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Nonlinear Control of Hydraulic Robots
Mohammad Reza Sirouspour, Septimiu E. Salcudean

Abstract| This paper addresses the control problem of
hydraulic robot manipulators. The backstepping design
methodology is adopted to develop a novel nonlinear po-
sition tracking controller. The tracking errors are shown
to be exponentially stable under the proposed control law.
The controller is further augmentedwith adaptation laws to
compensate for parametric uncertainties in the system dy-
namics. Acceleration feedback is avoided by using two new
adaptive and robust sliding type observers. The adaptive
controllers are proven to be asymptotically stable via Lya-
punov analysis. Simulation and experimental results per-
formed with a hydraulic Stewart platform demonstrate the
e�ectiveness of the approach.

Keywords|Hydraulic robots, control of robot manipula-
tors, adaptive/nonlinear control, backstepping.

I. Introduction

H
Y draulic robots and machinery are widely used in
the construction and mining industries, as well as

in motion simulators. They have rapid responses and
high power-to-weight ratios suitable for many applications.
High performance controllers can have a signi�cant impact
on the e�ectiveness of hydraulic robots. Furthermore, the
potential complexity of such controllers is becoming less
and less of an implementation issue due to the inexpen-
sive and powerful processors available today for real-time
control.
In general, the control of hydraulic manipulators is more

challenging than that of their electrical counterparts. It
might seem that a potentially e�ective way of increasing
the performance of hydraulic robots is to consider control
methods that neglect actuator dynamics but incorporate
the manipulator rigid body dynamics, such as computed
torque [1], passivity-based [2], [3], [4], adaptive [2], [5] and
robust [6], [7], [8] control methods. However, this is not the
case in general. Unlike their electrical counterparts that re-
semble force sources, hydraulic actuators resemble velocity
sources. They also exhibit signi�cant nonlinear character-
istics. Therefore, the above control methods cannot be
applied e�ectively to hydraulic manipulators as hydraulic
actuators cannot accurately apply forces or torques over a
signi�cant dynamic range.
Actuator dynamic models have been successfully incor-

porated in the controller design for rigid link electrically
driven (RLED) robots to improve position tracking per-
formance. The complete dynamics of the manipulators,
including their actuators, are third order nonlinear di�er-
ential equations. [9] used feedback linearization to linearize
and decouple these dynamics. [10] developed an adaptive
controller for RLED manipulators that does not require
acceleration feedback. [11] and [12] and other papers also
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considered the adaptive control of RLED robots based on
models that include actuator dynamics.

While actuator dynamics are generally linear in RLED
robots and can be ignored in many cases due to their fast
time constants, they are highly nonlinear and dominant
in hydraulic manipulators. Therefore, the incorporation
of these dynamics in the design of controllers is of criti-
cal importance in hydraulic robots. Research in the area
of hydraulic systems has mainly focused on the control of
single-rod hydraulic actuators, e.g. see [13], [14], [15]. In
particular, [13] developed a nonlinear position tracking con-
troller for hydraulic servo-systems following the backstep-
ping approach. There are only a few papers that address
the control of robot manipulators driven by hydraulic ac-
tuators. In [16], the authors established a simpli�ed model
in a standard form suitable for the application of singular
perturbation methods. No experimental or numerical re-
sults are presented in this work. A decentralized adaptive
controller was proposed to control a hydraulic manipulator
in [17], [18]. The use of pressure feedback in the control
of a Stewart type hydraulic manipulator was proposed in
[19]. However, these approaches lack stability proofs that
are important from both theoretical and implementation
points of view. Only recently, simultaneous to this work,
[20] proposed a Lyapunov-based adaptive controller for hy-
draulic robots.

The backstepping design methodology [21], [22] has be-
come increasingly popular in the control community. For
some recent applications of this method see [23], [24]. In
this paper, backstepping is adopted to develop a novel non-
linear controller for hydraulic manipulators. Both rigid
body and actuator dynamics are incorporated into the de-
sign. The controller is also extended to compensate for
parametric uncertainties in the system dynamics, including
hydraulic and rigid body dynamics. Two types of observers
are developed to avoid the use of acceleration feedback in
the proposed adaptive control laws. The �rst observer is an
extension of the passivity-based observers proposed by [3],
to the case in which the system parameters are unknown.
The concept of sliding observers [25] is also adopted to de-
velop a robust acceleration observer. The tracking errors
are proven to converge to zero asymptotically using Lya-
punov analysis. It can be shown that these errors remain
bounded in the presence of Coulomb friction in the actua-
tors. The bounds on the tracking errors are adjustable by
the controller gains.

