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Nonlinear Control of Plate Vibrations

Osama Naim Ashour

(ABSTRACT)

A nonlinear active vibration absorber to control the vibrations of plates is investigated. The
absorber is based on the saturation phenomenon associated with dynamical systems with
quadratic nonlinearities and a two-to-one internal resonance. The technique is implemented
by coupling a second-order controller with the plate's response through a sensor and an
actuator. Energy is exchanged between the primary structure and the controller and, near
resonance, the plate's response saturates to a small value.

Numerical as well as experimental results are presented for a cantilever rectangular plate.
For numerical studies, ¯nite-element methods as well as modal analysis are implemented.
The commercially available software ABAQUS is used in the ¯nite-element analysis together
with a user-provided subroutine to model the controller. For the experimental studies, the
plate is excited using a dynamic shaker. Strain gages are used as sensors, while piezoelectric
ceramic patches are used as actuators. The control technique is implemented using a dSPACE
digital signal processing board and a modeling software (SIMULINK). Both numerical and
experimental results show that the control strategy is very e±cient.

A numerical study is conducted to optimize the location of the actuators on the structure
to maximize its controllability. In this regard, the control gain is maximized for the PZT
actuators. Furthermore, a more general method is introduced that is based on a global
measure of controllability for linear systems.

Finally, the control strategy is made adaptive by incorporating an e±cient frequency-measur-
ement technique. This is validated by successfully testing the control strategy for a non-
conventional problem, where nonlinear e®ects hinder the application of the non-adaptive
controller.



Dedication

To my mother Waela

To my daughter Waela

iii



Acknowledgments

I would like to express my sincere gratitude and appreciation to my advisor Dr. Ali H. Nayfeh.

His invaluable knowledge and support were indispensable for this work. His encouragement,

thoughtfulness, and supervision are deeply acknowledged. His ingeniousness, resourcefulness,

and devotion are greatly admired.

Thanks are given to Dr. Dean Mook, Dr. Muhammad Hajj, Dr. Mehdi Ahmadian, and Dr.

Slimane Adjerid for their contributions as committee members. Special thanks are due to

Dr. Sha¯c Oueini, to whom I owe much of my knowledge in nonlinear control. His support

and guidance were the hidden power behind this work. Thanks are also due to Dr. Sean

Fahey. His experimental experience was of great help in this work. I would like to thank

Dr. Jon Pratt, whose comments on Terfenol-D actuators were very helpful. I would like also

to appreciate the help of Dr. Haider Arafat, who introduced me to the world of nonlinear

dynamics.

I would like to express my deep gratitude and sincere appreciation to my parents. This

work would not have come to existence without their patience, sacri¯ce, and insistence that

I acquire a higher education. I am also deeply indebted to my wife and little daughter for

their patience and support. I am forever grateful to my family for their love, kindness, and

belief in me.

iv



Contents

1 Introduction 1

1.1 Passive Vibration Absorbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Adaptive Vibration Absorbers . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Active Vibration Absorbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Nonlinear Vibration Absorbers . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Autoparametric Vibration Absorbers . . . . . . . . . . . . . . . . . . . . . . 14

2 Analysis 25

2.1 Modal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Perturbation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Equilibrium Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Finite-Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Numerical Results 46

3.1 Finite-Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Modal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Optimal Placement of Actuators 57

4.1 Optimal Placement By Maximizing Control Gain . . . . . . . . . . . . . . . 58

4.1.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Optimal Placement Using a Measure of Modal Controllability . . . . . . . . 63

4.2.1 State-Space Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

v



4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Experimental Setup and Results 71

5.1 Setup and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Controller Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.1 Control of the First Mode . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.2 Control of the Second Mode . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.3 Simultaneous Control of the First Two Modes . . . . . . . . . . . . . 87

6 Adaptive Control 92

6.1 Frequency-Measurement Technique . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Adaptive Control of a Beam with a Terfenol-D Actuator . . . . . . . . . . . 94

6.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Concluding Remarks and Recommendations 104

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.1.1 Analytical Considerations . . . . . . . . . . . . . . . . . . . . . . . . 105

7.1.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.1.3 Optimal Placement of Actuators . . . . . . . . . . . . . . . . . . . . . 106

7.1.4 Experimental Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.1.5 Adaptive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.2 Recommendations for Future Work . . . . . . . . . . . . . . . . . . . . . . . 109

Bibliography 111

Vita 117

vi



List of Figures

2.1 A schematic of a cantilever plate with a PZT actuator. . . . . . . . . . . . . 26

3.1 The ¯rst six mode shapes of the cantilever plate. The 1,2, and 3 directions
refer to the x-,y-, and z- axes, respectively. . . . . . . . . . . . . . . . . . . . 48

3.2 E®ect of varying the feedback gain ®: (a) ®=0.005, (b) ®=0.015, (c) ®=0.06,
(d) ®=0.075, (e) ®=0.085, (f) ®=0.09, (g) ®=0.11, and (h) ®=0.5. . . . . . . 50

3.3 E®ect of shear deformation and rotary inertia on the response of the plate:
(a) this-shell element and (b) thick-shell element. . . . . . . . . . . . . . . . 52

3.4 Plate displacement at the lower right corner using the ¯rst ¯ve modes. . . . 53

3.5 Plate displacement at the lower right corner using (a) the second through ¯fth
modes and (b) the ¯rst mode only. . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Frequency-response curves: (- - -) unstable and (|{) stable response. . . . . 55

3.7 Frequency-response curves for quadratic velocity control: (- - -) unstable and
(|{) stable response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Control gain variation over the domain of the plate for the ¯rst ¯ve modes:
(a) mode 1, (b) mode 2, (c) mode 3, (d) mode 4, and (e) mode 5. . . . . . . 61

4.2 Optimum actuator location on the plate: (a) mode 1, (b) mode 2, (c) mode
3, (d) mode 4, and (e) mode 5. . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Locations of modeling points on the plate for the discrete model. . . . . . . . 68

5.1 The experimental setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Control of the ¯rst mode of the plate. . . . . . . . . . . . . . . . . . . . . . . 76

5.3 The plate response when ® = 0:1 and ° = 1. . . . . . . . . . . . . . . . . . . 76

5.4 E®ect of varying the nonlinear feedback gain ®: (a) ® = 0:01, (b) ® = 0:05,
and (c) ® = 0:12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

vii



5.5 E®ect of varying the nonlinear control gain °: (a) ° = 1:0, (b) ° = 0:5, and
(c) ° = 0:25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.6 E®ect of varying the initial controller displacement: (a) v = 0:5V , (b) v =
1:0V , (c) v = 1:6V , and (d) v = 2:0V . . . . . . . . . . . . . . . . . . . . . . 80

5.7 E®ect of varying the initial controller velocity: (a) _v = 0:5V /sec and (b)
_v = 1:0V /sec. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.8 E®ect of varying the controller damping coe±cient »: (a) » = 0:01, (b) » =
0:05, and (c) » = 0:1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.9 Frequency-response curves: (ooo) controller o® and (+++) controller on. . . 83

5.10 Force-response curves: (ooo) controller o® and (+++) controller on. . . . . . 83

5.11 Plate response when ® = 0:075, ° = 1:0, and F = 11:9 mg: (+++) experi-
mental results and (ooo) numerical results. . . . . . . . . . . . . . . . . . . . 84

5.12 Control of the second mode of the plate: (a) plate response and (b) controller
response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.13 E®ect of varying the feedback gain ®: (a) ® = 0:04, (b) ® = 0:07, (c) ® = 0:1,
(d) ® = 0:11, (e) ® = 0:12, and (f) ® = 0:15. . . . . . . . . . . . . . . . . . . 85

5.14 E®ect of varying the initial displacement of the controller: (a) v = 0:03V , (b)
v = 3:0V , and (c) v = 5:0 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.15 Frequency-response curves for the second mode: (ooo) controller o® and
(+++) controller on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.16 Force-response curves for the second mode: (ooo) controller o® and (+++)
controller on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.17 Simultaneous control of the ¯rst two modes of the plate: (a) plate response
and (b) response of the two controllers. . . . . . . . . . . . . . . . . . . . . . 89

5.18 E®ect of varying the feedback gain ®: (a) ® = 0:01, (b) ® = 0:02, and (c)
® = 0:05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.19 FFT results for the plate response: (a) no control and (b) with control. . . . 91

5.20 Power spectrum for the plate response with a noise signal: (a) no control and
(b) with control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.1 Characteristics of a NAND Schmitt-trigger gate. . . . . . . . . . . . . . . . . 95

6.2 A typical assembly of a Terfenol-D actuator. . . . . . . . . . . . . . . . . . . 96

6.3 Displacement-current relationship for the used Terfenol-D actuator. . . . . . 97

viii



6.4 Experimental setup and control technique. . . . . . . . . . . . . . . . . . . . 99

6.5 Power spectrum of the output of the beam when excited at f = 13:31 Hz. . . 100

6.6 Control of the ¯rst mode of the beam when fn = 11:875 Hz: (a) acceleration
at the tip of the beam and (b) controller response. . . . . . . . . . . . . . . . 101

6.7 FFT of the beam acceleration at the tip: (a) with control and (b) without
control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.8 Nonadaptive control of the ¯rst mode of the beam: (a) acceleration at the tip
of the beam and (b) controller response. . . . . . . . . . . . . . . . . . . . . 103

ix



List of Tables

4.1 Locations of maximum controllability . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Locations of maximum controllability . . . . . . . . . . . . . . . . . . . . . . 69

x



Chapter 1

Introduction

The dynamic response of mechanical and civil structures subject to high-amplitude motions is

often dangerous and undesirable. The most detrimental form of these motions are oscillatory;

thereby causing a vibrational motion. All mechanical systems are subjected to various

conditions that may result in vibrational motion. These vibrations often lead to material

fatigue, structural damage and failure, deterioration of system performance, and increased

noise level. These e®ects are usually prominent around the natural frequencies of the system.

Such vibrations cannot be tolerated and, therefore, developing a strategy for reducing these

vibrations has been a major focus of research.

There are two fundamentally di®erent primary methods of vibration protection. These are

vibration isolation and vibration absorption. Other methods include modifying the vibrating

system itself to accommodate for the new disturbance environment. However, this method is

undesirable since internal system modi¯cations are usually di±cult to carry out. In vibration

isolation, the original system is divided into two parts, which are connected by means of

additional mechanical devices, such as springs and dampers. These devices are referred to

1
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as vibration isolators. Common examples include rubber mounts for machinery and shock

absorbers for automobiles. Isolators are positioned between the source of disturbance and the

object to be protected or, equivalently, between the object and its supporting base. Isolators

reduce the magnitude of force transmitted from the vibrating object to its foundation or,

equivalently, reduce the transmitted motion from the base to the object. Isolators ¯lter

unwanted vibrations above a particular frequency by properly choosing the isolator sti®ness.

On the other hand, another system is attached to the original system in vibration absorption.

Thus, another degree of freedom is added to the system. The parameters of the attached

system are chosen so as to cause a decrease in the vibration level of the original system.

These attached systems are referred to as vibration absorbers. Vibration absorbers reduce

vibrations of the original system by channeling energy to the absorber itself. In classical

vibration absorbers, this channeled energy is manifested as a de°ection in the absorber's

mass. While damping is essential for an isolator to reduce vibration levels at resonance,

it defeats the purpose of an absorber. This is so because damping reduces the amount of

energy transferred to the absorber.

1.1 Passive Vibration Absorbers

The concept of a vibration absorber was ¯rst outlined by Watts (1883), when addressing

a method to reduce the rolling of ships. However, the ¯rst practical design of a vibration

absorber was proposed by Frahm (1909). He designed a °uid tank system to reduce the

rolling of ships. In his design, both the primary system and the absorber had no damping.
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The absorber was intended to be used at the fundamental resonant frequency of the main

system. In this case, the absorber consisted of simply an auxiliary mass-spring system.

Mathematically, it could be easily shown that when the absorber's natural frequency is tuned

to the frequency of the main system, the resulting amplitude of vibration of the main system

is reduced to zero. However, this design is only e®ective at or near the resonant frequency

of the primary system. Attachment of the absorber introduces two resonant frequencies for

the resulting two-degree-of-freedom system. These two frequencies are located on either side

of the original resonant frequency. In reality, it can never be guaranteed that the frequency

of operation will stay constant at the tuning frequency. For example, variation in the speed

of rotating machinery is unavoidable. In addition, to reach the speed of operation, as well

as to come to a complete stop, the system has to pass through the ¯rst natural frequency of

the combined system. This will induce large transient vibration levels.

To remedy this problem, Ormondroyd and Den Hartog (1928) considered the case of a

damped vibration absorber attached to the primary system. This resulted in a system

e®ective over an extended frequency range by reducing the response at the two resonant

frequencies of the combined system. However, the response at the primary system's natural

frequency can no longer be reduced to zero. Hence, a trade o® exists between the primary

system's response and operating in a broadband. Later, Den Hartog (1956) and Snowdon

(1968) described an optimization method for broadband applications to ¯nd the optimum

tuning frequency and damping ratio. This method is known as the equal-peak method,

which states that in the set frequency band, the two maximum values of amplitude on either
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side of the primary system's natural frequency are equal. Puksand (1975) applied the same

criterion to the more general case of a varying force amplitude, such as a rotating unbalance.

Soom and Lee (1983) examined other optimization criteria (objective functions) other than

minimizing the maximum amplitude. Some of the examined criteria included minimizing the

part of the frequency response where there is ampli¯cation of motion, minimizing the maxi-

mum velocity, and minimizing the mean-squared displacement response to noise excitation.

A better broadband behavior was obtained, but at some cost in the allowable maximum

amplitude. Semercigil, Lammers, and Ying (1992) suggested introducing an impact damper

into the absorber to control the excessive vibrations of the primary system. Energy trans-

ferred to the absorber from the primary system is dissipated through impact between the

mass of the absorber (secondary mass) and the impact damper. With this modi¯cation

of the conventional tuned vibration absorber, signi¯cant attenuations were obtained in the

displacement of the primary structure over a wide frequency range. However, there are two

main shortcomings of this system. First, it is not e®ective when the primary system has sig-

ni¯cant inherent damping. Second, collisions between the impact damper and its boundaries

produce large local stresses and, hence, have a catastrophic e®ect on the absorber itself.

The above mentioned vibration absorbers are passive devices. Vibrational energy is ab-

sorbed without the need for external energy. However, passive absorbers are e®ective only

when the tuned frequency and damping are suitable for the particular operating conditions.

Such conditions are often variables of time and, hence, passive vibration absorbers are often

mistuned. This causes such absorbers to lose e®ectiveness and even amplify the vibration
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level instead of attenuating it. Alternatives to passive vibration control include adaptive

(semi-active) and active control strategies.

1.2 Adaptive Vibration Absorbers

Adaptive vibration control involves incorporating a material with known controllable be-

havior into the system, and thus "tune" the response of the system to achieve a lower level

of vibration. Thus, it becomes possible for the system (or structure) to adapt to a vari-

able environment in the interest of continuously optimizing its performance. If, in addition,

the system is modi¯ed to include sensory and feedback control capabilities, then the result

is an intelligent material system. In general terms, such systems or structures are those

that can sense external stimuli and react in an appropriate manner so as to optimally meet

pre-speci¯ed performance criteria.

Adaptive vibration control was thought of as a less expensive alternative to fully active vibra-

tion control. Both energy and cost requirements are generally less. A recent review of adap-

tive tuned vibration absorbers was provided by Von Flotow, Beard, and Bailey (1994) where

di®erent issues related to the physical implementation of these absorbers were discussed.

Tuning a passive vibration absorber to reduce vibration disturbances requires matching the

absorber's natural frequency to that of the disturbance. Hollkamp and Starchville (1994)

suggested a global search tuning algorithm. This method e®ectively scans the absorber's

range of frequencies and automatically tunes the absorber's frequency to that which pro-

duces maximum reduction in the main system vibration level. However, this method is
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only valid for an invariant frequency of excitation. Francheck, Ryan, and Bernhard (1995)

proposed and successfully implemented an adaptive vibration absorber based on a feedback

tuning algorithm and a variable sti®ness helical spring. The tuning algorithm is robust with

respect to variation in the absorber parameters and the excitation frequency. The goal of

the tuning algorithm is to minimize a DC signal, which is proportional to the main system's

response, by changing the absorber's sti®ness. Using a DC motor to rotate the helical spring,

the e®ective number of coils can be changed and, hence, the absorber's sti®ness is changed.

A shortcoming of this approach is that the range of excitation frequencies must be known

a priori in order to design the variable-sti®ness spring. A maximum vibration attenuation

of 24 dB was obtained in their experimental veri¯cation. Other variable-sti®ness-spring de-

signs are also available in the literature. Examples include an adjustable dual-leaf spring

(Mianzo, 1992), a variable fulcrum positioning mechanism (Margolis and Baker, 1992), and

a magnetic-¯eld-based sti®ness (Waterman, 1988).

Today, the biggest challenge to the use of this class of adaptive vibration absorbers is de-

signing a practical and rugged adaptive absorber. Generally, several constraints, such as

weight, size, and cost, complicate the design of such absorbers and make them application

dependent. This may be the main reason that adaptive absorbers are not as widely used as

their passive and active counterparts. Furthermore, as pointed out by Von Flotow, Beard,

and Bailey (1994), the tuning range of the resonant frequency as well as the speed of tuning

are limited by the too many involved electrical and mechanical components.

