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Abstract— Longitudinal rigid-body models of air-breathing
hypersonic vehicle dynamics are characterized by exponentially
unstable zero-dynamics when longitudinal velocity and flight-
path angle (FPA) are selected as regulated output. To enable
application of stable dynamic inversion methods (and their
adaptive counterparts), previous studies have considered the
addition of a canard control surface to eliminate the occurrence
of the unstable zero; however, the addition of a canard may
negatively impact the design of the thermal protection system.
In this paper, we present a methodology for robust nonlinear
control of the rigid-body longitudinal hypersonic vehicle dy-
namics which employs only the elevator as aerodynamic control
surface. The method reposes upon a nonlinear transformation
of the equations-of-motion into the interconnection of systems
in so-called feedback and feed-forward forms that allows the
combination of high-gain and low-amplitude feedback, achieved
through the use of saturated functions. Simulation results
using the flexible vehicle model are presented to illustrate the
effectiveness of the method.

I. INTRODUCTION

One of the most severe challenges encountered in design-

ing flight control systems for air-breathing hypersonic vehicle

models, is the exponentially non-minimum phase behavior

exhibited by the rigid-body flight-path angle (FPA) dynam-

ics. This non-minimum phase behavior, which manifests it-

self as a hyperbolic saddle equilibrium in the pitch dynamics,

arises [1] as a consequence of elevator-to-lift coupling. The

unstable zero limits considerably the achievable bandwidth

of the FPA loop, with negative repercussions for robust

stability margins when designing linear control systems.

For nonlinear control design, the presence of unstable zero-

dynamics is a serious roadblock, as it prevents the application

of standard dynamic inversion methods. In [2], approximate

feedback linearization was applied to the model of Bolender

and Doman [3] by strategically ignoring the elevator-to-lift

coupling, thereby artificially extending the relative degree

between FPA and elevator deflection from one to three and

removing the presence of the zero from the model. In the

same work, as also initially suggested in [1], a canard was

added to the control suite to counteract the non-minimum

phase behavior by ganging the canard and the elevator de-

flection via a constant gain. The availability of an additional

control surface was heavily exploited in subsequent nonlinear

adaptive control design [4]–[6], where the elevator-to-lift

coupling was adaptively canceled. The resulting closed-loop
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system was proved in [5], [6] to be robust with respect to

the dynamic uncertainty given by the aero-elastic dynamics.

The presence of a canard, while beneficial for controllability,

may negatively impact the design of the thermal protection

system, as this additional control surface must withstand

a significant thermal stress. Consequently, for hypersonic

vehicles it is of interest to investigate methodologies for

nonlinear control design under the assumption that the el-

evator is the only aerodynamic control surface available for

the longitudinal dynamics.

In this paper, we apply a methodology strongly inspired

by the results in [7], which uses a preliminary feedback

transformation to convert the FPA and pitch dynamics into

the interconnection of a system in feed-forward form and a

system in feedback form, respectively. Then, a combination

of adaptive, high-gain and low-amplitude feedback, achieved

through the use of saturation design and input-to-state sta-

bility methods [8], [9], is employed. Since the focus of the

paper is on counteracting the exponentially non-minimum

phase behavior of the rigid-body FPA dynamics, only the

rigid-body control-oriented vehicle model considered in [4]

is used for controller design and stability analysis. However,

the full nonlinear model in [3], which includes structural

flexibility, is employed for closed-loop simulations.

The paper is organized as follows: in Section II the vehicle

model is introduced and the control objective is stated.

Section III elaborates on the system zero-dynamics, while

in section IV the control design is presented together with

the stability analysis. Finally, simulation results are discussed

in Section V, and conclusions are offered in Section VI.

II. VEHICLE MODEL

The rigid-body vehicle dynamics considered in this study

is given as follows [3]

V̇ =
T cosα − D

m
− g sin γ θ̇ = Q

γ̇ =
L + T sin α

mV
− g

V
cos γ Q̇ = M

Iyy

(1)

This model comprises four rigid-body state variables x =
[V, γ, θ, Q]T and two control inputs u = [Φ, δe]

T which

affect (1) through the thrust, T , the pitching moment about

the body y-axis, M , lift, L, and drag, D. The output to

be controlled is selected as y = [V, γ]T . The meaning of

the state variables and the input vector is given in Table I.