The main di�erences between this work and the adaptive
controller introduced in [20] are the following: (i) the adap-
tive controller / adaptive observer proposed here uses the
same set of estimated rigid body parameters in the observer
and controller, as opposed to the use of two distinct sets
of parameter estimates and adaptation laws in [20]; and
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(ii) the introduction of an adaptive control method with
a robust observer that is simpler to implement because it
has reduced computational complexity. The form of the
control laws and the observers are di�erent from those of
[20].

Position, velocity and hydraulic pressure measurements
are required for the implementation of the proposed con-
trollers. Simulation and experimental results for a hy-
draulic Stewart platform are presented to show the e�ec-
tiveness of the approach.
The paper is organized as follows. System dynamics, in-

cluding rigid body and hydraulic dynamics are presented in
Section II. In Section III a nonlinear controller is proposed
assuming that the dynamics are known exactly. The adap-
tive control of hydraulic robots is addressed in Section IV
for the cases in which the robot dynamics are subject to
parametric uncertainty. In Section V simulation results are
presented. The experimental evaluation of the controllers
is discussed in Section VI. Finally, conclusions are drawn
in Section VII.

II. Manipulator/Actuators Dynamics

The dynamics of an n-link robot with rigid links are gov-
erned by a second-order nonlinear di�erential equation

D(q)�q + C(q; _q) _q +G(q) = � (1)

where q 2 Rn is a vector of generalized joint positions
and � 2 Rn is a vector of generalized joint torques. D(q) 2
Rn�n is the manipulatormass matrix, C(q; _q) 2 Rn�n con-
tains coriolis and centripetal terms and G(q) 2 Rn repre-
sents gravitational e�ects. Unlike electrically driven ma-
nipulators, hydraulic robots exhibit signi�cant nonlinear
actuator dynamics. Assuming a three-way valve con�gura-
tion, these dynamics can be written in the following form,

_� = f(q; _q) + g(q; �; u) (2)

where u is the control command vector and f , g are non-
linear functions of q, _q and � . The detailed expressions for
f and g are given in Appendix A.

The matrices describing the rigid body dynamics in (1)
satisfy the following properties [3]:

(i) xT
�
_D(q)� 2C(q; _q)

�
x = 0 8x 2 Rn

(ii) C(q; x)y = C(q; y)x 8q; x; y 2 Rn

(iii) 9Dm; DM s:t: 0 < Dm � kD(q)k � DM <1
8q 2 Rn

(iv) 9CM s:t: kC(q; x)k � CMkxk 8q; x 2 Rn

(v) 9GM s:t: kG(q)k � GM 8q 2 Rn

(3)

which are exploited in deriving the proposed control laws.
According to (1) and (2), the overall actuator/manipulator
dynamics are governed by a set of third-order nonlinear
di�erential equations.

III. Nonadaptive Controller

In this section, the backstepping design methodology [21]
is adopted to derive a nonlinear position tracking controller
for hydraulic manipulators in the case in which the system
parameters are known.

Theorem 1: Consider the system described by (1), (2) with
the control law given by the solution u of the following
algebraic equation:

g(q; �; u) = �f(q; _q)� ��1s + _�d �K� ~� (4)

and

�d = D(q)�qr + C(q; _q) _qr + G(q)�Kpe�Kds (5)

with

e = q � qd; _qr = _qd � �e;

s = _q � _qr = _e +�e; ~� = � � �d
(6)

where Kp, Kd, K� , � and � are positive de�nite diagonal
matrices, and qd 2 Rn and _qd 2 Rn are the desired joint
position and velocity trajectories, respectively.
Then 0 is an exponentially stable equilibrium point for

the state ~x =
�
eT sT ~�T

�T
of (1),(2),(4),(5).

Remark: From the expression of g from Appendix A, it can
be seen that (4) can be easily solved for u.

