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should be addressed, which can, unfortunately, not easily be done in

the framework suggested here.

It was also shown that the dynamical order of any fault tolerant com-

pensator for some systems even of order two might have to be consid-

erably large, due to intrinsic properties of the system.

A subject of future research is to clarify whether the same results

hold for systems in which several sensors and actuators (but not all of

either kind) can fail simultaneously.
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Nonlinear Control Synthesis by Convex Optimization

Stephen Prajna, Pablo A. Parrilo, and Anders Rantzer

Abstract—A stability criterion for nonlinear systems, recently derived by

the third author, can be viewed as a dual to Lyapunov’s second theorem.
The criterion is stated in terms of a function which can be interpreted as the
stationary density of a substance that is generated all over the state–space

and flows along the system trajectories toward the equilibrium. The new
criterion has a remarkable convexity property, which in this note is used

for controller synthesis via convex optimization. Recent numerical methods
for verification of positivity of multivariate polynomials based on sum of

squares decompositions are used.

Index Terms—Density functions, nonlinear control, semidefinite pro-
gramming relaxation, sum of squares decomposition.

I. INTRODUCTION

Lyapunov functions have long been recognized as one of the most

fundamental analytical tools for analysis and synthesis of nonlinear

control systems; see, for example, [2]–[4], [6], [7], and [9].

There has also been a strong development of computational tools

based on Lyapunov functions. Many suchmethods are based on convex

optimization and solution of matrix inequalities, exploiting the fact that

the set of Lyapunov functions for a given system is convex.

A serious obstacle in the problem of controller synthesis is however

that the joint search for a controller u(x) and a Lyapunov function

V (x) is not convex. Consider the synthesis problem for the system

_x = f(x) + g(x)u:

The set of u and V satisfying the condition

@V

@x
[f(x) + g(x)u(x)] < 0

is not convex. In fact, for some systems the set of u and V satisfying

the inequality is not even connected [14].

Given the difficulties with Lyapunov based controller synthesis, it is

most striking to find that the new convergence criterion presented in

[15] based on the so-called density function � (cf. Section II) has much

better convexity properties. Indeed, the set of (�; u�) satisfying

r � [�(f + gu)] > 0 (1)

is convex. In this note, we will exploit this fact in the computation of

stabilizing controllers. For the case of systems with polynomial or ra-

tional vector fields, the search for a candidate pair (�; u�) satisfying

the inequality (1) can be done using the methods introduced in [12]. In

particular, a recently available software SOSTOOLS [13] can be used

for this purpose.
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II. CONVERGENCE CRITERION

The main result of [15] can be stated as follows.

Theorem 1: Given the system _x(t) = f(x(t)), where

f 2 C
1(Rn;Rn) and f(0) = 0, suppose there exists a non-

negative � 2 C1(Rn n f0g;R) such that �(x)f(x)=jxj is integrable

on fx 2 Rn : jXj � 1g and

[r � (�f)](x) > 0 for almost all x: (2)

Then, for almost all initial states x(0) the trajectory x(t) exists for

t 2 [0;1) and tends to zero as t ! 1. Moreover, if the equilibrium

x = 0 is stable, then the conclusion remains valid even if � takes

negative values.

The proof is based on the following lemma, which can be viewed as

a version of Liouville’s theorem [1], [10].

Lemma 1: Let f 2 C1(D;Rn) where D � R
n is open and let

� 2 C1(D;R) be integrable. For x0 2 R
n, let �t(x0) be the solution

x(t) of _x = f(x); x(0) = x0. For a measurable subset Z , assume that

�� (Z) = f�� (x): x 2 Zg is a subset of D for all � between 0 and t.
Then

� (Z)

�(x) dx�
Z

�(z)dz =
t

0 � (Z)

[r � (�f)](x)dx d�:

Proof of Theorem 1, Second Statement: Here, it is assumed that

x = 0 is a stable equilibrium, while � may take negative values. The

proof for the other case can be found in [15].