Another class of adaptive vibration absorbers includes the use of piezoelectric shunted cir-
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cuits. This provides a simpler, less expensive, and more practical approach than the mod-

i¯ed passive absorbers discussed above. Numerous researchers suggested the use of such

absorbers, such as Hagood and Crawley (1989), Hagood and Von Flotow (1991), Browning

and Wynn (1993), Hollkamp (1994), Agnes and Inman (1996), Davis, Lesieutre, and Dosch

(1997), and Lesieutre (1998). The design of such absorbers consists of a pair of piezoelectric

tiles attached to the system to be controlled and shunted by an inductor-resistor circuit. The

resulting electrical resonance can be tuned to match the primary system's frequency, which

results in vibration suppression. By this, the piezoelectric shunted circuit acts very similarly

to the traditional mechanical mass-spring-damper vibration absorber. A simple control law

can be used to tune the absorber, and hence make it adaptive by increasing or decreasing

the electrical resonance.

1.3 Active Vibration Absorbers

A fully active control strategy involves using force actuators requiring external energy. The

actuation force is used to improve the absorption level, and it is traditionally applied between

the absorber's mass and the primary system parallel to the elastic (resilient) element that

supports the absorber mass. This active absorber is then controlled with di®erent algorithms,

making it more sensitive to disturbances in the primary system. With the advance in modern

control techniques, active vibration control is becoming more widely used than either the

passive or the adaptive absorbers. In its simplest form, active control consists of sensors,

electronic circuits, and actuators. The sensor feeds the electronic circuit (analog or digital)
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with a signal (feedback signal) which is proportional to the vibration level of the primary

structure. The output of the electronic circuit is the actuation force law, which is fed into the

actuators. The actuators, in turn, apply the opposing force on the primary structure. This

control strategy allows for both better absorption characteristics and broadband applications.

Smart materials that undergo volumetric changes under certain external stimuli provide

an excellent choice for sensors/actuators in active control strategies. The resulting vibra-

tion absorber can be of light weight, very compact, and reliable. Examples of such smart

materials include piezoelectric (PZT) transducers, piezoelectric stacks, electrostrictive and

magnetostrictive materials, and shape memory alloys. Other smart materials, such as elec-

trorheologicl and magnetorheological °uids, which do not undergo volumetric changes, are

mainly used in vibration isolation and adaptive vibration control.

There have been numerous studies on active vibration control. Noticeable contributions in-

clude the studies of Huang and Lian (1994), where an active dynamic absorber was designed

using a DC servomotor as the actuator. A classical control strategy (PID) was employed

to control the vibrations of a two-degree-of-freedom spring-lumped mass system. Reduction

of the amplitude of vibration to one-¯fth its original value was obtained. The results were

shown to depend on the power of the used DC motor and the resolution of the A/D and D/A

cards, which were used for I/O data processing. In addition, it was shown that the spring

had a nonlinear behavior during compression deformation. Performance of this linear control

strategy would not be optimal in this situation. Burdisso and Heilmann (1998) used two

absorber's reaction masses attached to the primary structure through elastic elements. The
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active force was applied between these two masses, as opposed to the traditional con¯gura-

tion, where the force is applied between the absorber's mass and the primary structure. The

actuating force was magnetic with the magnet ¯xed to one mass and the coil to the other

mass. This force was controlled by a current passing through the coil. While this design

resulted in the same control e®ort as that of the traditional passive absorber, it required

much less power.

Recently, a novel approach called the delayed resonator was presented by Olgac and Holm-

Hansen (1994). This concept combines a classical passive vibration absorber with a simple

local linear feedback. The objective of this feedback is to convert the dissipative passive

absorber into a conservative one with a certain resonance frequency. This results in placing

two dominant poles of the characteristic equation on the imaginary axis of the complex

root-locus plot. The feedback signal is proportional to the absorber's position, velocity, or

acceleration, and utilizes a controlled time delay. The control strategy is to choose the proper

feedback gain and time delay. By this, the absorber behaves like a resonator. In this case, the

response of the primary structure can be brought to rest. This is a direct result of the fact

that the absorber displacement is 180 degrees out-of-phase with the input disturbance. This

active absorber does not need information from the primary structure. Hence, the absorber

is autonomous and acts as a stand alone unit. Also, this absorber is tunable in real time,

which results in e®ective absorption of disturbances with varying frequencies. Additionally,

this absorber can be tuned to suppress multiple frequencies of vibrations. This is done by

choosing the appropriate gain and time-delay parameters needed to set the corresponding
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pairs of poles on the imaginary axis. Thus, the single-mass delayed resonator can exhibit

more than one natural frequency simultaneously. Because of the time delay, the characteristic

equation of the absorber is transcendental, and thus has in¯nitely many roots. This fact

causes a major concern regarding the stability of the combined system. This is so because the

control parameters (gain and time delay) are chosen with no regard for the rest of the roots.

Hence, a given passive absorber imposes some limitations on the delayed resonator. To ensure

stability, Olgac and Holm-Hansen (1994) suggested that the operating absorber frequency

must be greater than a critical frequency. Thus, there is a lower bound frequency limitation

to this absorber. Olgac and Jalili (1998) implemented the delayed resonator on a °exible

beam. Modal analysis was used to model the system together with unconventional boundary

conditions. Qualitative agreement between the experimental and analytical ¯ndings was

shown regarding the stability aspect of the combined system. A piezoelectric actuator was

used to force the resonator at the designated frequency. Hosek, Olgac, and Elmali (1999)

implemented the delayed resonator in a centrifugal vibration absorber to eliminate torsional

oscillations in rotating mechanical structures.

Filipovic and Schroder (1999) used the same idea of the delayed resonator to design a linear

active resonator. However, instead of the time delay, a linear compensator was used to

convert the dissipative absorber into a resonator. Again, there can be as many roots on the

imaginary axis as there are frequencies to be absorbed and, hence, the absorber can suppress

multiple disturbance frequencies simultaneously. Several compensators were proposed, such

as a proportional compensator with a single time constant, a proportional-integrative (PI),
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and a lead/lag compensator. Stability margins of the combined system were found by solving

for the roots of the characteristic equation.

Fanson and Caughey (1990) were the ¯rst to present the positive position feedback tech-

nique. This technique makes use of a displacement feedback signal to suppress vibrations.

Hence, the equation of motion of the main system is linearly coupled with the compen-

sator's equation of motion. The compensator is composed of a second-order ¯lter with a

high damping ratio. The compensator's position measurement as well as the structure's dis-

placement measurement are both positively fed to the ¯lter and the structure, respectively.

This technique has the advantage of being simple and straightforward. Also, stability of the

system, although not unconditional, can be achieved in a way which is independent of the

dynamical characteristics of the structure. The use of piezoelectric materials as sensors and

actuators adds to the compactness and simplicity of this technique. However, this method

is not e±cient in dense modal environments.

1.4 Nonlinear Vibration Absorbers

All of the above research was based on linear control of linear systems. In reality, modeling

of the dynamic behavior of vibrating systems must be generalized to include nonlinear ef-

fects. Any actual vibration absorber has restraints limiting the maximum allowed geometric

boundaries of the linear region. Linear theory can be applied only for the cases in which the

level of excitation results in de°ections within the linear region. In contrast to the linear

theory, the nonlinear behavior of a vibrating system depends on initial conditions. This
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means that the uniqueness of the steady-state response is no longer ensured. A linearly de-

signed vibration absorber may not function properly in the nonlinear region. To avoid this

problem, one increases the dissipative forces (damping) because damping is proven to reduce

the nonlinear e®ects. However, this causes the performance of the absorber to deteriorate

as was shown earlier. With the advances in technology and scienti¯c research, the need to

protect equipment used in aircraft, spacecraft, vessels, and other moving objects necessitates

the inclusion of nonlinear e®ects, or at least ¯nding a way to deal with them. To summarize,

nonlinear e®ects exist in almost all vibration suppression systems and cannot be ignored,

especially if the application of such systems limits the linear region. In addition, as will

be shown later, the use of nonlinear control theory is proven to be superior over its linear

counterpart. The recent application of the saturation phenomenon, which is encountered

in nonlinearly coupled systems with a two-to-one internal resonance, proved that vibrations

can be suppressed at a wide range of frequencies.

Nonlinear vibration absorbers can be divided into two main categories: absorbers with non-

linear elastic elements (springs) and nonlinear autoparametric absorbers. In this section, we

discuss the ¯rst type; and in the next section, we discuss autoparametric absorbers.

The e®ectiveness of the nonlinear absorber was ¯rst outlined by Roberson (1952) who in-

troduced the notion of a suppression bandwidth. This is basically the frequency range over

which the ratio of the displacement amplitude to the amplitude of the forcing function is less

than unity. In his analysis, he considered a linear plus cubic spring with no damping. He

concluded that a softening spring would widen the suppression bandwidth. Arnold (1955)
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con¯rmed these results using a Ritz method instead of the iteration method used by Rober-

son. Hunt and Nissen (1982) suggested using a nonlinear softening spring of the Belleville

type in a damped passive absorber. By this, it was shown that the suppression band can be

widened; that is, the absorber could be used as a broadband one. This was mainly the case

for low absorber-damping values. Rice and McCraith (1987) used a bow-type or shallow arch

spring as the nonlinear coupling element. This spring was modeled as a Du±ng-type spring

with cubic nonlinearities and could be implemented as either a hardening or a softening

type. They showed a relationship between the tuning frequency and a speci¯c critical tun-

ing frequency above which a hardening system was preferable and below which a softening

type was advantageous. On the other hand, near this critical tuning frequency, the linear

counterpart was more advantageous.

Harmonic instability would result if the system incorporated strong nonlinearities; quasi-

periodic (multi-harmonic) and chaotic responses would result. Asymmetry in the spring was

shown to have bene¯cial e®ects on the suppression bandwidth and stability of the system.

Shaw, Shaw, and Haddow (1989) used perturbation methods (the method of multiple scales)

to analyze the e®ect of nonlinearities in a nonlinear absorber with a Du±ng-type spring.

It was shown that a combination resonance (excitation frequency near the mean of the two

linearized natural frequencies of the system) could occur. This results in large-amplitude

quasi-periodic vibrations due to a Hopf bifurcation and, hence, eliminates the e®ectiveness

of the absorber. Furthermore, the quasi-periodic solution coexists with the desired low-

amplitude periodic solution. It was also shown that low damping, which is desirable in linear
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designs, promotes the onset of instability, leading to a modulated quasi-periodic response.

Gonsalves, Neilson, and Barr (1993) presented a design of a nonlinear absorber system

in which the nonlinearity is a discontinuous sti®ness provided by a clearance between the

absorber mass and a linear spring. It was shown that this design facilitates a reduction in the

amplitude of the second resonance peak. It also reduces the response of the auxiliary mass.

However, the e®ectiveness of this absorber deteriorates as the level of damping increases.

Also, quasi-periodic and chaotic responses of the primary mass occur just beyond the design

frequency.

Lee and Shaw (1997) studied the dynamic response of a pair of identical centrifugal absorbers

subject to external torques of multiple harmonics. The goal of the study was to develop an

analytical formulation to predict the conditions at which the instability of the unison motion

occurs. Using the method of multiple scales, they showed that this instability has a bene¯cial

e®ect on the overall torsional vibration of the system. The pair of absorbers is thus capable of

simultaneously canceling two harmonics when the damping level is small. Since the absorbers

were unlocked in unison, their amplitudes and phases could be adjusted to cancel both the

external excitation (primary) resonance of order n and the induced superharmonic resonance

of order 2n.

1.5 Autoparametric Vibration Absorbers

Parametric vibration is induced by a varying system parameter (sti®ness). On the other

hand, autoparametric vibration (self-parametric) is characterized by an internal coupling



Osama N. Ashour Chapter 1. Introduction 15

involving at least two modes. From a mathematical point, this coupling is e®ected by

nonlinear terms in the equations of motion of the combined system . Physically speaking, an

autoparametric system consists of two parts: a main system and a secondary system. The

main system is externally excited, while the secondary system is parametrically excited as a

result of the variation of its sti®ness with the response of the main system. In other words, a

two-mode interaction occurs when the main system exhibits a forced response which, in turn,

drives the secondary system into parametric resonance. In this case, energy is transferred

from one part of the combined system to the other. This energy transfer depends on the

type of nonlinearities and the damping forces. It can be partial or complete, depending on

the system parameters. In case of quadratic nonlinearities, the energy transfer is complete

when the ratio of the main system's natural frequency to that of the secondary system is

two to one. This case is referred to as a two-to-one internal resonance, which has been the

focus of study for many researchers. For a more in-depth discussion of internal resonances

in nonlinear systems, the reader is referred to Nayfeh and Mook (1979) and Nayfeh (2000).

In case of complete energy transfer from the main system to the secondary one, the main

system's response can be suppressed. When the main system is excited at a frequency near

its natural frequency (primary resonance), the main system's response will have the same

exciting frequency. The response amplitude will linearly increase with the amplitude of

excitation. However, after a critical value, the response saturates at a speci¯c value and all

additional energy from the excitor is channeled to the secondary system. This phenomenon

is referred to as the saturation phenomenon.
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The saturation phenomenon was ¯rst discovered by Nayfeh, Mook, and Marshall (1973)

while analyzing the coupling between the roll and pitch motions of ships. The saturation

phenomenon was later experimentally demonstrated by Haddow, Barr, and Mook (1984).

They investigated modal interactions in an L-shaped structure whose mathematical model

included quadratic terms. By carefully tuning the natural frequencies, they were able to sup-

press the motion in the directly excited mode. Based on this, they suggested exploiting the

saturation phenomenon as a vibration absorber. Oh, Nayfeh, and Mook (2000) studied ex-

perimentally and theoretically the loss of dynamic stability and the resulting large-amplitude

roll of ships due to internal coupling. The excitation frequency was chosen to be twice the

natural frequency in roll in the presence and absence of a two-to-one internal resonance be-

tween the pitch and roll modes. Force-response curves were obtained and the development

of large-amplitude rolling motion was demonstrated. However, the heave and pitch waves

re°ecting from the sidewalls of the tank acted to limit the roll motion. Consequently, the

saturation phenomenon was not experimentally observed.

Nayfeh and Zavodney (1988) further examined a physical structure similar to that of Haddow,

Barr, and Mook (1984) consisting of two light-weight beams and two concentrated masses.

The linear natural frequencies of the system were tuned so that they were approximately

in the ratio of two to one and the excitation frequency was slowly varied around the lower

natural frequency. They observed amplitude- and phase-modulated responses for a range

of the excitation frequency. They identi¯ed regions of aperiodic motions (indicating the

occurrence of a Hopf bifurcation), in qualitative agreement with the results of a second-order
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perturbation theory. Balachandran and Nayfeh (1991) extended this work and experimented

with several °exible metallic and composite structures subjected to a range of resonant

excitations. Again, the ratio of the system's natural frequencies was approximately two to

one. Experimental observations of transitions from periodic to aperiodic and chaotic motions

were observed even at low excitation levels.

While unaware of the saturation phenomenon, Haxton and Barr (1972) were among the

¯rst to investigate autoparametric vibration absorbers. Their model of an autoparametric

absorber was based on a °exible spring-steel beam with a tip mass. Beam geometrical

factors were shown to a®ect the absorber's behavior signi¯cantly. By adjusting the mass or

the length so as to make the ratio of the natural frequency of the main system to that of the

beam two to one, they were able to suppress vibrations of the main system. In their work, this

type of absorber did not outperform the classical linear tuned vibration absorber. This was

especially the case when large forcing levels were implemented. Ibrahim and Roberts (1976)

studied the response of a two-degree-of-freedom system with autoparametric coupling to a

broadband random excitation. They showed that close to the principal internal resonance

(two-to-one), the secondary system underwent large random motions. This was accompanied

by a suppression e®ect on the random motion of the main system. Also, it was shown that,

under conditions of internal resonance, the random motions of both of the secondary and

main systems were accompanied by steady harmonic responses.

Hatwal, Mallik, and Ghosh (1982) replaced the beam of Haxton and Barr by a rigid pendulum

attached by a hinge joint to a block mass. In this case, the secondary system restoring force



Osama N. Ashour Chapter 1. Introduction 18

was either due to gravity or a torsional spring. Both cubic and quadratic nonlinearities

were present in their model. The method of harmonic balance was used to show suppression

of vibrations of the main system for both con¯gurations. However, in a work published

later (1983), they showed some interesting time responses for the pendulum with a chaotic

behavior in both numerical and experimental results. Bajaj, Chang, and Johnson (1994) and

Banerjee, Bajaj, and Davies (1993) used averaging methods to study the gravity-controlled

pendulum of Hatwal, Mallik, and Ghosh (1982). Again, chaotic responses were reported in

the response of the pendulum. In addition, the inclusion of higher-order nonlinearities in the

model was shown to eliminate the saturation e®ect.

Cartmell and Roberts (1988) studied autoparametric interactions in a pair of harmonically

excited coupled beams with three and four mode resonances. In this case, two simultaneous

combination resonances in the secondary system were activated by the response of the pri-

mary system. They also showed that a third combination resonance could be inferred when

the other two were close to each other. Ashworth and Barr (1987) considered four-mode

interactions in a model for an aircraft T-tail structure with quadratic inertial nonlinearities.

