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Testing Analog Circuits
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Abstract—A neural classifier that learns to separate the nomi-
nal from the faulty instances of a circuit in a measurement
space is developed. Experimental evidence, which demonstrates
that the required separation boundaries are, in general, non-
linear, is presented. Unlike previous solutions that build hyper-
planes, the proposed classifier is capable of drawing nonlinear
hypersurfaces. A new circuit instance is classified through a simple
test, which examines the location of its measurement pattern with
respect to these hypersurfaces. The classifier is trained through
an algorithm that probably converges to the optimal separation
boundary. Additionally, a feature selection algorithm interacts
with the classifier to identify a discriminative low-dimensional
measurement vector. Despite employing only a few measurements,
the test criteria established by the neural classifier are strongly
correlated to the performance parameters of the circuit and do
not rely on a presumed fault model.

Index Terms—Analog test, artificial intelligence, circuit classifi-
cation, implicit functional test.

I. INTRODUCTION

HE conventional approach to classification of analog cir-

cuits as nominal or faulty employs empirical tests to
measure directly the macro performance parameters. Given the
large variety of specifications of modern analog circuits, as well
as the multiple repetitions necessary to moderate measurement
error, this procedure is lengthy and cost ineffective [1]. Com-
pounding this problem, circuit specifications refer to particular
operational conditions, which require expensive and specialized
test equipment to be reproduced [2]. In order to alleviate the
burden of specification testing, several structural test methods
have been explored [3]. Such methods typically employ test
criteria in the form of a threshold that is set a priori based on the
effects of faults within an underlying fault model. Therefore, no
one-to-one mapping is established between compliance to these
test criteria and accordance with the specifications of the circuit.
As a result, test criteria are usually biased, impacting either the
yield, if they are too strict, or the fault coverage, if they are too
lenient [4]. To overcome the limitations of both specification
and fault-model-based test methods, several methods [5]-[9]
have been developed along a promising new direction termed
as implicit functional testing [10].
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Implicit functional test methods employ prior knowledge
collected from a representative sample set of circuit instances.
This knowledge is used to train a system that is specified by
some type of intelligence to classify new instances through a
simple and inexpensive test. The learned test implicitly cap-
tures the actual joint distribution of all process control and
layout parameters and correlates it to the corresponding drift
of the performance parameters. By virtue of this correlation
and despite its simplicity, the learned test provides comparable
accuracy to the conventional functional tests.

Along these lines, the authors in [8] utilized a regression
technique to approximate the function
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that maps the measurement vector, T, to the performance para-
meter vector, 7. In this manner, the performance parameters are
predicted by carrying out an adequate set of measurements and
are subsequently compared to the specification tolerances, in
order to classify the circuit. The extracted measurements consti-
tute a set of samples of the output response to a transient input
stimulus, which is optimized based on a genetic algorithm. It
is noted that an explicit derivation of f,.. would be feasible
only for simple circuits [11] because it is, in general, nonlin-
ear. Even if the circuit itself is linear, a feedback connection
generates a nonlinear f,.. An alternative approach, developed
in [9], is a heteroscedastic probabilistic neural network that
realizes a Bayesian classifier. The neural network outputs the
class-conditional probabilities for the nominal circuit and for
several fault clusters, which are modeled as a mixture of
normal kernel functions. A circuit is then mapped through
its measurement pattern to the class that wins the probability
comparison.

Along a different direction, the method proposed in this pa-
per develops a classification system that establishes a mapping
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where Y is a boolean variable that takes its value based
on whether the measurement pattern T stems from a cir-
cuit that satisfies all its specifications or not. Essentially,
this mapping translates into an adequate number of hyper-
surfaces that separate the distributions of nominal and faulty
circuits in the measurement space. The resulting test crite-
rion for a circuit instance is to examine on which side of
the separation hypersurfaces its measurement pattern falls.
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More specifically, the proposed classification system is based
on an artificial neural network that learns how to allocate
these nonlinear decision boundaries in the measurement space.
Learning is achieved through a set of measurements carried
out on a representative sample of circuit instances that are
functionally tested. Subsequently, the trained network will
correctly classify new circuits, since their measurement pat-
terns are produced by the same statistical mechanism as the
training ones.

For a given set of measurements, the effectiveness of such
classification methods depends on the accuracy with which the
drawn boundaries separate the distributions of nominal and
faulty circuits. Previously reported classifiers [5]-[7], estab-
lishing the mapping in (2), separate the nominal and faulty
populations by drawing hyperplanes in the measurement space.
However, as will be illustrated in Section III, the boundaries
are nonlinear in practice, with curvatures that cannot be ap-
proximated by hyperplanes. Conversely, the network described
herein is capable of drawing the necessary nonlinear separa-
tion boundaries and, thus, it reciprocates very well even in the
presence of complex distributions. As an ancillary benefit of the
flexibility provided by nonlinear boundaries, the proposed
classifier requires fewer measurements to solve the separation
problem.

