show that this
cascaded system can be stabilized with a simple bounded feed-
back law that requires knowledge of z only. The rationale behind
this result is straightforward. To begin with note that if |u| < €
is sufficiently small, by LES and ISS of the £-subsystem, any
trajectory of the closed loop system will converge to the slice
l€]] < be, where 6. can be made arbitrarily small reducing e.
Note also that z(¢) is bounded for all bounded ¢. On the slice
I€]] < 6. the system can be approximated by a linear time in-
variant system given by the equations

[2} B {8 ﬂ [z] * mu @

2A function o(y) is said to belong to the sector [kq, ko] if for all k; <
o(y)/y < ko
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where

af(&)
o€ |e_y ¢

1>
>

—_— F g(0).

Then, the following result can be established.

Proposition 1: Consider (3) with f(0) = 0 and h(0) = 0,
and the nonlinearity o( - ). Suppose that

HI) the system & = f(&) +g(&)u is ISS with respect to the

input u, and £ = f(§) is LES;

H2) HF'G <.
Then there exist k¥ > 0 and €* > 0, such that for any x €
(0,x*) and € € (0, €*) the closed-loop system

5= h(e)
€= 1(6) - g(&)eas (22)

€

&)
is globally asymptotically stable (GAS)-LES.

Proof: Consider, first, the linear approximation of (3)
which is given by (4). Next, rewrite the control law as

b e () = e (e () )
= —kz — P(kz)

where 1)(xz) denotes a nonlinearity acting on xz that belongs
to the sector [—1, 0]. Consider now the system

i =1 Fl[E] - |e] v

and note that, for sufficiently small x the poles of

oot o] 1 1) (Y
_ (F;G(SI—F)_IH)> <1+ HG(SI_F)_IH)>_1

(6)

lie in the left-half of the complex plane, and that

3 _ -1 j _ -1
nG(JwI. F) H‘S‘l_‘rh‘,G(JwI. F) H‘. o
Jw Jw
Hence, the system
i _| 0 Hi|lzl |0
El T | -kG F ¢ Gl

n=rz (®)
with input w and output 7 is asymptotically (exponentially)
stable and has an Ly-gain not larger than one. Therefore, by
the circle criterion (or the small gain theorem) we conclude
GAS-LES of (6).

Consider now (5) and note that, by LES and the ISS property
of the £-subsystem, if € is sufficiently small,3 there exists a finite

3Recall that |o,(-)| < 1.

1977

time ¢, > 0, such that for all ¢ > ¢,,||£(¢)|| < cye, for some
positive number c;. Rewrite now (5) as

=] 0 Ao 1] [2u o

and note that, there exist positive constants cg and ¢, such that
forallt > ¢,

16 (@) < cue
167 (£(2), u(®))|| < cpe.

System (9) can be regarded as a perturbed linear system with
perturbations 6z (- ) and 6 ( - ) that can be rendered asymptot-
ically arbitrarily small reducing e. Note also that the perturba-
tions are such that, if ¢ is sufficiently small, all but one of the
eigenvalues of the family of systems (9) with k = 0 are in the
left part of the complex plane, with the remaining eigenvalue at
the origin. We conclude that there exists €* > 0 such that for all
e € (0, €*), and for all x sufficiently small, every element in the
family of transfer functions

G(s) =[x 0] <51_ {_261 ?Iﬁﬂ)l [g}

with ||[Ag|| < cge and ||AF|| < cpe has Lo-gain not larger
than one. As a result, by the small gain theorem (or the circle
criterion), (5) is GAS-LES. q

Remark 1: Note that, if the pair { F, G} is controllable, (3)
is controllable if and only if HF~1G # 0. Moreover, Hypoth-
esis H2) is not restrictive. In fact, if HF~'G > 0 the result of
Proposition 1 holds with * < 0.

We remark that € is the level of saturation, whereas x is the
feedback gain, or in other words, sz is the appropriate output
that needs to be fed back. An interesting extension of Propo-
sition 1 would be the iterative application of the methodology
proposed. Indeed this is possible, as it will be discussed in the
following sections, where, it will be proven that the closed-loop
system (5) is also ISS with restrictions with respect to a new ex-
ternal input.

The result of Proposition 1 can be interpreted as a conse-
quence of the circle criterion, hence this facilitates the handling
of a series of system uncertainties, such as time delays. While it
is known that passivity-based designs may be inadequate in the
presence of delays, the result in Proposition 1 is robust against
(constant) time delays in the input or output path, as summa-
rized in the following corollary.

Corollary 1: Consider (3) and a positive constant 7. Under
the assumptions of Proposition 1, there exists a positive k] =
k3(7) and an €* > 0 such that for all K1 € (0,x7) and € €
(0, €*) the control law

U= —€T, (%z(t — 7')) (10)

globally asymptotically (locally exponentially) stabilizes (3).
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Proof: Note that, as before, |o5((k1)/(€)z(t—7))| < 1for
any positive constant 7, thus if € is small enough, ¢ will even-
tually be such that ||¢|| < é. for some small enough constant
0. > 0. In this slice of the state—space, we consider the system

2(t) = HE(t)
é@)sz@)—Ga@(Kldt—TD.

— (11)
€
If G¢(s) is the transfer function of the open-loop £-subsystem

with output H¢, then the transfer function of the system

(1) = HE()
(t) = F¢(t) + Gu
n=2z(t—7)

is (e *7Ge(s))/(s). Note now that the Nyquist diagram of
(Ge(s))/(s) is bounded from the left by a vertical line, say
through the point (—(1/k),0). Then, there exists a pos-
itive number k1 < &k such that the Nyquist diagram of
(e7°7Ge(s))/(s) is also bounded from the left by a vertical
line through the point (—(1/k1),0). To see this, note that the
term e~7“" does not modify the amplitude of (G¢ (jw)/jw) and
does not introduce any phase shift for w — 0. The conclusion,
therefore, follows as an application of the circle criterion. N

Remark 2: Corollary 1 provides a “delay dependent” sta-
bility result, i.e., the closed-loop system is not asymptotically
stable for any 7, but only for 0 < 7 < 7*. However, unlike
other delay dependent criteria, the result in Corollary 1 is con-
structive, i.e., for any delay 7 an appropriate stabilizing feed-
back (10) can be found.