The model was tested under direct and parametric harmonic excitations. Nayfeh, Nayfeh,

and Mook (1994) theoretically and experimentally examined a T-shaped structure consisting

of two light-weight beams and three concentrated masses at the upper and lower free ends

and at the point were the beams were joined. The lengths and weights were chosen so that

the third natural frequency was approximately equal to the sum of the two lower natural

frequencies. Periodic, two-period quasiperiodic, and phase-locked (synchronized) motions
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were observed. In addition, the saturation phenomenon was experimentally demonstrated

in the case of combination internal resonance.

Cartmell and Lawson (1994) gave speci¯cs of a preliminary design of an autoparametric

vibration absorber with a bolt-on inverted pendulum-type beam. The design was semi-active

in the sense that the tuning frequency was varied according to the main system's response,

which was measured by an accelerometer. As in the pendulum of Hatwal, Mallik, and Ghosh

(1982), the directly excited primary mode drove the pendulum into principal parametric

resonance. The method of multiple scales was used to analytically ¯nd an approximate

solution to the equations of motion. Experimentally, two helical springs were used to restrain

the pendulum-type beam to its vertical equilibrium position. The control strategy consisted

of adjusting the position of the lumped mass according to a computer signal. The detuning

was either continued or reversed according to the primary system response. The optimal

point would be achieved when the response amplitude was a minimum. This was shown

to broaden the suppression region. The main disadvantage of this design is the high cost

associated with the needed accuracy and delicacy to adjust the lumped mass position by the

drive motor.

Golnaraghi (1991) proposed using a sliding mass-spring-dashpot mechanism placed at the

free end of a cantilever beam. This resulted in nonlinear coupling through Coriolis, inertia,

and centripetal accelerations between the slider and the beam. Numerical simulations were

conducted to control the transient vibrations of the free response of the beam. For small

values of controller damping, chaotic transient oscillations were observed for large initial
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disturbances of the beam. Duquette, Tuer, and Golnaraghi (1993) experimentally used a DC

motor, a secondary beam, and a tip mass to control the transient vibrations of a cantilever

beam.

Cuvlaci and Ertas (1996) studied the dynamic response of a beam-tip mass-pendulum sys-

tem subject to harmonic excitations. The nonlinear equations of motion were developed and

then reduced, using a Galerkin expansion, to two coupled equations for the ¯rst two modes.

Nonlinear terms appear due to the curvature of the beam and the coupling between the

beam and the pendulum. Both numerical and experimental results showed signi¯cant re-

duction in the main system (beam) response at the primary resonance condition (two-to-one

internal resonance) since complete energy transfer between the two modes occurred at that

frequency. Also, their results revealed that energy exchange from the beam to the pendulum

was signi¯cantly increased, as well as a larger suppression region was obtained, when the

forcing level was increased. However, it was found that for smaller pendulum masses, the

response experiences quasi-periodic and chaotic motions.

Yabuno, Endo, and Aoshima (1999) proposed a stabilization method for subharmonic reso-

nance of order one-third using an autoparametric absorber. The subharmonic resonance was

created by a nonlinear (cubic) spring sti®ness and harmonic excitation. The controller was

a damped pendulum system whose natural frequency was about one-half that of the main

system. This induced the two-to-one internal resonance and the subharmonic resonance of

order one-third was suppressed. Furthermore, it was theoretically proven that, in the pres-

ence of the absorber, there was no stable nontrivial steady-state responses with respect to
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the one-third subharmonic component. The only stable solution was the trivial one. Their

experimental results veri¯ed the proposed method.

All of the above nonlinear autoparametric vibration absorbers su®er from two main problems.

First, there is an added complexity and design di±culty in coupling two mechanical systems

together. Second, it is almost impossible to maintain the two-to-one internal-resonance con-

dition by such controllers. Also, the used mechanical controller (pendulum, beam) actually

induces higher-order nonlinearities and not just quadratic. When either the forcing ampli-

tude is large or the controller's frequency is far away from the internal-resonance condition,

these other nonlinear terms counteract the suppression e±ciency. As a result, undesired

high-amplitude quasi-periodic and chaotic motions evolve.

Oueini and Golnaraghi (1996) proposed using a linear second-order analog electronic-circuit

controller coupled to the vibrating structure via quadratic nonlinear terms. These nonlinear

terms acted as a bridge for energy exchange between the structure and the controller. This

strategy was implemented to suppress the transient free vibrations of a DC motor equipped

with position feedback. Subsequently, Khajepour and Golnaraghi (1997) implemented this

technique on a cantilever beam actuated by PZT patches. However, a digital electronic

circuit was used via a digital signal processing (DSP) board and a PC. The method of

normal forms was used to derive the nonlinear control law to maximize energy transfer

between the plant and the controller. Both free- and forced-vibration cases were considered.

Pai et al. (1998) used the saturation phenomenon and internal-resonance conditions to

control the transient and steady-state vibrations of a cantilever beam using PZT patches as
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actuators and sensors. A digital control system was used as the controller. Both numerical

and experimental results showed time histories of the plant's response with and without

control. No frequency- or force-response curves were shown to illustrate the e®ectiveness

and robustness of the technique. In addition, their numerical results were valid only around

resonance, and no data was given regarding the system behavior away from resonance. Real-

time system vibrations include such detuned cases and, therefore, any control method must

account for them. Furthermore, the approach did not allow for automatic tuning of the

absorber frequency.

Oueini, Nayfeh, and Pratt (1998) and Pratt, Oueini, and Nayfeh (1999) developed an active

nonlinear vibration absorber, which exploited the saturation phenomenon. A linear second-

order analog electronic circuit was used as a controller, which was coupled to the plant

through a sensor and an actuator. Both the feedback and control signals were quadratic. As

actuators, they used PZT patches and Terfenol-D. Terfenol-D is a magnetostrictive material

that exhibits a nonlinear constitutive relation between the magnetic ¯eld and the strain.

This nonlinear relationship was taken to be quadratic to the ¯rst approximation. In this

case, saturation could be achieved by merely tuning the controller's frequency to one-half

that of the plant. Their experiments demonstrated the e®ectiveness of this technique in

controlling the ¯rst and second modes of vibration of a cantilever beam. However, the

Terfenol-D experiments were not as e®ective as the PZT experiments. This was attributed

to the detuning between the controller's frequency and that of the plant. Oueini and Nayfeh

(2000) used a digital signal processing (DSP) board instead of the analog circuit. Hence, the
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controller's system parameters, such as the natural frequency, damping, and feedback gains,

could be adjusted digitally. Furthermore, automatic tracking of the plant's frequency was

made possible.

In this work, we extend the method of Oueini and Nayfeh (2000) and study the vibrations

of two-dimensional systems. The saturation phenomenon has thus far been used in one-

dimensional systems (beams). In this work, we intend to investigate and demonstrate the

e®ectiveness of using the saturation phenomenon to control the vibrations of two-dimensional

systems, such as plates. In addition, the saturation phenomenon is implemented to control

both bending and torsional vibration modes. As a case study, we use a cantilever rectangular

plate. Both a ¯nite-element method and a discretization technique based on modal analysis

are used to model the problem. In the ¯nite-element method, a nonlinear model incorporat-

ing nonlinear geometrical factors is used. Hence, nonlinear e®ects in the primary system are

included in the analysis. The ¯nite-element package (ABAQUS) is also modi¯ed to allow for

feedback control using internal resonance and the saturation phenomenon. Thus, the con-

trol method can be numerically simulated even if the eigenfunctions of the system cannot be

obtained analytically. Experimental studies are also conducted on a rectangular cantilever

plate. Strain gages are used as sensors, whereas PZT patches are used as actuators. PZT

patches have the advantage of being light and small in volume. Hence, they are perfect for

aerospace and other structures where added volume and mass constitute a constraint on

the application. The experimental part also aims to develop an adaptive control strategy

using an e®ective frequency-tuning mechanism, such that the two-to-one internal-resonance
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condition is maintained. In nonlinear problems, the frequency of the system changes with

the amplitude. So, a continuous tuning mechanism is needed to keep the controller's fre-

quency tuned as the amplitude of the vibrating structure changes. This will demonstrate

the robustness of the control method. Furthermore, we study the problem of optimizing the

location of the actuators on the plant to maximize its controllability. In this regard, two

methods are introduced. The ¯rst method is based on maximizing the magnitude of the

controller gain factor, which is obtained from analytical considerations. The second method

is based on a global measure of controllability for linear systems.

In Chapter 2, we start by modeling the plate vibrations with the PZT actuator. The gov-

erning equations of motion are derived. Modal analysis is then used to solve for the plate's

response using its natural modes. A ¯nite-element method utilizing the software ABAQUS

is used to calculate the natural modes as well as to solve for the plate's response. A brief

description of the software is also presented. In Chapter 3, we show the numerical results

and simulations. In Chapter 4, we discuss the problem of optimizing the actuators locations

on the plant. The experimental setup and results are discussed in Chapter 5, while a discus-

sion of the frequency-measurement technique and its applications is presented in Chapter 6.

Finally, discussion of the results as well as the conclusions and recommendations for future

work are presented in Chapter 7.



Chapter 2

Analysis

In this chapter, we analyze the problem of a vibrating cantilever plate with a piezoelectric

(PZT) actuator bonded to its surface. We ¯rst derive the equations of motion with the ap-

propriate boundary conditions, and then use modal analysis to solve for the plate's response

represented by the lateral displacement w.

We consider a thin plate with length a, width b, and thickness h. The plate is assumed to

have a uniform mass density ½ per unit area, elastic modulus E, Poisson's ratio º, and a

viscous damping coe±cient C per unit area. The plate is harmonically excited by a shaker

with an amplitude F . The edge x = 0 is ¯xed as shown in Fig. 1. The PZT actuators are

bonded to the top and bottom surfaces of the plate and extend from x = x1 to x = x2 and

from y = y1 to y = y2, as shown in Fig. 1. The PZT actuators have a thickness ta, modulus

of elasticity Epz, Poisson's ratio ºpz, and a piezoelectric constant d31.

For a piezoelectric element, when a voltage Va is applied along its polarization direction z,

strains are induced in both the x¡ and y¡ directions. These strains can cause extension or

25
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Figure 2.1: A schematic of a cantilever plate with a PZT actuator.

contraction, depending on the sign of the applied voltage. Both of the induced strains in the

x¡ and y¡ directions are equal, and for an unconstrained (free) piezoelectric element, their

magnitude is given by

²pz =
d31
ta
Va (2.1)

Thus, when a PZT pair is bonded on the top and bottom surfaces of the plate and the

corresponding signs of the applied voltages are opposite, the PZT patches will strain in

opposite directions. This causes a net bending moment on the plate. A case of pure bending

will arise if the PZT pair is identical and bonded in symmetry with respect to the plate's

neutral axis. Hence, no net extension or contraction of the plate exists.

Crawley and de Luis (1987) studied the e®ect of the bonding layer on the transmitted strains

and stresses, which cause the resulting bending moments. They concluded that, as the shear
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modulus of the bonding layer increases or the thickness of this layer decreases, the shear is

e®ectively transferred over a small area close to the end of the PZT patch. For the case of

perfect bonding, such as the case considered here, the strain is entirely transferred between

the piezoelectric and the plate over an in¯nitesimal area near the ends of the PZT actuator.

Hence, the shear force is transferred at a concentrated point at the edge of the PZT. The

resulting bending moments are uniformly distributed along the boundary of the PZT. Thus,

the PZT pair can be replaced by uniformly distributed edge moments applied to the plate

at the interface between the PZT and the plate surface.

To derive the equation of motion of the plate, we use the extended Hamilton principle

(Meirovitch, 1997) given by

Z t2

t1

(±T ¡ ±V + ±Wnc) dt = 0 ±w = 0 at t = t1; t2 (2.2)

Here, ± is the variation operator, T is the kinetic energy, V is the strain (potential) energy,

and Wnc is the work due to the non-conservative forces. The kinetic energy is given as the

integral of the di®erential kinetic energy over the area of the plate as

T =

Z b

0

Z a

0

1

2
½ _w2dxdy (2.3)

The integral of the variation in the kinetic energy is found as follows:

Z t2

t1

±T =

Z b

0

Z a

0

Z t2

t1

½ _w
@

@t
±w dtdxdy (2.4)

=

Z b

0

Z a

0

n¡
½ _w±w

¢t2
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¡
Z t2
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@

@t
(½ _w)±w dt

o
dxdy (2.5)

= ¡
Z t2

t1

Z b

0

Z a

0

½ Äw±w dxdydt (2.6)
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The non-conservative forces are the viscous damping forces, which are proportional to the

velocity _w and act opposite to the velocity direction. The variation of the work due to these

forces is

±Wnc = ¡
Z b

0

Z a

0

2¹ _w±w dxdy (2.7)

The strain energy is due to the internal and external bending moments and the internal

twisting moment. To proceed, we follow Timoshenko and Woinowsky-Krieger (1959) and

express the strain energy due to the internal bending and twisting moments as

V = ¡
Z b

0

Z a

0

1

2

³
Mxi

@2w

@x2
+Myi

@2w

@y2
¡Mxy

@2w

@x@y

´
dxdy (2.8)

where Mxi and Myi are the internal bending moments per unit length acting on the edges

parallel to the y- and x- axes, respectively. These moments are related to the curvature of

the plate by the following relationships:

Mxi = ¡D
³@2w
@x2

+ º
@2w

@y2

´
(2.9)

Myi = ¡D
³@2w
@y2

+ º
@2w

@x2

´
(2.10)

where D is the °exural rigidity of the plate given by Eh3

12(1¡ º2). In addition to these bending

moments, a twisting moment Mxy exists when the x- and y- axes do not coincide with the

principal planes of curvature. The twisting moment per unit length is given by

Mxy = D(1¡ º)
@2w

@x@y
(2.11)
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The variation of the strain energy due to these internal bending and twisting moments is

given as (Timoshenko and Woinowsky-Krieger, 1959)

±V =D

Z b

0

Z a

0

³@4w
@x4

+ 2
@4w

@x2@y2
+
@4w

@y4

´
±w dxdy

¡
I
Mn

@±w

@n
ds¡

I ³ @
@s
Mnt ¡Qn

´
±w ds (2.12)

where Mn is the bending moment at a point on the boundary of the plate and
@
@sMnt ¡Qn

is the e®ective shear force acting along the boundary of the plate. These are given by

Mn = ¡D(1¡ º)
h@2w
@x2

cos2 µ + 2
@2w

@x@y
sin µ cos µ +

@2w

@y2
sin2 µ

i
+ º

h@2w
@x2

+
@2w

@y2

i
(2.13)

Qeff =Qn ¡
@

@s
Mnt (2.14)

=¡D
h³@3w
@x3

+
@3

@x@y2

´
cos µ +

³@3w
@y3

+
@3

@y@x2

´
sin µ

i

+D(1¡ º) @
@s

h³@2w
@x2

¡ @
2w

@y2

´
sin µ cos µ ¡ @2w

@x@y

³
cos2 µ ¡ sin2 µ

´i
(2.15)

where µ is the angle between the outer normal and the x-axis. For a rectilinear edge parallel

to the y-axis, µ = 0, and for a rectilinear edge parallel to the x-axis, µ = ¼=2. Expressing

the surface integral in terms of moments, we rewrite equation (2.12) as

±V =

Z b

0

Z a

0

³@2Mxi

@x2
¡ 2@

2Mxy

@x@y
+
@2Myi

@y2

´
±w dxdy

¡
I
Mn

@±w

@n
ds¡

I ³ @
@s
Mnt ¡Qn

´
±w ds (2.16)

In exactly a similar manner, we can now account for the external bending moments Mx and

My caused by the actuator noting that, however, they act opposite to the internal moments
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Mxi and Myi. Hence, the variation in the strain energy ¯nally becomes

±V =

Z b

0

Z a

0

n
D
³@4w
@x4

+ 2
@4w

@x2@y2
+
@4w

@y4

´
¡ @

2Mx

@x2
¡ @

2My

@y2

o
±w dxdy

¡
I
Mn

@±w

@n
ds¡

I ³ @
@s
Mnt ¡Qn

´
±w ds (2.17)

Now, substituting for ±T , ±V , and ±Wnc in equation (2.2) yields

Z t2

t1

nZ b

0

Z a

0

n
¡ ½ Äw ¡ 2¹ _w ¡D

³@4w
@x4

+ 2
@4w

@x2@y2
+
@4w

@y4

´
+
@2Mx

@x2
+
@2My

@y2

o
±w dxdy

+

I
Mn

@±w

@n
ds+

I ³ @
@s
Mnt ¡Qn

´
±w ds

o
dt = 0 (2.18)

which, for an arbitrary ±w, can only be satis¯ed if

¡½ Äw ¡ 2¹ _w ¡Dr4w +
@2Mx

@x2
+
@2My

@y2
= 0 (2.19)

where

r4w =
@4w

@x4
+ 2

@4w

@x2@y2
+
@4w

@y4

The line integrals give the boundary conditions as

Mn = 0 or
@w

@n
= 0 (2.20)

and

Qeff = 0 or w = 0 (2.21)

For the ¯xed edge x = 0, the boundary conditions are @w@n = 0 and w = 0. For the other

three free edges, Mn = 0 and Qeff = 0.