The remainder of the paper is organized as follows. Sec-
tion II refers to related work in detail. Section III presents
experimental evidence that the required separation surfaces
are indeed nonlinear. Section IV discusses the structure of
the proposed neural network and its training algorithm, which
allocates the separation hypersurfaces. Section V presents a fea-
ture selection algorithm that interacts with the neural network
in order to identify the most useful measurements within an
initial set. Finally, the classification capacity of the proposed
network is illustrated in Section VI, using two example circuits,
a Butterworth filter and an operational amplifier.

II. RELATED WORK

Before proceeding to an in-depth analysis of the proposed
classification system, previously reported classifiers [5]—[7] that
build the mapping of (2) are briefly reviewed. The common
characteristic of these methods is that they separate the nom-
inal and faulty populations by drawing linear boundaries (i.e.,
hyperplanes) in the measurement space.

In [5], an analog circuit is modeled as a digital system by
embedding digital-to-analog and analog-to-digital converters.
Samples of the impulse response of the circuit are used as candi-
date signatures for distinguishing the distributions of the fault-
free and faulty circuits. The impulse response is constructed by
computing the cross correlation between the input pseudoran-
dom digital sequence and the output response. Fisher’s linear
discriminant is used to separate the two distributions in the
signature space and, therefore, the resulting multidimensional
boundaries are linear. In [6], the authors use dc, ac, and Igq
measurements as candidate signatures for the allocation of
the boundaries. Logistic discrimination analysis is used as the
vehicle for the separation of the distributions. This type of
analysis assumes that both distributions are normal with equal
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covariance matrices. In practice, this theoretical assumption
is not satisfied.! Nevertheless, the method essentially inserts
separating linear surfaces into the signature space. The authors
in [7] propose the use of a two-layer neural network to allocate
the separation boundaries. The network is trained to map a sam-
pled version of the impulse response to pass or fail decisions.
Since the hidden threshold units operate on linear combinations
of samples, this network generates linear decision boundaries
in the signature space. Moreover, its learning algorithm does
not guarantee convergence to an optimal separation of the two
distributions.

III. NONLINEAR DECISION BOUNDARIES

In practice, the separation surfaces between nominal and
faulty circuits can be very complex, and linear approximations
using hyperplanes, such as in [5]-[7], may lead to high misclas-
sification rates. Fig. 1 illustrates a few distribution examples in
a two-dimensional (2-D) measurement space x; — 2.2 These
scatter plots were drawn by performing a Monte Carlo simula-
tion, where various parameters of the circuit follow a normal
distribution centered at the nominal conditions. Each pattern
in the measurement space represents a circuit instance. The
circuits are denoted as nominal or faulty depending on whether
they satisfy a single specification. The solid curves show the
linear decision boundaries b; drawn by a neural network similar
to the one described in [7], as well as the nonlinear decision

ILet $ be the circuit parameter vector and fpa : P — x. Consider the Taylor
expansion of the measurement pattern = around the expectation i of p, fi =

E[p]
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If it is assumed that the elements of p, denoted by p;, are independent and
normally distributed, p; ~ N (u;, 0;), it can be shown that

Fou () + (B = i) - Vo foa(7) 7=
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where Y is the covariance matrix of the random vector p : 3;; = Uf and
X;; = 0 for 4 # j. The distribution of the higher order terms depends on the
form of fp,;. From (3), it can be seen that = behaves as a normal random
variable only for p close to the nominal vector fi, where the higher order
terms are negligible. In order to claim that « is normal, this behavior should
be extended from —oo to co. However, as p deviates from fi, the higher
order terms become increasingly significant, distorting the normal distribution.
Dropping these terms would lead to a misleading distribution for z. For
example, consider z = p? and p ~ N(0, 1). Dropping the second term of the
Taylor expansion yields 2 ~ N (0, 1). However, it is known that p? has a chi-
square distribution with one degree of freedom [12]. It should also be noted
that, if the nominal and faulty populations were normal with equal covariance
matrices, then the optimal decision boundary would be a hyperplane [13].
>These measurements were taken on the two circuits that appear in
Section VI, a low-pass Butterworth filter [Fig. 1(a): =1 is a sample of the
impulse response and zg is a sample of the response for an ac input signal of
frequency 16 kHz and magnitude 1 V; Fig. 1(b): 1 and x2 are both samples of
the impulse response] and an operational amplifier [Fig. 1(c): x1 is a dc signal
and x2 is a sample of the I3q measurement by ramping the supply voltage].
Fig. 1(c) is normalized since z2 is several orders of magnitude smaller than ;.
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boundaries by produced by the higher order neural network that
will be described in the subsequent sections.