Following [2], approximations of the forces and moments to
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TABLE I

ADMISSIBLE RANGES FOR STATE, INPUT, AND VARIABLES OF INTEREST

Var Min Value Max Value

V Vehicle Velocity 7500 ft/s 11000 ft/s

γ Flight-Path Angle (FPA) −3 deg 3 deg

θ Pitch Angle −5 deg 5 deg

Q Pitch Rate −10 deg/s 10 deg/s

Φ Fuel-to-air Ratio 0.05 1.5

δe Elevator Deflection −20 deg 20 deg

h Vehicle Altitude ḣ = V sin γ 85000 ft 135000 ft

α Angle-of-Attack, α = θ − γ −5 deg 5 deg

q̄ Dynamic Pressure 182.5 psf 2200 psf

be employed for control design and stability analysis have

been derived as follows:

T ≅ T (α, Φ)

L ≅ q̄S
[

Cα
Lα + C0

L + Cδ
Lδe

]

D ≅ q̄S
[

Cα2

D α2 + Cα
Dα + C0

D + Cδ2

D δ2
e + Cδ

Dδe

]

M ≅ zT T (α, Φ)+ q̄c̄ S
[

Cα
Mα + C0

M + Cδ
Mδe

]

(2)

where T (α, Φ) is a continuously differentiable bounded func-

tion of α for any given Φ. As a consequence, one can write

T (α, Φ) = ∆T (α, Φ)α + T (0, Φ). Note that Φ is physically

limited to take values within the ranges of Table I. The goal

pursued in this study is to design a state-feedback controller

to steer the state of system (1) from a given compact set of

initial conditions, x0 = [V0, γ0, θ0, Q0]
T ∈ Ξ0, to a desired

trim condition x⋆ = [V ⋆, 0, θ⋆, 0]T , along smooth exoge-

nous reference trajectories yref(t) = [Vref(t), γref(t)]
T . The

velocity and FPA references are generated by the guidance

subsystem to satisfy the bounds shown in Table I, which

determine the considered flight envelope of the vehicle. The

set Ξ0 is also assumed to be a subset of the set in Table I.

Clearly, limt→∞ Vref(t) = V ⋆ and limt→∞ γref(t) = 0. It

should be noted that in reality, once a desired trim condition

V ⋆ is reached, neither θ⋆ or the value of the control input

at trim, u⋆ = [Φ⋆, δ⋆
e ]T , can be determined a priori due to

parameter uncertainty. In this preliminary study the presence

of model uncertainty is not directly addressed, but is implic-

itly treated as a disturbance on the nominal model. Integral

action provided by the controller is used to overcome the

effect of residual terms when applying dynamics inversion

(note that θ∗ is assumed to be unknown). As a result, the

control requirement is posed as that of designing a controller

such that, in a suitable set of coordinates, the dynamics of

the tracking error in closed-loop are input-to-state stable with

respect to external disturbances.

III. THE ZERO-DYNAMICS OF HSVS

It is apparent that the model (1) has vector relative degree

r = [1, 1] with respect to the regulated output. As a result,

the systems has a 2-dim zero-dynamics with respect to the

set-point error e = [V − V ⋆, γ ]T . For ease of notation, let

C̄ δ
M := −C δ

M

C δ
L

, z̄T (α) := zT + c̄ C̄ δ
M sin α

C̄ α
M (α) := C α

M (α) + C̄ δ
MC α

L (α) − C̄ δ
M

mg
q̄S

and define the effective moment M̄(α, Φ) = c̄ q̄S C̄ α
M (α) +

z̄T (α)T (α, Φ) Applying the decoupling control input

δ⋆
e(α, Φ, γ) :=

1

q̄SCδ
L

[

−q̄SCα
L(α)−T (α, Φ) sin α+mg cos γ

]

and choosing the initial condition γ(0) = 0, one obtains the

zero dynamics of the system (1) (with respect to the output γ)

θ̇ = Q

IyyQ̇ = M̄(θ, Φ) (3)

where we have use the fact that γ = 0 implies α = θ. Note

that in equation (3), Φ is regarded as a time-varying param-

eter. System (3) has an equilibrium at (θ, Q) = (θ⋆, 0) and

Φ = Φ⋆, where the constant values θ⋆, Φ⋆ are determined

by the trim condition at V = V ⋆, namely

T (θ⋆, Φ⋆) cos θ⋆ − D
(

θ⋆, δ⋆
e(θ⋆, Φ⋆, 0)