We are now ready to state formally the stabilization problems
dealt with in this paper.
Partial state feedback stabilization problem: Consider a
system described by equations of the form

Z=Jz+hE) +r(u
£= 1) +9(&u

where z € RP, ¢ € R", and « € R and suppose the following.

Al) The system £ = f(&) 4+ g(&)u is ISS with respect to u,
and £ = f(&) is LES.

12)

A2) J+J <04
Find (if possible) a positive constant € and an output
n=Kz (13)
such that (12) in closed loop with the control law
1
w=—co(=n)+v (14)
€

is LES and ISS with restrictions with respect to v.
Regarding this problem we define the following matrices:

JAN 8h(€) Xn JAN af(g)’ nxn
ge Y epexn p2 IS g
ey 7
RE21(0) e R G2 g(0) € R (15)

0 F G (16)

4Assumption A2) can be replaced by J'S + S.J < 0 for some S = S’ > 0.

Aé[‘] H] Bé[ﬂ C 2110
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and the approximation of (12) for small &, given by

z z
[f} —A[g} + Bu.

Remark 3: Note that, as proved in [30], if the subsystem
E=7f (&) is GAS-LES, Assumption A1) is without loss of gen-
erality because the control can always be rescaled appropriately,
provided that the whole state is measurable. However, if this
rescaling is undesired,’ the minimal assumption under which the
partial state feedback stabilization problem above is solvable, in
the context of this work, is that the system is ISS with some re-
striction [18]. For example, the system & = —23 + (1 + 23)u
is not ISS, but it is ISS with the restriction |u| < 1.

The second problem that will be solved in the paper is the
problem of asymptotic stabilization of a linear stable SISO
system 2 = Jz 4+ Hw when the available output is subject to
saturation. This is formally stated as follows.

Bounded output stabilization problem: Consider a nonlin-
earity o( - ) and a system described by equations of the form

a7

2=Jz+ Hw
y=o0(Kz) (18)

with z € RP,w € R, and y € R. Suppose A2) holds. Find (if
possible) a dynamic control law

£=F¢-Gy
w=T¢&
such that the closed-loop system (18)—(19) is GAS-LES.

19)

III. Two USEFUL LEMMAS

In this section, we present two lemmas that are instrumental to
prove the main results of the paper. They are both related to the
existence of solutions for a special matrix inequality. Note that
the proofs of both these lemmas are constructive, i.e., we pro-
vide a family of solutions of the considered matrix inequality.

Lemma 1: Let A, B, and C be defined as in (16) and sup-
pose {A, B} is controllable, F' € R™*" is a Hurwitz matrix
and J € RP*P is such that A2) holds. Then there exist P €
R(+P)x(+P) and K € R'*? such that

(KC — B'PY(KC — B'P)+ PA+ A'P <0
P=P >0 (20)

and Ay = A — BKC is Hurwitz.
Proof: Let P be defined as

pé[xf Y}

Y P 1)

with x a positive constant and P = PEI > 0 to be selected. As
a result, (20) rewrites

x(J +J) YH+YF+JY
xH +FY'+Y'J YYH+HY 4+ P:F+ F'F;
K —xR-YG|[K' —-xR-YG]

<0.
* { ~Y'R - PG } [ —v'R-pG | =0 @2
SThis is the case when not the whole state is measurable, or when the re-
quirements on the control signal amplitude cannot be fulfilled when a feedback
transformation is applied.
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Setting

K =xR +GY’ (23)
the problem is translated into finding matrices Y and P such
that (22) holds. To this end, note that Y can always be selected
such that

YH+YF+JY =0 (24)

for all H, F', J and all positive constants x. With K and Y de-
fined by (23) and (24), (22) reduces to

x(J+J) 0 <0
0 T+ }1517 + 17/1?5 + }?5(;!(;/1?5 -

where

T=Y'H+HY +Y'RRY +Y'RG'P; + P:GR'Y
= Y'(H + RG'P¢) + (H' + P.GR")Y + Y'RR'Y.

Since x(J + J’) < 0, the problem is reduced to finding a P
such that

T+ PF + F'P + P,GG'P; < 0. (25)

To solve this problem, let P be such that P:F' + FP; =
—(GG" + I). Then, setting P; = Pf_l yields

PF + F'Pe + P.GG'P. = —P;P: <0.  (26)

Hence, it is sufficient to show that 7" can be made arbitrarily
small. To this end, notice that the solution of (24) is

Y =Y Q7

where Y is the solution of

H+YF+JY =0. (28)

Therefore
T =x(Y'(H+RG'P;) + (H + P:GR)Y) + x*(Y'RR'Y)

and this can be made arbitrarily small by a proper selection of
x > 0.

Besides, P constructed as before can be rendered positive
definite. For, note that following standard decomposition argu-
ments P is positive definite if and only if Pz — xY'Y is posi-
tive—definite, which is true for a positive—definite P and small
enough x. Therefore, there exists a positive x such that (20)
holds.

To complete the proof we need to show that A.) = A— BKC
is Hurwitz. To this end observe that (20) is equivalent to

AP+ PAy+PBB'P+C'K'KC<0 (29

which yields

P7'AL + AP < —BB' <. (30)

On the other hand, it is trivial to check that if {A, B} is con-
trollable {B’, A} is observable. From that and from (30),
according to [39, Lemma 12.2], it is concluded that A is
Hurwitz. N
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Remark 4: Inequality (29) arises in the nonstandard H .,
control problem [8] described by the equations

¢ = Az + Bu + Bw
z=u

y=Czx 3D

where A, B, and C are as in (16), u is the control input, w
is the exogenous input, z is the penalty variable, and y is the
measurement. Lemma 1 expresses the fact that there exists a
static output feedback control law v = — Ky rendering (31)
asymptotically stable and with a Lo-gain from w to z less than
or equal to one. Note that if J has eigenvalues on the jw axis
then v = 1 is the smallest achievable L,-gain for (31), i.e., any
static or dynamic output feedback stabilizing controller yields a
closed-loop system with L»-gain larger or equal to one.

