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Abstract: Single image deblurring has achieved significant progress for natural daytime images.
Saturation is a common phenomenon in blurry images, due to the low light conditions and long
exposure times. However, conventional linear deblurring methods usually deal with natural blurry
images well but result in severe ringing artifacts when recovering low-light saturated blurry images.
To solve this problem, we formulate the saturation deblurring problem as a nonlinear model, in
which all the saturated and unsaturated pixels are modeled adaptively. Specifically, we additionally
introduce a nonlinear function to the convolution operator to accommodate the procedure of the
saturation in the presence of the blurring. The proposed method has two advantages over previous
methods. On the one hand, the proposed method achieves the same high quality of restoring the
natural image as seen in conventional deblurring methods, while also reducing the estimation errors
in saturated areas and suppressing ringing artifacts. On the other hand, compared with the recent
saturated-based deblurring methods, the proposed method captures the formation of unsaturated and
saturated degradations straightforwardly rather than with cumbersome and error-prone detection
steps. Note that, this nonlinear degradation model can be naturally formulated into a maximum-a
posterioriframework, and can be efficiently decoupled into several solvable sub-problems via the
alternating direction method of multipliers (ADMM). Experimental results on both synthetic and real-
world images demonstrate that the proposed deblurring algorithm outperforms the state-of-the-art
low-light saturation-based deblurring methods.

Keywords: nonlinear model; low-light saturated images; ringing artifact; image deblurring

1. Introduction

Blurry images with saturation are common in our daily life, especially when taken
with hand-held equipment, including smartphones in low-light conditions as shown
in Figure 1a. Saturation happens when the radiance of the captured scene exceeds the
limited range of the camera sensor, leaving the pixel intensity clipped at the maximum
output value, such as 255 for an 8-bit image. Most existing deblurring methods [1–9]
assume the linear degradation model:

y = Kx + n, (1)

where y ∈ RN , x ∈ RN , and n ∈ RN are a blurry image, latent image, and noise, respec-
tively, and K ∈ RN×N is the blurring matrix corresponding to the convolution of blur
kernel k.

The linear model (1) is custom-designed for formulating the blur degradation of natu-
ral image. However, it is not effective in handling blurry images with significant saturation,
since it usually leads to severe ringing artifacts in the deblurring results. The reason for the
low-quality restoration is that the saturated pixels violate the linear degradation model (1),
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and errors are introduced in the process of deblurring. The saturation results in ringing
artifacts during the deconvolution procedure, and the real intensity of saturated pixels is
dramatically higher than for adjacent pixels.

The recent saturation deblurring methods [10–21] tend to detect and discard the
saturation regions, and the true intensity of the saturation regions is estimated with the
prior assumption of the latent clean image; the commonly used image priors include TV and
lp norm gradient prior [12,14]. Unfortunately, these methods are sensitive to the detection
accuracy of the saturation and prone to lose useful information in the transition region.
Instead of the detection–restoration paradigm, certain methods [12–14,16,17] also assign
saturation with small weights according to the iteration error to constrain the negative
effect of the saturation.

Another line of work [15,22] argued that high-light streaks caused by point-light
sources, which are different from large area saturation light sources, can provide rich
motion information for motion blur kernel estimation. This is because the light streaks
have the same shape as the underlying blur kernels. However, this assumption may not
always hold true, especially when there are no ideal light streaks in the real scene.

In this paper, to address the general saturation case—in particular, for a large satu-
rated area—we propose a unified framework that models the saturated and natural areas
simultaneously. To do this, we first, analyze the failure, namely the ringing artifacts of the
conventional linear based deblurring methods (Section 3.1.1). We observe that the ringing
artifacts are always due to the estimation errors in the saturation region propagated to the
natural region (Section 3.1.2).

This motivates us to divide an image into three areas, including saturated, transition
(the unsaturated pixels adjoin to the saturated regions, whose intensity is enhanced by the
saturated pixels due to the blending of the blur process), and natural areas (the unsaturated
pixels are far away from the saturated regions, whose intensity gains no influence from the
saturated pixels). Thus, we design a nonlinear piecewise function to model the saturation,
natural pixels, and also the transition pixels between them simultaneously (Section 3.1.3).
For the natural region, we keep them unchanged as in the linear model; for the saturation
region, we truncate the max intensity as 1; and for the transition region, we introduce a
monotonic increasing function to fit the gradual intensity change between natural and
saturation pixels (Section 3.2.1).