)

= 0

M̄(θ⋆, Φ⋆) = 0 (4)

Since it can be verified that
∂M̄(θ,Φ)

∂θ
| θ=θ⋆

Φ=Φ⋆
> 0 for the

considered flight envelope, it follows that the equilibrium

(θ, Q) = (θ⋆, 0) of the pitch dynamics (3) is a hyperbolic

saddle. As a result, any attempt to apply a standard dynamic

inversion algorithm to the relative-degree r = [1, 1]T -

system (1) results in unstable internal dynamics.

IV. CONTROL DESIGN

Given the reference Vref(t) and γref(t) the corresponding

tracking errors are defined as Ṽ = V −Vref and γ̃ = γ−γref .

The velocity subsystem is controlled using thrust from the

fuel equivalence ratio, Φ. The pitch angle is used as a virtual

input to control the FPA by defining a suitable bounded

commanded reference θcmd. Finally, the control law for the

elevator deflection is derived using dynamic inversion to

control the rotational dynamics through the pitch moment.

A. Velocity Subsystem

In the error coordinate, the first equation of (1) reads as

˙̃V =
T cosα − D

m
− g sinγ − V̇ref . (5)

Since the thrust can be approximated locally as T (α, Φ) ≈
q̄S

[

CΦα3

T α3 + CΦα2

T α2 + CΦα
T α + CΦ

T + C3
T α3 + C2

T α2 +
C1

T α + C0
T

]

, Eq. (5) can be written as

m ˙̃V = ϑT B(α)Φ − ΨT (x, u)ϑ

by introducing the vector of uncertain parameters ϑ, the

regressor Ψ and the input matrix B respectively as

ϑ = S [CΦα3

T , CΦα2

T , CΦα
T , CΦ

T , C3
T , C2

T , C1
T , C0

T ,

Cα2

D , Cα
D, C0

D, C
δ2

e

D , Cδe

D , m/S]T

Ψ(x, u) = [01×4,−q̄α3 cosα,−q̄α2 cosα,−q̄α cosα,

−q̄ cosα, q̄α2, q̄α , q̄ , q̄δ2
e , q̄δe, g sin γ + V̇ref ]

T

B(α) = q̄ [α3 cosα, α2 cosα, α cosα, cosα, 01×10, ]
T .
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Let ϑ̂ be a vector of estimates of ϑ and Θ be the compact set

in which ϑ̂ is assumed to range. Following [4], the control

law for the equivalence air ratio is chosen as

Φ =
1

ϑ̂T B(α)

[

− kV Ṽ + ΨT (x, u) ϑ̂
]

where kV > 0 is a gain parameter. Consequently, the update

law for the parameter estimate ϑ̂ is chosen as

˙̂
ϑ = Proj

ϑ∈Θ

{

Ṽ Γ
[

B(α, q̄)Φ − Ψ(x, u, yref)
]

}

where Γ ∈ R
14×14 is a symmetric positive definite matrix

and Projϑ∈Θ is a smooth parameter projection [10]. Using

a suitable Lyapunov function it is possible to prove that as

long as the trajectories of the overall system are defined,

the velocity tracking error converges asymptotically to zero

while the parameter estimates remain bounded.

B. FPA and Pitch Dynamics

Since a form of dynamic inversion will be applied, the

FPA/Pitch dynamics are augmented with an integrator to

deal with model uncertainties. This ensures that at any trim

condition x∗, necessarily γ̃∗ = 0. The elevator deflection

control law is chosen as

δe =
1

Cδ
M

[

Iyy

q̄c̄S
v − Cα

Mα − C0
M − zT

q̄c̄S
T

]

where v is an additional control input to be designed. As a

result, the rotational dynamics read as

ζ̇ = γ̃ θ̇ = Q

˙̃γ = ϕ1(x, φ)α − ϕ2(x) v + d Q̇ = v
(6)

where

ϕ1(x, φ) :=
q̄S

mV

(

Cα
L − Cδ

LCα
M

Cδ
M

)