Fig. 1(a) and (b) demonstrates the nonlinear nature of the
ideal decision boundaries. A linear boundary will inevitably
result in misclassifying a large number of circuits. Moreover,
there are cases where a linear boundary will make completely
misguided decisions. For example, consider the distribution of
Fig. 1(c). The regions where the population of faulty circuits
lie are nonconvex and disjoint. The classification system is not ..
cognizant of the disjoint character of the faulty distribution and
tries to fit a single boundary, as the examined specification
is single ended. In this case, the linear boundary is allocated
onto a space that is free of patterns, as any other choice
would lead to even higher misclassification. All the patterns
appear on one side of the line and, therefore, all the nominal
circuits are erroneously classified as faulty since the number of
patterns that correspond to nominal circuits is smaller. Such a
biased decision is avoided when a higher order model is used.
The figure shows that the neural network that was developed
draws two nonlinear separating boundaries at the two sides
of the distribution of nominal circuits. This neural network is
capable of producing disjoint decision boundaries since, as will
be illustrated in the next section, it essentially fits a second-
order polynomial to separate the distributions on the space of
measurements. Therefore, in the case of the 2-D scatter plot of
Fig. 1(c), every value on the perpendicular axis corresponds to
two real solutions on the horizontal axis.

The method proposed in this work is inherently extendible
to boundaries of any order. While the option of polynomials
of higher degree was considered, all the decision boundaries
that came up in the experiments were accurately expressed by
second-order polynomials. A higher order polynomial could
potentially provide higher resolution for the data that is in the
close proximity of the second-order boundary. However, such
a fine-grained decision boundary runs the danger of overfitting
the data and does not necessarily lead to better classification
of previously unseen patterns, since there is always some
degree of overlap between the distributions of nominal and
faulty circuits.

The flexibility of nonlinear boundaries facilitates the discrim-
ination of the two populations in a lower dimensional mea-
surement space. It is true that, by adding more measurements,
the point where the two populations are linearly separable can
eventually be reached. In particular, in high dimensions, the
measurement patterns are sparsely distributed, leaving a wide
empty space between the two populations, where a linear
boundary can fit. This might create the misperception that linear
boundaries are adequate, provided that the input dimensionality
is sufficiently large. The fact is, however, that the system,
by construction, covers the entire space and, thus, the output
assignment to an empty subspace will be random. As a result,
patterns that fall within a subspace, which was empty during
the learning phase, will be randomly labeled during the classifi-
cation phase. Thus, increasing the number of measurements to
the point where patterns are sparsely distributed has an adverse
impact on classification of previously unseen patterns. This ¢ Nominal circuits = Faulty circuits
undesirable phenomenon has been termed as curse of dimen-
sionality [13], [14]. Fig. 1. Distributions of nominal and faulty circuits.
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IV. NEURAL NETWORK TOPOLOGY AND LEARNING

The neural network that is developed in this work provides
a general framework for representing nonlinear functional
mappings between a set of measurements and a pass/fail deci-
sion for a circuit. In this section, the prior knowledge required
to train the proposed neural network is defined, its structure
is analyzed, and how the network learns to classify previously
unseen circuit instances is shown.

A. Starting Point

The topology of the neural network is solely defined by the
number of single-ended specifications describing the design,
denoted herein by M. The knowledge used to train the neural
network is collected from a representative set of V; circuits and
comprises two elements, namely, the functional test results and
a set of d measurements. The functional tests are encoded into
an M-dimensional Boolean vector 7, whose elements indicate
whether the circuit satisfies the corresponding specifications or
not. The values of the d measurements obtained on each of the
N instances are gathered in d-dimensional vectors & € R¢. The
N, patterns [Z",t"], where n = 1,..., N; labels the pattern,
constitute the training set

T = {(@"),...,@"N ")} (3)
which is used to optimize the adaptive parameters of the neural
network. The cost function for this optimization is the classifi-
cation rate Jy, for this particular set of circuit instances

In, == Y (1= hFC@") (4)

where hFC is the error counting function: h¥C(3%) = 1 if the
pattern Z° is misclassified and h®€ (&%) = 0 otherwise.

The objective in building a reliable classification system is
not to fit a decision boundary that separates the training pop-
ulations perfectly. Rather, the objective is to develop a system
that gives accurate predictions for previously unseen instances,
in other words, a system that exhibits good generalization. In
order to assess the generalization capabilities of the proposed
neural network, a second independent set of NV, circuits is used,
which is called the validation set

Vo= @M Ny @ NN g NN L (5)

The generalization rate PNt is defined similarly to (4)

Ni+N,

: (1—hPC(@E). (6)

Py, = L
CON,
i=N¢+1

This method of generalization assessment is called hold-
out. A number of other methods such as resubstitution, cross-
validation, and bootstrap exist in the literature. The interested
reader is referred to [15] for a detailed discussion.
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B. Neural Network Topology

The proposed neural network has d inputs, one for each
measurement z; through x4. Its basic component is Frank
Rosenblatt’s perceptron [13], [14], which is illustrated in Fig. 2.
A perceptron is a single-layer® network where the input row
is transformed through a fixed set of processing elements ¢;,
followed by adaptive weights w; and a threshold activation
function g of the form

—1,

g (OL) - { +17

Here, the d-dimensional measurement vector Z activates all

the fixed processing units ¢; for j = 1,..., k. The output of

the extra processing element ¢y is permanently set to +1,

¢0(Z) = +1, with a corresponding parameter wy. The (k + 1)-

dimensional vector @ = [wg, w1, . .., w]T shall be referred to

as the weight vector and the parameter wq as the bias. The
output of the perceptron is, therefore, given by

fora <0
fora >0 °

(7

k
y=g | > wjo;() | =g(@"9) ®)
=0

where ¢ = [¢o, ..., o1]7T.