Compared with the previous low-light saturated images deblurring methods, the pro-
posed nonlinear deblurring method does not need any cumbersome and error-prone detec-
tion steps [10,11] or heuristic operations, such as the iteration error re-weight [12–14,16,17].
On the contrary, by enforcing the nonlinear function on the conventional linear model (1),
our framework offers a unified perspective with clear physical meanings for both the
unsaturation and saturation blurry image. Based on the nonlinear degradation model,
we propose the nonlinear deblurring method, which can be well modeled within the
maximum-a-posterior (MAP) framework (Section 3.2.3).

The contributions of this paper can be summarized as follows.

• We analyze the ringing artifacts caused by estimation errors in the saturation region
and introduce a nonlinear function to separate errors in different regions, thereby,
reducing the ringing artifacts caused by error-prone estimated saturation regions.

• We propose a unified nonlinear deblurring method within the MAP framework, which
can be efficiently solved.

• The proposed method outperforms state-of-the-art methods on both synthetic and
real low-light saturated images and is flexible for both natural and saturated images.

2. Related Work

Natural Image Deblurring: The image deblurring methods have been extensively
studied as a classical image processing problem [1,2,4,7,9,23,24]. According to whether
the blur kernel is known in advance, the image deblurring can be classified into blind
image deblurring and non-blind image deblurring. In this work, we focus on non-blind
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image deblurring. The image prior assumption is the key to non-blind image deblurring.
Krishnan et al. [25] employed the hyper-Laplacian lp (0.5 ≤ p ≤ 0.8) to fit the statistical
properties of images and solved deconvolution problems with iteratively reweighted least
squares (IRLS) for faster speed.

Pan et al. [5] found that blurring destroys the dark channel characteristics of clear
images and used dark channel priors to constrain images. Further, Yan et al. [26] observed
that bright pixels in clear images would be obviously darkened under blurring effects
and proposed extremely bright channel priors for image deblurring. This observation also
inspired Chen et al. [27] to propose a local maximum gradient prior. Bai [28] found that
large-scale edge gradient distribution had bimodal characteristics, which was destroyed by
blurred images, resulting in unimodal distribution.

The weighted total variational priori based on graphs were proposed to promote
bimodal gradient distribution of intermediate images. Recently, deep-learning-based
methods have also achieved great progress in image deblurring [29–35].

Tao et al. [31] proposed an end-to-end scale-recurrent network (SRN), which uses
image multi-scale information to increase the network receptive field to better capture the
global image information. The generative adversarial network (GAN) has been introduced
to treat the image deblurring as an image-to-image translation problem with an impressive
visual appearance [33]. Most of these methods are derived from the linear blur model,
while are not proper for the non-linear degradation of the low-light saturated images.

Low-Light Saturated Image Deblurring: The first category of methods [10,11] implicitly
formulates the nonlinear degradation of saturation via detection and deblurring pipelines.
They first detected the potential saturation pixels and completely discarded them, which
can be regarded as a hard threshold operation to prevent the negative effects on the
natural pixels.

In [10,11], the authors detected the saturated pixels of multi-frame images with a
predefined threshold and discarded them afterward followed by linear deblurring on the
remainder of each frame. However, as the accuracy of detection heavily depends on the
threshold, an incorrect threshold can lead to erroneous detection results and, consequently,
to the presence of ringing artifacts. In this work, we avoid this cumbersome and error-prone
saturation-detection procedure.

The second class of methods [12–14,16,17,19–21] usually derives a deblurring model
based on a modified non-linear blur model that explicitly formulates the saturation trunca-
tion. They constructed a deblurring model that assigns the saturated pixels small weights
to suppress the errors introduced by saturated pixels. Different from the first category, they
explicitly model the saturation in a soft weighted manner.

Specifically, Cho et al. [12] and Zhang [21] regarded the saturated pixels as outliers
that violate the linear degradation model and made use of an expectation-maximization
(EM) algorithm to iteratively calculate the pixel weights that are proportional to the ex-
pectation of the outliers and conducted weighted deconvolution. In [14], Whyte et al.
proposed a weighted deconvolution model based on the Richardson–Lucy [36,37] algo-
rithm. Calef et al. [13] proposed an iterative re-weighted maximum likelihood estimation,
where the weights are calculated according to the restoration residuals in each iteration.

Similarly, in [16,17], the authors proposed a novel data-fidelity term to suppress the
large errors caused by saturated pixels and took advantage of the iterative re-weighted
least squares (IRLS) algorithm to handle the saturation. Chen et al. [19] suppressed the
affects of saturated pixels by explicitly detecting and eliminating them. Liu et al. [18]
introduced surface-aware images prior to eliminating saturated pixels in the intermediate
estimation image. Chen [20] directly modeled the saturate clipping as the multiplicative
process, and the multiplier was used to weight the importance of different pixels. Overall,
these methods assign the saturation small weights that are typically calculated according
to the iteration error. To principally model the saturation, we formulated the saturation
into a unified nonlinear degradation model.
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Figure 1. Illustration of the ringing artifacts in saturation deblurring. The first row is the restored
images. The second row is the close-ups of the restored images. The third row is the cross profile of
columns through close-up along the blue line. The first and second columns are (a) the ground truth
and (b) blurry image. The third to last columns are the deblurring results of the linear deblurring
method by (c) FIDHL [25], (d) RL [36], and (e) the proposed nonlinear method. The ringing artifacts
near the saturation region are widely observed in the linear methods.