Lemma 2: Let J € RP*P, H € RP*!, and K € R'P be
known matrices such that A2) holds, {.J, H } is controllable and
{K,.J} is observable. Then there exist P € RZP)*x2p) G ¢
RPX! T' € R'*? and a Hurwitz matrix F € RP*? such that
(20) holds, with R = 0, H = HT, and A, B, and C as in (16),
and the matrix A.; = A — BKC is Hurwitz.

Proof: Partition P as in (21) and repeat the first steps of
the Proof of Lemma 1. However, note that we are looking now
for F,G, and T'. Let F' be a Hurwitz matrix with distinct eigen-
values, and L be such that spec(J’ + HL) = spec(—F).
Note that such an L exists because of controllability of the pair
{J', H}. Then there exists a nonsingular matrix X such that

JX+HLX +XF =0.

Therefore, setting ¥ = xX, for some positive y, solves
the Sylvester equation (24) with H = HLX. Next, set
I' = LX,G = Y7'K’' and let P be the positive-definite
matrix that solves the Lyapunov equation

PeF' +FP: = —(XT'K'K(X™Y +1).

Choosing P = X2p§—1’ it is easy to verify that the first of
inequalities (20) holds for a large enough x > 0. On the other
hand, with the above selections for P: and Y, the matrix P is
positive definite for a large enough x > 0.

Observe, now, that (20), or the equivalent inequality (29),
yields

AP+ PAq < —(PBB'P +C'K'KC) < —C'K'KC < 0
(32)

and that observability of the pair {K, .J} implies detectability
of the pair { KC, A.;}. As aresult, by [39, Lemma 12.2], A is
Hurwitz. O
Remark 5: Dual to what stated in Remark 4, consider the
nonstandard H . control problem described by the equations

t=Jr+ Hu
z=Kuz
y=Kzx+w (33)

where J is such that A2) holds, u is the control input, w is the
exogenous input, z is the penalty variable, and y is the measure-
ment. Lemma 2 expresses the fact that there exists a dynamic
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output feedback control law, of the same dimension as system
(33), described by equations of the form

u=1I¢
E=F—Gy (34)
such that the closed-loop system (33)—(34) is asymptotically
stable and with an L»-gain from w to z less than or equal to one.
Note that if J has eigenvalues on the jw axis then an Ly-gain
equal to one is the smallest achievable gain, with any output
feedback.

Remark 6: The results in Lemmas 1 and 2 can be trivially
given a multivariable control extension. Namely, under the as-
sumptions of Lemma 1, for G € R"*™ and R € RP*™ there
exist a matrix K € R™*P and a positive—definite matrix P €
R(+P)x(n+P) gych that (20) holds and A, = A— BKC is Hur-
witz. Similarly, under the assumptions of Lemma 2, for H €
RP*™ and K € R?*P (system with m inputs and g outputs)
there exist matrices G € RP*Z, I € R™*? and a positive—defi-
nite P € R?P*?P guch that (20) holds.

IV. STABILIZATION WITH BOUNDED PARTIAL STATE FEEDBACK

In this section, we provide our main result on the stabiliza-
tion, with partial state feedback bounded control, of systems de-
scribed by (12).

Proposition 2: Consider a nonlinearity o( - ) belonging to the
sector [0, 1] and the system described by the equations

z': =Jz+h(&)+r(éu
£=f()+9(Ou

with z € RP, £ € R",u € R, and f(0) = 0, h(0) = 0. Suppose
Al) and A2) hold and, moreover, assume the following.

(35)

C1) The linear approximation of (35) is controllable.

Then there exists €¥ > 0 and a matrix K € R'*? such that if
e € (0, €*), the static partial state feedback control law

1
U= —€eo <—Kz>
€

globally stabilizes (35). Moreover, if
C2)

(36)

all trajectories z(t) of 2(t) =
o(Kz(t)) = 0, for all t >

Jz(t) such that
0, are such that

Then (36) globally asymptotically (locally exponentially) stabi-
lizes (35). Furthermore, the system

2= Tz 4 h(E) = r(©)eo, GKZ) +r(©)w

é= 10 = g(©)ea. (1K= ) + gl a7

is ISS with respect to the new input w, with the restriction |w| <
1, with p < e.

Remark 7: The second claim of Proposition 2 holds with the
choice of the “nonlinearity” o(s) = 0, for all s € R. This is
due to Assumption C2), which, in this case, implies that system
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(35) is the interconnection of two asymptotically stable systems,
possessing bounded trajectories and operating in open loop.

Remark 8: A similar result has been proven in [10, Th.
14.3.3] on the basis of the results in [36]. Note, however that
the result of [10, Th. 14.3.3] requires, in general, full state
feedback, and that the result in Proposition 2 is based on a dif-
ferent construction. As a result, Proposition 2 can also be used
in the design of output feedback control laws (see Section V),
in the design of quantized or constant sign controllers (see
Corollaries 2 and 3) and when dealing with some robustness
problems (see Corollary 1). In fact, the assumptions on the
system in [10, Th. 14.3.3] are different to the assumptions in
Proposition 2. Therein, the construction uses the fact that the
pair {J, R} is stabilizable, while a cross-term corresponding
to h(&) of (35) is assumed to be of order at least two. Under
this assumptions the feedback used in [10, Th. 14.3.3] is of the
form (36), but this time K is such that J — RK is Hurwitz.
From what will become clear from the Proof of Proposition 2
and the examples presented in the rest of the paper, it is obvious
that the two results are not addressing the same problem. For
example, Proposition 2 also deals with the case where .J is skew
symmetric and R = 0, i.e., the pair {J, R} is not stabilizable,
and the upper subsystem is driven entirely by &.