Rather than exploiting that f 2 C
1(Rn;Rn), we will

actually prove the result under the weaker condition that

f 2 C
1(Rn n f0g;Rn) and f(x) is locally Lipschitz contin-

uous at x = 0. Given any x0 2 R
n, let �t(x0) for t � 0 be the

solution x(t) of _x(t) = f(x(t)); x(0) = x0. Assume first that � is

integrable on fx 2 Rn: jXj � 1g and jf(x)j=jxj is bounded. Then,

�t is well defined for all t. Given r > 0, define

Z =

1

l=1

fx0: j�t(x0)j > r for some t > lg: (3)

Notice that Z contains all trajectories with lim supt!1 jx(t)j > r.
The set Z , being the intersection of a countable number of open sets,

is measurable. Moreover, �t(Z) = f�t(x)jx 2 Zg is equal to Z for

every t. By stability of the equilibrium x = 0, there is a positive lower

bound � on the norm of the elements in Z , so Lemma 1 withD = fx :
jxj > �g gives

0 =
� (Z)

�(x) dx�
Z

�(z)dz

=
t

0 � (Z)

[r � (�f)](x)dx d�: (4)

By the assumption (2), this implies that Z has measure zero. Conse-

quently, lim supt!1 jx(t)j � r for almost all trajectories. As r was

chosen arbitrarily, this proves that limt!1 jx(t)j = 0 for almost all

trajectories.

When jf(x)j=jxj is unbounded, there may not exist any nonzero t
such that �t(z) is well defined for all z. We then introduce

�0(x) =
e�jxj

1 + j�(x)j2
+
jf(x)j2

jxj2

1=2

�(x)

f0(x) =
f(x)�(x)

�0(x)
:

Then, jf0(x)j=jxj is bounded and �0 is integrable on fx 2 Rn: jXj �
1g, so the argument above can be applied to f0 together with �0 to

prove that lim�!1 jy(�)j = 0 for almost all trajectories of the system

dy=d� = f0(y(�)). However,modulo a transformation of the time axis

t =
�

0

�(y(s))

�0(y(s))
ds

the trajectories are identical: x(t) = y(�). This, together with

local Lipschitz continuity of f(x) at x = 0, also shows that x(t)
exists for t 2 [0;1) and tends to zero as t ! 1 provided that

lim�!1 jy(� )j = 0. Hence, the proof of the second statement in

Theorem 1 is complete.

III. COMPUTATIONAL APPROACH

In order to understand the possibilities and limitations of compu-

tational approaches to nonlinear stability, an issue that has to be ad-

dressed is how to deal numerically with functional inequalities such as

the standard Lyapunov one, or the divergence inequality (1).

Even in the restricted case of polynomial functions, it is well-known

that the problem of checking global nonnegativity of a polynomial of

quartic (or higher) degree is computationally hard. For this reason, we

need tractable sufficient conditions that guarantee nonnegativity, and

that are not overly conservative. A particularly interesting sufficient

condition is given by the existence of a sum of squares decomposi-

tion: can the polynomial P (x) be written as P (x) = i p
2
i (x), for

some polynomials pi(x)?Obviously, if this is the case, thenP (x) takes
only nonnegative values. Notice that in the case of quadratic forms, for

instance, the two conditions (nonnegativity and sum of squares) are

equivalent.

In this respect, it is interesting to notice that many methods used in

control theory for constructing Lyapunov functions (for example, back-

stepping) use either implicitly of explicitly a sum of squares approach.

As shown in [12], the problem of checking if a given polynomial

can be written as a sum of squares can be solved via convex optimiza-

tion, in particular semidefinite programming. We refer the reader to

that work for a discussion of the specific algorithms. For our purposes,

however, it will be enough to know that while the standard semidefinite

programming machinery can be interpreted as searching for a positive

semidefinite element over an affine family of quadratic forms, the new

tools provide a way of finding a sum of squares, over an affine family

of polynomials. For instance, these tools can be used in the computa-

tion of Lyapunov functions for proving that a nonlinear system is stable

[12], [11].