3. The Nonlinear Saturation Deblurring Method
3.1. Motivation of the Nonlinear Model for Saturation

In this section, we first analyze the common problems caused by saturation in the
process of deblurring. Then, the rationality of the nonlinear model is provided.

3.1.1. Analysis of Ringing Artifacts

One of the major problems in conventional linear deblurring modeling is the presence
of ringing artifacts as shown in Figure 1. Ringing artifacts are dark and light ripples that
appear near strong edges after deconvolution [1]. It is widely accepted that the ringing
artifacts are usually caused by the abrupt step signals in the images, namely the high
frequency in the Fourier domain, such as the saturation and the noises [1].

We show the deconvolution results of saturated images to analysis the ringing artifacts
as shown in Figure 1. The close-ups in the second row show that the compared deblurring
methods produce severe artifacts. Similarly, all of the artifacts are widely distributed
around the saturation areas and propagate outwards in a ringing shape. In addition, we
present the cross profile along the vertical blue line as shown in the third row of Figure 1.
The curves depict the spatial distribution of the intensity.

We observe that the curves of compared methods oscillate, resulting in high-frequency
artifacts. The main reason why ringing artifacts are caused is that the compared deblurring
methods are based on a linear model, which violates the truth degradation of saturated
region. Thus, the linear model introduces restoration errors, and the large errors are spread
out from saturated area to the unsaturated area, which looks similar to the ringing artifacts.

To suppress the ringing artifacts, we propose a nonlinear model to accommodate
the degradation at saturation pixels. As shown in Figure 1e, fewer ringing artifacts occur
in close-ups, and the curve also remains relatively steady and closer to the ground-truth
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image. The results indicate that an appropriate model to fit the saturation pixels is critical
to suppress ringing artifacts.

3.1.2. Estimation Error for Different Regions

We classify a saturated image into three main regions: the saturation, the transition,
and the natural regions. We separately illustrate the errors between the estimated value and
ground-truth intensity of the three regions as shown in Figure 2. Since no accommodation
is adopted for the different regions by the linear deblurring based on total variation
(LDTV) [38], we can observe that there exists severe estimation error in the saturation and
transition regions (second row in Figure 2).
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Figure 2. Tracking the average intensity changes of different regions with respect to iteration numbers.
Ground-truth and blurry images with saturated, transition, and unsaturated regions marked in boxes
are presented in (a,c). (b) is the close-ups of the marked regions, whose first column shows the close-
ups of the ground truth and the second ones are the close-ups of the blurry image. The second row
presents the average intensity changes of the above three regions (d) saturated region, (e) transition
region, and (f) unsaturated region with respect to the iteration numbers. Note that GT means the
ground-truth intensity. The nonlinear method approaches the ground truth for different regions
while the linear method does not.

In detail, for the saturated region, Figure 2d plots the average intensity of the red box,
which is marked in Figure 2a,c. With iteration occurring, there exist large errors for LDTV.
For the proposed nonlinear model NLDTV, the error reduces to a value close to zero. As for
the transition region, Figure 2e plots the average intensity between the saturated area and
the unsaturated area (purple box). This exhibits relatively smaller errors for nonlinear
deblurring compared with LDTV. The plot of the region in the unsaturated area (green box)
is shown in Figure 2f. Both LDTV and our nonlinear model can restore the intensity with
high accuracy. Thus, we conclude that the nonlinear model NLDTV can adaptively model
three regions with low estimation errors.

3.1.3. Rationality of Nonlinear Model for Saturation

To accommodate different regions with different intensities, we additionally introduce
a clipping function on the conventional linear model (1) as follows:

y = c(Kx) + n, (2)
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where c(·) is a nonlinear clipping function that shares the same form as in [39]. To analyze
the previously mentioned problems, we give an illustration of how the proposed nonlinear
model fits the saturation. Note that the noise term is outside the clipping function for
simplicity; the influence of noise at saturation regions is slight and can be ignored there.