Proof: As discussed earlier, because of Al), there exists
€* > 0 such that if ¢ € (0,€*), the state of the closed loop
system (35)—(36) will in finite time enter a small enough “slice”
where ||¢|| < é., for an arbitrarily small 6. > 0. There, we can
consider the approximation of (35) for small ||{||, as explained
in the proof of Proposition 1. In other words, it suffices to study
the stabilization with bounded control problem for (17) to obtain
stabilization results for the nonlinear system (12).

Denoting 2 = [’ ¢'], the state space equations of the cas-
cade (12) and the output described in the partial-state feedback
stabilization problem (13) are written as

T = Az + Bu
n=KCz. (38)
Let K be a matrix such that the linear feedback uv; = —KCx

exponentially stabilizes system (17). The proposed control law
(36) can be written as

= () s o) -2

= —KCx —1(n)

where 1)(n) is a new nonlinearity restricted to the sector [—1, 0].
Note that up to now, K is some matrix that sets A.j to be Hur-
witz. However, to prove stability in the presence of the nonlin-
earity 1)(n) a special “stabilizing” K has to be selected. For, note
that (36)—(38) can be regarded as the feedback interconnection
of the system

T = Aqx + By

n=KCxzx 39)

where A, 24- BKC, with v = —1(n). Moreover, the
Lo-gain of 1(n) is not larger than one, hence, selecting K sat-
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isfying inequality (20) for some P > 0, yields,® by Assumption
C2) and the generalized small gain theorem in [26], an asymp-
totically stable closed-loop system. Moreover, A, is a Hurwitz
matrix, from Lemma 1.

To complete the Proof of Proposition 2, we need to prove the
ISS property of (37).7 First notice, that if € € (0, €*), for any w
such that |w| < ¢, in finite time, all trajectories of the nonlinear
system (37) will eventually be such that ||£(¢)|| < & for all
t > t. Therein, we consider the approximation of system (37)
for small ||&]|

i = Az = Bea, (1) + Bu (40)
€
and we prove that it is ISS with some restriction on w. For,
consider the positive-definite function V' = 1/ Pz, with P as
defined in (21). Along the trajectories of (40), one has
V=a/(AP+ PA) - 2/'PB (o, (1) —w) @D
€

where 7 = K z. With simple calculations, using (24) and (27),

it is easy to see that

2 (A'P+ PA)x = x2'(J+ J)z

—8(Qe —x(H'Y +Y'H))E (42)
where ()¢ is a positive—definite matrix and P is the posi-
tive—definite solution of the Lyapunov equation F'P¢ + P¢ F' =
—Q¢. Note that P: and Q¢ are as in the proof of Lemma 1. Note

also that, by Assumption A2), .J + .J/ is negative—semidefinite
and that

YR+YG K’

PB = [Y’R-i—PEG} = [Y’R-i—PEG} - @3

As a result, by simple manipulations, (41) becomes
V=2 (J+ )z = €(Qe = x(H'Y + Y'H))
—2¢(Y'R+ P:G) (eas (g) — w)
~2n (w0 (1) =) + [eon (7) -]
[ () -]

hence
. [ 1
V S — |€0s <E7]> - w7£I:|
» [ 1 XR’Y—{—G’PE
_xY’R+P§G Qe — X(H’Y —f—Y’H)
o =]
i 3
[ 1 1
— |€os (—77) - w] <277 - [eas (—n) — w}) . (44)
€ €
The matrix
_ 1 )(]%IS} ﬁ— (;([E
M = [XY'R—I—PgG Qe —x(H'Y +Y'H) “5)

6Recall that, by Remark 4 and Lemma 1, system (39) has a L,-gain
(H o -norm) less than or equal to one.

"Note that the symmetric nonlinearity o (s) is used.
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is positive—definite by construction, as shown in the proof of
Lemma 1.

Under the restriction |w| < ¢, we see that the following im-
plications hold:

[nl > |wl

= {sn e (1) = ] = seate
oo 2]

= sign ((n — e, (%n)) +(n+ w)) = sign(n)}
==l () =] (2= oo (1) =] <0

=V <0.

This means that (40) with output 7 is input-to-output stable with
some (nonzero) restriction on w. Using the result in [31], to
prove ISS it is sufficient to show that the pair { KC, A} is de-
tectable. To this end, note that the matrix A/, = A’'—C'K'B’ is
Hurwitz, therefore the pair { A’, C' K’} is stabilizable. Thus, by
[39, Prop. 3.1], the pair { KC, A} is detectable. This completes
the Proof of Proposition 2. <

Remark 9: In light of Remark 6, if we consider a system
of the form (35) where u € R™, then, under the assumptions
of Proposition 2, there exists a matrix K € R™*? with K =
[k1, k2, ..., km] such that the control law

1

€10 (;klz)
1

€20 (gl@z)

u = —

(46)

€m0 (ékmz>
globally asymptotically stabilizes the underlying system.

Remark 10: System (35) with output 7 is not, in general,
minimum phase, nor with relative degree one. This fact distin-
guishes the present stabilization method from a family of other
nonlinear control results that rely on some passivity property of
the system; see, for example, [10, Prop. 14.1.5] or even the re-
sults in [35] and [33].