For the case of base excitation using a shaker, such as the case considered here, the total

lateral displacement wt is the sum of the base displacement wb and the plate displacement w
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relative to the base. If the input shaker's displacement is harmonic and given by ¡F cos(­t),

then the equation of motion of the plate becomes

½ Äw + 2¹ _w +Dr4w =
@2Mx

@x2
+
@2My

@y2
+ ½­2F cos(­t) (2.22)

To complete the derivation of the equation of motion, the external bending momentsMx and

My need to be determined. To this end, we ¯rst note that, for the case of perfect bonding, the

strain is continuous at the interface between the actuator and the plate. However, since the

elastic modulus for the actuator is di®erent from that of the plate, the stress is discontinuous.

Also, the piezoelectric strain in the x- direction is equal to that in the y- direction, and hence

the corresponding moments in the x- and y- directions are equal. Using thin plate theory,

which assumes linear strain distributions through the plate, we can write Hooke's law for

the stresses ¾x and ¾y in the plate at the interface with the actuator (i.e., at z = h=2) as

¾xi =
¡Eh

2(1¡ º2)

µ
@2w

@x2
+ º

@2w

@y2

¶

¾yi =
¡Eh

2(1¡ º2)

µ
@2w

@y2
+ º

@2w

@x2

¶
(2.23)

If we substitute for the bending moments Mx and My, we obtain the following relationship

between the moments and the stresses at the interface:

Mx =My =
1

6
¾xih

2 (2.24)

To ¯nd ¾xi, we use Hooke's law together with the assumption of linear stress distributions in

both the plate and the actuator. Then, from the equilibrium of moments about the midplane

of the plate, we have

Z h=2

¡h=2

¾xzdz = ¡
Z h=2+ta

h=2

n¡
¾xi
¢
pz
¡ ¾xi

¡
1¡ z

h

¢o
zdz (2.25)
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Hence, we obtain the following relationship between the plate strains at the interface and

the unconstrained actuator strain:

²xi = ²yi = C0²pz (2.26)

where C0 is given by

C0 =
6Epz(1 + ºpz)(1¡ º2)ta h(h+ ta)

E(1 + º)(1¡ º2pz)(h3 + 8t3a + 6h t2a) + 6Epz(1 + ºpz)(1¡ º2)ta h(h+ ta)
(2.27)

Now, ¾xi is easily found and substituted back into equation (2.24) together with the uncon-

strained piezoelectric strains given by equation (2.1) to solve for the bending moments Mx

and My. The result is

Mx =My = C1Va (2.28)

where C1 is given by

C1 =
C0Eh

2d31
6(1¡ º)ta

(2.29)

Having determined the magnitudes of the external bending moments induced by the actuator,

we now account for the fact that the actuator extends from x = x1 to x2 and y = y1 to y2

by using the unit step function H and obtain

Mx =My = C1Va
£
H(x¡ x1)¡H(x¡ x2)

¤£
H(y ¡ y1)¡H(y ¡ y2)

¤
(2.30)

Finally, substituting for Mx and My in equation (2.22), we obtain the ¯nal form for the

equation of motion as

½ Äw + 2¹ _w +Dr4w =½­2F cos(­t) +
n
C1
£
±01(x¡ x1)¡ ±01(x¡ x2)

¤£
H(y ¡ y1)¡H(y ¡ y2)

¤

+ C1
£
±01(y ¡ y1)¡ ±01(y ¡ y2)

¤£
H(x¡ x1)¡H(x¡ x2)

¤o
Va (2.31)
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Here, ±1 is the Dirac delta function and the prime indicates the derivative with respect to

the argument.

2.1 Modal Analysis

We expand the plate lateral de°ection w(x; y; t) as

w(x; y; t) =
1X

n=1

Án(x; y)qn(t) (2.32)

where the Án(x; y) are the linear undamped mode shapes and the qn(t) are the generalized co-

ordinates. The mode shapes can be obtained using any natural frequency extraction numer-

ical method (Meirovitch, 1980). In this study, we use the ¯nite-element package ABAQUS.

The mode shapes are orthonormalized such that

Z b

0

Z a

0

½ÁrÁsdxdy = ±rs (2.33)

where ±rs is the Kronecker delta. Substituting back in the equation of motion, we obtain

1X

n=1

³
½Án(x; y) Äqn(t) + 2¹Án(x; y) _qn(t) +D

¡
r4Án(x; y)

¢
qn

´
= ½­2Fcos(­t)

+
n
C1
£
±01(x¡ x1)¡ ±01(x¡ x2)

¤£
H(y ¡ y1)¡H(y ¡ y2)

¤

+ C1
£
±01(y ¡ y1)¡ ±01(y ¡ y2)

¤£
H(x¡ x1)¡H(x¡ x2)

¤o
Va (2.34)

Multiplying equation (2.34) by Ám(x; y) and integrating the result over the domain of the

plate yields

Äqn + ¹̂ _qn + !
2
nqn = Pm cos(­t) + °Va (2.35)

where Pm = ½­
2F

Z b

0

Z a

0

Ám(x; y) dxdy, ¹̂ = 2¹=½, and ° is given by
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° = C1

nZ y2

y1

³@Ám
@x

(x2)¡
@Ám
@x

(x1)
´
dy +

Z x2

x1

³@Ám
@y

(y2)¡
@Ám
@y

(y1)
´
dx
o

(2.36)

The input voltage is chosen to be quadratic to utilize the saturation control phenomenon as

follows:

Va = K1v
2 (2.37)

where K1 is a constant gain and v is governed by

Äv + 2» _v + ¸2v = ®wv (2.38)

Here, » is the damping coe±cient and ¸ is chosen such that 2¸ ¼ ­.

2.2 Perturbation Analysis

We perform a perturbation analysis to derive an analytical solution to the controlled re-

sponse. In this regard, the method of multiple scales (Nayfeh, 1981) is applied directly to

the partial-di®erential equation (2.31) and the controller's equation (2.38). To this end, we

seek a uniform approximation to w (the plate lateral displacement) and v (the controller

response) in the form

w ¼ ²w1(x; y; T0; T1) + ²2w2(x; y; T0; T1)

v ¼ ²v1(T0; T1) + ²2v2(T0; T1)

where T0 = t is a fast-time scale and T1 = ²t is a slow-time scale describing the time

evolution of the amplitudes and phases of the response. The derivatives with respect to time
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are expressed in terms of the new time scales as

@

@t
= D0 + ²D1 + ¢ ¢ ¢ (2.39)

@2

@t2
= D2

0 + 2²D0D1 + ¢ ¢ ¢ (2.40)

where Dk ´ @
@Tk

. We ¯rst scale the damping coe±cients and the forcing term as

¹! ²¹ » ! ²» F ! ²2F (2.41)

Substituting in the equations of motion and equating coe±cients of equal powers of ² leads

to two sets of problems of order ² and ²2:

Order ²:

D2
0w0 +

1

½
Dr4w0 = 0 (2.42)

D2
0v0 + ¸

2v0 = 0 (2.43)

Order ²2:

D2
0w1 +

1

½
Dr4w1 =¡

2¹

½
D0w0 ¡

2

½
D0D1w0 + ­

2F cos(­T0)

+
1

½

n
C1
£
±01(x¡ x1)¡ ±01(x¡ x2)

¤£
H(y ¡ y1)¡H(y ¡ y2)

¤

+ C1
£
±01(y ¡ y1)¡ ±01(y ¡ y2)

¤£
H(x¡ x1)¡H(x¡ x2)

¤o
v20 (2.44)

D2
0v1 + ¸

2v1 =¡ 2D0D1v0 ¡ 2»D0v0 + ®w0v0 (2.45)

The general solutions of equations (2.42) and (2.43) are

w0(x; y; T0; T1) =
1X

n=1

Án(x; y)An(T1)e
i!nT0 + cc (2.46)

v0(T0; T1) = B1(T1)e
i¸T0 + cc (2.47)
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where cc stands for the complex conjugate of the preceding terms.

From a physical perspective, it can be argued that, for a damped system, the modes that

are not directly excited by an external source or indirectly excited by an internal resonance

decay with time. Hence, denoting the excited mode by the subscript n, we can write the

solution for w0 as

w0 = ÁnAn(T1)e
i!nT0 + cc (2.48)

Substituting for w0 and v0 in equations (2.44) and (2.45), we obtain

D2
0w1 +

1

½
Dr4w1 =¡

2i!n
½
Án
£
¹An +A

0

n

¤
ei!nT0 +

1

2
­
2Fei­T0

+
1

½

n
C1
£
±01(x¡ x1)¡ ±01(x¡ x2)

¤£
H(y ¡ y1)¡H(y ¡ y2)

¤

+ C1
£
±01(y ¡ y1)¡ ±01(y ¡ y2)

¤£
H(x¡ x1)¡H(x¡ x2)

¤o

£
¡
B21e

2i¸T0 +B1 ¹B1
¢
+ cc (2.49)

D2
0v1 + ¸

2v1 =¡ 2i¸
£
»B1 +B

0

1

¤
ei¸T0 + ®ÁnAn

£
B1e

i(!n+¸)T0 + ¹B1e
i(!n¡¸)T0

¤
+ cc
(2.50)

To express the nearness of the excitation frequency to the natural frequency of the plate

(primary resonance condition), we introduce ¾2 as a detuning parameter. On the other

hand, the nearness of the plate's natural frequency to twice that of the controller (two-to-

one internal resonance condition) is expressed by the detuning parameter ¾1. Thus,

­ = !n + ²¾2 and !n = 2¸+ ²¾1 (2.51)

Because the associated homogeneous equations of equations (2.49) and (2.50) have nontrivial

solutions, the nonhomogeneous equations have solutions only if solvability conditions are sat-
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is¯ed. These solvability conditions demand that the nonhomogeneous terms of each equation

are orthogonal to every solution of the adjoint. However, since the system is self-adjoint, the

orthogonality condition demands that the right-hand side of equation (2.49) be orthogonal

to Án(x; y)e
¡i!nT0. Using the normalization condition (2.33), we obtain

2i
£
¹An +A

0

n

¤
¡ fei¾2T1 ¡ 4°̂B21e¡i¾1T1 = 0 (2.52)

where

f =
­
2½2F

2!n

Z b

0

Z a

0

Án(x; y)dxdy (2.53)

and

°̂ =
½

4!n
C1

nZ y2

y1

³@Án
@x
(x2)¡

@Án
@x
(x1)

´
dy +

Z x2

x1

³@Án
@y
(y2)¡

@Án
@y
(y1)

´
dx
o

(2.54)

Similarly, the solvability condition for equation (2.50) demands the vanishing of the terms

that produce secular terms. Hence, the solvability condition for this equation is

2i
£
»B1 +B

0

1

¤
¡ 4®̂An ¹B1ei¾1T1 = 0 (2.55)

where ®̂ = ®
4¸
Án.

Using polar representations of An and B1 in the form

An =
1

2
an(T1)e

i¯n(T1) and B1 =
1

2
b1(T1)e

i¯1(T1) (2.56)

and separating the real and imaginary parts in equations (2.52) and (2.55), we obtain the

following equations describing the modulation of the amplitudes and phases of the plate and
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controller response:

a0n = ¡¹an ¡ °̂b21 sin °1 + f sin °2

b01 = ¡»b1 ¡ ®̂anb1 sin °1

an¯
0

n = ¡°̂b21 cos °1 ¡ f cos °2

b1¯
0

1 = ¡®̂anb1 cos °1 (2.57)

where

°1 = ¾1T1 ¡ 2¯1 + ¯n and °2 = ¾2T1 ¡ ¯n

2.2.1 Equilibrium Solutions

The ¯xed points or equilibrium solutions of the modulation equations (2.57) are obtained by

setting a0n, b
0

1, °
0

1, and °
0

2 equal to zero and solving the resulting algebraic equations. In this

case, there are two possible solutions depending on whether b1 is equal to zero or not.

Case one: b1 = 0. Solving for an yields

an =
f

p
¾22 + ¹

2
(2.58)

which is essentially the linear solution for the problem when no nonlinear coupling is present.

In this case, the amplitude of the plate response is directly proportional to the excitation

amplitude.



Osama N. Ashour Chapter 2. Analysis 39

Case two: b1 6= 0. In this case, the following solution is obtained:

an =

q
»2 + 1

4
(¾1 + ¾2)2

j ®̂ j (2.59)

b1 =

s
¤1 § (®̂2f2 ¡ ¤22)

1

2

®̂°̂
(2.60)

where

¤1 =
1
2
¾2(¾1 + ¾2)¡ »¹ and ¤2 =

1
2
¹(¾1 + ¾2) + »¾2.

Since ¾1 + ¾2 =
­¡ 2¸
² , we obtain the following expressions for the amplitudes for the case

of perfect tuning between the excitation frequency and twice the controller frequency:

an =
»

j ®̂ j

b1 =

s
¡»¹§ (®̂2f2 ¡ »2¾22)

1

2

®̂°̂
(2.61)

Interestingly, we note that the amplitude of the plate is not a function of the excitation

amplitude as in the linear solution. This constitutes the basis of the control strategy; by

minimizing the controller damping and adjusting its frequency to one-half the exciting fre-

quency, the plate response can be e®ectively suppressed.

The stability of the equilibrium solutions of the system of equations (2.57) was studied by

many researchers. For example, Nayfeh (2000) de¯ned a critical value for the forcing f by

fc =

r
»2(¾22 + ¹

2)

®̂2
(2.62)

The system of equations (2.57) was then reformulated in Cartesian coordinates. The stability

of a given ¯xed point to a disturbance proportional to esT1 was determined by checking the
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roots of the characteristic equation of the eigenvalue problem _x = Ax, where x is the state

vector. They found out that for f ∙ fc, only the linear solution exists. This solution is a

sink. When f ¸ fc, this ¯xed point becomes a saddle, with one eigenvalue being real and

positive.

The stability of the nonlinear solution was investigated by substituting for an and b1 from

equations (2.59) and (2.60) into the characteristic equation and checking the resulting eigen-

values. The two conditions for local stability (around resonance) were found to be (Nayfeh,

2000)

®̂°̂b21 + »¹¡
1

2
¾2(¾2 + ¾1) ¸ 0 (2.63)

and

4»¹(¹2 + ¾22)(4»
2 + 4¹» + ¹2 + ¾22) + 8(¹+ »)

2(¹2 + 2¹» + ¾2(¾2 + ¾1) + ¾
2
2)®̂°̂b

2
1 ¸ 0
(2.64)

The violation of condition (2.63) indicates the existence of an eigenvalue with a positive

real part. In this case, a saddle-node bifurcation occurs. On the other hand, the violation

of condition (2.64) indicates the existence of a pair of complex eigenvalues with positive

real parts. A Hopf-bifurcation is said to occur in this case. However, these conditions

are automatically satis¯ed when the exciting frequency is perfectly tuned with twice the

controller frequency, since ¾1 + ¾2 =
­¡ 2¸
² . Hence, the nonlinear solution is stable. This

solution can be either a stable focus or a stable node, indicating either an oscillatory or a

smoothly-decaying transient response, respectively. Again, this behavior is determined by

examining the roots of the characteristic equation. Oueini, Nayfeh, and Pratt (1998) found
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out that below a critical value of ®̂, all of the roots are real, indicating a smoothly-decaying

response. This is the case when ¾2 = 0. When ¾2 6= 0, the transient response is always

oscillatory, regardless of the value of ®̂.

2.3 Finite-Element Method

For the ¯nite-element analysis, we use the commercially available software ABAQUS. In the

analysis, we used linear elastic behavior and plane-stress shell elements to model the plate.

To include transverse shear-deformation and rotary-inertia e®ects, we used an orthotropic

material behavior. The values of Young's modulus, Poisson's ratio, and shear moduli asso-

ciated with the material's principal directions are needed. On the other hand, for thin-shell

behavior, the transverse shear and rotary inertia are neglected and an isotropic material

behavior is assumed. In this case, only Young's modulus and Poisson's ratio are needed.

Moderately thick plates are roughly measured by the ratio of the least lateral dimension to

the plate thickness being under 20. Alternatively, this is measured by the plate thickness

being more than 1/15 of a characteristic length on the surface of the plate, such as the

wavelength of a signi¯cant natural mode in dynamic analysis. In ABAQUS, the element type

S8R is used to model thick shell problems. This element is eight noded and quadrilateral

that uses a reduced integration scheme to form the element sti®ness matrix. The mass

matrix and distributed loadings are still integrated exactly. Reduced integration provides

accurate results at a signi¯cantly less running time. This element approximates the Mindlin-

type element, which accounts for ¯rst-order shear deformations through the thickness and



Osama N. Ashour Chapter 2. Analysis 42

rotary-inertia e®ects. Hence, this element is suitable for the analysis of composite and

sandwich plates and shells. The Mindlin model of plates weakens the Kirchho® hypothesis

by removing the assumption that material lines that are normal to the plate remain normal

to the deformed middle surface. However, the assumption that these normals remain straight

and unstrained after deformation is retained. In other words, the essential idea of this element

is that the position of a point in the plate reference surface and that in the corresponding

normal vector are interpolated independently. In ABAQUS, the transverse shear sti®ness

is computed by matching the shear response for the case of the shell bending about one

axis. A parabolic variation of the transverse shear stress in each layer of the shell section is

used. In other words, the transverse shear-sti®ness coe±cients are estimated by matching

the elastic strain energy associated with the shear deformation of the shell section with that

based on a piecewise quadratic variation of the transverse shear stress across the section

under conditions of bending about one axis. For thin shells, these coe±cients are scaled

down by a factor that converges to zero as the thickness tends to zero.

