
CHAPTER 12 

NONLINEAR COUPLING IN WAVES PROPAGATING OVER A BAR 

Y. Eldeberky1 and J.A. Battjes2 

Abstract 

The degree of nonlinear coupling in a random wavefield propagating over and 
beyond a bar is examined using a physical wave flume as well as numerical 
simulations based on time-domain extended Boussinesq equations and their 
frequency-domain counter-part. The nonlinear phase speed is computed from the 
evolution of the nonlinear part of the phase function inherent in the frequency- 
domain model. Over the bar, the phase speeds of the higher harmonics are larger 
than the linear estimates due to the nonlinear couplings, resulting in virtually 
dispersionless propagation, while beyond the bar crest, nonlinear effects on the 
phase speed vanish rapidly, implying full release of bound harmonics. 
Quantitative measures of nonlinearity such as the skewness and asymmetry have 
also been determined. They have near-zero values in the deep-water region on 
either side of the bar and a pronounced peak over the bar. On the downwave 
side, the random wave field is found to be spatially homogeneous. This implies 
that it can be fully described by the energy density spectrum without additional 
phase information related to the bar location. 

1. Introduction 

The research described in this contribution deals with the propagation of 
nonbreaking waves over a shallow bar. It is aimed at investigating the degree of 
nonlinear coupling as waves evolve over and beyond a bar region. It is a 
continuation of previous related work by the authors on this subject (Eldeberky 
and Battjes, 1994). 
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The conventional viewpoint is that on the seaside, the harmonics, bound to the 
primary, are amplified because of the increasing nonlinearity in the shoaling 
region, and that they are released on the shoreside, at least partially, because of 
the decreasing nonlinearity in the deepening region. Strictly speaking, however, 
even in the shoaling region free components are generated as a result of the 
nonhomogeneity, whereas conversely some degree of phase coupling may remain 
in the deepening region. 

The phenomena mentioned above can with reasonable accuracy be modelled with 
Boussinesq-type equations, but these are unwieldy in applications involving wave 
propagation over large distances, for which phase-averaged, energy-based models 
with linear propagation are better suited. It is then convenient to switch to such 
a model at some distance downwave from the bar. Two questions then arise: 
(1) How far downwave do the nonlinearities extend with non-negligible 
intensities? The answer to this question determines whether and from where the 
switch to a linear propagation model is justified. 
(2) Are the fixed phase relations between harmonics, which are induced in the 
bar region, noticeable on the downwave side of the bar? If so, the wavefield on 
the downwave side of the bar would be spatially nonhomogeneous, with a 
"memory" of what happened over the bar (although the local nonlinear exchanges 
may already have vanished). This phenomenon is to be expected for wavefields 
with a discrete spectrum of only a few harmonics, but we expect that these 
effects cancel out in case of a continuous spectrum. If this is indeed the case, the 
wavefield shoreward of the bar would again be statistically homogenous. 
Knowledge of the energy spectrum on the downwave side (including the 
harmonics generated over the bar) would then be sufficient to characterize the 
wave field in a statistical sense, without additional phase information from 
"upwave" regions expressing the distance downwave from the bar. 

The purpose of this paper is to investigate the questions raised above in a 
quantitative manner. This is done by determining the values and spatial 
distributions of the nonlinear contributions to the phase speed and of the skewness 
and asymmetry parameters, which are quantitative measures of nonlinearity. 

The paper is arranged as follows. In section 2, the experimental arrangement is 
described. In section 3, the model equations used in the numerical simulations are 
presented. The analyses using the measures of nonlinearity followed by some 
results are given in section 4. Finally, section 5 presents the summary and 
conclusions. 