To apply these tools to the stabilization problem addressed in this

note, consider the following parameterized representation for � and u�:

�(x) =
a(x)

b(x)�
u(x)�(x) =

c(x)

b(x)�

where a(x); b(x); c(x) are polynomials, b(x) is positive, and � is

chosen large enough so as to satisfy the integrability condition in

Theorem 1. Note that by choosing this particular representation, we

presuppose that we will be searching for � and u that are rationals. In

this case, (1) can be written as

r � [�(f + gu)]

= r �
1

b�
(fa+ gc)

=
1

b�+1
[br � (fa+ gc)� �rb � (af + gc)]:

Since b is positive, we only need to satisfy the inequality

br � (fa+ gc)� �rb � (af + gc) > 0: (5)
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Fig. 1. Phase plot of the closed-loop system in Example 1. Solid curves are
trajectories of the system.

For fixed b; �, the inequality is linear in a; c. If instead of checking

positivity, we check that the left-hand side is a sum of squares, the

problem can be solved using semidefinite programming.

Some numerical examples will be presented in the next sections to

illustrate how the controller synthesis can be performed. The sum of

squares conditions corresponding to these problems are solved using

SOSTOOLS [13].

IV. SOME EXAMPLES

A. Example 1

A simple numerical example is the following:

_x1 = x2 � x31 + x21

_x2 = u:

The function b(x) is chosen based on the linearization of the system.

We picked b(x) = 3x21 + 2x1x2 + 2x22, which is a control Lyapunov

function (CLF) for the linearized system and, therefore, b(x)�� (for

some �) will be a good choice for a � function near the origin. Since

we will be using a cubic polynomial for c(x), and a(x) is taken to be

a constant, we choose � = 4 to satisfy the integrability condition.

In this case, after solving the sum of squares inequality (5), we obtain

an explicit expression for the controller, as a third-order polynomial in

x1 and x2. The optimization criterion chosen is the `1 norm of the

coefficients. This way, we approximately try to minimize the number

of nonzero terms [5]. The expression for the final controller is

u(x1; x2) = �1:22x1 � 0:57x2 � 0:129x32:

A phase plot of the closed-loop system is presented in Fig. 1.

This example has been chosen for its relative simplicity: in this par-

ticular case, it is possible to solve it directly using other methodologies.

For instance, it can be noted that in this particular case b(x) is actually
a CLF for the full nonlinear system, and from that we can obtain a

controller, e.g., using Sontag’s formula. There is no requirement in the

present framework that requires b(x) to be a CLF, as we will see in

the following subsections. The main difference would be in terms of

the computational difficulty of approximating the controller when the

choice of the denominator b(x) is not optimal.

Fig. 2. Phase portrait of the closed-loop system in Example 2. Solid curves
are trajectories of the system.

B. Example 2

Consider the following homogeneous system, whose linearization is

not stabilizable:

_x1 = 2x31 + x21x2 � 6x1x
2

2 + 5x32

_x2 = u:

Since a CLF cannot be found for the linearized system, we will simply

use a “generic” function b(x)� = (x21 + x22)
� as the denominator of

our density function. Notice in particular that this function (as well as

other generic denominators such as xn1 + xn2 and (xn1 + xn2 )
�, where

n is an even positive integer) is not a CLF for the system.

For a controller that is a polynomial of degree 3 (the same degree

as the drift vector field) and �(x) = (a(x))=(b(x)�), the integrability

condition is fulfilled if the degree of a(x) satisfies deg(a(x)) � 2��
5. We choose � = 2:5 and use a constant a(x). For the chosen � and

b(x), the positivity ofr � (f + gu) is established by a(x) = 1 and

c(x) = �3:6345x31 + 4:4439x21x2 � 7:5113x1x
2

2 � 3:5452x32:

The phase portrait of the closed-loop system with controller u(x) =
c(x) is shown in Fig. 2. The origin is globally asymptotically stable, as

can also be proven using a polynomial Lyapunov function of degree 6.