In the complete neural network, a perceptron represents a
single-ended specification of the circuit. Suppose that the per-
ceptron examined herein corresponds to specification s, p €
{1,..., M}. Let C¥ denote the class of circuits that comply to
this specification and C}f denote the class of circuits that violate
it. As mentioned earlier, each pattern £ " is associated with a

variable t;}
n __ 713
- {+1,

If the +1 and —1 in (7) correspond to the pass and fail
decisions respectively, then, from (7) and (8), the conditions
@WT¢ >0 for all &" € C# and @”¢ <0 for all &" € CY
should hold. Therefore, the inequality

for z™ € C’}L

for 2™ € CH. ©)

@ (qﬁ(m")tﬁ) >0 (10)
should hold for all measurement patterns in order to achieve
optimal classification for the training set.

The output expression (8) has a simple geometrical repre-
sentation. The perceptron divides the input space by a hy-
persurface, such that the activation function is y = +1 on
one side of the hypersurface and y = —1 on the other side.
Therefore, the populations of nominal and faulty circuits are
divided in the measurement space by a boundary composed
of the set of solutions to the equation @T ¢ = 0. The neural
network learning process adjusts the weights in w so that the
allocation of the boundary will result in the lowest possible
misclassification rate for the patterns in the training set. Since
the training set reflects the underlying systematic aspects of the

3The term “single-layer” implies one layer of adaptive weights.
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Fig. 2.

Perceptron network.

data, this boundary is expected to classify correctly a previously
unseen pattern. A possible decision boundary in a 2-D space
is shown in Fig. 3. Circuits with measurement patterns that
fall into the area A# are classified as nominal with respect to
specification s,,, while circuits with measurement patterns that
fall into Aiﬁ are classified as faulty.

The shape of the boundary depends on the selection of the
fixed processing units. Clearly, if ¢;(Z) = x; and k = d, (8)
reduces to the conventional linear case. For a second-order
decision boundary, the fixed processing units ¢; must be chosen
such that

d d d
~T 7 / /
w ¢ = g w;x; + g g Wy 4, Tiy Tiy
i=0

i1=149=1
d d
!
= g g Wy 5, Tiy Tiy (11D
i1=0i3=0
where 29 = +1 and w}, = wf,; = w.
Therefore, according to (11), the vector ¢ should be
i )
¢_ sy LLyeeeyTdy T, T1TL2y - -«
2
T1Xdy Loy, L2TL3y oy T2T(d, - - ]

The summations in (11) can be constrained to allow for the
permutation symmetry of the terms. Based on this remark and
on the expression of ¢, it turns out that each perceptron should
comprise (d;’Q) = ((d+1)(d+ 2)/2) fixed processing units.
The right-hand side of (11) then becomes

PR (a41)(d+2)
, _

YD whmw, = Y, wig(E).  (12)

i1=01i=0 j=1

The complete topology of the proposed neural network is
shown in Fig. 4. Each perceptron p,, corresponds to the single
specification p; thus, a total of M perceptrons is needed.
The output of p,, indicates whether the input pattern derives
from a circuit that satisfies p or from a circuit that does not.
Specifically, the perceptron p,, has activation function 3, = +1
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Fig. 3. Example decision boundary for a single perceptron in a 2-D measure-
ment space.
if the circuit passes the specification p and y,, = —1 if it fails

it. The output unit has the threshold activation function of
(7), with « being the sum of the outputs of all perceptrons
and the output bias. By setting the bias of the output unit
to —M, it computes the logic AND of the outputs of the M
perceptrons: o = 224:1 Yu — M. In other words, the neural
network outputs Y = +1 if and only if the examined circuit
satisfies all its specifications, and Y = —1 if at least one
specification is violated. An example of decision boundaries
for a circuit with five specifications in a 2-D measurement
space is shown in Fig. 5. The intersection of all five individual
acceptance regions is

M=5
A= () AL
p=1

Note that such a network can generate more complex decision
boundaries as well, such as the piecewise boundaries shown in
Fig. 1(c), where the regions of faulty circuits are disjoint.

C. Learning

In this section, the procedure through which the neural
network learns to allocate the decision boundaries in the mea-
surement space is discussed.

1) Training Algorithm: In order to minimize circuit misclas-
sification, (10) suggests that weight values that minimize the
following error function known as the perceptron criterion be
selected

Eperc (’lf)) - _

>

Fray(am) A

T (q@(:z”)t[}) . 13)

Here, the summation is over all patterns in the training set that
are misclassified by the current weight vector w. The error
function is the sum of a number of positive terms and is equal
to zero if all patterns are correctly classified. The search in the
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Fig. 4. Structure of the proposed neural network. Each p unit corresponds to
a perceptron.