It is easy to see that cascades with a simple integrator for the
upper system (see also Proposition 1) belong to the class of sys-
tems described by (35) with J = 0 and r(§) = 0. In this case
we can name the ‘desired output’ mentioned in the stabilization
problem as n = xz, where « is as described in Proposition 1. In
general, when integrators are present, special attention has to be
given to the choice of the nonlinearity o( - ). Note for example,
that using the nonnegative nonlinearity o ( - ) for the system (3)
we cannot achieve GAS, since there are no isolated equilibria
(the trajectories of the system can converge to any point [z_, 0],
where z_ < 0). However, when .J is a full-rank matrix, the equi-
librium is always uniquely defined, hence GAS can be achieved.
On the other hand, if the aim is not to globally asymptotically
stabilize (35) but to practically stabilize it, i.e., to achieve con-
vergence to a small enough neighborhood of the origin, then the
saturation function could be like o, ( - ) of (2). This discussion
can be formally summarized as follows.
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Corollary 2: Consider system (35). Suppose conditions A1)
and A2) hold. Suppose moreover that .J is a full-rank matrix.
Then there exists e* > 0 and a matrix K € R'*? such that if
e € (0, €*), the static partial state feedback control law

U= —€o4 (%Kz) (or U= €04 (—%Kz)) (47)

globally asymptotically stabilizes system (35). Moreover,
w(t) < 0 (oru(t) > 0)8forallt > 0.

Proof: Note that if .J is a full rank matrix, then the linear
approximation of system (35) is controllable as long as the
&-subsystem is controllable, and the matrices H and R are not
both zero. Also, the half space defined by

Sé{zeﬁp:mr(l]{z)zo}z{zeﬁp:Kzg[)}
€

<or s2 {z ERP oy (—1K2> :0}
€

:{ZERP:KZZO})

contains the point z = 0 but does not contain any neighborhood
of z = 0. Therefore, the only trajectory of 2 = .Jz contained in
S is such that lim;_, o 2(t) = 0.° As aresult, conditions C1) and
C2) are satisfied, and the result follows from Proposition 2. <

Corollary 3: Consider system (3). Suppose that assumptions
H1) and H2) of Proposition 1 hold. Then, there exist k* >
0,e* > 0, and t, € R4 such that for any x € (0,x*) and
e € (0, €*) all trajectories (z(¢), (t)) of the closed-loop system

(48)
are such that
tlim E)=0 and |z2(t)] <

Proof: As in the Proof of Propositions 1 and 2, we focus
on the approximated system for small ||¢||. For such a system,
consider the Lyapunov function

v=kaly 2][d

with P; = P/ > 0 such that'® F'P; + PcF = —P:GG'P¢ —
PeP: = —Q¢, Q¢ = Qé > 0andY = —yHF~!. Along the
trajectories of (48) one has

(49)

V=-¢(Qc+x(HHF '+ F TH'H))¢
— 2K2€0, (gz) —2£'P5Geoq (§Z> (50)

8Note that 04 (—1n) = —o_(n), where o_( - ) is defined in similar way to
o4 (), butis equal to zero for all n > 0. Like the nonlinearities (2), o_( - )
also belongs to the sector [0, 1].

9This is due to the fact that because det J # 0, the system 2 = .Jz has no
trajectory with a component of the form z;(t) = ¢, with ¢ # 0.

10See also (26) in the proof of Lemma 1.
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with K = —xyHF~1G > 0. Consider now the following two
exclusive cases.

* |z| > (¢/r). Inthis case o, ((k/€)z) # 0, hence, using the
fact that —yo(y) < —[o(y)]?

V< —€(Q¢+x(H'HF '+ FTH'H))
—2¢2 [aq (gz)r —2¢' PeGeoy, (gz)

e (2]

1 G'P;
| PG Q¢+ x(H'HF '+ F~TH'H)

« [€oa ,Efz)]

—Wl(l').

>

It is easy to see that, for a small enough x, Wi(x) > 0.
* |z| < (¢/k). In this case, o4((k/€)z) = 0 and

V= —¢(Qe+x(HHF '+ FFTH'H))¢ 2

—Wa().
Note that the matrix Q¢ + x(H'HF~' + F~TH'H) can
be made positive—definite with an appropriate choice of
(¢ and a small enough x > 0.

From the above, we can see that V(x) is bounded from above

by a negative semidefinite function, namely

V(z) < —min{Wi(x), Wa(&)} < 0.

As aresult, by LaSalle’s invariance principle, the trajectories of
(48) are bounded and asymptotically converging to the set

{zeRzaq(gz):0}x{£:0}
:{zEH:|z|<£}X{€:O}.

<
The extension of Corollary 3 for (35) is straightforward and
is omitted here for the sake of brevity, see [12].
In Figs. 1 and 2, we illustrate the conclusion of Corollaries
2 and 3 with some simulation results for a fourth order system
with states z1, . . ., z4 and control w. The open-loop eigenvalues
are at £27, £5. The “chattering” of the control signal observed
in the top graphs of Fig. 2 can be reduced if, instead of the simple
quantized nonlinearity o,( - ) of (2), we use a nonlinearity with
hysteresis. In the bottom graphs of Fig. 2, we show the improved
simulation results, where hysteresis has been implemented.

V. STABILIZATION WITH SENSORS SATURATIONS

In this section, we consider the asymptotic stabilization of
linear stable systems for which the measured output is subject
to a constraint, for example the case where the measurement de-
vice has some range limitations. Consider a SISO linear system
with saturated output, namely

2=Jz+ Huw

n=o(Kz) (S
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20
Fig. 1.

with .J such that A2) is satisfied (i.e., J + J’ < 0). Goal of this
section is to show that (51) is globally asymptotically stabiliz-
able by dynamic output feedback, as illustrated in the following
proposition.