+
T

mV

sinα

α

−zT Cδ
L

c̄ Cδ
M

∆T (α, Φ)

mV

ϕ2(x) := − 1

mV

IyyCδ
L

c̄ Cδ
M

(7)

d :=
q̄S

mV

(

C0
L − Cδ

LC0
M

Cδ
M

)

− zT Cδ
L

c̄ Cδ
M

T (0, Φ)

mV
(8)

− g

V
cos γ − γ̇ref . (9)

Using similar arguments to the ones used in [4], it is possible

to show that there exist positive coefficient ϕM
1 and ϕm

1 such

that ϕm
1 < ϕ1(x, φ) < ϕM

1 . Moreover, for the envelope of

flight conditions considered in Table I, there exist positive

coefficients ϕm
2 , and ϕM

2 , such that ϕm
2 < ϕ2(x) < ϕM

2 .

The (θ, Q)-subsystem will be used as a servo-loop for

controlling the FPA by properly defining a bounded com-

mand θcmd. In particular, a two-time scale behavior will

be enforced in the rotational dynamics by applying high-

gain feedback to the inner loop represented by the (θ, Q)-
subsystem, low-gain feedback to the outer loop, i.e., the

(ζ, γ̃)-subsystem, and by exploiting properties of saturated

interconnections. Let σ : R → R be a differentiable function

which satisfies the following properties

|σ′(s)| := |dσ(s)/ds| ≤ 2 for all s

sσ(s) > 0 for all s �= 0 , σ(0) = 0

σ(s) = sgn(s) for |s| ≥ 1

|s| < |σ(s)| < 1 for |s| < 1 (10)

Similarly to what done in [7], the following nonlinear change

of coordinates is applied to system (6)

ξ1 = ζ

ξ2 = γ̃ + λ1 σ

(

k1ξ1

λ1

)

η1 = θ − θcmd

η2 = Q + kP

(

θ − θcmd

)

and v and θcmd are chosen as

v = −(kP + kD) η2 + (k2
D − 1) η1

θcmd = γref − λ1 σ

(

k1ξ1

λ1

)

where k1 and λ1 are positive design parameters and kP

and kD are respectively proportional and derivative gains.

Recalling that α = θ − γ̃ − γref , in the new coordinates

system (6) reads as

ξ̇1 = −λ1 σ

(

k1ξ1

λ1

)

+ yz (11)

ξ̇2 = −
[

ϕ1(x, φ) − k1σ
′

(

k1ξ1

λ1

)]

ξ2 + yη + yξ1
+ d (12)

η̇1 = −kP η1 + η2 + yξ1
+ yξ2

− γ̇ref

η̇2 = −kDη2 − η1 + kP yξ1
+ kP yξ2

− kP γ̇ref (13)

yξ1
= −λ1k1σ

′

(

k1ξ1

λ1

)

σ

(

k1ξ1

λ1

)

(14)

yξ2
= k1σ

′

(

k1ξ1

λ1

)

ξ2 (15)

yz = ξ2 (16)

yη =
[

ϕ1(x, φ) − ϕ2(x)(k2
D − 1)

]

η1

+ϕ2(x)(kP + kD) η2 . (17)

Let ξ = [ξ1, ξ2]
T , η = [η1, η2]

T and z := [ξ2, η]T . Fix kD >
0, kP > 0 and let k1 := k∗

1ε, where k∗

1 is a positive real

number and ε is a positive design parameter. In particular, ε
will be tuned to render the ξ-dynamics sufficiently slower

than the η-dynamics. The use of the saturation function

allows the command θcmd to remain bounded even when

the norm of the state of the slower dynamics becomes large.

The first step in the stability analysis is to show that

the (ξ, η)-system defined by (11)-(17) is input-to-state stable

(ISS), with no restriction on the initial state and restrictions

on the input d. To this aim, the asymptotic properties 1 of the

ξ2 and η-subsystems will be first analyzed separately. It will

be shown that the interconnection of the ξ2 and η-subsystems

1In the following, we use the notation adopted in [9]
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yη
ξ2

η
yξ2

yξ1

yz
d

γ̇ref

Fig. 1. Interconnection of the ξ2 and η subsystems.

(see Figure 1) is ISS, with no restriction on the initial

state and on the inputs (yξ1
, d, γ̇ref) . Then, the asymptotic

properties of the ξ1-subsystem will be considered, and the

interconnection of the z-subsystem and ξ1-subsystem (see

Figure 2) will be analyzed. The following two propositions

establish the asymptotic bounds on the ξ2 and η trajectories.