Saturation is related to the exposure length, and a long exposure time results in a
high saturation level. Thus, we show the energy change of the data-fidelity term with
the increase of saturation level as shown in Figure 3. The value of the data-fidelity term
of the linear deblurring model increases drastically with the rising saturation level (the
red curve). According to the analysis in [40], a good data-fidelity term should remain
stable as a low-value, especially for a large error. Thus, the linear model is no longer
applicable to saturation. The value of the data-fidelity term of the proposed nonlinear
model (the green curve) remains low and nearly constant as the saturation level increases.
Such a nonlinear function on the conventional model benefits the capture of the formation
process of the saturated image. Therefore, a deblurring method based on the nonlinear
model where the data-fidelity term is less sensitive to the saturation would be effective for
saturation deblurring.
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Figure 3. The rationality of our nonlinear model for saturation deblurring. Each curve shows the
goodness-of-fit of the data terms at different saturation levels (intensity of saturated pixels). The lower
value of energy denotes the greater robustness of the data fidelity for saturation.

3.2. Nonlinear Deblurring with Total Variation
3.2.1. The Clipping Function

The clipping function is introduced to accommodate the different regions. Thus,
the problem of saturation deblurring is transferred into a simpler and specific problem about
how to design a reasonable nonlinear function. The intensity range of y can be normalized
to between [0, 1]. It is natural for us to define the clipping function as c(x) = min(x, 1).
This clipping function is quite similar to the rectified linear unit (RELU) function, which
is utilized for pursuing sparsity for different regions and endowing the highly nonlinear
ability of the neural network.

The motivation of our nonlinear function c(x) is in line with the RELU and is used
to differentiate signals in the saturation, transition, and natural regions. For the natural
pixels, we keep them the same as in the conventional linear model. For the transition and
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saturation pixels, we enforce a hard constraint to bound the pixel ranging, thus, prohibiting
the error propagation from the saturation to the natural pixels. This is the exact reason why
ringing artifacts exist in the conventional linear model.

However, the clipping function c(x) is not differentiable at the point of 1, which
means the modeling will be intractable for all the saturated pixels. To tackle the non-
differentiability of c(x), we replace it with an approximating function s(·) defined as

s(x) = x− 1
a

ln(1 + ea(x−1)), (3)

where a is a scalar that controls the accuracy and the nonlinearity of the model. s(x) is a
smooth, continuously differentiable function as shown in Figure 4b.
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Figure 4. Nonlinear function s(x) and its derivatives. (a) Nonlinear function s(x) with different
parameter values of a and (b) the first- and second-order derivatives of s(x) with parameter a = 50.

The accuracy and the nonlinearity increase as parameter a becomes larger, as shown in
Figure 4a. Higher model accuracy facilitates better restoration performance, while higher
model nonlinearity leads to a more difficult optimization process. We set a to 50 to achieve
a balance between the accuracy and nonlinearity. Thus, an approximating degradation
model is formulated as

y = s(Kx) + n. (4)

Note that, the model (4) formulates the degradation process of saturation (reflected
in truncated part in Figure 4) and the pixels of unsaturated pixels (reflected in linear part
in Figure 4) simultaneously.

3.2.2. The Adaptability of the Approximating Function s(·)
Our nonlinear data item can be deformed into the form of the weighted L2 norm,

and the change of weight w is analyzed. According to the property of s(x), as shown in
Figure 4a of the main manuscript, when r ≤ 1, s(r) ≈ r, then we have:

wi =
ri − yi
ri − yi

= 1, (5)

When r ≥ 1, according to the property of s(x), s(r) ≈ 1, y = 1, then we have:

wi =
1− yi
ri − yi

→ 0, (6)

That is, in the deconvolution process, we hope that, for unsaturated pixels, the weight
is 1; for saturated pixels, the weight is close to 0, thus, avoiding the ringing diffusion caused
by the inaccurate estimation of saturated pixels. Through the following experiments, we
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found that, as the iteration progresses, the value of weight w gradually conforms to the
above analysis, indicating that our algorithm gradually accurately allocates weights, thus,
achieving the effect of adaptively modeling saturated and unsaturated areas.

It can be observed in Figure 5 that, as the iterations progress, the weight W gradually
approaches 1 for non-saturated region pixels and approaches 0 for saturated pixels, indicat-
ing a gradual improvement in modeling different region pixels accurately. Moreover, in the
final iteration results, the values of W correspond more accurately to the saturated/non-
saturated pixels in the image, which indicates that our proposed non-linear deblurring
method can adaptively process different pixels in the image.
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Figure 5. (a) The degraded image, (b) the restored image, and (c–h) variations of the weight W
with iterations.