For homogeneous plates, thin plates are characterized by their thicknesses being less than

1/15 of a characteristic length on the surface, such as the wavelength of a signi¯cant mode.

The element type S9R5 is used in ABAQUS to model thin shell/plate problems. This ele-

ment is nine noded and quadrilateral that uses a reduced integration scheme similar to that

used for thick shell problems. This element accurately satis¯es the classical Kirchho® plate

theory, which states that material lines that are originally normal to the middle surface re-

main straight and normal to the deformed middle surface. Also, these lines undergo neither
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contraction nor extension. Hence, transverse shear e®ects are neglected. In small displace-

ment theory, this assumption leads to strain-displacement relations that are accurate up to

terms of O(h2). In ABAQUS, the Kirchho® constraint can either be imposed analytically or

numerically. When the constraint is imposed analytically, the solution involves no transverse

shear-strain-energy calculations. However, when the constraint is imposed numerically, such

as in the case of element S9R5, the transverse shear sti®ness acts as a penalty to enforce the

constraint. In this regard, the actual transverse shear sti®ness of the section is multiplied

by a factor to prevent the shear sti®ness from becoming too large in thin shells. This factor

converges to zero as the thickness of the plate tends to zero. For thin shell elements, the

number of degrees of freedom at the element nodes can be reduced to ¯ve: three displace-

ment components and two in-surface rotation components. This makes such elements more

economical than the rest. However, they are available only for small-strain applications,

although they model large in-surface rotations accurately.

In addition to thin and thick shell elements, ABAQUS provides ¯nite-strain elements for a

large-deformation analysis. Large-amplitude excitation of plates is one example of such ¯nite-

strain cases. These elements provide robust and accurate solutions. They allow for uniform

change in the plate section's thickness. This analysis requires the inclusion of geometric

nonlinearities. In this case, the strain-displacement relationship is nonlinear. When the

transverse de°ection of a plate is not small compared to its thickness, stretching of the middle

surface occurs, which results in nonlinear strain-displacement relationships. The stress-strain

relationships are, however, still linear. If these nonlinearities are ignored, the elements are
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formulated in the original reference con¯guration using the original nodal coordinates. The

errors in this case are of the same order of magnitude as the involved strains and rotations.

Nonlinear phenomena, such as postbuckling bifurcation analysis, cannot be captured using

a geometrically linear analysis. On the other hand, when nonlinear geometries are included,

the elements are formulated in the current con¯guration using current nodal coordinates.

This means that the elements can distort from their original shapes as the deformation

increases. For very large deformations, the elements may no longer be suitable for analysis.

In ABAQUS, the element type S4R is used for ¯nite-strain analysis.

In this study, the plate is divided into 40£20 shell elements. Both element types S9R5 and

S8R are used to check for the tranverse-shear and rotary-inertia e®ects. Nonlinear geometry

e®ects are accounted for by using element type S4R and by setting the NLGEOM option on.

To model the actuators, we attach two piezoelectric thin plates to the top and bottom

surfaces of the plate. Hence, the piezoelectric actuators respond by straining to the electrical

potential gradient resulting from the output of the controller's response. The direction of

this straining for the top actuator is made opposite to that of the bottom one by reversing

the sign of the electrical potential gradient. Hence, a moment is generated on the plate.

The piezoelectric properties are speci¯ed as either stress or strain material coe±cients. The

values of the piezoelectric constants eijk, de¯ning the electrical °ux in the direction i caused

by the jk component of strain, correspond to those used in real experiments. A tied contact

is assumed to exist between the plate (master surface) and the piezoelectric plates (slave

surfaces). This means that the translational degrees of freedom of both contacting surfaces
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are constrained to move together throughout the analysis. Each node on the slave surface

is constrained with the closest point on the master surface where the normal to the master

surface passes through the node on the slave surface. Hence, there is no relative motion

between the surfaces. In real life, this case corresponds to that of a perfect bond between

the actuator and the plate surface. On the other hand, relative motion between the surfaces

can be accounted for by including the small sliding option. If nonlinear geometries are

ignored, then the sliding becomes in¯nitesimal.

To model the controller in ABAQUS, we choose a second-order structure that simulates a

mass-spring-damper system. The chosen structure was a cantilever beam with the lowest

natural frequency being equal to one-half that of the plate's mode to be controlled. This

resulted in the two-to-one internal resonance and the saturation phenomenon. The natural

frequency of the beam (controller) was chosen by selecting the appropriate modulus of elas-

ticity, density, and geometric dimensions. Coupling between the controller (beam) and the

plate was introduced by adding a subroutine to the ABAQUS input ¯le, which allowed for

reading the response of the plate (displacement or strain) and that of the controller. The

product of the output of the plate, the beam response, and the feedback gain is then fed

to the original code as a force on the controller (beam). Also, the output of the controller

is squared and multiplied by the control gain. The result is fed to the original code as a

voltage on the PZT actuator. This simulated a real-life feedback control experiment where

only physical elements are used.



Chapter 3

Numerical Results

In general, real-life structures are complex. Furthermore, it is not always easy and inexpen-

sive to build a prototype for these structures. Hence, numerically simulating the controlled

behavior of such structures becomes extremely important before actually implementing the

control strategy. Numerical results give us a good estimate of the real-life response, espe-

cially when we take into account all of the possible variables a®ecting the response. For our

control strategy, we need ¯rst to estimate the natural frequencies and the mode shapes of

the plate. Then, we need to locate the nodal lines for each mode, so as to avoid placing the

actuator on these lines. A numerical study in Chapter 4 is conducted to locate the optimal

location of the actuator for maximum control e±ciency. Furthermore, for our control strat-

egy, we need to estimate the nonlinear gains to be used in the experiments and get a general

idea about the trend of the response. The numerical results will also verify the analytical

¯ndings, which we discussed in Chapter 2. Unlike the perturbation solution, the numerical

results also allow us to solve for the response away from resonance and check the global

stability of the system.
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We present numerical results for the controlled and uncontrolled responses of the vibrating

plate. Two numerical methods are discussed here. In the ¯rst method, we model the can-

tilever plate, the PZT actuator, and the controller using the ¯nite-element package ABAQUS,

which fully integrates the mathematical model over time. In the second method, we use

ABAQUS to calculate the natural modes (eigenfunctions) and frequencies (eigenvalues) of

the cantilever plate. These modes are then used in a modal analysis to solve for the plate

response (displacement).

3.1 Finite-Element Method

We perform numerical simulations for an aluminum plate with dimensions 9:0000 £ 7:5000 £

0:0300. The plate is divided into 40£20 shell elements. Both thin and thick shell elements are

used to check for transverse-shear and rotary-inertia e®ects. The natural frequencies of the

cantilever plate are extracted using the FREQUENCY subroutine. The ¯rst six obtained

natural frequencies are: 17.9, 37.9, 98.7, 116.8, 145.4, and 233.2 Hz. These values agree very

well with the experimental results, where an FRF analysis is used together with a ¯ne-tuning

procedure to locate the frequency with the maximum amplitude. The ¯rst six mode shapes

are shown in Fig. 3.1.

Next, we obtain the time-history response for di®erent values of the feedback gain ®, namely,

®= 0.005, 0.015, 0.06, 0.075, 0.085, 0.09, 0.11, and 0.5. The forcing (base excitation) is set at

11:9 mg. The results are shown in Fig 3.2, where we plot the strain (in microns) at a distance

x = 0:1800 and y = 2:1600 from the lower left corner. In Fig. 3.2(a), the gain was so small
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: The ¯rst six mode shapes of the cantilever plate. The 1,2, and 3 directions refer
to the x-,y-, and z- axes, respectively.
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that the nonlinear coupling was lost and the linear response was obtained. The controller is

ine®ective in this case. However, when the feedback gain is increased, the controller reduces

the vibration amplitude of the plate, as evident from Fig. 3.2(b)-(g). As the gain increases,

the steady-state response is decreased, while the transient response becomes more oscillatory.

This agrees with the analytical solution discussed in Chapter 2. We also note the downward

shift in the curves due to the quadratic control term. In the experiments, this shift needs

to be ¯ltered out using an AC ¯lter, since it was shown to add noise to the system. For

excessive values of ®, the gain e®ect becomes detrimental and energy is added to the system,

as shown in Fig. 3.2(h).

Next, we examine the e®ect of thickness on the control strategy. For thick plates, the

transverse shear-deformation and rotary-inertia e®ects cannot be neglected. To this end, we

compare the results when using a thin-shell element (S9R5) and a thick-shell element (S8R).

The formulation for the element S8R is based on the Mindlin theory for thick plates. In Fig.

3.3, we show the results for the plate response using a thin-shell element (Fig. 3.3(a)) and a

thick-shell element (Fig. 3.3(b)). In both cases, we use the same values of ® and ° as 0.075

and 1.0, respectively. As evident from the plots, the e®ect of thickness is to increase the

steady-state solution relative to the no-control (linear) solution. This is due to the fact that

a thick plate has a lateral-strain value less than that of a thin plate. This, in turn, reduces

the value of the feedback gain (®), and hence results in a larger steady-state response relative

to the no-control response. This is consistent with the results of Fig. 3.2, where we study

the e®ect of changing the feedback gain (®). We also note that the oscillatory transient
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Figure 3.2: E®ect of varying the feedback gain ®: (a) ®=0.005, (b) ®=0.015, (c) ®=0.06,
(d) ®=0.075, (e) ®=0.085, (f) ®=0.09, (g) ®=0.11, and (h) ®=0.5.
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Figure 3.2(continued): E®ect of varying the feedback gain ®: (a) ®=0.005, (b) ®=0.015,
(c) ®=0.06, (d) ®=0.075, (e) ®=0.085, (f) ®=0.09, (g) ®=0.11, and (h) ®=0.5.
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behavior for a thick plate is less than that of a thin one, which is also consistent with the

analytical results. We should note here that the relatively larger steady-state response in

Fig. 3.3(b) is not due to the less control e®ort caused by the thickness of the plate, as is the

case in linear control. By appropriately increasing the feedback gain (®), one would obtain

the same steady-state solution as that of the thin plate.
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Figure 3.3: E®ect of shear deformation and rotary inertia on the response of the plate: (a)
this-shell element and (b) thick-shell element.

3.2 Modal Analysis

In this section, we use the mode shapes obtained by ABAQUS to solve the equations of

motion (2.35) and (2.38). First, we use the summation of the ¯rst ¯ve modes to control the

response of the ¯rst mode. The result is shown in Fig. 3.4, where we plot the time history

of the plate displacement at the lower right corner (x = 7:500 and y = 0). In this case, the
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excitation level is 43 mg, the feedback gain is 0.08, and the control gain is 1. To examine the

e®ect of the number of modes on the results, we plot in Fig 3.5(a) the response of the second

through ¯fth modes, and in Fig. 3.5(b) the response of the ¯rst mode only. Clearly, the

response of the ¯rst mode is dominant. The quadratic coupling creates a ¯ltering process,

such that the controller only a®ects the mode which is internally resonant with it. All of the

other modes decay with time to insigni¯cant levels. Hence, one can use a one-mode analysis

without loss of accuracy.
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Figure 3.4: Plate displacement at the lower right corner using the ¯rst ¯ve modes.

Finally, we examine the frequency-response curves. In this regard, we use the shooting

method (Nayfeh and Balachandran, 1995) to solve for the steady-state response amplitude

and check for the stability of the result. The results are shown in Fig. 3.6. The dashed line

represents the unstable linear response, which also coincides with the uncontrolled response.

The solid line represents the stable controlled response. Clearly, the saturation phenomenon



Osama N. Ashour Chapter 3. Numerical Results 54

0 10 20 30 40 50

Time (sec)

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

P
la
te
 D
is
p
la
c
e
m

e
n
t 
(
in
)

(a)

0 10 20 30 40 50

Time (sec)

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

P
la
te
 D
is
p
la
c
e
m

e
n
t 
(
in
)

(b)

Figure 3.5: Plate displacement at the lower right corner using (a) the second through ¯fth
modes and (b) the ¯rst mode only.

is e®ective around resonance (which is around 17.9 Hz). However, as we move away from

resonance, the autoparametric resonance is excited at around 22.5 Hz. This results in another

peak in the frequency-response curve. Hence, care must be taken not to excite this resonance.

To examine this more, we consider the following system:

Äu+ »1 _u+ !
2u = °v2 + F sin(­t)

Äv + »2 _v + (
1

2
­)2v = ®uv (3.1)

We assume a solution in the form: u = A sin(­t+ Á1) + ¹u and v = B sin(
1
2
­t+ Á2), where

¹u is a constant resulting from the squaring of v. Substituting back for u and v and equating

the coe±cients of sin and cos, we arrive at

A =
2F

p
(3!2 ¡ 2­2)2 + 4»21­2

(3.2)
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Di®erentiating equation (3.2) with respect to ­ and setting the result equal to zero, we

obtain the autoparametric resonance condition

­ =

r
3!2 ¡ »21

2
¼
r
3

2
! (3.3)

where an assumption of small »1 has been made. At this frequency, A =
F
»1­

.
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Figure 3.6: Frequency-response curves: (- - -) unstable and (|{) stable response.

If, on the other hand, we consider quadratic velocity control instead of quadratic position

control, the following system is obtained:

Äu+ »1 _u+ !
2u = ¡° _v2 + F sin(­t)

Äv + »2 _v + (
1

2
­)2v = ®uv (3.4)

where the minus sign is added to ° _v2 to ensure that the solution remains bounded (Nayfeh

and Mook, 1979).
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In this case, the resonance condition occurs at ­ = !p
2
. The frequency-response curve for

quadratic velocity control is shown in Fig. 3.7, where the dashed line represents the unstable

linear solution, while the solid line represents the stable controlled response. In this case,

the autoparametric resonance occurs at a lower frequency and farther away from the plate

natural frequency. Hence, a choice has to be made in the design of the absorber according

to the operation range of frequencies so as to avoid this new resonance.
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Figure 3.7: Frequency-response curves for quadratic velocity control: (- - -) unstable and
(|{) stable response.



Chapter 4

Optimal Placement of Actuators

In active vibration control, actuator placement on the structure is a very signi¯cant issue.

It has a direct e®ect on the control e±ciency and cost. For example, there can be many

modes within the frequency band of interest, and this could require many actuators. Also,

large °exible structures require many actuators for active vibration control. In these cases,

the problem of optimizing the locations of the actuators becomes extremely signi¯cant to

maximize the system controllability and therefore increase its e±ciency. In such cases, the

problem of actuator placement becomes more signi¯cant than the control law itself. An

arbitrary choice of actuator location can seriously degrade the system performance. It can

also limit the actuator's range of practical application. If the actuator is placed at the wrong

location, the system will require an overly more control force. In this case, the system is said

to have a low degree of controllability. To see this more clearly, consider the case in which

the actuator is placed on a nodal line for a certain mode of interest. In this case, suppressing

this mode becomes impossible, and the system is said to be uncontrollable.

Therefore, our objective is to minimize the control e®ort and maximize controllability of the
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system. In this work, we present two methods to accomplish this. The ¯rst is based on the

analytical derivation of the control gain factor presented in Chapter 2. This control gain

needs to be maximized over the domain of the system. The second is more general and is

based on a global measure of modal controllability for ¯rst-order linear systems, which was

proposed by Hamdan and Nayfeh (1989).

4.1 Optimal Placement By Maximizing Control Gain

The control gain factor given by equation (2.36) needs to be maximized. To this end, we

evaluate this control gain over the domain of the plate and search for the maximum value.

For a more complicated structure, a search algorithm should be used to ¯nd the location

at which the degree of controllability is maximum. In this regard, genetic algorithms can

be used. In brief, genetic algorithms randomly select initial values of the parameter to

be maximized (location of actuators in this case). These initial values are referred to as

the initial population. Then, the control gain factor is computed for each member of the

population. After that, genetic operators are applied. In this regard, those combinations

which produce the largest control gain are kept, while those which produce the lowest control

gain are eliminated. These steps are repeated until the desired optimal value is reached.

In this work, we divide the plate into 81 £ 41 nodes, as we did in the ¯nite-element analysis.

The actuator is assumed to have a rectangular area. The length of the actuator extends

from i to i + 1, where i is the node number in the x-direction. The width of the actuator

extends from j to j + 1, where j is the node number in the y-direction. Then, we evaluate
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the control gain of equation (2.36) at each node on the plate. For each run, the lower-left

corner of the actuator is placed at node (i; j). In addition, we use ¯nite-di®erence formulas

to evaluate the involved derivatives of the eigenfunctions. To this end, we use second-order

central-, backward-, and forward-di®erence expressions, which are given, respectively, by

f 0i =
fi+1 ¡ fi¡1

2h

f 0i =
¡fi+2 + 4fi+1 ¡ 3fi

2h

f 0i =
3fi ¡ 4fi¡1 + fi¡2

2h
; (4.1)

where f is the function that needs to be di®erentiated, h is the distance between adjacent

nodes, and the prime indicates di®erentiating with respect to x. Similar expressions are used

for the derivatives with respect to y.