Proposition 4.1: Consider system (12) with output (15).

There exists ε∗1 > 0 such that for all ε < ε∗1 this system is

ISS without restriction on the initial state and on the inputs

(yη, yξ1
, d). Moreover, the output yξ2

satisfies

‖yξ2
‖a <

6 k1

ϕm
1 − 2k1

max { ‖yη‖a, ‖yξ1
‖a, ‖d‖a} . (18)

Proof: Let us consider the Lyapunov function candidate

W1(ξ2) = 1
2 ξ2

2 , and let ε∗1 = ϕm
1 /(2k∗

1). The derivative of

W1 along trajectories of system (12) satisfies

Ẇ1 < −(ϕm
1 − 2k1) ξ2

2 + |ξ2|
(

|yη| + |yξ1
| + |d|

)

therefore, for ε < ε∗1 (recall that k1 = εk∗

1)

|ξ2| >
3

ϕm
1 − 2k1

max { |yη|, |yξ1
|, |d|} ⇒ Ẇ1 < 0 .

As a result, W1 is an ISS Lyapunov function for system (12),

hence (see [9, Lemma 3.3])

‖ξ2‖a <
3

ϕm
1 − 2k1

max { ‖yη‖a, ‖yξ1
‖a, ‖d‖a} . (19)

Using (10) it follows that |yξ2
| ≤ 2k1|ξ2|, therefore the

asymptotic bound on yξ2
is readily obtained from (19).

Proposition 4.2: For any kP , kD > 0, the system (13)

with output (17) is ISS without restriction on the initial state

and on the inputs (yξ1
, yξ2

, γ̇ref). Moreover, the output yη

satisfies the asymptotic bound

‖yη‖a < a1 max { ‖yξ1
‖a , ‖yξ2

‖a} (20)

where a1 is a positive constant that depends on kP and kD.

Proof: The derivative of the Lyapunov function can-

didate W2(η1, η2) = 1
2η2

1 + 1
2η2

2 along trajectories of sys-

tem (13) satisfies

Ẇ2 ≤−kP η2
1−kDη2

2+(|η1|+kP |η2|)
(

|yξ1
|+|yξ2

|+|γ̇ref |
)

≤ −c‖η‖2 + 2(1 + kP )‖η‖
(

|yξ1
|+|yξ2

|+|γ̇ref |
)

where c := min {kD, kP }. Then,

‖η‖ >
6(1 + kP )

c
max { |yξ1

| , |yξ2
| , |γ̇ref |} ⇒ Ẇ2 < 0 .

As a result, W2 is an ISS Lyapunov function for sys-

tem (13) and therefore the latter is ISS without restriction

on the initial state and on the inputs (yξ1
, yξ2

, γ̇ref). Since

limt→∞ γ̇ref(t) = 0,

‖η‖a <
6(1 + kP )

c
max { ‖yξ1

‖a, ‖yξ2
‖a} . (21)

Considering (17), the asymptotic bound on yη holds with

a1 := 6(1+kP )
c

max {ϕM
1 + ϕM

2 |k2
D − 1|, ϕM

2 (kP + kD)} .

Now we consider the interconnection depicted in Figure 1:

Proposition 4.3: There exists a number ε∗

3 > 0 such that

for all ε < ε∗3 the interconnection of systems (12) and (13) is

ISS without restriction on the initial state and on the inputs

(yξ1
, d, γ̇ref). Moreover, yz satisfies the asymptotic bound

‖yz‖a <
3

ϕm
1 − 2k1

max { a2 ‖yξ1
‖a, ‖d‖a} (22)

where a2 is a positive coefficient that does not depend on ε.