Proof: Substituting (5) into (1) yields the following error
dynamics,

D(q) _s + C(q; _q)s +Kds +Kpe = ~� (7)

Note that the e�ect of actuator dynamics emerges as a
non-zero ~� , as the controller reduces to a passivity-based
controller [26] in the absence of actuator dynamics. Let V1
be de�ned as

V1 =
1

2
sTD(q)s +

1

2
eTKpe (8)

It can be shown that the derivative of V1 along trajectories
of the closed loop system becomes

_V1 = �sTKds � eT�Kpe+ sT ~� (9)

where (7) and the properties given in (3) have been used.
Following the backstepping methodology, V2, which is a
Lyapunov function for the closed-loop system, is de�ned as

V2 = V1 +
1

2
~�T�~� (10)

with � > 0 diagonal. Note that:

�mk~xk2 < V2 < �Mk~xk2; �m; �M > 0 (11)

By taking the derivative of (10) and using the control law
(4), one can write

_V2 = �sTKds� eT�Kpe� ~�T�K� ~� < ��k~xk2 (12)
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with � > 0. Therefore, the system is exponentially stable in
the Lyapunov sense. This means that the position tracking
error converges to zero exponentially. Furthermore, since
s = _e+�e, the velocity tracking error is also exponentially
stable. Note that in the realization of (4) one needs to
compute _�d which is equal to

_�d = _D(q)�qr +D(q)
...
q r +C(q; _q)�qr + _C(q; _q; �q) _qr

+ _G(q) �Kp _e�Kd _s
(13)

Since
...
q r =

...
q d � ��e, _s = �e + �_e and _C are functions of

�q, link accelerations appear in the proposed control law.
However, if � is measured through pressure sensors, the
link accelerations �q can be obtained from position, velocity
and pressure measurements using

�q = D(q)�1 [� � C(q; _q) _q � G(q)] (14)

Thus q, _q and � are required to implement the proposed
control law that leads to exponentially stable tracking er-
rors.

Remark: Since the system dynamics are fully known and
the states are assumed to be measured, feedback lineariza-
tion could also be used to derive a stabilizing controller.
[9] adopted this approach to develop a controller for electri-
cally driven manipulators in the presence of linear actuator
dynamics.

IV. Adaptive Controller

The control law derived in the previous section requires
full knowledge of the system parameters. However, the
manipulator rigid body dynamics are uncertain and sub-
ject to changes, e.g. due to an unknown variable payload.
It is also di�cult to measure some of the manipulator's pa-
rameters. Moreover, the hydraulic parameters are usually
unknown and time varying. In this section, the nonlinear
controller proposed in Section III is extended to compen-
sate for parametric uncertainties in the system dynamics.
To deal with uncertainties in rigid body dynamics, the lin-
ear parameterization of manipulator dynamics is used [26]:

D(q)�q + C(q; _q) _q + G(q) = Y (q; _q; �q)� (15)

where Y (q; _q; �q) is a regressor matrix and � 2 Rm is the
vector of unknown parameters. Similarly, as shown in Ap-
pendix A, the hydraulic dynamics (2) can be written as

_� = f0(q; _q)
1 + g0(q; �; u)
2 (16)

where 
1 =
�

11 � � � 
n1

�T
, 
2 =

�

12 � � � 
n2

�T
are two

sets of hydraulic parameters and f0, g0 are de�ned as

f0(q; _q) = diagff i0(qi; _qi)g
g0(q; �; u) = diagfgi0(qi; � i; ui)g

(17)

In the non-adaptive controller, (14) was used to compute
joint accelerations from joint positions and velocities and
hydraulic pressure measurements. This can not be done

if D(q), C(q; _q) and G(q) are not known. To deal with
this problem, novel adaptive and robust observers are in-
troduced. The following Lemma [27] will be used in the
stability proofs.

Lemma 1: Consider the scalar function � = (�� �̂)T (�� _̂
�),

with �; �̂; � 2 Rn and ai � �i � bi.

If
_̂
� = �(a; b; �)�, where �(a; b; �) is a diagonal matrix

with entries

�i(a; b; �) =

8><
>:
0 if �̂i � ai, �i � 0

0 if �̂i � bi, �i � 0

1 otherwise

(18)

then � � 0.

A. Adaptive Controller/ Adaptive Observer

The �rst solution is an adaptive controller using an adap-
tive passivity-based observer. Before stating the result, the
following notation must be de�ned:

_qr = _qd � �1(q̂ � qd) = _qd � �1(e � ~q)

_qo = _̂q � �2(q � q̂) = _̂q � �2~q

s1 = _q � _qr = _e+ �1(e � ~q)

s2 = _q � _qo = _~q +�2~q

(19)

where q̂ 2 Rn is the estimated value of q, e = q � qd,
and ~q = q� q̂ are position tracking and observation errors,
respectively. �1;�2 > 0 are diagonal. Note that in the
de�nitions of _qr and _qo, _q has been replaced by _qd and _̂q.
This will be shown to eliminate the need for acceleration
feedback.