Proposition 3: Consider system (51) with z € RP,w €
R,7n € R, and J and o( - ) such that Assumptions A2) and C2)
hold. Assume that the pair {.J’, H} is controllable and the pair
{K, J} is observable. Then there exist matrices I' € R'*? G €
RP*1 and a Hurwitz matrix /' € RP*P such that (51) in closed
loop with the dynamic controller

£=F¢— G
w=T¢ (52)

is globally asymptotically (locally exponentially) stable.
Proof: 1t is trivial to verify that the closed-loop system
(51)—(52) is described by equations of the form

z=Jz+ HT¢
£ =F¢+Gu
u=—0(Kz) (53)

i.e., it is the feedback interconnection of a system of the form
(17) with H = HT and R = 0, and the nonlinear feedback
u = —o(Kz). Hence, selecting ', G and a Hurwitz matrix F’
as in the proof of Lemma 2 and using arguments similar to those
in the proof of Proposition 2, it follows that the interconnection
is globally asymptotically stable. <

Remark 11: Proposition 3 can be easily extended, using the
same arguments as in the proof of Corollaries 2 and 3, to the case
() =o04+(-),provided thatdet(.J) # 0,ortothecase o(-) =
o4( ), if one is interested in practical, rather than asymptotic,
stability.

50 60

Fourth-order linear system with two pairs of open-loop imaginary eigenvalues, in closed loop with a positive control law of the form (47).

It should be noted that the result of Proposition 3 is not re-
stricted by the sign of the system zeros, i.e., it is applicable to
both minimum and nonminimum phase systems. In the light of
Remarks 6 and 9 it is also applicable to MIMO systems. Other
extensions and discussions on the bounded output stabilization
problem are discussed in detail in [13].

VI. APPLICATIONS

In this section, we consider some applications of the main re-
sults of Section I'V, namely the global asymptotic stabilization of
a chain of integrators with bounded input, the global asymptotic
stabilization of linear null controllable systems by positive (neg-
ative) control, the global asymptotic stabilization of the bench-
mark TORA system and the global asymptotic stabilization of
underactuated ships moving on a linear course.

A. Stabilization of a Chain of Integrators With Bounded
Control Revisited

The problem of global asymptotic stabilization of a chain of
integrators with bounded control has been extensively studied
by several researchers. In this section we revisit it, and in the
light of the results of Propositions 1 and 2, we present a novel
stabilizing bounded control law, complete with some remarks
on its robustness.

Proposition 4: Consider the system

il = T2
j:nfl = Tn
[— (54)
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Fig.2. Fourth-order linear system with two pairs of open-loop imaginary eigenvalues, in closed loop with a control law of the form (36) with a quantized saturation
function o, (s) (top graphs) and with a quantized control law with hysteresis (bottom graphs).

There exist positive numbers A1, A2, . .., A\n_1, A, such that, for is LES and ISS with the restriction |w| < (€)/(2"*1). More-
any € > 0, (54) in closed loop with over, if w = 0, |u| < e.
Proof: The proof can be carried out iteratively. For, set
w=_ o %wn _ ANn—1 . u= —(6/2)0'5.((2)\n)/(€)$n) + vp—1 and note that the system
2 € 4 € ITp—1 = Tn

8\ 2"\ . 2\,
— EO'S 2xn_2 — = ias 1371 +w (55) T, = —Eas —T, | + U1 (56)
8 AL € 2 €
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satisfies the assumptions of Proposition 1!! for every A, > 0. It
is also obvious that the last equation of (56) represents an ISS
system with the restriction |v,_1| < (€/2). As a result, there
exists a positive \,,_1 such that

€ <4)\n_1 >
Up-1=—=0s| ——Tp-1| +Vn_2
4 €

achieves input to state stability of (56), with the restriction
|[vn—2| < (€/4), and local exponential stability for v,_o = 0,
according to Propositions 1 and 7.

The proof is then completed by recursive application of
Proposition 1. We remark that at each step the positive constant
Ai € (0, AF) that will achieve absolute stability (see the proof of
Proposition 2 or the proof of Proposition 1) will automatically
belong to the set of positive \; that would achieve exponential
stability, if linear feedback was used. Also, we can see that, at
each step ¢, the transfer function of the system

Ti = Ti41

Tp = —Ap®p — = Nig1Tit1 + Vi

from the input v; to the output y; = x; will have one eigenvalue
at the origin, n—1 eigenvalues on the left half complex plane and
no zeros. Using the root locus we can see that for a small enough
positive \;, the feedback v; = —\;z; will achieve exponential
stability. Finally, by a trivial property of the geometric series, if
w =10

€ € € €
<-4+ -+t — 4 — 57
|U|_2+4+8+ +2n+2n+1<6 (57)
and e can be arbitrarily selected. N
Remark 12: The design option that the satura-
tion levels should follow the geometric series

(e/2),(€)/(22),...,(e)/(2") is academic, namely it is
considered for the case of an infinite chain of integrators
because of the property (57). In practical situations, one can
use the feedback

An A2 A1
U= —€Ep0g |\ —Tp | — """ —€0s| —To | —€105| —I1
€n €2 €1

where, if 1.« 15 the maximum available control energy, the
constants €1, €o, ..., €, must be such that

€p > €p_1+ -+ e+ €

€2 > €1
€1 >0

umax26n+"'+62+61~ (58)

The feasibility of the aforementioned system of inequalities is
trivial, since we know at least one solution, for example, ¢; =
(1)/(2" 7" umax. Replacing the last inequality in (58) with
the equality constraint €,, +- - -+ €2+ €1 = Umax WE can treat the
problem of finding the appropriate set of ¢; as an optimization

n fact, the lower subsystem of (56) is ISS with restrictions. See also Remark
3.
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problem. This approach allows us to increase the saturation level
in the feedback of the upper component x; enhancing the overall
performance of the closed-loop system.

Remark 13: System (54) is a special case of the class of
systems studied in [19]. Therein, a similar construction has
been performed. However, in the proposed design the satu-
rating gains, namely (e/2), (e/4), ..., are constants, whereas
in [19] the gains are functions of the state and have to satisty
some nontrivial conditions. Finally, for large values of ||z||, the
saturating gains in [19] tend to zero, and this is not the case for
the control law (55).