3.2.3. The Proposed NLDTV Model

Based on Equation (4) and maximum a posteriori framework, the proposed nonlinear
deconvolution framework can be formulated as

x̂ = arg min
x

1
2
||s(Kx)− y||22 + λφ(x). (7)

Different image priors used in the framework will lead to different deconvolution meth-
ods. Making use of the isotropic total variation [41], we propose the nonlinear deblurring
based on total variation (NLDTV), which is to solve the following optimization problem

x̂ = arg min
x

1
2
||s(Kx)− y||22 + λ ∑

p
||(Dx)p||2, (8)

where p is the pixel index, D := [Dh; Dv] is a combination of the first-order finite difference
operators Dh and Dv with respect to the horizontal direction and the vertical direction,
and (Dx)p = [(Dhx)p; (Dvx)p] is the gradient vector of the pth pixel in x, in which (Dhx)p
and (Dvx)p are the horizontal and vertical gradients, respectively.

3.3. Numerical Optimization

The proposed deblurring method exploits a component-wise nonlinearity s(x) to
approach the clipping function c(x). Although the s(x) is a smooth and continuously
differentiable function, the nonlinearity also hinders us to solve the problem. To deal with
the nonlinearity, we combine with optimization strategy of [39], and optimize the proposed
deblurring method with ADMM.
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Let d = Dx and r = Kx; the optimization problem (8) can be reformulated as

{d̂, r̂, x̂} = arg min
d,r,x

1
2
||s(r)− y||22 + λ ∑

p
||dp||2

+
ρr

2
||Kx− r +

ur

ρr
||22 +

ρd
2
||Dx− d +

ud
ρd
||22,

(9)

where ρd and ρv are the weights of the punishing terms and dp = [(dh)p; (dv)p], and ur , ud
are the Lagrangian multipliers to the constrains. Fixing the independent variables, the opti-
mization problem (9) can be divided into the following subproblems of d, r, and x

d̂ = arg min
d

λ ∑
p
||dp||2 +

ρd
2
||Dx− d +

ud
ρd
||22, (10)

r̂ = arg min
r

1
2
||s(r)− y||22 +

ρr

2
||Kx− r +

ur

ρr
||22, (11)

x̂ = arg min
x

ρr

2
||Kx− r +

ur

ρr
||22 +

ρd
2
||Dx− d +

ud
ρd
||22. (12)

In the following optimization process of subproblems, the superscripts i and j indicate
the iteration times of different loops. The subproblem (10) of d can be solved using the
generalized soft threshold operator

((dh)
i+1
p , (dv)

i+1
p ) = S λ

ρd
((Dhx)p, (Dvx)p), (13)

where (y1, y2) = St(x1, x2) is defined as

yq =
xq√

x2
1 + x2

2

·max
(√

x2
1 + x2

2 − t, 0
)

, q ∈ {1, 2}. (14)

There is not a closed-form solution to the subproblem (11) of r; however, it can be
iteratively solved with the Newton Method, due to the nonlinear function s(·) being
continuously differentiable. The iterating equation is expressed as

r j+1 = r j − L′(r j)

L′′(r j)
, (15)

where L′(r) and L′′(r), defined below, are the first-order derivate and the second-order
derivate of the energy function (11), respectively,

L′(r) = s′(r)(s(r)− y) + ρr(r− Kxi)− ui
r , (16)

L′′(r) = s′′(r)(s(r)− y) + s′(r)2 + ρr . (17)

The process of solving (11) with the Newton Method is summarized in Algorithm 1.

Algorithm 1 Solve Subproblem of r with the Newton Method

Require: ri, y, λ
1: j← 0, ε← 1, r j ← ri

2: while ε > τr and j < υr do
3: calculate L′(r j) and L′′(r j) via Equations (16) and (17);
4: update r j+1 with Equation (15);

5: calculate εj using ||r
j+1−r j ||
||r j+1|| ;

6: j← j + 1.
7: end while
8: return ri+1.
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The subproblem (12) of x is of quadratic form and can be solved by solving the
following linear system equation,

(ρdD>D + ρrK>K)x = D>(ρdd− ud) + K>(ρrr− ur), (18)

and closed-form solution as follows can be obtained with fast Fourier transform (FFT),
assuming circular boundary conditions,

xi+1 = F−1

(
F (D>(ρddi+1 − ui

d) + K>(ρrri+1 − ui
r))

F (ρdD>D + ρrK>K)

)
, (19)

where F (·) and F−1(·) are Fourier transform and inverse Fourier transform, respectively.
Finally, the Lagrangian multipliers are updated as follows,

ui+1
d = ui

d + ρd(Dxi+1 − di+1), (20)

ui+1
r = ui

r + ρr(Kxi+1 − ri+1). (21)

The algorithm scheme of NLDTV is summarized in Algorithm 2.