We also note that this method does not depend on the parameters of the PZT itself, such as

its elastic modulus, piezoelectric constant, and thickness. In other words, it is not a function

of C1 of equation (2.29). For a particular mode m, the maximum control gain depends only

on the eigenfunction Ám, whose derivatives need to be evaluated at the boundaries of the

actuator.

4.1.1 Results

We present results for the optimum locations of the actuator for the ¯rst ¯ve modes of the

plate. Figures 4.1(a)-(e) show plots of the control gain factor °=C1 over the domain of the

plate. Here, we plot the value of the control gain as we vary the location of the lower left

corner of the actuator. From these ¯gures, we can identify the location of the maximum gain
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factor for each mode. We also note that we are interested in the absolute value of this factor.

However, if a negative value is chosen, then we have to switch the sign of the feedback gain

® to maintain the system stability, as we discussed earlier. From the ¯gures, we generate

Table 4.1 for the locations of the maximum gains.

Table 4.1: Locations of maximum controllability

Mode Number (i,j)
1 (1,20)
2 (1,1) or (1,40)
3 (1,1) or (1,40)
4 (1,20)
5 (1,1) or (1,40)

For the ¯rst and fourth modes, the location of maximum controllability corresponds to the

middle of the ¯xed side of the cantilever plate. For the second, third, and ¯fth modes, this

location corresponds to the lower left corner of the plate. For modes 1 and 4, the location of

maximum controllability falls on the symmetry line. For mode 3, we have two locations of

maximum controllability because mode 3 is symmetric. On the other hand, modes 2 and 5

are antisymmetric, and therefore we have two locations of equal absolute values of maximum

gain, but with di®erent signs.

In Fig. 4.2(a)-(e), we show the corresponding actuator locations on the plate relative to the

nodal lines for each mode. We also indicate in the ¯gures the sign of the maximum gain

factor.



Osama N. Ashour Chapter 4. Optimal Placement of Actuators 61

0
10

20
30

40
50

60
70

80 0
5

10
15

20
25

30
35

40−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

node number in
 th

e y−dire
ction

node number in the x−direction

(a)

0
10

20
30

40
50

60
70

80 0
5

10
15

20
25

30
35

40−1.5

−1

−0.5

0

0.5

1

1.5

node number in
 th

e y−dire
ction

node number in the x−direction

(b)

0

20

40

60

80
0 5 10 15 20 25 30 35 40

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

node number in the y−direction

node num
ber in the x−

direction

(c)

0

16

32

48

64

80 0 5 10 15 20 25 30 35 40

−4

−3

−2

−1

0

1

2

3

node number in the y−direction

node number in the x−direction

(d)

0
10

20
30

40
50

60
70

80
0

5

10

15

20

25

30

35

40

−5

−3

−1

1

3

5

no
de

 n
um

be
r 
in

 th
e 

y−
di

re
ct

io
n

node number in the x−direction

(e)

Figure 4.1: Control gain variation over the domain of the plate for the ¯rst ¯ve modes: (a)
mode 1, (b) mode 2, (c) mode 3, (d) mode 4, and (e) mode 5.
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(a) (b)
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Figure 4.2: Optimum actuator location on the plate: (a) mode 1, (b) mode 2, (c) mode 3,
(d) mode 4, and (e) mode 5.
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4.2 Optimal Placement Using a Measure of Modal Con-

trollability

In this section, our objective is to exploit a quantitative measure of controllability to optimize

the locations of the actuators. Consider a physical structure that is modeled by n discrete

modeling mass points. Each modeling point has a one degree of freedom. Hence, we have an

n-degree-of-freedom mathematical model with n associated modes describing the physical

structure. In choosing the modeling points, care should be taken not to locate these modeling

points on the nodes of the concerned modes. If possible, these modeling points should be

placed at maximum-de°ection positions of these modes. Also, the number of these points

should be greater than the number of nodal lines along each direction to adequately model

the system behavior. Now, consider an l number of actuators acting upon the modeling

points. The equations of motion for these modeling points can be written in matrix form as

MÄx+ C _x+Kx = Fu (4.2)

where x is an n£ 1 displacement vector, u is an l£ 1 input control-force vector, M , C, and

K are n£ n system mass, damping, and sti®ness matrices, respectively, and F is an n£ n

matrix that indicates whether an actuator is located at the point or not. Here, we assume

all actuators to have the same properties and produce the same actuation force. To locate

the optimum actuator location, we place identical actuators on all of the modeling points

and measure the controllability from each input. In this regard, we set l equal to n and the

matrix F equal to the identity matrix I.

The question now is how to obtain the modeling matricesM , C, andK for the discrete system
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given by equation (4.2). In this regard, we recall that the eigenfunctions are orthogonal with

respect to the mass and sti®ness matrices. Furthermore, if the eigenfunctions are normalized

with respect to the mass matrix, then we have the following orthogonality conditions with

respect to the mass and sti®ness matrices, respectively:

©TM© = I

©TK© = [!2n] (4.3)

where © is the modal matrix whose columns are the eigenfunctions for the n modes and

[!2n] is a diagonal matrix of the eigenvalues. Hence, if the eigenfunctions are known, from an

experimental FRF analysis or a numerical calculation, the system matrices M and K can

be found by manipulating equation (4.3). Thus, we obtain

M = (©©T )¡1

K = (©T )¡1[!2n]©
¡1 (4.4)

where the superscript ¡1 indicates matrix inversion. In this work, we use the eigenfunc-

tions obtained from the ¯nite-element package ABAQUS to compute the mass and sti®ness

matrices. We should note that the real system has an in¯nite number of modes, while our

discrete system is truncated at n modes. This results in nonzero (but small) o®-diagonal

elements in the matrix ©©T . This problem is reduced by increasing the number of modes n

in our model.

Another signi¯cant problem arises when the matrices to be inverted are ill-conditioned, such

as the case when one or more rows have very small entries compared to the other rows. In
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this case, the results are inaccurate and matrix inversion should be avoided. Alternatively,

the mass matrix can be easily obtained by dividing the total area into n sub-areas and

lumping the mass of the sub-areas at the modeling points. Also, the sti®ness matrix can be

obtained from the in°uence coe±cients. To this end, a unit load is applied at one point of

index i, and the static de°ection at another point of index j is calculated or measured. This

gives 1=kij , where kij is the corresponding element of the sti®ness matrix.

The damping matrix C is assumed to be modal and proportional to M and K as follows:

C = ®1M + ¯1K (4.5)

In this work, we take ®1 = 0:001 and ¯1 = 0.

4.2.1 State-Space Model

The lumped-parameter discrete model described above can now be represented in a state-

space model. To this end, we de¯ne a state vector X as

X =

∙
x

_x

¸
(4.6)

Then, equation (4.2) is transferred into a state-space representation as

_X = AX+Bu (4.7)

where A and B are 2n£ 2n matrices given by

A =

∙
; I

¡M¡1K ¡M¡1C

¸
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and

B =

∙
;

M¡1F

¸

Using modal decomposition, we decompose the matrix A as

A = P¤QT (4.8)

where P is the modal matrix whose columns are the right eigenvectors p of A, QT is the

modal matrix whose rows are the left eigenvectors qT of A, ¤ is the diagonal matrix of the

eigenvalues of A, and the superscript T denotes the transpose of the matrix. The matrices

P , Q, and ¤ are found by solving the eigenvalue problem for A.

The solution of equation (4.7) for zero-initial conditions is given by (Kailath, 1980)

X(t) =

Z tf

0

e¤(t¡¿)fQTBgu(¿)d¿ (4.9)

where tf is the ¯nal time. The matrix fQTBg describes the channel of energy from the

input control forces to the modes. This matrix is of extreme importance for determining the

controllability of the modes from the control inputs. Until recently, this information was of

the yes and no type. If the (i; j) element of the matrix fQTBg is zero, then the ith mode

is uncontrollable form the jth input. This is known as the Popov, Belevitch, and Hautus

(PBH) test (Kailath, 1980). The question now is how to obtain quantitative information

about the controllability of a certain mode from a certain input. It is not suitable to use the

magnitude of qTi bj, where bj is the jth column of B, as a measure of controllability. This is

so because the right and left eigenvectors are scaled arbitrarily.
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The magnitude of qTi bj can be speci¯ed as

jqTi bjj = kqTi k kbjk cos µij (4.10)

Hmadan and Nayfeh (1989) proposed using cos µij as a measure of controllability, where

µij is the angle between bj and q
T
i . When the two vectors bj and q

T
i are orthogonal, the

distance between them is maximum and the controllability is zero. On the other hand, when

they are parallel, the distance is minimum and the controllability is one. Based on this, we

can construct a 2n£ 2n matrix cos £ whose elements are found from equation (4.10). Each

element cos µij of this matrix is a measure of controllability of the ith mode from the jth

input. Thus, the location of maximum controllability for mode i corresponds to the input

at location j, where cos µij is maximum.

4.2.2 Results

We apply the method described above to locate the optimum actuator locations on the plate.

First, we choose 18 modeling points on the plate as shown in Fig. 4.3. The modeling points

are numbered and marked by an £. Using these points as nodes in a ¯nite-element analysis,

we solve the eigenvalue problem for the ¯rst 18 modes using ABAQUS.

The diagonal elements of the mass matrix that are used in the calculations are found to be

m1 = 1:8975£ 10¡5 m2 = 9:4875£ 10¡6 m3 = 1:8975£ 10¡5 m4 = 9:4875£ 10¡6

m5 = 1:8975£ 10¡5 m6 = 4:7438£ 10¡6 m7 = 7:5900£ 10¡5 m8 = 3:7950£ 10¡5

m9 = 7:5900£ 10¡5 m10 = 3:7950£ 10¡5 m11 = 7:5900£ 10¡5 m12 = 1:8975£ 10¡5

m13 = 1:8975£ 10¡5 m14 = 9:4875£ 10¡5 m15 = 1:8975£ 10¡5 m16 = 9:4875£ 10¡5

m17 = 1:8975£ 10¡5 m18 = 4:7438£ 10¡6
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Figure 4.3: Locations of modeling points on the plate for the discrete model.

The sti®ness matrix K is given by

0.0233 0.0316 0.0330 0.0337 0.0343 0.0350 -0.0057 -0.0010 0.0029 0.0053 0.0067 0.0071 0.0129

0.0316 0.0846 0.1061 0.1225 0.1368 0.1505 0.0011 0.0078 0.0260 0.0412 0.0540 0.0650 0.0063

0.0330 0.1061 0.1867 0.2410 0.2835 0.3237 0.0085 0.0313 0.0603 0.0977 0.1328 0.1649 0.0010

0.0337 0.1225 0.2410 0.3666 0.4548 0.5369 0.0157 0.0540 0.1062 0.1631 0.2305 0.2935 -0.0022

0.0343 0.1368 0.2835 0.4548 0.6280 0.7768 0.0225 0.0760 0.1521 0.2423 0.3382 0.4412 -0.0041

0.0350 0.1505 0.3237 0.5369 0.7768 1.0310 0.0291 0.0975 0.1971 0.3199 0.4562 0.5959 -0.0052

-0.0057 0.0011 0.0085 0.0157 0.0225 0.0291 0.0068 0.0113 0.0158 0.0210 0.0268 0.0331 -0.0057

-0.0010 0.0078 0.0313 0.0540 0.0760 0.0975 0.0113 0.0314 0.0481 0.0665 0.0862 0.1069 -0.0010

0.0029 0.0260 0.0603 0.1062 0.1521 0.1971 0.0158 0.0481 0.0889 0.1292 0.1708 0.2144 0.0029

0.0053 0.0412 0.0977 0.1631 0.2423 0.3199 0.0210 0.0665 0.1292 0.2029 0.2747 0.3500 0.0053

0.0067 0.0540 0.1328 0.2305 0.3382 0.4562 0.0268 0.0862 0.1708 0.2747 0.3894 0.5060 0.0067

0.0071 0.0650 0.1649 0.2935 0.4412 0.5959 0.0331 0.1069 0.2144 0.3500 0.5060 0.6764 0.0071

0.0129 0.0063 0.0010 -0.0022 -0.0041 -0.0052 -0.0057 -0.0010 0.0029 0.0053 0.0067 0.0071 0.0233

0.0063 0.0139 0.0047 0.0037 0.0070 0.0127 0.0011 0.0078 0.0260 0.0412 0.0540 0.0650 0.0316

0.0010 0.0047 0.0178 0.0245 0.0390 0.0588 0.0085 0.0313 0.0603 0.0977 0.1328 0.1649 0.0330

-0.0022 0.0037 0.0245 0.0620 0.0896 0.1276 0.0157 0.0540 0.1062 0.1631 0.2305 0.2935 0.0337

-0.0041 0.0070 0.0390 0.0896 0.1555 0.2146 0.0225 0.0760 0.1521 0.2423 0.3382 0.4412 0.0343

-0.0052 0.0127 0.0588 0.1276 0.2146 0.3123 0.0291 0.0975 0.1971 0.3199 0.4562 0.5959 0.0350

0.0063 0.0010 -0.0022 -0.0041 -0.0052

0.0139 0.0047 0.0037 0.0070 0.0127

0.0047 0.0178 0.0245 0.0390 0.0588

0.0037 0.0245 0.0620 0.0896 0.1276

0.0070 0.0390 0.0896 0.1555 0.2146

0.0127 0.0588 0.1276 0.2146 0.3123

0.0011 0.0085 0.0157 0.0225 0.0291

0.0078 0.0313 0.0540 0.0760 0.0975

0.0260 0.0603 0.1062 0.1521 0.1971

0.0412 0.0977 0.1631 0.2423 0.3199

0.0540 0.1328 0.2305 0.3382 0.4562

0.0650 0.1649 0.2935 0.4412 0.5959

0.0316 0.0330 0.0337 0.0343 0.0350

0.0846 0.1061 0.1225 0.1368 0.1505

0.1061 0.1867 0.2410 0.2835 0.3237

0.1225 0.2410 0.3666 0.4548 0.5369

0.1368 0.2835 0.4548 0.6280 0.7768

0.1505 0.3237 0.5369 0.7768 1.0310

Next, we calculate the controllability measures given by equation (4.10) and construct the

matrix cos £ for the ¯rst ¯ve modes as

0.036 0.016 0.026 0.009 0.010 0.001 0.580 0.262 0.426 0.151 0.161 0.010 0.036 0.016 0.026

0.191 0.088 0.149 0.055 0.061 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.191 0.088 0.149

0.014 0.001 0.010 0.008 0.011 0.001 0.236 0.019 0.173 0.133 0.200 0.015 0.014 0.001 0.010

0.004 0.002 0.006 0.001 0.007 0.001 0.072 0.039 0.123 0.020 0.152 0.017 0.004 0.002 0.006

0.054 0.006 0.036 0.029 0.046 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.054 0.006 0.036

0.009 0.010 0.001

0.055 0.061 0.004

0.008 0.011 0.001

0.001 0.007 0.001

0.029 0.046 0.004



Osama N. Ashour Chapter 4. Optimal Placement of Actuators 69

From this matrix, we can identify the optimum actuator location for each mode. Table 4.2

lists these locations for the ¯rst ¯ve modes. We note that the controllability of the second

Table 4.2: Locations of maximum controllability

Mode Number Input Number
1 7
2 1 or 13
3 7
4 11
5 1 or 13

and ¯fth modes from inputs 7 through 12 is zero. This is expected because the actuators

are placed on a nodal line in these cases. Also, these modes are antisymmetric and therefore

there are two optimum locations. For the other three symmetric modes (1,3, and 4), the

optimum locations fall on the symmetry lines.

We can extract other useful information about the system controllability from the matrix

cos £. For example, denoting by f an n£1 vector whose elements are the norms of the rows

of cos £, we obtain information about the global controllability of each mode from all of the

inputs. Calculating f for our example, we obtain

f =

2

6666
4

0:800
0:383
0:381
0:214
0:121

3

7777
5

Hence, mode 1 is the most controllable. Modes 2 and 3 have almost the same global con-

trollability, while mode 5 is the least controllable.

Furthermore, denoting by hT a 1 £ n vector whose elements are the norms of the columns
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of cos £, we obtain information about the global controllability of all modes from one input.

Calculating h for our example, we obtain

h1 = 0:202 h2 = 0:089 h3 = 0:156 h4 = 0:063 h5 = 0:078 h6 = 0:006

h7 = 0:630 h8 = 0:256 h9 = 0:475 h10 = 0:202 h11 = 0:298 h12 = 0:024

h13 = 0:202 h14 = 0:089 h15 = 0:156 h16 = 0:063 h17 = 0:078 h18 = 0:006

From this, we deduce that the input at point number 7 gives the highest global controllability

for the ¯rst ¯ve modes. Locations 6 and 18, which correspond to the lower and upper right

corners of the plate, respectively, have the lowest measure of global controllability. Hence,

these locations should be avoided.



Chapter 5

Experimental Setup and Results

We present experimental tests conducted to verify the e®ectiveness of the control strategy.