Theorem 2: Consider the system described by (1), (2), the
observer dynamics

_̂q = z + �2~q

_z = D̂(q)
�1

[� � Ĉ(q; _q) _qo � Ĝ(q) + Lp~q +Kds1

+K0

ds2]

(20)

and the controller obtained by solving the following alge-
braic equation

g0(q; �; u)
̂2 = _�d � f0(q; _q)
̂1 � ��
�1s1 �K� ~� (21)

where

�d = D̂(q)�qr + Ĉ(q; _qr) _qr + Ĝ(q) �Kd(s1 � s2)�Kpe

= Y1(q; _qr; �qr)�̂ �Kd(s1 � s2)�Kpe

(22)

with unknown rigid body parameter adaptation law

_̂
� = �����1

�
Y T
1 (q; _qr; �qr)s1 + Y T

2 (q; _q; _qo; �qo)s2
�

(23)

where

Y1(q; _qr; �qr)�̂ = D̂(q)�qr + Ĉ(q; _qr) _qr + Ĝ(q)

Y2(q; _q; _qo; �qo)�̂ = D̂(q)�qo + Ĉ(q; _q) _qo + Ĝ(q)
(24)
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and with hydraulic parameter adaptation laws

_̂
1 = �
1�
�1

1

��f0(q; _q)~�

_̂
2 = �
2�
�1

2

���(
~�


̂2
)
�
_�d � f0(q; _q)
̂1 � ��

�1s1 �K� ~�
�

(25)

where �( ~�

̂2
) = diagf ~�i


̂2
i g. Then, if the condi-

tions given below in (26) are satis�ed, 0 is an asymp-
totically stable equilibrium point of the state ~x =�
eT ~qT sT1 sT2 ~�T

�T
.

(a) �(Kp)�(Lp)�(�1)�(�2) >
1

4
��2(Kp)��

2(�1)

(b) k~x(0)k �
s

�m

3�M

�
�(Kd) � CM _qdm

CM ��(�1)

�2
� VpM � Vpm

�M

(26)

where

�m =
1

2
minfDm; �(Kp); �(Lp); �(�� )g

�M =
1

2
maxfDM ; ��(Kp); ��(Lp); ��(�� )g

Vpm � 1

2

�
~�T�~� + ~
T1 �
1 ~
1 + ~
T2 �
2~
2

�
� VpM

(27)

Here, ��(:) and �(:) denote the maximum and minimum
singular values of their matrix argument, respectively, and
_qdm is an upper bound on the norm of the desired veloc-
ity. The projection gains ��, �
1 and �
2 are de�ned as
in (18). All of the gains used in the controller and ob-
server, i.e. Kp;Kd;K

0

d; Lp;�;�
1;�
2 ;�� ;K� are constant
positive de�nite diagonal matrices.

Remark 1: The inequality given in (26.b) speci�es the
boundary of the attraction region that can be enlarged by
adjusting the controller gains, i.e. Kd and Kp. There-
fore, the closed loop system is semiglobally asymptotically
stable. While the controller is guaranteed to be stable,
in practice the parameters should be tuned to achieve the
desired performance.

Remark 2: In the above formulation, D̂, Ĉ and Ĝ are the es-
timated dynamical matrices corresponding to �̂. Note that
the controller and observer use the same set of estimated
parameters which compares favorably to the approach pro-
posed in [20], in which di�erent parameter estimates are
employed in the controller and observer.

Remark 3: The use of projection gains �, in the adap-
tation laws guarantees that the estimate of each parame-
ter remains in a prede�ned interval [a; b]. In particular, if

̂2

i becomes zero the control law u in (21) is unde�ned.
This can be avoided by using ai > 0 for the estimation
of 
i2. Furthermore, the parameter estimates can not drift
because of the upper and lower bounds on their values.
Therefore, parameter adaptation is robust against unmod-
eled disturbances [27].