2. Experimental Approach 

Experiments with random waves reported by Beji and Battjes (1993) have yielded 
time series of surface elevation at a number of stations over a bar (still-water 
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depth 0.10 m) and on either side of it (still-water depth 0.40 m) (Fig. 1). A 
mechanical wave maker was used to generate wave signals according to a 
prescribed spectrum. The target spectrum was narrow-banded with peak 
frequency of 0.40 Hz and variance of 0.35 cm2. At the downwave side, a beach 
with 1:20 slope was used as an absorbing boundary. Surface elevations were 
measured at stations 1 to 8 (the other stations refer to the numerical simulations). 
Station 1 is at the beginning of the upslope side of the bar, station 2 is 5.0 meters 
from station 1, and stations 3 to 8 are positioned every 1.0 meter. 

These measurements have been analyzed to address the questions raised above. 
The analyses are mainly in the frequency-domain. Power spectra for these 
observations indicated significant transfer of energy from the spectral peak to 
higher frequencies (Beji and Battjes, 1993). Bispectral analysis showed the 
intensity and the spectral distribution of nonlinear couplings (Eldeberky and 
Battjes, 1994). Here we focus on the total measures of nonlinearity such as the 
skewness and asymmetry in order to investigate the spatial variation in the 
intensity of nonlinear couplings. 

Due to the fact that the spatial coverage of the experimental data (up to station 
8) is not enough to examine nonlinearity beyond the bar, a numerical "wave 
flume" has been employed to obtain results farther downwave. This is done using 
the time- and frequency-domain extended Boussinesq equations. The model 
equations are presented in the next section. 

Wave 
maker 

Stations 
2 34 5 6 7 8 91011 1213 14    15    16 

6.00 6.00 2.00    3.00 

Absorbing 
boundary 

5.00 

Fig. 1. Definition sketch of wave flume and location of wave gauges. All distances are 
expressed in meters 

3. Numerical Approach 

3.1  Time-domain model 

Numerical simulations were performed using a 1-D extended Boussinesq model 
(Beji and Battjes, 1994) with improved dispersion characteristics, as in Madsen 
and  S0rensen   (1992),  describing  relatively  long,   small  amplitude  waves 
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propagating in water of slowly varying depth: 
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Here, £ is the surface displacement, u the depth-averaged horizontal velocity, h 
the still water depth, and g the gravitational acceleration. This set of equations 
has been integrated numerically using a difference scheme as described by Beji 
and Battjes (1994). 

In the computation, the initial condition used is the unperturbed state. At the 
upwave boundary (station 1), the surface elevation is set equal to the 
experimental values; velocity values are derived from these using the long-wave 
approximation. At the outgoing boundary, an absorbing boundary condition has 
been used to ensure that the disturbances leave the computational domain without 
reflection. 

3.2 Frequency-domain model 

Numerical simulations were also performed using the frequency-domain counter 
part of the extended Boussinesq equations mentioned above. For one-dimensional 
propagation considered so far, the time (/) variation of the surface elevation (f) 
at each location (x) is expanded in a Fourier series as in 

Kfyc) =  £ Ap(x) exp {/(«,*-*,(*))} (3) 

with Ap denoting a complex amplitude, p indicating the rank of the harmonic, up 

= pa,, and d.ypp/dx = kp, the wave number corresponding to wp according to the 
dispersion equation for the linearised Boussinesq equations. By substituting (3) 
into the time-domain Boussinesq equations, and by neglecting certain higher-order 
terms on the assumption of a sufficiently gradual evolution of the wave field, 
Madsen and S0rensen (1993) develop a set of coupled evolution equations for the 
set of complex amplitudes Ap which in abbreviated form can be written as 
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The first term on the right represents linear shoaling, proportional to the bottom 
slope dh/dx, the second term the triad sum interactions and the third the triad 
difference interactions. Complete expressions for the coefficients L, Q

+
 and Q 

can be found in Madsen and Sorensen (1993). For the numerical integration of 
the evolution equation (4) and the applications to random waves with a given 
energy spectrum refer to Battjes et al. (1993). 
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4. Analysis 