Furthermore, a parametric study is conducted to relate the e®ect of changing the controller

parameters on the response of the plate. Here, we are concerned with the e®ect of the

nonlinear gains: the feedback gain ® and the control gain °. Other signi¯cant parameters

include the controller damping coe±cient and initial conditions. A frequency-response curve

is constructed to illustrate the broadband e®ectiveness of the controller. In addition, a force-

response curve is generated to verify the saturation phenomenon for systems with quadratic

nonlinearities and a two-to-one internal resonance. Three sets of experiments are presented.

The ¯rst one relates to the control of vibrations of the ¯rst mode (¯rst bending mode). The

second set relates to the control of the second mode (¯rst torsion mode). Finally, in the

third set of experiments, we present the results for simultaneously controlling the ¯rst two

modes of the plate.

71
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5.1 Setup and Procedure

We perform the tests on an aluminum plate with dimensions 9:0000 £ 7:5000 £ 0:0300. A

¯xture is used to hold stationary one edge of the plate. The plate is attached to a 100-lb

permanent magnet shaker. The shaker moves in the vertical direction and is driven by a

power ampli¯er and a signal generator, which drives the shaker at the desired frequency

and amplitude. Two patches of piezoelectric ceramics (Lead-Zicronate-Titanate) are used

as actuators. The dimensions of the PZT patches are 1:300 £ 0:7500 £ 0:007500. The PZTs are

activated by a piezoampli¯er, which ampli¯es the input voltage signal by a factor of 20 with

a maximum of 10 V input limit. The actuators are attached to the cantilever plate away

from the nodal lines. This is so because controllability is zero at these lines. The results of

Chapter 4 for optimizing the locations of the actuators are utilized in these experiments. For

the ¯rst-mode experiments, the nodal line is clearly identi¯ed at the root of the plate. For

the second-mode vibrations, we also use a stroboscope to experimentally identify the nodal

line. The results agree with the ¯nite-element results using ABAQUS.

A strain gage is attached very close to the ¯xed edge of the plate at a distance y = 2:1600

from the lower left corner. The strain gage is used to measure the response of the plate

as well as to provide the controller feedback signal. Changes in the gage are measured

with a conditioning ampli¯er that uses a quarter bridge con¯guration. The output voltage

signal from the strain gage conditioning ampli¯er is converted into strain using the following
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relation:

¹² =
4Vout

10£ 1000£ 2:12£ 10¡6 (5.1)

where the bridge excitation is 10, the ampli¯er gain is 1000, the gage factor is 2.12, and

¹² is the strain in microns. In the following experiments, the signal from the strain gage is

ampli¯ed by a factor of 20 dB after ¯ltering. This is done in order to increase the signal-to-

noise ratio. The base excitation of the shaker is monitored by an accelerometer attached to

the ¯xture clamping the edge of the plate.

The experimental setup is shown in Fig. 5.1. The strain gage signal from the conditioning

ampli¯er is fed to the controller circuit, and the output control signal from the controller

circuit is ¯ltered, ampli¯ed, and sent to the actuators. The response of the plate is monitored

by an oscilloscope and a four-channel HP signal analyzer. A data acquisition card and a PC

are used to collect the data for plotting.

To measure the natural frequencies of the plate, we ¯rst conduct an FRF analysis, where a

random base excitation is used. This provided a rough estimate of the natural frequencies. A

¯ne-tuning process is then conducted to accurately locate the natural frequencies. The strain

gage signal is then fed to the signal analyzer, and the peaks are identi¯ed to be the natural

frequency locations. For the tested plate, the ¯rst two natural frequencies are measured to

be at 17.9 Hz and 36.8 Hz, respectively.
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Figure 5.1: The experimental setup.

5.2 Controller Circuit

As a controller, we use a digital control system, which utilizes the modeling software SIMULINK

and the dSPACE DS1103 controller installed in a PC. First, we use the SIMULINK soft-

ware to build the control block diagram. This SIMULINK model is then used to generate

a C-code model by the dSAPCE Real-Time Workshop. The dSPACE Real-Time Interface

then connects this code with the dSPACE hardware for simulation. The block diagram of

the controller is also shown in Fig. 5.1. The ¯lter used is a Butterworth IIR low-pass ¯lter.
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The controller frequency is set at one-half the value of the plate natural frequency to exploit

the saturation phenomenon.

5.3 Results

5.3.1 Control of the First Mode

First, we examine the results for controlling the ¯rst mode of vibration. We subject the plate

to a base excitation of 11.95 mg at the ¯rst natural frequency f = 17:9 Hz. In Fig. 5.2, the

plate response is shown when the controller was switched on at t ¼ 5 sec. The controller is

then left on until t ¼ 40 sec. At that time, the controller is switched o® and the uncontrolled

plate response is restored. The nonlinear gains in this case are set at ® = 0:05 and ° = 1.

We give the controller an initial displacement of 0.1 V and a zero initial velocity. In Fig.

5.3, the controller is activated simultaneously with the shaker. The saturated steady-state

response is obtained at t ¼ 40 sec. It is evident that the control method is very e®ective in

reducing the vibration level very quickly and eventually eliminating it. The plate response

is reduced by 31.7 dB.

To study the e®ect of varying the nonlinear feedback gain ®, we set the gain level at 0.01,

0.05, and 0.12. The results are shown in Fig. 5.4. All other controller conditions (control

gain and initial conditions) are the same as those in Fig. 5.2. Clearly, increasing ® reduced

the steady-state controlled response. In addition, it reduced the time needed to reach steady

state and, hence, the response could be reduced signi¯cantly within a shorter time. However,

the transient response is oscillatory. These results agree with our ¯ndings using perturbation
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Figure 5.2: Control of the ¯rst mode of the plate.
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Figure 5.3: The plate response when ® = 0:1 and ° = 1.

methods, as discussed in Chapter 2, where we show that the response is proportional to »=®.

Using perturbation methods, it is also shown that beyond a critical value of ®, the transient

response becomes oscillatory, indicating a stable focus solution. These results also agree with

the numerical results using ABAQUS discussed in Chapter 3.

Next, we study the e®ect of varying the control gain °. The values of ° are set at 1.0, 0.5, and
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Figure 5.4: E®ect of varying the nonlinear feedback gain ®: (a) ® = 0:01, (b) ® = 0:05, and
(c) ® = 0:12.

0.25. All other conditions correspond to those of Fig. 5.2. As the control signal changes, the

steady-state plate response is almost unchanged. However, the controller response is seen to

be inversely proportional to the control gain, as is evident from Fig. 5.5. Again, this agrees

with the analytical ¯ndings using perturbation methods, where the controller response is
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shown to be inversely proportional to °.
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Figure 5.5: E®ect of varying the nonlinear control gain °: (a) ° = 1:0, (b) ° = 0:5, and (c)
° = 0:25.

The e®ect of the controller initial conditions is studied next. In Fig. 5.6, we vary the

initial controller displacement. Four values are chosen at 0.5, 1.0, 1.6, and 2.0 V . The

gains are set at ® = 0:03 and ° = 1. The initial controller velocity is set at zero. From
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the ¯gure, we can see that there is an optimum initial displacement at which the transient

response is minimized. The initial displacement value of 1.6 V is found to be optimum in this

regard. Beyond this value, the response is even ampli¯ed during the transient phase. In this

case, energy is added to the system detrimentally. In Fig. 5.7, we set the initial controller

displacement at 1.6 V and vary the initial controller velocity to 0.5 and 1.0 V /sec. Clearly,

a non-zero initial velocity detrimentally a®ects the behavior by amplifying the transient

response and delaying the steady-state solution.

We conclude the parametric study by investigating the e®ect of changing the controller

damping coe±cient ». Three values of the damping coe±cient are chosen: » = 0:01; 0:05;

and 0:1. The results are shown in Fig. 5.8. Clearly, increasing the value of » reduces the

control e®ect. The steady-state amplitude increases by increasing the damping coe±cient.

Again, this agrees with the perturbation solution, where the response is proportional to »=®.

Finally, we conclude the ¯rst set of experiments by discussing the results for the frequency-

response and force-response curves. In Fig. 5.9, frequency-response curves are shown for

both the open-loop (controller o®) and closed-loop (controller on) response. Clearly, the

control strategy is e®ective for a wide range of frequencies around the resonance frequency.

While the open-loop response has a peak at fn ¼ 17:9 Hz, the closed-loop response remains

virtually constant at a negligible value. Force-response curves are shown in Fig. 5.10. Here,

the saturation phenomenon is clearly manifested. The open-loop response is almost linear

as expected, while the closed-loop response saturates at F ¼ 7:3 mg. Beyond this value,

the response is independent of the forcing amplitude. All of the energy added to the system
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Figure 5.6: E®ect of varying the initial controller displacement: (a) v = 0:5V , (b) v = 1:0V ,
(c) v = 1:6V , and (d) v = 2:0V .

is e®ectively channeled by the controller to the actuator, which is used to suppress the

vibration.



Osama N. Ashour Chapter 5. Experimental Setup and Results 81

0 10 20 30 40

Time (sec)

-4

-2

0

2

4

P
la

te
R

e
s
p

o
n

s
e

(V
)

(a)

0 10 20 30 40

Time (sec)

-4

-2

0

2

4

P
la
te
 R
e
s
p
o
n
s
e
 (
V
)

(b)

Figure 5.7: E®ect of varying the initial controller velocity: (a) _v = 0:5V /sec and (b) _v =
1:0V /sec.

5.3.1.1 Comparison with the Numerical Results

To compare our experimental and numerical results, we choose the case ® = 0:075, ° = 1:0,

and F = 15 mg. In Fig. 5.11, we plot the steady-state experimental results together with

the numerical response obtained from ABAQUS. We remove the DC o®set in the numerical

results and integrate the results for sixty seconds to obtain the steady-state response. As

evident from the ¯gure, the agreement is very good.

5.3.2 Control of the Second Mode

In the second set of experiments, we study the e®ectiveness of the control strategy in con-

trolling the ¯rst torsional mode. The plate is subjected to an excitation amplitude of 1:12V .

In Fig. 5.12, we show both the plate response and the controller output for the gain values
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Figure 5.8: E®ect of varying the controller damping coe±cient »: (a) » = 0:01, (b) » = 0:05,
and (c) » = 0:1.

of ® = 0:03 and ° = 0:1. The initial conditions are set at a displacement of 0.3 V and a zero

velocity. The plate response is reduced by 45 dB at steady state.

In Fig. 5.13, we study the e®ect of varying the feedback gain ®. To this end, we set the
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Figure 5.9: Frequency-response curves: (ooo) controller o® and (+++) controller on.
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Figure 5.10: Force-response curves: (ooo) controller o® and (+++) controller on.

value of ® at 0.04, 0.07, 0.1, 0.11, 0.12, and 0.15. For ® < 0:1, increasing the gain has an

advantageous e®ect on the control e®ort. While the steady-state response is almost constant

at a negligible value (-46 dB), the time to reach steady state is signi¯cantly reduced from

around 100 sec when ® = 0:04 to around 50 sec when ® = 0:1. For values of ® larger than

0.1, increasing the gain seems to have a detrimental e®ect on the result. Energy is added to

the system and the response ampli¯ed. This agrees with the numerical results of Chapter 3.
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Figure 5.11: Plate response when ® = 0:075, ° = 1:0, and F = 11:9 mg: (+++) experimen-
tal results and (ooo) numerical results.
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Figure 5.12: Control of the second mode of the plate: (a) plate response and (b) controller
response.

Next, we study the e®ect of changing the initial displacement of the controller. The three

values of initial displacement of 0.03, 3.0, and 5.0 are chosen. Clearly, the time to reach
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Figure 5.13: E®ect of varying the feedback gain ®: (a) ® = 0:04, (b) ® = 0:07, (c) ® = 0:1,
(d) ® = 0:11, (e) ® = 0:12, and (f) ® = 0:15.
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steady state and the rate of decay are functions of the initial displacement, as shown in Fig.

5.14. The transient time is reduced from around 60 sec for the initial displacement 0.03 V

to around 30 sec for the initial displacement 3.0 V . Also, the rate of decay for the 0.03 V

case is more gradual than in the ¯rst case. For larger values, the transient time is greater.
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Figure 5.14: E®ect of varying the initial displacement of the controller: (a) v = 0:03V , (b)
v = 3:0V , and (c) v = 5:0V .
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Finally, frequency-response and force-response curves are shown for the second-mode control.

In Fig. 5.15, frequency-response curves are shown for both the open-loop and closed-loop

responses. The open-loop response follows the familiar anti-resonance behavior. However,

the closed loop response is constant at a negligible value over a wide range of frequencies

around the resonance frequency (fn = 36:8 Hz). In Fig. 5.16, force-response curves are

shown. Again, the open-loop response is almost linear as expected. The closed-loop response

saturates beyond F ¼ 46 mg.
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Figure 5.15: Frequency-response curves for the second mode: (ooo) controller o® and (+++)
controller on.

5.3.3 Simultaneous Control of the First Two Modes

In this set of experiments, we simultaneously excite the ¯rst two modes of the plate: the

¯rst bending mode and the ¯rst torsional mode. The excitation level is 5.2 mg for the ¯rst

mode; while for the second mode, the excitation level is 958 mg. The natural frequencies are

identi¯ed at fn = 17:9 Hz for the ¯rst mode and fn = 36:8 Hz for the second mode. Here
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Figure 5.16: Force-response curves for the second mode: (ooo) controller o® and (+++)
controller on.

we use two controllers, one for each mode. For the actuators and sensors, a pair of PZT

actuators per mode and a single strain gauge is used. Figure 5.17(a) shows the response of

the plate when activating the two controllers, while Fig. 5.17(b) shows the output of the two

controllers together. The feedback gain ® is 0.015 and the control gain ° is 1. As clear from

the ¯gure, our control strategy is as e®ective for two-mode control as it is for single-mode

control. Each controller is coupled to the mode that is internally resonant with it. The

output of the two controllers shows that the steady-state response is attained at t ¼ 100 sec.

About a 30 dB reduction in the amplitude is noted for this case.

Next, we investigate the e®ect of changing the feedback gain ® on the response as we did

before. Figures 5.18(a), (b), and (c) show the plate response for the values of ® of 0.01,

0.02, and 0.05, respectively. Here, we note the same trend as for the single-mode control;

namely, the steady-state response is attained earlier for higher values of ® and the steady-

state amplitude decreases with increasing values of ®. Again, this validates the perturbation
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Figure 5.17: Simultaneous control of the ¯rst two modes of the plate: (a) plate response and
(b) response of the two controllers.

solution presented in Chapter 2. In Fig. 5.19(a), we show the FFT results for the plate

with no control, while the FFT results for the plate response after control is shown in Fig.

5.19(b).

To further examine the robustness of the control strategy, we consider the case in which a

noise signal is present. Here, we add a third harmonic signal at a frequency of f = 18:9 Hz.

The objective is to validate the ¯ltering process, by which each controller is only coupled

with the mode that is internally resonant with it. Since no controller is added to suppress

this noise signal, we expect the response due to this signal to stay unchanged after activating

the controllers. In Fig. 5.20(a), we show the power spectrum of the plate response before

control. The power spectrum of the plate response after control is shown in Fig. 5.20(b). The

activation of the controllers results in about a 45 dB reduction for the two modes they are
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Figure 5.18: E®ect of varying the feedback gain ®: (a) ® = 0:01, (b) ® = 0:02, and (c)
® = 0:05.

coupled with. However, the response due to the noise signal remains unchanged at around

-20 dB. This clearly validates the ¯ltering process and stresses the need for a controller for

each excited mode.
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Figure 5.19: FFT results for the plate response: (a) no control and (b) with control.
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Figure 5.20: Power spectrum for the plate response with a noise signal: (a) no control and
(b) with control.



Chapter 6

Adaptive Control

Adaptive control makes it possible for the system (or structure) to adapt to a variable envi-

ronment in the interest of continuously optimizing its performance. For our control strategy,

tuning the controller frequency to one-half that of the system and maintaining this tuned

frequency in the presence of external disturbances is desirable. As we mentioned earlier, in

nonlinear problems, the frequency of the system changes with the amplitude. So, a continu-

ous tuning mechanism is needed to keep the controller's frequency tuned as the amplitude of

the vibrating structure changes. Furthermore, any real-life control strategy should be able

to deal with varying external conditions, which could change the system frequency. Also, the

control strategy should be able to suppress the vibrations due to unpredictable inputs with

unknown frequencies. Hence, we seek to e±ciently enhance our control strategy to make

it an adaptive one. Our goal is to maintain the two-to-one internal-resonance condition by

automatically measuring the system frequency and feeding it back to the controller.

92
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6.1 Frequency-Measurement Technique

As we discussed earlier in the introduction and in the analysis of the system's stability,

mistuning between the system and the controller frequencies could result in harmonic insta-

bilities and even chaotic responses. Hence, our frequency-measurement mechanism should

provide a high level of accuracy. Furthermore, the measuring mechanism should not be

susceptible to noise. It should be able to work at a wide range of system frequencies.

To measure the system's frequency, we propose to use a two-input NAND gate with Schmitt-

trigger action on both inputs. The gate switches at di®erent points for positive- and negative-

going signals. This integrated chip (IC) is used to convert real-time analog signals into dig-

ital TTL- (transistor-transistor-logic) or CMOS- (complementary-metal-oxide-silicon) level

square waves. This IC has a high noise immunity and requires only one positive DC supply

voltage. The output of a NAND logic gate will be in the low level as long as both inputs are

in the high level. If one or both inputs snap to the low level, then the output will switch to

the high level. In our case, one of the inputs is connected to the power supply and, hence,

is always in the high position. The output of the gate will stay in the high level until the

voltage on the other input crosses the Schmitt-trigger threshold voltage, which is referred

to as the positive voltage (VP ). In this case, the output of the gate snaps to the low level.