The result in Proposition 4 can be easily extended to a larger
class of systems, namely nonlinear chains of integrators de-
scribed by equations of the form

&1 = ¢1(x2)

jf'n—l = ¢n—1($n)

with d¢;(0) > 0, foralli =1,..., n. For illustration purposes,

consider the system described by the equations

(59)

ji'l = Sin(x2) i’2 = Sin(il?g) i’g = Sin(l’4)

%4 = sin(u). (60)

In Fig. 3, the response of (60) in closed loop with

€ 16)\1
—:v2> ~ 16 <T:171) (61)

is presented. For this particular case, global asymptotic stability
can be achieved if ¢ € (0,€*] with e¥ < (7/2). In the par-
ticular simulations, we use € = (7 /4) and [A1, A2, Az, Ag] =
[0.008,0.108,0.540, 1.20].

Remark 14: Output feedback stabilization of (54) with
output n = x1 can be addressed by a straightforward appli-
cation of Proposition 4 and [33, Th. 7.1]. Finally, chains of
integrators of the form

T1 = Q1T -, T 1 = Qp 1T  Tn = Qpl (62)

where 0 < a; < aj < @;,5 = 1,...,n and the limits «;, @;
are known, can be treated following the steps of the proof of
Proposition 4. Robust stabilization of (62) in the presence of
uncertain system parameters has also been studied in [18]. The
nested saturation scheme employed there also required some
nontrivial algebraic conditions to be satisfied.

B. Asymptotic Stabilizability by Control of Constant Sign

In this section, we present a general result on the asymptotic
stabilizability of linear stable systems with bounded control of
constant sign, that is a consequence of Proposition 2 or Corol-
lary 2.

Proposition 5:  Any stable and controllable linear system

i = Az + Bu (63)
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Fig. 3. State histories of the closed-loop system (60)—(61).
with A such that det(A) # 0, is asymptotically stabilizable by
positive (or negative) control.

Proof: Note first that because det(A) # 0, the matrix A
has no zero eigenvalue. It can be verified that, under the assump-
tions of Proposition 5, (63) can be written, in a set of suitable
coordinates, in the form

2=Jz4+ H(+ Ru

{=F&+Gu (64)
where z € RP, £ € R™, p+m = n,and J+.J' < 0,det(J) # 0.
The last equation of the cascade (64) represents the asymptoti-
cally stable part of (63), if there is any, i.e., F' is Hurwitz. In the
case where such an asymptotically stable part does not exist, it
is easy to verify that the system z = Jz+ Ru is globally asymp-
totically stabilized by the control law

U= —£J+ <ng> <0r u = £o+ (—ng>> (65)
2 € 2 €

for all ¢ > 0 and for some appropriately chosen>? K € R'*?.
According to Corollary 2, a similar control law'3 would also sta-
bilize the cascade (64) if the asymptotically stable part exists.<

Remark 15: The results in Proposition 5 and Corollary 2
should be examined in the light of what established in [28],
where it was proven that a linear system & = Az + Bu is lo-
cally controllable at the origin with u(¢) € [0, 1], for all ¢, if and
only if the pair { A, B} is controllable in the ordinary sense and

121 fact, in this case a “good” saturated linear feedback can be obtained by
invoking standard passivity arguments.

I3Not necessarily with the same K .
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all eigenvalues of A have nonzero imaginary parts. Using [28]
and [4], it is easy to show that a linear system is asymptotically
controllable with positive (or negative) bounded control if and
only if spec(4) C C~ U {C°\ {0}}.

C. Asymptotic Stabilization of the TORA

In this section, we apply the results of Section IV to solve
the asymptotic stabilization problem for the TORA [3]. After
appropriate normalizing transformations [37], the dynamics of
the system are described by the equations

Iq+ T4 = v($? sin ¢ — ¢ cos ¢)

¢ = u— YyIqCO8 P (66)

where z4 is the translational position, v4 = %4 the translational
velocity, ¢ the angular position, w = ¢ the angular velocity
and 0 < v < 1 a constant depending on the physical parame-
ters of the device. The presence of the term in w? in the model
makes the stabilization of the system an intricate problem, espe-
cially considering that an ideal control law would utilize mea-
surements of the translational and angular positions only. It is
shown in [11] that, via a coordinates transformation, (66) can
be written in the form

.Z.‘l = T2
To9 = —x1 + ysinzs
. 1
r3g = —F<T4

Y(73)
. P(x3 v(x1 — ysinzs)cos s
Ta = 2( )2 ( 2 2) P(3)

1 —~%cos® 3 1 — v%cos* 3

(67)
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1 —~2cos? x3
Y(z3) = —/ T

The measured variables are x; and x3, which are functions
of the translational and angular positions only. In [11], global
output feedback stabilization and tracking was achieved with a
combination of a nonlinear observer and backstepping. Here, we
propose a simpler output feedback scheme. First, consider the
preliminary feedback transformation

where

( ) 1 —~2cos? z3 ( . )
u=u(v,r,r3) = ————v — y(x1 —ysinzs) coszs
¥(w3)
(68)
and the subsystem
.Z.‘g = a($3)$‘4
Tyg=0 (69)

with a(z3) = (1)/(¢(z3)) and output y = z3. Stabilization of
(69) can be achieved using the dynamic output feedback

6= —(A(w3) + 1) — (A(ws) + 1)B(x3)
— z3a(x3) + Eb + Dw

v=—xzza(rs) — 0 — Baz) +w (70)

where w is a new control variable to be used in the next step,
B(x3) and A(z3) are functions satisfying

9P (z3)
ox 3
and b is a constant to be selected later. Asymptotic stabilization

can be proven considering the new coordinate z = 0+ (z3)—
x4, and noting that (69)—(70) can be written as

a(zs) = AMzz) AMzxz) >0 (71)

ig = a($3)$4
4= —z3a(z3) — T4 — 2+ w

i=—as)z+bw (72)

which is LES-ISS. Condition (71) can be seen either as a differ-
ential equation for the definition of 3(x3), if A(x3) is selected by
the designer, or as the definition of A(z3), if 5(z3) is selected.
For example, 3(z3) = —fz3 with 3 > 0 is a simple choice.
Consider now the cascade