(k + 1)-dimensional vector space of weights is performed by
applying the gradient descent rule in a pattern by pattern fashion

t+1 t -
w]( ):w](.)Jrnqﬁj(x )t

(14)

where 1 > 0. This corresponds to a simple learning procedure:
Cycle through all patterns in the training set and test each pat-
tern in turn using the current set of weight values. If the pattern
is correctly classified then proceed to the next, otherwise, add
1¢;(Z) to the current weight vector if the pattern belongs to the
nominal class, or subtract ¢;(Z) if the pattern belongs to the
faulty class. This procedure successively reduces the error since

_ DT (qz(;zn)t;}) = —a®7 (&(fﬁ”)tﬁ)
ol

< —@®WT (q@(g}”)tf}) .

5)

In the case where the patterns ¢;(Z) are linearly separable,
i.e., they can be perfectly separated by a hyperplanar decision
boundary, the above learning rule is guaranteed to find a so-
lution in a finite number of steps [16]. More specifically, let
R = maxo<i< ||¢(Z")|| and suppose that there exists a weight
vector " such that ¢,(w*7 - ¢(3')) > 7 for 0 < i < N. Then,
the number of mistakes made by the perceptron algorithm on
the training set S is at most

2 (5) oy ).

However, due to the continuous nature of analog signals, the
problem of classifying analog circuits is nonseparable, at least
in the lower dimensional space. For such nonseparable prob-
lems, the described perceptron rule is not well behaved. While
the search will eventually visit an optimal set of weights, it
will never terminate. Furthermore, the algorithm may pass from
an optimal set of weights to a significantly worse set in one
iteration, regardless of the number of iterations that have been
previously performed. Indeed, the reduction of the cost function
in each iteration does not necessarily imply that fewer patterns

(16)
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Fig. 5. Example acceptance region in a 2-D measurement space for a circuit
with five specifications. (-)p, denotes the boundary allocated by perceptron i.

are misclassified by the new weight vector. Thus, the algorithm
is stopped arbitrarily, and no guarantee can be provided for the
quality of classification achieved by the identified weight vector
on the training set and, by extension, on previously unseen data.

To address this issue, Pan and Cheng [7] used n = K/,
where K is a constant and 7 is the step number. Hence,
corrections to the weight vector become gradually smaller.
However, this heuristic still does not guarantee convergence to
an optimal boundary. To overcome this problem, a perceptron-
based learning algorithm, called the pocket algorithm [17], is
implemented, which probably converges to an optimal decision
boundary with probability close to unit (for a general proof,
see [18]). The basic idea is that the training samples are visited
randomly and, once a weight vector that has a longer run
of consecutive correct classifications is found, it replaces the
current weight vector, and it is kept “in the pocket.” The pocket
weights are the outputs of the algorithm. Note that no upper
time bound is known for this to occur, yet experience in the
field [17], [19] indicates that very good weights are produced
using reasonable computational effort. As a termination rule,
the suggestion in [17] is followed. The algorithm starts with
¢ = 1000 iterations. If weights are changed after the first i/5
iterations, then at the end of this set of iterations, another set
of 1.5¢ iterations is applied. The algorithm continues in this
manner until a set of iterations is ran with no weight replace-
ment occurring during the last 0.87 iterations.

As an example, Fig. 6 illustrates the movement of the deci-
sion boundary in a 2-D space as training progresses. Here, the
classifier learns the separation boundary of the two populations
shown in Fig. 1(a). In Fig. 6, boundary bg') corresponds to the
ith pocket vector. Table I shows the iterations in which the
pocket vector changes, as well as the classification rate that each
particular pocket vector achieves. It can be seen that the pocket
vector is replaced seven times and remains unchanged after 168
iterations. Thus, the algorithm stops after 800 iterations.

2) Small Faulty Population: Small training sets are com-
monly encountered in practical pattern classification problems.
A known application where this occurs is the short-term fore-
casting of the demand for electric power from an electric
utility [20]. A manufacturing process typically has high yield,
with nominal circuits outnumbering significantly the faulty
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Faulty circuits
Fig. 6. Movement of the decision boundary as training progresses.

TABLE 1
ITERATIONS IN WHICH THE POCKET VECTOR CHANGES AND THE
CLASSIFICATION RATE THAT THE RESULTING BOUNDARY
ACHIEVES. THE TRAINING SET CONSISTS OF
1000 PATTERNS

b0 [ o [ 3 [ 6@ [ 6@ [ 6 [ 600
Iteration 4 7 84 93 118 137 168
Rate 834 | 853 | 866 | 873 | 897 | 941 964

ones. Thus, the prior set {T,V} typically contains a small
faulty population. Before discussing the implications of such
an unbalanced prior set and list a number of possible rem-
edies, the difference between a small faulty population and a
nonrepresentative faulty population is emphasized. The funda-
mental assumption of implicit functional test methods [5]-[9] is
that both populations are representative, such that the estimated
statistics of the classes are accurate. Thus, in this section, the
problem of using a small, yet representative, faulty population
in the training process is examined.