Algorithm 2 Nonlinear deblurring based on total variation (NLDTV)

Require: y, k, λ
1: i← 0, ε← 1, f i ← y, ri ← Kxi, ui

d ← 0, ui
r ← 0;

2: while ε > τ and i < υ do
3: calculate di+1 with Equation (13);
4: solve for ri+1 via Algorithm 1;
5: calculate xi+1 using Equation (19);
6: update ui+1

d and ui+1
r via Equations (20) and (21);

7: calculate ε using ||x
i+1−xi ||
||xi+1|| ;

8: i← i + 1.
9: end while

10: return x.

4. Experimental Results
4.1. Experimental Setting

To evaluate the effectiveness of the proposed method, we examine our algorithm on
both synthetic [42] and real-world image datasets [12] with significant saturation outliers.
The synthetic dataset is created by ten ground-truth low-light images (The images are
collected from website www.flickr.com/photos/oimax (accessed on 1 May 2022)) and
ten blur kernels. The ten blur kernels include eight motion blur kernels provided by [4].
Specifically, each ground-truth image is extended to a high dynamic range scaled by a
saturation level factor, τ, and then is synthetically blurred by ten kernels.

We mask the high intensity pixel with the threshold t = 0.9 and multiply with the
saturation level factor τ. Note that, the high-intensity pixels of each blurry image are
clipped by clipping function c(∗), and the intensity range of the image is normalized to the
range of [0, 1]. Moreover, we also add noise level σ = 0.01 random noise on each blurry
image. We compare the proposed method with four deconvolution methods, including:

• SOTA linear deblurring methods RGTV [28] and DCP [5].
• SOTA model-based low-light saturated image deblurring methods of Whyte [14],

Cho [12], Chen [19].
• SOTA learning-based low-light saturated image deblurring methods NBDN [35].

For fair comparisons, we use the original implementations of the compared methods,
set the iteration numbers of RL to 50, and retrain the learning-based method NBDN [35]
on our synthetic dataset. In our experiments, the tolerance τ and threshold of iteration

www.flickr.com/photos/oimax
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times υ in Algorithm (2), and, τr and υr in Algorithm (1) are set to be 10−4 and 1000 and
10−4 and 2.

4.2. Non-Blind Deblurring Results
4.2.1. Restoration Results on Simulated Datasets

To quantitatively evaluate the performance of the proposed method, we test the
algorithms on synthetic blurry images. The tested images are generated from dataset
Exdark [42]. Table 1 lists the reference-based indexes of PSNR (: dB) and SSIM and
non-reference-based index BRISQUE of different methods for the images blurred with
motion kernels. As we can see, the proposed method achieves favorable results against the
compared methods in terms of PSNR and SSIM values. In addition, we present the visual
performance of different methods on the synthetic datasets of motion blur.

Figure 6c,d shows that the linear deblurring methods, including RGTV [28] and
DCP [5], cause serve artifacts around saturation areas. The low-light saturated image
deblurring methods, including those of Whyte [14], Cho [12], and Chen [19], can handle
images with saturated areas. However, Whyte [14] is less effective to recover the salient
structures as shown in Figure 6e. Cho [12] and Chen [19] tend to produce color artifacts at
saturated regions as shown in Figure 6f,g.

On the contrary, the proposed method can deal with saturated areas and effectively
suppresses the ringing artifacts. Compared with existing saturation deblurring methods,
NLDTV obtains favorable visual performance for removing blur and preserving details
as shown in Figure 6h. Overall, the proposed method outperforms the state-of-the-art
algorithms in terms of quantitative and qualitative evaluation of the synthetic datasets.

Table 1. Quantitative comparison on synthetic dataset Exdark [42] with motion blur. The reference-
based indexes of PSNR (: dB) and SSIM and non-reference-based index BRISQUE of different images
are presented, and the last row presents the average (Ave.) indexes of restored results of different
methods.

Index Blurred RGTV [28] DCP [5] Whyte [14] Chen [19] NBDN [35] NLDTV

PSNR ↑ 19.13 20.23 20.09 21.30 24.24 23.52 24.46
SSIM ↑ 0.6668 0.7287 0.7401 0.7486 0.8048 0.7777 0.8124

BRISQUE ↓ 48.88 39.94 43.85 39.43 25.70 27.25 24.09

(a) Clean (PSNR, SSIM) (b) Blurry (21.09, 0.7880) (c) RGTV (27.63, 0.8596) (d) DCP (27.94, 0.8419)

(e) Whyte (28.57, 0.8579) (f) Chen (28.43, 0.8632) (g) NBDL (28.47, 0.8702) (h) NLDTV (28.93, 0.8777)

Figure 6. Qualitative evaluation on saturation dataset with motion blur. (a) Clean image, (b) blurry
image, and (c–h) restored by RGTV [28], DCP [5], Whyte [14], Chen [19], NBDN [35], and the
proposed NLDTV.
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4.2.2. Robustness to Different Saturation Levels

To evaluate the influence of saturation level, we present the results of different methods
with saturation levels τ = [1.0, 2.0] as shown in Figure 7. As we can see, the performances of
all methods decrease with the increasing of saturation level; however, the proposed method
can consistently obtain the best results in each saturation level. Moreover, the decreasing
tendency of each method represents the robustness of the saturation level. The NLDTV
obtains the lower decreasing ratio, which means less influence with the increasing of
saturation level, demonstrating that NLDTV is the general method for saturation and is
robust to different saturation levels.
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Figure 7. Effectiveness evaluation of different saturation levels. With different saturation levels
τ = [1.0, 2.0], we show the (a) PSNR and (b) SSIM values of different methods.