C. Example 3

For the third example, we consider the system

_x1 = �6x1x
2

2 � x21x2 + 2x32

_x2 = x2u:

It is straightforward to see that the equilibrium at the origin cannot be

made asymptotically stable, because every x = (x1; x2) with x2 = 0
will necessarily be an equilibrium of the closed-loop system. Never-

theless, it is possible to design a controller which makes almost all tra-

jectories converge to the origin.

Lyapunov design using nonstrict Lyapunov function (i.e., a

Lyapunov function whose time derivative is only negative semidef-

inite) combined with LaSalle’s invariance principle will only

prove that the trajectories of the closed-loop system converge to

D = fx j x2 = 0g. Therefore, we will instead resort to the method

described in this note to design a controller that makes the origin

almost globally attractive (i.e., almost all trajectories converge to

the origin). Choosing b(x) = x21 + x22 and � = 3, we find that
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Fig. 3. Phase portrait of the closed-loop system in Example 3. Solid curves
are trajectories; dashed line is the set of equilibria.

the positivity of br � (fa + gc) � �rb � (fa + gc) is fulfilled

for a(x) = 1 and c(x) = 2:229x21 � 4:8553x22. Since the inte-

grability condition is also satisfied, we conclude that the controller

u(x) = (c(x))=(a(x)) = 2:229x21 � 4:8553x22 renders the origin

almost globally attractive. The phase portrait of the closed-loop system

is shown in Fig. 3.

V. APPLICATION: ATTITUDE CONTROL OF A RIGID BODY

We will now look at the attitude control of a rigid body using three

inputs as a physically motivated example. The complete attitude dy-

namics of a rigid body can, for example, be described using the fol-

lowing state equations [16]:

_! = J�1S(!)J! + J�1u

_ = H( )!

with ! 2 R3 the angular velocity vector in a body-fixed frame,  2
R
3 the Rodrigues parameter vector, and u 2 R3 the control torque.

The matrix J is the positive definite inertia matrix, while S(!) and

H( ) are given by

S(!) =

0 !3 �!2

�!3 0 !1

!2 �!1 0

H( ) =
1

2
(I � S( ) +   T ):

We will apply the method described in the previous sections to nu-

merically construct a stabilizing controller for this system. Synthesis

of stabilizing controller for this system can also be performed, for ex-

ample, using backstepping [8]. In our construction, the matrix J =
diag(4; 2; 1) will be chosen as the inertia matrix.

First, a density function of the following type is used:

�(!; ) =
a(!; )

(k!k2 + k k2)�
(6)

where a(!; ) is obtained from convex optimization. Using this den-

sity function and � = 6, it is possible to obtain a controller of the form

ui(!; ) =
ci(!; )

a(!; )
; i = 1; 2; 3

with a(!; ) being positive definite. In fact, the function a(!; ) is

a homogeneous polynomial of degree 2, whereas the ci(!; )’s are

Fig. 4. Trajectory of the controlled rigid body.

polynomials of degree 5. Since the lowest degree of the monomials in

ci(!; ) is equal to 3, we have lim(!; )!0 ui(!; ) = 0, and thus we

may set ui(0;0) = 0 to obtain a continuous controller as well as to

make the origin an equilibrium of the closed-loop system.

Controllers with simpler expressions can be obtained by choosing a

CLF of the linearized system, such as

b(!; ) = k! +  k2 + k k2 (7)

or

b(!; ) = k! +  k2 + k!k2 (8)

for the denominator of the density function. Using (8) as the denomi-

nator and � again equal to 6, the controller obtained from convex op-

timization is given in (9)

u1(!; )

= �0:49 3
1 � 0:86!3

1 � 1:2!1 
2
1 � 1:5!1 

2
2 � 1:1!1 

2
3

+ 0:37!2
1 1 � 2:6!1 � 0:77 1 + 0:035!2 1 2

u2(!; )

= �0:28 3
2 � 0:29!3

2 � 0:27!2 
2
1 + 0:17!2

2 2 � 0:37 2
1 2

� 0:69!2 
2
2 � 1:1!2 

2
3 � 0:45 2 

2
3 � 1:1!2

1!2

� 0:44!1 1 2 � 0:46 2 � 1:1!2 + 0:24!1!2 1

u3(!; )