If the faulty population is small, the resulting decision bound-
ary depends upon the partition of the prior set [21]. In particular,
the more faulty patterns included in the training set, the more
representative the decision boundary will be. Thus, as a first
step, all faulty patterns in the training set need to be included.
Even then, part of the region where the faulty population lies
might be overshadowed by the dominant nominal patterns.
As a result, the decision boundary will be pushed inside the
faulty population region, possibly misclassifying a large portion
of it. Finally, the curse of dimensionality will emerge faster
when dealing with a small faulty population. In particular, as
explained in Section III, the decision boundary will be set
imprecisely if the ratio Ny /d is small, where N is the number
of faulty patterns and d is the dimensionality.

In the case examined herein, where the distributions of the
two populations are unknown and unequal and the classifier is
nonlinear, it is not possible to estimate the number of faulty
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patterns needed. The authors in [22] give an empirical recom-
mendation that is based on the ratio

P pt
r=——F=—"=x°
2— (P9 + PY)

where P¥ and P* are the generalization rates after training the
classifier with the resubstitution and the leave-one-out methods,
respectively.* If 7 is small, it can be concluded that the size
of the faulty population is sufficient to achieve a desired level
of learning accuracy. If the size of the faulty population is
not sufficient, there are two remedies that can be followed
to mitigate the effect. The first one relies on generating new
faulty patterns as spherical normal distributed noise around the
available ones

Ty =27 + & a7)
where j = {j|Z7 € C}} and each £ j; is governed by a normal
probability distribution centered at Z7. It has been shown both
experimentally and theoretically that noise injection greatly
improves the generalization ability [13], [23], [24]. Practically,
it fills the space across the decision boundary, smoothing the
generalization error and stabilizing the training procedure. The
second remedy relies on training the classifier with the available
information and then using the newly classified instances to
retrain the classifier and update the decision boundary. The
classified instances are referred to as semilabeled instances. It
can be shown that learning with semilabeled patterns achieves
comparable performance to learning with a large sample size,
when the two populations are relatively separated [25]. To
reduce the number of training epochs, the classifier can be
retrained only if the classified pattern falls within a zone around
the current decision boundary. Since no knowledge of the clas-
sification accuracy of each new instance exists, a control factor
that is related to the likelihood of a class can be attached to it.
Of course, this is not needed if each pattern that falls within
this zone can be tested exhaustively. Experiments indicate that
this adaptive classifier design quickly evolves into an optimal
classifier with high generalization performance [25].

3) Biased Decisions: The training algorithm described in
Section IV-C-1 produces an unbiased classifier, in the sense that
it minimizes classification error without showing preference to
one of the two classes. In essence, the classifier attempts to
optimize both fault coverage and yield. If misclassifying faulty
circuits as nominal (test escapes) is unacceptable, then the
classifier should be biased towards rejecting faulty circuits. This
constraint can be easily incorporated in the training process
of the classifier. In particular, as explained in Section IV-C-1,
the algorithm cycles through the training instances in a random
fashion and corrects the decision boundary if a selected instance

“In the resubstitution method, all patterns are used to design the classifier
and used again to estimate its generalization performance. In the leave-one-
out method, ( N]i 1) classifiers are designed. Each classifier is designed by
choosing N — 1 of the IV patterns as a training set, and its classification rate is
evaluated on the left-out pattern. This process is repeated for all distinct choices
of N — 1 patterns and the average of the classification rates is computed.



STRATIGOPOULOS AND MAKRIS: NONLINEAR DECISION BOUNDARIES FOR TESTING ANALOG CIRCUITS

X2

€ Nominal circuits Faulty circuits

Fig. 7. Addition of measurement x2 does not improve discrimination.

(z*,tF) is misclassified. According to (10) and (15), this
correction forces the dot product & (¢(7*)t %) to become more
positive and likely to surpass the threshold of zero. This is
equivalent to saying that the new boundary settles closer to the
pattern that caused the change and is now likely to classify
it correctly. Thus, if the training set is augmented by using
multiple copies of the faulty patterns, the classifier will favor
corrections of the decision boundary due to misclassified faulty
circuits. As a result, the final decision boundary will classify
correctly all faulty patterns in the training set and, thus, the
probability of test escapes for unseen instances will be very
small. Also note that within this constraint of eliminating test
escapes, the training process still attempts to maximize yield.

V. SELECTION OF MEASUREMENTS

Increasing the dimensionality of the measurement space does
not necessarily improve the efficiency of the classification sys-
tem. For instance, an additional measurement may be strongly
correlated to the current set of measurements and may not
provide further classification ability. This is illustrated in Fig. 7,
where nominal and faulty circuits overlap significantly in the
space of the two selected measurements.® In essence, the two
populations fall upon each other and, hence, adding measure-
ment x5 does not provide additional discrimination ability
over measurement ;. Moreover, as discussed in Section III,
increasing the dimensionality of the measurement space may
have an adverse effect on the generalization performance of
the classifier due to the curse of dimensionality. Therefore, the
separation problem should be solved in a measurement space
that is both highly discriminative and low dimensional.