:ﬁ1:$2

T9g = —x1 + ysinxs

5i73 = a(mg,)x4
4= —x30(x3) — T4 — 2+ W
2= —\z3)z + bw (73)

that results from the first two of (67) and (72) and note that it
satisfies Assumptions A1) and A2), hence can be asymptotically
stabilized with bounded control of the form

A

(74)
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with K selected as in Lemma 1.4 However, to obtain an output
feedback controller, K has to be of the form K = [k; 0], for
some k1. We now show that such a K exists. For, consider the
approximation of (73) for small ||[x3 z4 z]'||, and define the

matrices
0 1 0 0 0
=4 e] 7= 6 o]
0 o 0 0
F=|-a -1 -1 G=|1 (75)
0 0 - b

where o = «(0) and A = A(0). From Lemma 1
K =xG'Y = X[YI,Z + bYl,B Y2,2 + sz,s]

where yx is a positive constant, Y is the matrix that solves the
Sylvester equation H + Y F + J'Y = 0, and Y, ; is the (i, j)
entry of Y. Selecting b = —(Ya,2)/(Ya,3) yields K = [k; 0],
hence, w = w(x1). This is possible, as it can be shown that with
v # 0and o = —1,Y5 3 # 0 forall \. The result is summarized
in the following statement.

Proposition 6: Consider system (67) and a nonlinearity
o(-)=o0s(-)oro(-)=04(-),belonging to the sector [0, 1].
There exist constants b, k1,¢ € R, with ¢ > 0 and a positive
function A(z3) such that system (67) in closed loop with the
dynamic output feedback controller

= —(A+ 1) — (A +1)8(x3)
— .17304(:173) — (b — 1)60 (%klxl)

v = —z3a(x3) — 0 — Bas) — €o <%k1x1>

1 —~2cos? x5
uw= —————=) —

1 —p(z3)

is GAS (LES).

The control law (76) is much simpler in structure and imple-
mentation than the output feedback designs proposed in [11] or
[22], while in [29] only state feedback is considered. In Fig. 4,
some simulation results of the closed loop with the proposed
controller are depicted. For the simulations we have used, as
in [29], v = 0.1, so that the results are directly comparable
with the ones given in this reference. It can be concluded that
full-state feedback does not outperform the output feedback pre-
sented here.

v(z1 — ysinzs)coszz  (76)

D. Stabilization of Underactuated Ships on a Linear Course

In this section, we apply the result of Proposition 2 for the
global asymptotic stabilization of a normalized model of an
underactuated ship moving on a linear course. The model ex-
amined is taken from [5], were the authors designed state and
output feedback controllers based on the backstepping tech-
nique and nonlinear observers. Their controllers achieve global

14Note that using the saturation functions o4 ( - ) or o_( - ) would also yield
GAS.
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Fig. 4. State histories of the closed-loop system (67)—(76).

tracking of a straight line in the presence of nonvanishing envi-
ronmental disturbances, that occur due to wave, wind and ocean
current. Such a model is given by

¥ = usin(¢) + cos(¢)v

Y=r
d
I):_M _ %2 —L21|7/+_Twu(t)
mo ma 2
_ d d 1 1
_(m—mp)u = ds  dr rlr + —7 + —Tur(t)
ms m3 Mg m3 ms

(77)

where v, v are the sway displacement (deviation from the course
on the axis vertical to the ship axis) and velocity and v, r are the
yaw angle and velocity. The forward speed, that is controlled in-
dependently by the main thruster control system, is given by u,
and is considered constant, or slowly varying. The control action
is represented by 7., the torque applied to the ship rudder. The
positive constants m;,¢ = 1,2, 3 denote the ship inertia with
respect to the three axis, including added mass, and the positive
constants ds, ds, d,2, d.2 denote the hydrodynamic damping in
sway and yaw. The terms 7, (t), 7, () represent the environ-
mental disturbance moments and are considered to be bounded.

System (77) is in block feedforward form, i.e., we can dis-
tinguish the interconnection of the subsystem of [v 7] with
the integrator l/} = r and, at the next step, the interconnec-
tion of the subsystem of [¢) v 7] with the subsystem ¢ =
usin(y) + cos(y)v. The inertia, mo, around the second axis
of the ship is always larger than the inertia, m1, around the first
axis which implies that the linear part of the subsystem of [ 7]’
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time,(s)
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is exponentially stable (m; — mz < 0). In addition, the non-
linear damping terms —(d,2)/(me)|v|v and —(d,2)/(ms)|r|r
do not “disturb” this stability property, so it is easy to verify that
all assumptions of Proposition 2 are satisfied for the cascade of
the subsystem of [v r]’ with the integrator ) = r. For such a
system, a bounded control law, feeding back 1/ only, can be de-
signed. Next, repeating the procedure once more, we obtain a
stabilizing controller for the cascade (77), namely

_ S (Py) -, (2
T TR% e 217\ ¢ Y

where \; and )\, are suitably chosen. Note that we have used
the arguments in Remark 12 to enhance the performance of
the controller. To illustrate the properties of the closed-loop
system (77)—(78) via simulations we consider a simplified situ-
ation where m; = 1,ms = 2,m3 = 1,ds = 2,d3 = 2,d,5 =
0.1,dre = 0.1,74,(t) = 0, and 7,,(t) = 0, and the nom-
inal forward speed is w = 1. For this set of parameters, appro-
priate gains for the controller (78) are (A1, A2) = (1.4,0.86)
and € = 5. In Fig. 5 we depict the state histories and the control
action of the closed-loop system (77)—(78).

(78)

VII. CONCLUSION

The problem of stabilization of a class of cascaded systems
with bounded control has been addressed and solved using the
linear bounded real lemma and a generalized version of the
small gain theorem. Globally asymptotically stabilizing con-
trol laws that require only partial state feedback have been de-
signed. These control laws make use of typical saturating func-
tions, constant sign saturations or quantizations and they exhibit
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