Proof : By substituting (22) into (1) the following error
dynamics are obtained

D(q) _s1 +C(q; _q)s1 +Kds1 +Kpe =

Kds2 � C(q; s1)( _q � s1) � Y1(q; _qr; �qr)~� + ~� (28)

The observer closed-loop dynamics can also be written as

D(q) _s2 +C(q; _q)s2 +K 0

ds2 + Lp~q =

�Kds1 � Y2(q; _q; _qo; �qo)~� (29)

where (1) and (20) have been used in deriving (29).
Now, let the Lyapunov-like function V1 be de�ned as:

V1 =
1

2
s1

TD(q)s1 +
1

2
eTKpe+

1

2
sT2D(q)s2

+
1

2
~qTLp~q +

1

2
~�T�~�

(30)

It can be shown that the derivative of V1 along the trajec-
tory of the closed loop system is then given by

_V1 = �s1TKds1 � s2
TK0

ds2 � eTKp�1e � ~qTLp�2~q

+ eTKp�1~q + s1
T ~� + ~�T [�� _̂� � Y T

1 (q; _qr; �qr)s1

� Y T
2 (q; _q; _qo; �qo)s2]� s1

TC(q; s1)( _q � s1)

(31)

With the adaptation law given in (23) and using Lemma
1, we have that

_V1 � �s1TKds1 � s2
TK 0

ds2 � eTKp�1e� ~qTLp�2~q

+ eTKp�1~q + sT1 ~� � sT1 C(q; s1)( _qd � �1e+ �1~q)

� � (�(Kd)� CM( _qdm + ��(�1)kek + ��(�1)k~qk)) ks1k2

� �(K0

d)ks2k2 � �(Kp)�(�1)kek2 � �(Lp)�(�2)k~qk2

+ ��(Kp)��(�1)kekk~qk+ s1
T ~�

= H(kek; k~qk; ks1k; ks2k) + sT1 ~�

(32)

Note that since

��(Kp)�(�1)kek2��(Lp)�(�2)k~qk2+��(Kp)��(�1)kekk~qk

= � � kek k~qk � � �(Kp)�(�1) �1
2��(Kp)��(�1)

�1
2 ��(Kp)��(�1) �(Lp)�(�2)

�
� kek
k~qk

�
(33)

the condition given in (26.a) and the inequality

kek+ k~qk < �(Kd)� CM _qdm
CM��(�1)

(34)

guarantee that

H(kek; k~qk; ks1k; ks2k) � ��(kek2 + k~qk2 + ks1k2 + ks2k2)
(35)

with � > 0. It is not di�cult to show that if (26.b) holds
then (34) is also satis�ed.
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Following the backstepping approach, V2, which is a Lya-
punov function for the system dynamics, is de�ned as

V2 = V1 +
1

2
~�T�� ~� +

1

2
~
T1 �
1~
1 +

1

2
~
T2 �
2 ~
2 (36)

where ~
1 =
�
~
11 : : : ~
n1

�T
and ~
2 =

�
~
12 : : : ~
n2

�T
are the vectors of hydraulic parameter errors. By taking
the derivative of (36) and employing the control law given
in (21), one can show after some manipulation that

_V2 � H(kek; k~qk; ks1k; ks2k)� ~�T��K� ~�

+ ~
T1

h
f0(q; _q)�� ~� � �
1

_̂
1

i
+ ~
T2 [���(

~�


̂2
)

( _�d � f0(q; _q)
̂1 � ��
�1s1 �K� ~� )� �
2

_̂
2]

(37)

Using the adaptation laws given in (25) and Lemma 1, the
derivative of V2 becomes

_V2 � H(kek; k~qk; ks1k; ks2k)� ~�T��K� ~�

� �
(kek2 + k~qk2 + ks1k2 + ks2k2 + k~�k2) (38)

Thus the position and velocity tracking errors converge
to zero asymptotically.

Remark 1: For parameter convergence the condition of per-
sistency of excitation must be satis�ed [26].

Remark 2: Inspection of (22) reveals that �d does not con-
tain _q. This means that acceleration term �q does not ap-
pear in _�d and hence in the control law. This is achieved
by the particular de�nition of _qr in (19) and also by using
s1 � s2 = _qo � _qr instead of s1 in (22). In summary, the
proposed controller requires q, _q and � to be measured.

Remark 3: In order to implement the observer proposed in
(20), D̂�1(q) must exist. This can be guaranteed by choos-
ing bounds on the estimates of the rigid body parameters.