The problem of selecting the most effective d’ measurements
from a given set of d measurements, d’ < d, is called feature
selection. Feature selection methods are typically based on two
components: 1) a criterion by which subsets of measurements
are compared to each other; and 2) a systematic procedure for
searching through the number of candidate subsets of mea-
surements. The solution proposed in [26] chooses individual

SThese measurements were taken on the operational amplifier that appears
in Section VI. x; is the Fourier coefficient of the first harmonic and x2 is a
dc signal.
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measurements, such that the difference between the means of
the nominal and faulty classes is large and, at the same time, the
within-class scatter is as small as possible. However, although
the omitted measurements are of relatively little importance for
the representation of the data itself, they may be crucial for
the subsequent classification phase. For example, this method
will not include two measurements, such as the ones illustrated
in Fig. 1(b), where each one provides little discrimination by
itself, yet their combination is very effective. Therefore, subsets
of measurements should be considered, rather than individual
measurements. The computational complexity of this approach
is exponential in the number of measurements. Therefore, sev-
eral efficient heuristics have been developed and a taxonomy of
the most well-known algorithms can be found in [27].

Among them, a method called floating search was cho-
sen to be implemented [28]. A comparative study [27] us-
ing data from synthetic aperture radar satellite images shows
that this method yields near-optimal results, yet it is much
faster than other feature selection approaches based on branch-
and-bound algorithms [29]. Each measurement subset X; is
evaluated by training the neural network and computing the
classification rate J(X;) achieved on the training set. A sub-
set X; is deemed better than another subset X; if and only
if J(X;) > J(X;). This comparison is meaningful only for
subsets of the same cardinality. The algorithm uses two basic
procedures, the sequential forward selection (SFS) and the
sequential backward selection (SBS). Given a subset of mea-
surements Xy, SFS selects from the remaining measurements
and includes the most significant one x; with respect to the
following subset:

;= {xi| max (J(Xy + i) - J(Xk))} NG
Similarly, SBS selects from the current subset of measurements
X}, and excludes the least significant one x; with respect to the
following subset:

;= {x,-| min (J(Xy) = J(Xp, - xi))} )
The algorithm is a bottom-up search procedure that starts with
an empty feature set and includes new features by means of
applying the basic SFS procedure. The feature inclusion phase
is followed by a series of successive conditional exclusions of
the worst feature in the newly updated set through the SBS
procedure, provided that a further improvement can be made
to previous sets of lower cardinality. The algorithm records
the best identified subsets S¢, d’ € {1,...,d — 1}, and updates
the list when better ones are found. Upon termination, the
algorithm reports the subsets S forevery d’ € {1,...,d — 1}.
A simplified flowchart of the algorithm is shown in Fig. 8. It is
emphasized that, unlike methods such as in [30], [31], where
measurements are selected based on fault coverage and yield
corresponding to a particular fault model, the proposed method
selects subsets of measurements based on actual classification
rates achieved on a representative sample of naturally labeled
instances.

A snapshot of the algorithm running on an example with five
measurements is shown in Fig. 9: At some point, the algorithm
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Fig. 8. Flowchart for the measurement selection method.

examines {71, 3, 74} and evaluates J ({1, x5, z4}) > J(S?).
Thus, it updates the list S® = {1, 23,24 }. It then determines
that the least significant measurement with respect to S® is z.
However, J({z1,23}) < J(S?), leaving the list unchanged.
Then, x4 is reinstated and the algorithm selects the most sig-
nificant measurement with respect to S®. This inclusion gives a
better subset of cardinality four. In the last step shown, a better
subset of cardinality three is identified.

VI. EXPERIMENTAL RESULTS

In this section, the proposed classification method is eval-
uated on two example circuits, a Butterworth low-pass filter
and an operational amplifier. The two circuits are shown in
Fig. 10(a) and (b), respectively, and their list of specifications
is given in Tables II and IIl. The experiments illustrate the
following:

1) Nonlinear decision boundaries provide better separation
of the nominal and faulty populations than their linear
counterparts.

2) Nonlinear decision boundaries generalize better than their
linear counterparts. Thus, the resulting test criterion is
more accurate. Furthermore, the maximum generalization
is achieved in a low-dimensional space, which points to a
criterion that is simple to evaluate.

3) The classification rate on the training set increases
monotonically with the number of measurements, i.e.,
J(XT) > J(X), where X and Xt denote sets of mea-
surements, with | X| < |XT|. However, for the selected
best subsets of measurements, monotonicity is not nec-
essarily satisfied on the validation set. This verifies the
existence of the curse of dimensionality.