It stays in this low level until the input voltage crosses the negative-going Schmitt-trigger

threshold voltage, which is referred to as the negative voltage (VN). The di®erence between

VP and VN is referred to as the hysteresis voltage (Vhys) and is typically around 0:9V for

this IC. Clearly, for our application, we need a low hysteresis value to be able to measure the



Osama N. Ashour Chapter 6. Adaptive Control 94

frequency of low-amplitude signals. Figure 6.1 shows the characteristics of NAND Schmitt-

trigger gates and the de¯nitions of VP , VN , and Vhys. In the ¯gure, VH and VL refer to

the high and low output levels, respectively, which also correspond to the DC power supply

voltage and ground levels. The input analog signal has to fall between VH and VL. For the

IC used in this work, VH can be as high as 20 V .

Using this method, we were able to avoid using an ADC (analog to digital converter) card,

in which case, small signal-to-noise ratios degrade the accuracy of the measurement tech-

nique. Hence, no ¯ne tuning or amplitude search algorithms are needed as was reported

by Oueini and Nayfeh (2000). Furthermore, our method makes it possible to incorporate

the measurement technique in the modeling software SIMULINK and the real-time digital

signal processing software dSPACE. Once the sine-wave analog signal has been converted

into a TTL/CMOS-level square wave, the frequency can be easily measured using a simple

algorithm that measures the time between two consecutive high-to-low or low-to-high snaps.

The accuracy of this measuring technique is very high (5 mHz) and, using appropriate DC

o®set and gain, we can measure signals whose amplitudes are as low as 1 mV .

6.2 Adaptive Control of a Beam with a Terfenol-D Ac-

tuator

To test our frequency-measurement technique, we propose to use a Terfenol-D actuator to

control the vibrations of a °exible beam. In addition, this will further examine the use of

our active-control strategy with actuators other than piezoelectric transducers. Terfenol-D
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Figure 6.1: Characteristics of a NAND Schmitt-trigger gate.

is a magnetostrictive metal alloy that has a nonlinear constitutive relationship between the

magnetic ¯eld and the strain. Unlike other reported applications, the Terfenol-D actuator

used in this experiment is not biased. In other words, no permanent magnet is incorporated

into the assembly of the actuator such that the small linear range is utilized. In the absence

of a permanent magnet, it can be shown that the nonlinear strain-¯eld relationship is pre-

dominantly quadratic. Hence, the saturation phenomenon can be utilized without the need

for the controller to introduce the quadratic coupling.

Terfenol-D actuators are typically used for accurate positioning of mechanical loads and

motion control industries. They are known to attain the highest displacement of any solid
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state actuator (Etrema Products, Inc.). They provide a high force with a microsecond re-

sponse time. They function over a wide range of temperatures with a low-voltage operation.

Terfenol-D alloys expand when placed in a magnetic ¯eld aligned with its magnetostrictive

axis. This expansion is positive in either positive or negative magnetic ¯eld directions. Figure

6.2 shows a typical Terfenol-D actuator assembly. The generated magnetic ¯eld is propor-

tional to the input current, which can be DC (for static applications) or AC (for dynamic

applications). The used actuator is rated at a current of 3.2 A rms and a temperature of

100±C. Since no magnetic bias is introduced, the actuator does not operate at the frequency

of the input current.

Figure 6.2: A typical assembly of a Terfenol-D actuator.

Figure 6.3 shows the displacement-current relationship for the used actuator as provided by

the manufacturer. As clear from this ¯gure, this relationship is predominantly quadratic. It

can now be appreciated that unbiasing this actuator makes it operable over a much wider

range of applied magnetic ¯elds. The ¯gure also shows that the e®ect of hysteresis should be
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included when modeling the mechanical behavior of this actuator. A model was developed

by Pratt, Oueini, and Nayfeh (1999), which neither accounts for magnetic hysteresis nor

includes eddy current losses. Their model results in a quadratic force-current relationship.

Figure 6.3: Displacement-current relationship for the used Terfenol-D actuator.

6.2.1 Experimental Setup

In this work, we control the lateral vibrations of a cantilever steel beam using a Terfenol-D

actuator. The beam is externally excited by an electromagnetic shaker attached to the beam

by a stinger. The actuator is attached near the root of the cantilever beam. The control

technique as well as the system con¯guration are shown in Fig. 6.4. The setup consists of a

signal generator, the shaker and its driving power ampli¯er, and an accelerometer mounted

at the tip of the beam. The signal generator is used to drive the shaker at the desired

amplitude and frequency. The accelerometer signal is then fed to the controller. The output
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of the controller is ampli¯ed and sent to the actuator. The outputs of both the beam and

the controller are ¯rst ¯ltered and then monitored by an oscilloscope and a signal analyzer.

The ¯lter used is a Butterworth IIR low-pass ¯lter. An A/D card and a PC are used to

collect the data.

The beam measurements are 53.66 cm £ 5.08 cm £ 0.43 cm. The shaker is attached at a

distance of 18.57 cm from the root, while the actuator is attached at a distance of 3.02 cm

from the root. A 50-lb shaker is used with an excitation level of 35.8 mg. The ¯rst natural

frequency is found as fn = 11:875 Hz using a crude FRF analysis together with a ¯ne-tuned

frequency sweep.

The control technique is similar to the one used for the PZT actuator. We use a digital

control system, which utilizes the modeling software SIMULINK and the dSPACE DS1103

controller installed in a PC. First, we use the SIMULINK software to build the control block

diagram. This SIMULINK model is then used to generate a C-code model by the dSAPCE

Real-Time Workshop. The dSPACE Real-Time Interface then connects this code with the

dSPACE hardware for simulation. The block diagram of the controller is also shown in Fig.

6.4. Adaptive control is achieved by continuously measuring the frequency of the beam using

the frequency-measurement technique discussed earlier. The controller frequency is set at

one-half that of the measured frequency to exploit the saturation phenomenon. The other

di®erence from the PZT-actuated case is that the output of the controller is not squared

in this experiment. Instead, we let the actuator do the squaring because its behavior is

predominantly quadratic.
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Figure 6.4: Experimental setup and control technique.

6.2.2 Results

We ¯rst conduct an experiment to verify the quadratic behavior of the actuator. To this

end, we drive the actuator at a frequency of 13.31 Hz. The beam length in this case is

34.61 cm. The ¯rst natural frequency of the beam for this case is fn=26.62 Hz. Hence, the

actuator's driving frequency is one-half the natural frequency of the beam. Figure 6.5 shows

the power spectrum of the output of the accelerometer. A superharmonic resonance of order

2 is observed, which indicates a quadratic nonlinearity. The even harmonics are clearly more

dominant than the odd ones, which also indicates a predominant quadratic behavior.

Next, we drive the shaker at the natural frequency of the beam and employ the controller.
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Figure 6.5: Power spectrum of the output of the beam when excited at f = 13:31 Hz.

The output of the controller is fed to the actuator. The result is shown in Fig. 6.6 for a

feedback gain ® = 0:05 and a control gain ° = 3. The controller is switched on simultaneously

with the shaker. The output is collected for a long time (120 sec) to make sure that steady-

state response is attained. Figure 6.6(a) shows the beam response, while Fig. 6.6(b) shows

the controller output. Figure 6.6(a) shows a great reduction in the beam response. About

a 30 dB reduction is obtained for this case. The steady-state response is attained at t ¼ 60

sec. The controller response (Fig. 6.6(b)) also exhibits the saturation phenomenon. This

result is further validated by computing the FFT of the output of the beam before and after

control. The result is shown in Fig. 6.7, where Fig. 6.7(a) shows the result with control and

Fig. 6.7(b) shows the result without control. The second small peak in Fig. 6.7(a) is due to

the actuator superharmonic resonance of order 4.

Pratt, Oueini, and Nayfeh (1999) attempted to conduct the same experiment. However, their
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Figure 6.6: Control of the ¯rst mode of the beam when fn = 11:875 Hz: (a) acceleration at
the tip of the beam and (b) controller response.

0 20 40 60 80 100

Frequency (Hz)

0.001

0.01

0.1

1

(a)

0 20 40 60 80 100

Frequency (Hz)

0.001

0.01

0.1

1

(b)

Figure 6.7: FFT of the beam acceleration at the tip: (a) with control and (b) without
control.



Osama N. Ashour Chapter 6. Adaptive Control 102

results showed that the system did not reach steady state. The controller response continued

to grow with time and, hence, the saturation phenomenon was not exhibited. They suspected

that the saturated response was unstable via a Hopf bifurcation. As we discussed in Chapter

2 and was also demonstrated by more than one researcher (for example, Balachandran and

Nayfeh, 1991), a Hopf bifurcation results when mistuning occurs between the frequencies

of the controller and the plant. To validate the assumption that mistuning was responsible

for the anomaly in the experiments of Pratt, Oueini, and Nayfeh, we repeat the experiment

without the frequency-measurement mechanism. Here, we ¯x the controller frequency at

one-half of 11.875 Hz and bypass the frequency-measurement block. The result is shown in

Fig. 6.8 for the beam acceleration at the tip (6.8(a)) and the controller response (6.8(b)).

As clear from the ¯gure, saturation is not attained in this case. The controller response

continues to grow, and the beam response goes in and out of tune. This result clearly shows

the signi¯cance of adding the frequency-measurement mechanism. This is especially the case

in nonlinear problems, where the frequency of oscillations depends on the amplitude.
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Figure 6.8: Nonadaptive control of the ¯rst mode of the beam: (a) acceleration at the tip of
the beam and (b) controller response.



Chapter 7

Concluding Remarks and

Recommendations

7.1 Summary

We consider experimental and numerical nonlinear control of two-dimensional systems. As

a case study, we consider the lateral vibrations of plates. In this regard, the saturation

phenomenon is utilized to suppress the high-amplitude bending and torsional vibrational

modes of rectangular cantilever plates. A second-order electronic circuit (controller) is cou-

pled to the plant through appropriate sensors and actuators. Furthermore, a two-to-one

internal-resonance condition is maintained between the plant and the controller. In this

case, energy is transferred completely from one part of the combined system to the other.

When the plant is forced at resonance, this energy-transfer mechanism limits the response

of the plant. Both experimental and numerical results are obtained and compared to each

other. This comparison is excellent. Also, an e±cient frequency-tuning mechanism such that

the two-to-one internal resonance condition is maintained is developed. Hence, the control
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strategy is made adaptive and robust. It can now be applied to nonlinear problems, where

the frequency of the system changes as its amplitude changes. In addition, an optimization

study is conducted to locate the optimum location of the actuators in order to maximize the

control e®ort.

7.1.1 Analytical Considerations

We derive the equation of motion for a cantilever rectangular plate excited by a shaker and

acted upon by an actuator using the extended Hamilton principle. As an actuator, we use

a pair of PZT ceramics. An expression for the external bending moments induced by the

actuator is derived for the case of perfect bonding. The equation of motion for the vibrating

plate is solved analytically using perturbation methods for the case of external forcing near

resonance. In this regard, the method of multiple scales is applied to the partial-di®erential

equation of motion and associated boundary conditions. The analytical solution for the

response of the plate shows the amplitude to be independent of the forcing amplitude above

a critical value. This is in contrast with the linear solution without control, where the

amplitude of oscillations is directly proportional to the forcing amplitude. The saturated

response is only a function of the controller damping coe±cient and the feedback gain.

On the other hand, the controller response is a function of the nonlinear coupling gains, the

damping coe±cients for the plate and the controller, the detuning parameter, and the forcing

amplitude. Hence, as we increase the forcing amplitude, the added energy is channeled to

the controller, while the plant response stays unchanged. The saturated response is stable

as long as the exciting frequency is tuned to twice the controller frequency.
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7.1.2 Numerical Results

We present two numerical methods to solve for the plate and the controller responses. In the

¯rst one, the plate, the actuator, and the controller are modeled using a ¯nite-element pack-

age and the mathematical model is fully integrated over time. The ¯nite-element package

is modi¯ed to allow for feedback control using the saturation phenomenon. In the second

method, the natural modes and frequencies of the plate are obtained using the ¯nite-element

package. These modes are then used in modal analysis to solve for the plate and controller

responses. The numerical results obtained by the ¯rst method agree very well with the

analytical perturbation solution and with the experimental results. The frequency-response

curves obtained by the second method reveal the existence of a second resonance peak away

from the original uncontrolled resonance. This new resonance results from the autoparamet-

ric coupling between the controller and the plant.

7.1.3 Optimal Placement of Actuators

We conduct a numerical study to locate the optimum actuator locations on the structure to

be controlled. Our objective is to minimize the control e®ort and maximize the controllability

of the system. To this end, we present two methods. The ¯rst is based on maximizing the

control gain factor, which was derived during the analytical study. This method is speci¯c

to the case in which the actuator extends over a ¯nite area on the structure, such as the case

of a PZT actuator. The second method is more general and is based on a global measure of

controllability for ¯rst-order linear systems. Both methods give the locations of maximum



Osama N. Ashour Chapter 7. Concluding Remarks 107

controllability measures for a certain mode of vibration.

7.1.4 Experimental Work

We design an experimental setup made of sensors, actuators, and electronic devices to verify

the e®ectiveness of the control strategy. A strain gage is used as a sensor, while a PZT

ceramic is used as an actuator. As a controller, we use a digital control system, which

utilizes the modeling software SIMULINK and the dSPACE controller board. The controller

frequency is set at one-half that of the plate to exploit the saturation phenomenon.

First, we consider suppressing the ¯rst bending mode of the plate. The control strategy

is found to be very e±cient in virtually eliminating the high-amplitude vibrations caused

by the shaker. A parametric study is also conducted to relate the e®ect of changing the

nonlinear gains, controller damping coe±cient, and initial conditions. Frequency-response

curves are constructed to show that the controller is broadband, while force-response curves

are generated to verify the saturation phenomenon. The results of the parametric study

con¯rm the analytical perturbation solution for both the plate and the controller responses.

Furthermore, the experimentally obtained frequency-response curves verify the broadband

e®ectiveness of the control strategy. Also, the amplitude of the plate saturates at a constant

value after a critical forcing level, in agreement with the analytical solution. A similar set

of experiments is also conducted for controlling the ¯rst torsional mode of the plate. Again,

the control strategy is very e®ective in suppressing this mode, and the parametric study

con¯rms the perturbation solution.



Osama N. Ashour Chapter 7. Concluding Remarks 108

In the third set of experiments, the ¯rst two modes of the plate are suppressed simultaneously.

In this regard, two controllers are used, one for each mode. In this case, the control strategy

is as e®ective as it is for single-mode control. The results also con¯rm the ¯ltering process of

the control strategy, in which each controller is only coupled with the mode that is internally

resonant with it.

7.1.5 Adaptive Control

We tackle the problem of maintaining the two-to-one internal-resonance condition by contin-

uously tuning the controller frequency to one-half that of the plate. Hence, the control strat-

egy is made adaptive. This is especially crucial in nonlinear problems, where the frequency

of the system changes with the amplitude. In this work, we maintain the internal-resonance

condition by automatically measuring the system frequency and feeding it back to the con-

troller. The frequency-measurement mechanism consists of a logic gate with Schmitt-trigger

action on the input. This mechanism is very accurate and immune to noise disturbances. To

test this mechanism, we use it in a problem for which nonadaptive control does not work.

Here, we use a Terfenol-D actuator to control the vibrations of a °exible beam. This ac-

tuator is known to have a nonlinear strain-¯eld relationship, with a predominant quadratic

behavior. The results show that the frequency-measurement technique is very e±cient. The

response of the beam is greatly reduced and saturated at a small value.
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7.2 Recommendations for Future Work

The work presented in this Dissertation can be expanded to include the following tasks:

² The proposed control strategy needs to be applied to other two-dimensional systems,

such as shells. Also, it needs to be tested on real-life structures, such as airplane wings,

helicopter blades, automotive applications, manufacturing processes, motion control,

and measurement systems.

² The developed numerical method needs to be tested in simulating the controlled re-

sponse of real-life complicated structures.

² The current work provides a proof of concept for applying the control strategy in

nonlinear problems. More experimental work needs to be conducted to verify the

applicability of this control strategy to nonlinear problems. In this regard, we propose

applying it to systems with strong nonlinearities, such as square cantilever beams,

which possess a one-to-one internal resonance. The frequency-measurement mechanism

needs to be tested in such circumstances to test its robustness and reliability in strongly-

nonlinear systems.

² More analytical work needs to be conducted using perturbation methods to control

systems with cubic and quadratic nonlinearities. Here, the method of multiple scales

needs to be applied to a system of ¯rst-order equations, rather than the second-order

original system.
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² The developed numerical actuator-location optimization techniques need to be tested

experimentally. In this regard, a set of collocated actuators should be attached to the

structure. The control strategy is then applied for each actuator using the same gain

values. The results are then compared to locate the optimum location with the least

control e®ort.

² A study needs to be conducted to optimize the size and number of actuators.

² A study needs to be conducted to optimize the location, size, and number of sensors

on the structure.
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