B. Adaptive Controller/ Robust Observer

In this subsection, an adaptive/nonlinear controller uti-
lizing a sliding type observer [25] is proposed that yields
globally asymptotically stable tracking errors.
Before stating the result the following variables should

be de�ned:

_qr = _qd � �e; s = _q � _qr = _e +�e (39)

and � > 0 is diagonal.

Theorem 3: Consider the system described by (1),(2) and
the following observer:

_z = �o _~q +�osgn(_~q) �WT (q; _qr; �̂)s + ��q (40)

with

W (q; _qr; �̂) = �D̂(q)� + Ĉ(q; _qr)�Kd (41)

��q = �D�1
�
� � �C _q � �G

�
(42)

where z = _̂q is the observed velocity. �D, �C and �G are con-
stant matrices (rough estimates of dynamical matrices).
Let the control law be given by the solution u of the fol-
lowing algebraic equation

g0(q; �; u)
̂2 = _�d � f0(q; _q)
̂1 � ��
�1s�K� ~� (43)

where

�d = D̂(q)(�qr +�_~q) + Ĉ(q; _̂q) _qr + Ĝ(q)�Kd(s� _~q)�Kpe

(44)

and let the adaptation laws be given by

_̂
� = �����1� Y T (q; _q; _qr; �qr)s (45)

and

_̂
1 = �
1�
�1
1 �� f0(q; _q)~�

_̂
2 = �
2�
�1
2 ���(

~�


̂2
)
�
_�d � f0(q; _q)
̂1 � ��

�1s �K� ~�
�
(46)

for the rigid body and hydraulic parameters, respectively.
Then, 0 is an asymptotically stable equilibrium point of the

state ~x =
h
eT sT _~q

T
~�T

iT
. In the above equations,

Kp;Kd;�o;��;�1;�2;�� ;K� are positive de�nite diagonal
matrices.

Remark : �d does not contain any velocity terms. This can
be seen from:

�qr + �_~q = �qd � �( _q � _qd) + �( _q � _̂q) = �qd � �(_̂q � _qd)

s � _~q = _q � _qr � _q + _̂q = _̂q � _qr
(47)

Proof: By substituting (44) into (1) the following closed
loop dynamics are obtained

D(q) _s + C(q; _q)s +Kds +Kpe =

� Y (q; _q; _qr; �qr)~� �W (q; _qr; �̂)_~q + ~�
(48)

De�ne the Lyapunov-like function V1 to be

V1 =
1

2
eTKpe +

1

2
sTD(q)s +

1

2
_~q
T _~q +

1

2
~�T��~� (49)

The derivative of V1 becomes

_V1 = sT [�Y (q; _q; _qr; �qr)~� �W (q; _qr; �̂)_~q � C(q; _q)s

�Kds �Kpe+ ~� ] +
1

2
sT _D(q)s + eTKp(s � �e)

+ _~q
T
h
�q � �o _~q � �osgn(_~q) +WT (q; _qr; �̂)s � ��q

i
+ ~�T��

_~�

(50)

which can be written in the following form:

_V1 = �sTKds� eTKp�e� _~q
T
�o _~q � _~q

T
[��q � �q

+ �osgn(_~q)] + ~�T [��
_~� � Y T (q; _q; _qr; �qr)s] + sT ~�

(51)
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(a) (b)

Fig. 1. Controller implementation block diagrams. (a) Controller with adaptive observer. (b) Controller with robust observer.

With the adaptation law given in (45), _V1 becomes

_V1 = �sTKds � eTKp�e � _~q
T
�o _~q +� + sT ~� (52)

where � = � _~q
T
[��q� �q+�osgn(_~q)]. It is not di�cult to show

that

k��q � �qk � �0 + �1k _qk2 + �2k�k+ �3k _qk: (53)

with �i > 0. The properties given in (3) have been ex-
ploited in deriving (53). The following choice of �o makes
� < 0:

�o = diagf�i
og (54)

�i
o = �i0 + �i1k _qk2 + �i2k�k+ �i3k _qk (55)

and �ik > �k for i = 1; � � � ; n and k = 0; � � � ; 3. The rest of
the proof is the same as before and will not be presented
here.
Note that there are no limitations on the norms of the ini-

tial state tracking errors in this approach. However, chat-
tering phenomena, which are inherent in sliding mode sys-
tems, can a�ect stability. For example, if high frequency
dynamics (e.g. valve dynamics) are excited, instability
could result. The problem could be solved by using a piece-
wise linear approximation to sgn(:).