4.1 Phase speed 

The evolution equation of the frequency-domain model is formulated in terms 
of complex Fourier amplitudes that contain the nonlinear part of the phase 
function. This equation (4) is used to obtain an evolution equation for the 
nonlinear part of the phase function in order to derive and evaluate a nonlinear 
correction to the linear phase speed. To this end, we express the complex 
amplitude Ap(x) in its magnitude ap(x) and its phase ap(x): 

AM = a(x)e
ia
^ (5) 

After straightforward algebra, we obtain the following phase evolution equation 
for each harmonic after omitting the ^-dependency for abbreviation, 

da
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The values of ap, ap, and dAp/dx at each location can be obtained from the 
numerical integration of equation (4). The phase speed of each harmonic, linear 
(Cp), and nonlinear fc^„„ can be obtain as follows 

tyi = -n^ (*A    dydx 
(7) 

(On, (8) 
(
k
X      d^pldx + dapldx 

where (kj), and (kp)nl are the linear and nonlinear phase change per unit length. 

To examine the intensity of nonlinear coupling, the nonlinear phase speeds are 
compared to the linear predictions obtained from the extended Boussinesq 
equations. 

For random incident waves, assumed to have independent, random phases at 
station 1, Fig. 2 shows the spectral densities, the linear and the nonlinear phase 
speeds at different locations over the bar. Over the upslope of the bar (station 2), 
the nonlinear phase speeds of the higher harmonics are larger than the linear 
estimates due to the nonlinear couplings to the primary. Over the bar crest 
(station 4), the nonlinear phase speeds are nearly constant and equal to ^fgh 

(nondispersive shallow-waves). Beyond the bar (station 8), the nonlinear 
predictions of phase speed agree with the linear estimates, implying full release 
of bound harmonics. The results farther beyond the bar (not shown here) did not 
show any deviation in the nonlinear phase speeds from the linear predictions, 
implying the absence of nonlinear couplings. Likewise, the energy spectrum of 
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the waves did not evolve in the region beyond the bar. This in turn means that 
nonlinear models are not needed to characterize the wavefield beyond the bar. 

«*Uon2 

Halloa 4 ttttloaS 

1J>        \3 

Fig. 2. Computed energy density spectra (upper panels), linear (solid line) and total 
(dashed line) phase speeds (lower panels) at stations 1,2, 4, and 8 



NONLINEAR COUPLING 163 

4.2  Skewness and Asymmetry 

To measure the nonlinearities associated with the nonlinear couplings, higher- 
order moments are needed such as the skewness and asymmetry. These are 
measures of asymmetry of the wave profile around the horizontal (crest to trough 
asymmetry) and the vertical (front to back asymmetry) plane respectively. 
Skewness and asymmetry values have been computed according to the definitions 
given by Hasselmann et al. (1963) and Elgar and Guza (1985) respectively. 

The original wave flume and its numerical simulation 
The skewness and asymmetry have been computed for both the measured and 
time-domain computed surface elevations at various locations over the bar. Their 
variations are given in Fig. 3. The comparison shows the ability of the numerical 
model to reproduce the nonlinear evolution of waves propagating in varying water 
depth with sufficient accuracy for the present purpose. 
The variations indicate a significant increase on the upslope to a maximum over 
the bar. To the lee of the bar crest, the skewness and asymmetry decrease rapidly 
to near-zero values, comparable to those on the exposed side of the bar. (For 
skewness values less than 0.2, Ochi and Wang (1984) found virtually no 
deviation from the Gaussian probability density of the sea surface elevation.) This 
in turn means absence of significant nonlinear interactions at the downwave side 
of the bar. We expect that for random waves with a continuous spectrum, this 
will imply spatial homogeneity. This is checked below by using computed signals 
in the region beyond that of the measurements. 
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Fig. 3. Skewness (+) and asymmetry (<>): comparison between results from the 

physical wave flume (solid lines) and the numerical wave flume (dashed lines) 
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Numerical simulation for extended region 
Time-domain numerical computations have been performed extending to distances 
farther downwave in order to examine the homogeneity of the wavefield in that 
region. The computational domain now extends to station 16; the distances 
between stations 9 to 13 are 1.0 m and those between stations 14 to 16 are 2.0 m. 