4.3. Blind Deblurring Results
4.3.1. Combining with Kernel Estimation Method

We recover images with the kernel, which is estimated by other kernel estimation
methods, to further evaluate the flexibility of the proposed method. Figure 8 shows the
results of non-blind deblurring based on the kernel estimated by [17]. The NLDTV achieves
the best performance in terms of PSNR and SSIM. The linear methods, including RGTV [28]
and DCP [5] produce serve ringing artifacts in saturation, while Cho produces artifacts in
the natural region due to the inaccurate kernel. The saturation deblurring methods Cho,
Whyte, Chen, NBDN, and NLDFR obtain high-quality restored results.

(a) Clean (PSNR, SSIM) (b) Blurry (21.89, 0.4590) (c) RGTV (27.68, 0.8706) (d) DCP (29.21, 0.8852)

(e) Whyte (29.85, 0.8828) (f) Chen (29.26, 0.8647) (g) NBDN (29.62, 0.8737) (h) NLDFR (31.11, 0.9095)

Figure 8. Results of blind deblurring with the estimated kernel. (a) Clean image, (b) blurry image, and
(c–h) restored by RGTV [28], DCP [5], Whyte [14], Chen [19], NBDN [35], and the proposed NLDTV.
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Note that the learning-based method NBDN can restore the details effectively but may
generate color artifacts in the saturated regions. NLDTV restores the finer details com-
pared to other saturation deblurring methods, especially for the texts in the red close-ups.
The result indicates that the proposed method can restore the images by combining with
the existing kernel estimation methods.

4.3.2. Deblurring Real-World Image

Furthermore, we ran real-world experiments to test the effectiveness of the proposed
method. The blurry image and estimated kernel are collected from [12]. As shown in
Figure 9, there are just a few ringing artifacts in the restored image of the saturation-based
methods, while there are significant artifacts in the restored images of RGTV [28] and
DCP [5]. For the convenience of comparison, the saturation areas cropped from results
are displayed in Figure 9h successively. The proposed methods can perfectly suppress the
ringing artifacts and restore the blurry image with pleasant visual quality in the real case.

(a) Blurry (kernel) (b) RGTV (c)  DCP (d)  Whyte

(e) Chen (f) NBDN (g) NLDTV (h) Close-ups

Figure 9. Results of deblurring a real-world saturated image. (a) Blurry image and estimated blur
kernel and (b–g) restored by RGTV [28], DCP [5], Whyte [14], Chen [19], NBDN [35], and the proposed
NLDTV. (h) Close-ups.

4.4. Discussion
4.4.1. Effectiveness for the Low-Light Saturated Image Object Detection

We used the SOTA object-detection method Yolov7 [43] to demonstrate that the re-
stored image by NLDTV can facilitate the object detection performance. We compared
the detection performance on the clean image, degraded image, and restored image by
the pre-trained Yolov7 model, and the results are shown in Figure 10. The yolov7 can
detect the can and person object with high confidence as shown in Figure 10a. However,
the detection performance dramatically dropped at the blurry image (Figure 10b). For the
car object, an apparent white car was missed by the Yolov7, and two-person objects were
also missed.

The detected person object has only 54% confidence. These state that the blur and
saturation degradation may heavily distort the objects or disturb the detection model.
After deblurring by the proposed NLDTV, the accuracy of detection gained a large increase
as shown in Figure 10c. The missing cars and persons awere detected by the Yolov7, and the
confidence also increased. The detection comparison illustrates that the proposed NLDTV
can boost the high-level object detection task on low-light and blurry images.
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(a) Clean Images (b) Blurry Images (c) Restored by NLDTV

Figure 10. Object detection results of clean images, blurry images, and restored images by the
Yolov7 [43]. The confidences of the detected objects, from left to right, are listed in Table 2.

Table 2. The confidences of the detected objects (from left to right) in Figure 10.