The E�ect of Friction
In the controllers proposed in this paper, friction in the

hydraulic actuators has been neglected. It is easy to han-
dle viscous friction since it acts as additional damping in
the system. It can also be shown that in the presence of
Coulomb friction, the tracking errors do not converge to
zero but remain bounded. The error bounds can be re-
duced by increasing the gains. The proof will be omitted
here.

V. Simulation Results

Simulations have been performed to investigate the e�ec-
tiveness of the proposed controllers and to obtain guidelines

for experimentation. For this purpose, a realistic model of
the experimental setup, a hydraulic Stewart-type platform,
has been used (see Appendices A and B). The system pa-
rameters were selected based upon their actual values and
are given in Table I.

In the simulations and experiments conducted for this
paper, a task-space control strategy has been followed. The
advantage of this approach is that the dynamical matrices
have simpler forms in these coordinates for parallel manip-
ulators such as the Stewart platform. However, the forward
kinematics problem must be solved on-line to convert the
measured link positions to robot positions in task-space co-
ordinates. Newton's method was utilized for this purpose.
The control algorithms and the robot dynamics were all
implemented using the Matlab SimulinkTM toolbox. The
implementation block diagrams of the controllers are shown
in Figures 1(a) and 1(b).

Extensive simulations showed similar performance for
both of the proposed adaptive control methods, thus only
the results obtained for the controller using the robust ob-
server are presented here. The system parameters were ini-
tially set to values di�erent from those used in the model to
investigate the ability of the controllers to cope with para-
metric uncertainties. The reference trajectory was chosen
to be xd = 0:02 sin(2�t)+0:01 sin(4�t)+0:01sin(6�t), yd =
0, zd = 0:02 sin(2�t)+0:01 sin(4�t),  d = 0:0873 sin(2�t)+
0:0349 sin(4�t), �d = 0:0524 sin(2�t) + 0:0175 sin(4�t),
�d = 0:0524 sin(2�t) + 0:0175 sin(4�t). Positions and an-
gles are expressed in meters and radians, respectively. The
tracking errors clearly converge to zero in all coordinates
as shown in Figure 2. The pro�les of the parameter es-
timates are given in Figure 3. The parameter adaptation
laws were activated after t = 0:5 s. Both rigid body and
hydraulic parameters converge to their actual values, even
though the parameter convergence is not guaranteed in the-
ory. The estimates of Ix; Iy reach their boundaries during
some periods of the simulation as seen in Figure 3.

In summary, the controller with the robust observer com-
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Fig. 4. The experimental setup.
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Fig. 5. Position tracking (1Hz) along z coordinate (experiment).

adaptation was found to be quite helpful in improving the
tracking performance. The projection gains used in the
adaptation laws proved e�ective in preventing the large
parameter swings that can occur especially during start-
up transients. The step response of the controller along
the z axis is also compared with that of the P controller
in Figure 8. As it can be seen, the nonlinear controller
exhibits a much faster response with some overshoot.

VII. Conclusions

This paper addresses the control problem for hydrauli-
cally driven manipulators. The highly nonlinear dominant
actuator dynamics prevents the use of standard robot con-
trol methods. In fact, inclusion of actuator dynamics in the
design is of critical importance in hydraulic robots. While
most of the reported work in the literature consider the con-
trol of single-rod hydraulic actuators, this paper proposed
novel nonlinear controllers for hydraulic manipulators us-
ing backstepping. A realistic model of the system was uti-
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Fig. 6. Position tracking (2Hz) along z coordinate (experiment).

lized in developing these Lyapunov-based controllers. To
deal with parameter uncertainties, the controllers were aug-
mented with adaptation laws. Acceleration feedback was
avoided by proposing adaptive and sliding-type observers.
Simulations and experiments were carried out with a hy-
draulic Stewart platform to investigate the e�ectiveness
of these approaches. The results demonstrated excellent
tracking position tracking behavior and satisfactory tran-
sient responses for these new controllers.
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Appendix A

The dynamics of a typical hydraulic actuator are pre-
sented in this Appendix. A three-way valve con�guration is
assumed to be used in the actuators, as shown in Figure 9.
For such a con�guration, the control pressure dynamics are
governed by [29]