Computations are done for two different upwave boundary conditions, 
corresponding to sinusoidal and irregular waves. The former is to demonstrate 
the spatial nonhomogeneity associated with the interference between a primary 
wave and its harmonics. The latter is to investigate the matter for the case of a 
continuous spectrum, where the innumerable interferences are expected to cancel, 
resulting in a homogeneous wavefield. 
To demonstrate the contrast between the two cases, the nonlinearity parameter 
(a/h) is kept constant by imposing the same surface elevation variance at the 
upwave boundary. The computations are performed for the same record duration 
as in the physical experiment, and the computed signals at stations 1 to 16 have 
been analyzed in the frequency-domain in the same manner as the experimental 
records. 

Sinusoidal waves 

Fig. 4 shows the spatial variations of the amplitudes of the primary wave and its 
harmonics. Over the bar, a significant energy transfer takes place into the second, 
third and fourth harmonics. Beyond the bar, the amplitudes do not vary because 
of absence of nonlinear interactions. 

The corresponding variations in the skewness and asymmetry are shown in Fig. 
5. They indicate a significant increase on the upslope to a maximum over the bar 
as a result of harmonic generation. On the downslope side of the bar, the 
skewness and asymmetry decrease rapidly to values between +0.5. Beyond the 
bar, although the amplitudes of the harmonics are nearly constant, the skewness 
and asymmetry vary significantly as a result of the varying phase lags between 
the freely propagating component-waves, resulting in a spatially nonhomogenous 
wavefield. 

Irregular waves 

Fig. 6 shows the variations of skewness and asymmetry over the upslope, the bar 
crest, the downslope and farther downwave; the latter is of particular interest 
here. It shows that over the horizontal region, and in contrast to the case of 
sinusoidal waves, the skewness and asymmetry remain at near-zero values (less 
than 0.2), comparable to those on the exposed side of the bar, without any 
significant spatial variations. This implies that there is no memory of the bar 
location, in contrast to the discrete case. The practical implication of this is that 
the waves downwave from the bar can again be assumed to have independent, 
random phases. 
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Fig. 4. Spatial variations of the amplitudes of the primary wave and its harmonics 
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Fig. 5. The spatial variations ofskewness (solid line) and asymmetry (dashed line) for 

sinusoidal incident waves (at station 1) 
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5. Summary and Conclusions 

The degree of nonlinear coupling as waves evolve over and beyond a bar is 
examined. The extended Boussinesq equations that had shown success in this kind 
of application are used in this investigation together with experimental data. The 
situation considered was such that significant harmonic generation took place on 
the upslope leading to the bar crest. The following indicators of nonlinearity were 
used: the nonlinear phase speed, the skewness and asymmetry. Inspection of their 
spatial variations has led to the following conclusions. 

- The comparison between linear and nonlinear estimates of the phase speeds 
indicates that over the bar, the bound harmonics travel faster than their 
corresponding free waves that have linear phase speeds. Beyond the bar, they 
propagate with the linear phase speed implying that they are fully released. 

- The skewness and asymmetry have near-zero values in the deep-water region 
on either side of the bar and a pronounced peak over the bar. On the downwave 
side, the wavefield is found to be spatially homogeneous for irregular waves 
without memory of the phase couplings which existed over the bar crest. This is 
in contrast to the case of a discrete, finite set of wave components. 

Summarizing, the wavefield on the downwave side is virtually linear and 
statistically homogeneous. It can be fully described by the energy density 
spectrum with linear propagation, and without the need for additional phase 
information reflecting the site-dependent distance downwave from the bar. 
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