Objects Clean Blurry NLDTV

Car (0.76, 0.68, 0.62) (0, 0, 0.41) (0.76, 0.68, 0.48)
Person (0.88, 0.84, 0.78) (0, 0.54, 0) (0.76, 0.68, 0.54)

4.4.2. The Impact of the Parameters

• The impact of ‘a’: We performed a sensitivity analysis to investigate the impact
of ’a’ on the overall performance of our proposed method, the results are shown
in Figure 11a. The line chart of Figure 11a illustrates the variations of PSNR and
SSIM values with respect to the parameter ‘a’. It is evident from the chart that both
PSNR and SSIM are quite robust to changes in the ‘a’ parameter. Despite some minor
fluctuations in the PSNR and SSIM values, they remain relatively constant throughout
the range of ‘a’ values. This suggests that the choice of ‘a’ has little effect on the
performance, and the algorithm is able to produce consistent results across a range of
‘a’ values.

• The robustness to λ: We analyzed the impact of the key regularization parameter λ
on the performance of the proposed algorithm and evaluated the robustness of the
algorithm to λ. The results are shown in the line chart of Figure 11b. From the line
chart, it can be observed that there is a certain degree of variation in both PSNR and
SSIM values with changes in the lambda parameter; however, the magnitude of these
changes is relatively small, indicating that both metrics are quite robust to the lambda
parameter. Particularly in the interval where lambda values are greater than 0.001
and less than 0.01, the changes in PSNR and SSIM are relatively small, indicating that
lambda has a stable impact on image restoration performance within this range.
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Figure 11. Variation of PSNR and SSIM values with changes in the parameters a (a) and λ

(b) for image restoration.

4.4.3. Convergence

To validate the convergence of the proposed method, we studied the normalized step
difference energy (NSDE), defined as || f k+1 − f k||22/|| f k+1||22, of the proposed method.
The NSDE curve is plotted in Figure 12. The NSDE decreases significantly at the first
several iterations and converges after about 100 iterations. It denotes that the proposed
method can converge to the constant with fast speed.

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

iteration

N
SD

E

Figure 12. Convergence property of proposed method. The horizontal axis and vertical axis represent
the iteration numbers and NSDE, respectively.

4.4.4. Effectiveness for Unsaturated Natural Image

Although the proposed method focuses on deblurring low-light saturated image, it is
also suitable for unsaturated natural image deblurring, due to the unified formulation of
saturated pixels and unsaturated pixels. As shown in Figure 13, we validate the effective-
ness on natural image suffered from heavy blurry. The proposed method NLDTV achieves
the same high quality as representative linear methods RGTV [28] and DCP [5]. Therefore,
the proposed method is also effective for both natural and saturated image.



Sensors 2023, 23, 3784 16 of 18

(a) Blurry Image (b) Clean Image (c) RGTV (d) DCP

(e) Whyte (f) Cho (g) Chen (h) NLDFR

Figure 13. Results of deblurring natural image. (a) Clean image, (b) blurry image, and (c–h) restored
by RGTV [28], DCP [5], Whyte [14], Cho [12], Chen [19], and the proposed NLDTV.

4.4.5. Limitations

The proposed method focused on non-blind image deblurring, and the kernel was
given or estimated by other algorithms [12,17]. The accuracy of kernel unavoidably influ-
ences the performance of the proposed method. Although this may seem to be limited,
the majority of blind deblurring algorithms have a non-blind subcomponent, alternating
between kernel estimation and non-blind deblurring. Therefore, the proposed nonlinear
formulation can also be introduced to existing blind deblurring framework [7,23,44] to
obtain a more accurate kernel.

In addition, although the proposed method achieved state-of-the-art performance, it is
limited to uniform blur. In the practice, camera shake and dynamic scene always result in
non-uniform blur. Thus, our future works will focus on blind saturated image deblurring
and then extend to non-uniform deblurring. Moreover, the saturated images are often shot
at low light environments, where would also suffer from random noise. Thus, saturation
image deblurring in the presence of the strong noise is also will be studied in the future.

5. Conclusions

In this paper, we studied the problem of deblurring saturated images. We observed
that there were severe ringing artifacts in the restored image of linear deblurring methods.
To solve the problem, we analyzed the nonlinear deblurring model, which outperformed the
linear deblurring model regarding the robustness of data-fidelity, reducing the estimation
error and suppressing ringing artifacts for saturation deblurring. Furthermore, we proposed
a nonlinear degradation model, which included the process of deblurring images with
saturated and unsaturated pixels in a unified manner.

Based on the nonlinear degradation model, we proposed a nonlinear deblurring model
that can be solved with the ADMM. Our extensive experimental results demonstrate the
proposed method outperformed the state-of-the-art methods on both synthetic and real-
world images. Moreover, the proposed NDLTV can promote high-level object detection
tasks on saturated blurry images in low-light environments.
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