Vt

�
_pc = ql + cl(ps � pc) � _Vt (56)

where Vt is the trapped 
uid volume in the control side,
� is the e�ective bulk modulus, pc is the control pressure
acting on the control side, ps is the supply pressure acting
on the rod side, ql is the load 
ow, and cl is the coe�cient
of total leakage. The load 
ow, ql, is a nonlinear function
of the control pressure and the valve spool position and is
given by

ql =

8><
>:
c(u� d)ppc u < �d
c(u+ d)

p
ps � pc + c(u� d)

p
pc �d � u � d

c(u+ d)
p
ps � pc u > d

(57)

and c = cdw
q

2
�
, where cd is the e�ective discharge coe�-

cient, w is the port width of the valve, � is the density of
the 
uid, d is the valve underlap length and u is the valve
spool position which is the control command. Note that the
actuator output force is � = pcA � psa. Therefore, using
(56) and (57), the dynamics of the i'th hydraulic actuator
can be written in the following form (assuming cl t 0)

_� i = �A�
i _qi

qi � li +
�i

qi � li q
i
l (�

i; ui) = f i(qi; _qi) + gi(qi; � i; ui)

(58)

where l is the actuator stroke length. For a Stewart plat-
form, there are six actuators driving the system. The ac-
tuator subsystem dynamics can be represented in matrix
form as in (2).
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Fig. 8. Step response along z coordinate (experiment).

Note that (58) can be rewritten in the following form
which is suitable for adaptive control:

_� i = 
i1f
i
0(q

i; _qi) + 
i2g
i
0(q

i; � i; ui) (59)

where 
i =
�
�i �ici

�T
, f i0 = � Ai _qi

qi�li
, and gi0 =

qi
l

ci(qi�li)

(does not depend on csi , see (57)). These equations can be
written in matrix form as in (16).

ps

p =0t XV

ql
Pc

A

a

d

CylinderValve

l

q-l

Fig. 9. A typical three-way valve con�guration.

Appendix B

The Stewart platform is a parallel manipulator widely
used in conventional motion simulators. The dynamics
of an inverted, ceiling-mounted Stewart platform (Figure
(10)) are presented here [19].

In task-space coordinates, the dynamics of the platform
are governed by:

D(q)�q +C(q; _q) _q +G = (JL)T � (60)

where q =
�
x y z  � �

�T
and �, � and  are roll-

pitch-yaw angles, respectively. Furthermore, J is the ma-
nipulator Jacobian matrix and L is de�ned as

L =

�
I3�3 0
0 T

�
(61)
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TABLE I

The system parameters used in the simulations and experiments.

Hydraulic Parameters
Parameter A (m2) a (m2) L (m) Ps (psi) d (m) c � (Mpa)

Value 1:14� 10�3 6:33� 10�4 1:37 m 1500 55:4� 10�6 1:5� 10�4 700
Rigid Body Parameters

Parameter Mp (kg) Ix (kg.m2) Iy (kg.m2) Iz (kg.m2) {
Value 250 45 45 43 {
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Fig. 10. The schematic of the Stewart platform.

with

T =

2
4cos(�) cos(�) � sin(�) 0
cos(�) sin(�) cos(�) 0
� sin(�) 0 1

3
5 (62)

Finally, D(q), C(q; _q) and G have the following forms:

D(q) =

�
MpI3�3 0

0 TT bIpT

�
(63)

C(q; _q) =

�
0 0
0 c22

�
c22 = TTS(!)bIpT + TT bIp _T

(64)

G =
�
0 0 Mpg 0 0 0

�T
(65)

where ! is the angular velocity vector of the platform and

S(!) =

2
4 0 �!z !y
!z 0 �!x
�!y !x 0

3
5 (66)

In the above equations, bIp is the platform inertia matrix
with respect to the base frame and is given by

bIp = R pIpR
T (67)

where

pIp =

2
4Ix 0 0
0 Iy 0
0 0 Iz

3
5 (68)

and R is a rotation matrix giving the coordinates of the
platform-attached basis vectors in a base frame. Note that
(60) is not exactly as (1). However, since J is a function
of platform position and is known, the controllers can be
easily modi�ed to be used in this case. Moreover, the rigid
body dynamics may be written in so-called linear in pa-
rameters form.

D(q)�q + C(q; _q) _q +G = Y6�4(q; _q; �q)� (69)

where � =
�
Mp Ix Iy Iz

�T
is the vector of unknown

parameters. The detailed expressions of the elements of
Y are long and fairly straightforward and will not be pre-
sented here.
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