= �0:14 3
3 � 0:18!3

3 � 0:44!2
1!3 � 0:34!2

2!3 � 0:55!3 
2
2

+ 0:11!2
1 3 + 0:052!2

3 3 � 0:18 2
1 3 � 0:039 2

2 3

� 0:2!2
2 3 � 0:38!3 

2
3 + 0:4!2!3 2 + 0:37!1!3 1

+ 0:43!2 2 3 � 0:69!3 � 0:35 3: (9)

A trajectory of the closed-loop system starting at (!; ) =
(�2; 1; 0;�1; 2;�3) is shown in Fig. 4.

VI. CONCLUDING REMARKS

A new computational approach to nonlinear control synthesis has

been introduced. The basis is a recent convergence criterion introduced

by the third author. The criterion is closely related to earlier work on

optimal control [18], [17] and makes it possible to state the synthesis

problem in terms of convex optimization. Polynomials are used for pa-

rameterization and positivity is verified and certified using the ideas in

[12] and the software [13].
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In general, a controller designed using the proposed approach is

only guaranteed (by Theorem 1) to make almost all trajectories of the

closed-loop system tend to the origin. In many cases, however, such a

controller will actually be globally asymptotically stabilizing. If neces-

sary, global asymptotic stability of the closed-loop system can be veri-

fied by constructing a Lyapunov function, for which a similar compu-

tational approach can be utilized [12], [11].
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An Adaptive Notch Filter for Frequency Estimation of a

Periodic Signal

M. Mojiri and A. R. Bakhshai

Abstract—Online frequency estimation of a pure sinusoidal signal
is a classical problem that has many practical applications. Recently

an ANF with global convergence property has been developed for this
purpose. There exist some practical applications in which signals are

not pure sinusoidal and contain harmonics. Therefore, online frequency
estimation of periodic but not necessarily sinusoidal signals espoused

by such applications becomes quite important. This note presents an
alternative stability analysis for a modified ANF that permits the presence
of harmonics in the incoming signal. Also, this stability analysis is simpler

and alleviates the problem complexity even in the case of pure sinusoidal
signal. Simulation results confirm theoretical issues.

Index Terms—Adaptive notch filter, averaging theory, fundamental fre-
quency estimation, harmonic, periodic signal.

I. INTRODUCTION

A globally convergent adaptive notch filter (ANF) has recently been

proposed to estimate online the unknown frequency, !0 > 0, of a mea-

surable pure sinusoidal signal of,

y(t) = k sin!0t (1)

in which its amplitude k > 0 is unknown [1]. This estimator was first

proposed by Regalia [2] in a lattice-based discrete-time version. Later,

its continuous-time version was introduced by Bodson [3], and finally

a modified continuous-time frequency estimator was proposed by Hsu

et al. [1]. Basically, Hsu’s structure, namely scaled normalized ANF, is

given by a second order scaled notch filter equipped with a normalized

adaptation mechanism. This structure is given by,

�x + 2�� _x+ �
2
x = �

2
y(t)

_� =�x(�2y(t)� 2�� _x)

 =
�

f1 +N [x2 + ( _x

�
)2]g(1 + �j�j�)

(2)

where � � 1, and N; �; �, and � are real positive parameters. In (2), �

represents the estimated frequency, and � and  are damping ratio and

adaptation gain, respectively. � determines the “depth of the notch”

and hence noise sensitivity, and  determines the “adaptation speed”

and therefore alertness of ANF in tracking frequency variations. Hsu

et al. [1] showed that for a pure sinusoidal signal this ANF has a unique

periodic orbit given by,

O =

�x
_�x
��

=

�k

2�
cos!0t

k!

2�
sin!0t

!0

: (3)

The third component of this periodic orbit is the estimated frequency,

that is identical to its correct value,!0. By means of the “Integral Man-

ifolds of Slow Adaptation” concept [4], and for unnormalized , local

asymptotical stability of this periodic orbit was proved in [1]. Normal-

izing , carried out in (2), provides global asymptotical stability of the

periodic orbit (3)[1].
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