Proof: Using Propositions (4.1) and (4.2), it follows

that for any ε < ε∗1 the asymptotic bounds (18) and (20)

hold. Let ε∗2 = ϕm
1 /(6a1 + 2)k∗

1 . Then for any ε < ε∗3 :=
min{ε∗1, ε∗2} the small-gain condition

6 k1

ϕm
1 − 2k1

· a1 < 1 . (23)

holds, and thus the interconnection is ISS by virtue of [9,

Theorem 1], and

‖yξ2
‖a <

6k1

ϕm
1 − 2k1

max { a2‖yξ1
‖a, ‖d‖a}

‖yη‖a <a1 max { a3(ε) ‖yξ1
‖a ,

6k1

ϕm
1 − 2k1

‖d‖a} (24)

where a2 := max
{

a1, 1
}

, a3(ε) := max
{

6k1/(ϕm
1 −

2k1), 1
}

. Since yz = ξ2, the bound (22) follows by com-

bining (19) with (24) and using (23) .

Finally, the following proposition holds for the ξ1-subsystem:

Proposition 4.4: System (11) is ISS without restriction on

the initial state and restriction λ1 on the input yz , and its

output (14) satisfies

‖yξ1
‖a < 2k1 ‖yz‖a .

Proof: Since the right hand side of Eq. (11) is globally

Lipschitz, the ξ1-trajectories are defined for any t ≥ 0 for

any locally essentially bounded input yz(·). Consequently, if

yz(·) is such that supt∈(t1,∞] |yz(t)| < λ1 for some t1 ≥ 0,

from standard arguments it follows that ∃ t2 > t1 such that

supt∈(t2,∞] |ξ1(t)| <
1

k1
supt∈(t2,∞] |yz(t)| <

λ1

k1
.

As a consequence ‖ξ1‖a < 1/k1 ‖yz‖a and the result follows

from the fact that |yξ1
| ≤ 2k2

1|ξ1| when the saturation σ(·)
is not active.

Next, it is verified that the restriction on yz is met in finite

time.

Proposition 4.5: Consider the z-subsystem in the inter-

connection depicted in Figure 2, driven by the output of

system (11). There exist positive constants ε∗

4 and λ∗

1 such

that for all ε < ε∗4 and λ1 > λ∗

1, ‖yz‖a < λ1. As a result,

the restriction on the input for the upper subsystem (11) is

met in finite time.
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yη

ξ1

ξ2

η
yξ2

yξ1

yz

d

γ̇ref

Fig. 2. Interconnection of the z and ξ1 subsystems.

Proof: Let ∆ be an upper bound for the L∞-norm of

the disturbance d in (7) (this bound exists since the velocity

inner-loop ensures that V is bounded from below.) Define

ε∗4 := min

{

ϕm
1

8k∗

1

, ε∗2

}

and λ∗

1 :=
3∆

ϕm
1 − 2k∗

1ε∗4
.

Then it can be verified that

3

ϕm
1 − 2k1

max

{

a1√
ε
, 1

}

· 2k1λ1 < λ1

3∆

ϕm
1 − 2k1

< λ1

for any ε < ε∗4 and λ1 > λ∗

1. The asymptotic bound on

yz follows from (22) by noticing that ‖yξ1
‖∞ ≤ 2k1λ1 and

‖d‖∞ ≤ ∆. Since no finite escape time is possible in the

overall system, we can conclude that there exists a positive

time t1 such that supt∈(t1,∞] |yz(t)| < λ1

The final step is to prove that the system in Figure 2 is a

small-gain interconnection:

Proposition 4.6: Consider the overall system given by the

interconnection of systems (12)-(13) and (11). Then for all

ε < ε∗4 this system is ISS without restriction on the initial

state and restriction ∆ on the input d, and its state satisfies

the asymptotic bounds

‖ξ1‖a ≤ a4(ε)

k1
‖d‖a

‖ξ2‖a ≤ a4(ε) ‖d‖a

‖η‖a ≤ a5(ε) ‖d‖a

where a4(ε) and a5(ε) are positive coefficients that depend

on ε.

Proof: Recall that, by Propositions (4.3) and (4.4)

‖yz‖a <
3

ϕm
1 − 2k1

max { a2 ‖yξ1
‖a, ‖d‖a}

‖yξ1
‖a < 2k1 ‖yz‖a .

Since it can be verified that

3 a2

ϕm
1 − 2k1

· 2k1 < 1 , (25)

for ε < ε∗4, by using small-gain arguments it follows that

‖ξ2‖a = ‖yz‖a <
3

ϕm
1 − 2k1

‖d‖a

‖ξ1‖a <
1

k1
‖yz‖a <

1

k1

3

ϕm
1 − 2k1

‖d‖a .

Applying properties (10) on (14) and (15) it follows that

‖yξ1
‖a < 2k2

1 ‖ξ1‖a <
6k1

ϕm
1 − 2k1

‖d‖a

‖yξ2
‖a < 2k1 ‖ξ2‖a <

6k1

ϕm
1 − 2k1

‖d‖a .

Finally, using (21) it follows that

‖η‖a <
6(1 + kP )

c

6k1

ϕm
1 − 2k1

‖d‖a

and therefore the proposition holds for

a4(ε) :=
3

ϕm
1 − 2k1

, a5(ε) :=
6(1 + kP )

c

6k1

ϕm
1 − 2k1

.

The result of Proposition 4.6 establishes, in particular,

uniform ultimate boundedness of the tracking error with

respect to the disturbance input d. If Φ(t) converges to a

constant value, then the closed-loop system possesses an

equilibrium in correspondence of the limit value d∗

d∗ =
q̄S

mV ∗

(

C0
L − Cδ

LC0
M

Cδ
M

)

− zT Cδ
L

c̄ Cδ
M

T (0, Φ)

mV ∗
− g

V ∗
.

Since we have augmented the FPA dynamics with an inte-

grator, any equilibrium for system (6) satisfies necessarily

γ̃∗ = 0 and Q∗ = 0. In the new coordinates this implies that

ξ∗2 − λ1σ

(

k1ξ
∗

1

λ1

)

= 0 ⇒ y∗

ξ1
+ y∗

ξ1
= 0

⇒ η∗

1 = η∗

2 = 0 ⇒ ξ∗2 = k1ξ
∗

1 =
d∗

ϕ1(x∗, Φ∗)
.

It must be noted that, due to parameter and modeling

uncertainties and the fact that dynamic inversion has been

applied, the trim condition for the system is likely to be

such that (η∗

1 , η∗

2) �= (0, 0). However, even in this case,

the presence of the integrator still ensure that the condition

(γ̃∗, Q∗) = 0 is guaranteed at trim. Indeed, this has been

verified on the basis of nonlinear simulations conducted on

the full nonlinear model, as described in the next section.

V. SIMULATIONS

To test the performance of controller derived in the pre-

vious section, simulations have been performed on the full

nonlinear vehicle model described in [3], which includes

structural flexibility. The vehicle is not trimmed at t =
0, h(0) = 86000 ft and V (0) = 7850 ft/s. The velocity

reference trajectory is generated to let the vehicle reach the

desired final trim condition V ∗ = 10500 ft/s. The flight path

angle reference trajectory is generated filtering a step s(t)
such that, s(t) = 5 for 0 < t < 20 and s(t) = 0 for

t ≥ 20, with a first-order pre-filter with natural frequency

ωf = 0.02 rad/s and damping factor ζf = 0.95. The

controller gains have been chosen as kV = 120, kP =
5, k1 = 0.1, Γ1 = 0.1× I14×14, kD = 10, λ1 = 0.041 . From

Fig. 3(a)-(b) it is possible to see that since the vehicle in not

trimmed at t = 0, the tracking errors in the initial interval

of time are large, but the saturation function σ, allows the

reference command θcmd to remain bounded and prevents the

states to grow unbounded. In Fig. 3(a)-(c) typical nonlinear
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Fig. 3. Simulation Results

phenomenon associated with the saturation are visible during

the interval in which ξ1(t) is within the saturation limits.

Eventually, the trajectory of the integrator enters the linear

region of the saturation function, and the FPA tracking error

converges to zero. As mentioned, the equilibrium does not

satisfy the condition η∗ = 0, however, the ξ and η variables

are set to constant values that allow to reach the desired

steady state trim condition γ∗ = 0. Finally, Fig. 3(d) show

that the control inputs remain well-behaved.

VI. CONCLUSIONS

In this paper, we have presented the application of method-

ologies based on small-gain theorems for saturated inter-

connections to the problem of controlling the longitudinal

dynamics of hypersonic vehicle using only the elevator as

aerodynamic control surface. The main focus of the paper

is on counteracting the exponentially non-minimum phase

behavior of the rigid-body FPA dynamics. While it has been

shown in simulation that the method is effective on a more

complex vehicle model than the one used for control design,

further work is needed to formally address the issue of

robustness with respect to model uncertainty.
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