A. Experimental Setup

The course of the experiment is as follows:

1) First, an initial set of ten measurements is selected. This
set was obtained by applying a realistic statistical simu-
lation of the circuit and identifying test stimuli responses
(and their respective sampling times), which are the most
sensitive to process variations [32]. Various types of
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measurements are examined in this analysis: ac, dc, im-
pulse response [33], Fourier transformation of the power
supply current [34], and power supply ramping [35]. It
is noted that the classification rate that the proposed
method can achieve is bounded by the discrimination
ability of this initial set of measurements. While more ad-
vanced test generation methods could probably improve
this upper bound, such improvement is not related to
the quality of the classifier and is out of the scope of
this paper.

The circuit instances that constitute the training and the
validation set for the classifier are then obtained. In a
production environment, the training set will comprise a
small number of circuits that will be functionally tested
and on which the selected measurements will be carried
out. For the purpose of this experiment, these circuit
instances are generated through a Monte Carlo simulation
with 2000 runs. Half of them are used as the training set
and the other half as the validation set. All amplifiers in
the active filter are used in a negative feedback configura-
tion and, thus, the performance of the circuit is dominated
primarily by variations in the values of the resistors and
capacitors. Therefore, only disturbances of the resistors
and capacitors connected externally to the operational
amplifiers are considered. For the operational amplifier,
transistor geometries L and W, oxide thickness %y,
threshold voltage V-, body effect coefficient v, junction
capacitances, and the capacitor C, are considered. For
both circuits, all parameters are modeled by a normal dis-
tribution centered at their nominal value with a deviation
of 10%. It is emphasized that these faults are only used
for the purpose of generating the circuit instances in the
training set. In practice, the proposed classification sys-
tem does not rely on any assumption about an underlying
fault model.

The vector [#,1] is computed for each circuit instance.
Individual measurements might have typical values that

differ by several orders of magnitude. For example,
the Fourier coefficient of the second harmonic can
be considerably smaller than a voltage measurement.
As a result, the neural network might assign larger
weights to measurements with larger typical values.
However, the typical sizes of the measurements do not
reflect their relative importance in the classification prob-
lem. Therefore, all measurements are normalized before
they are presented to the network. Each measurement
is treated independently. Its mean, &;, and its vari-
ance, o2, are calculated with respect to the training set
using

1 N
-1 Z (' —
n=1
The set of normalized measurements is then defined as

i

4) The normalized vectors [#*,£"], for all patterns 7 that
belong to the training set, serve as input to the feature
selection algorithm of Section V, which searches for ef-
ficient measurement subsets with regards to the clas-
sification rate that they achieve. Upon completion, the
algorithm reports the best subset of d’ measurements that
it has identified for every d’ € {1,...,9}, along with the
corresponding weight vector for the adaptive parameters
of the neural network and the classification rate achieved
on the training set.

5) For each best subset of d’ measurements and for every
d' € {1,...,10}, the classification rate is also computed
on the validation set, in order to examine the generaliza-
tion performance of the trained neural network.

6) For comparison purposes, steps 4 and 5 are repeated for
a linear neural network that has perceptrons with fixed
processing elements ¢;(Z) = x;, j = 1,...,d. Since the
training algorithm probably yields an optimal decision
boundary [17], [18], the linear boundaries that this net-
work produces are at least as good as the ones produced
by the classification systems in [5] and [7]. Note also that
the feature selection algorithm may produce different best
subsets than in the nonlinear case.

Next, the results for each circuit are discussed, provid-
ing examples of separating boundaries and classification
rates for both training and validation sets.

B. Butterworth Low-Pass Filter

Fig. 11 displays the distributions of nominal and faulty cir-
cuits projected onto the space of the best pair of measurements.
Here, the best 2-D subset of measurements is identical for
both the linear and the second-order network. Each decision
boundary b;‘, where p € {1,2}, j =1 for the linear network
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Fig. 10. Schematics of (a) Butterworth low-pass filter and (b) complementary metal oxide semiconductor (CMOS) operational amplifier.

TABLE 1I
SPECIFICATIONS OF THE LOW-PASS BUTTERWORTH FILTER CIRCUIT.
o = —A, WHERE A IS THE GAIN IN DECIBELS

a < 0.55dB at f = 16kHz
o > 21dB at f = 32kHz

and j = 2 for the proposed network, divides the measurement
space into two regions A% ( j) and A%( ). Circuits that fall into
AE(j) are classified as nominal, while circuits that fall into
A?( Jj) are classified as faulty with respect to specification s,,.
Therefore, the entire measurement space is divided into four
decision regions: circuits that fall into A%(j) () A%(j) vio-
late both specifications, circuits that fall into A}, (7)) A%(J)
satisfy only the first specification and so forth. As can be
observed, the acceptance region defined by the two nonlinear
boundaries, AL (2) () A2(2), approximates the area of nominal
circuits better than the acceptance region defined by the two
linear boundaries, A% (1) (N A2(1).

TABLE III
SPECIFICATIONS OF THE OPERATIONAL AMPLIFIER
Low frequency gain Ap > 82dB
Unity-gain frequency fo > 4.8 MHz
Slew-rate Sp > 1.7V/us
Common-mode rejection ratio | CMRR > 113dB
Phase margin oM > 80°

Fig. 12 shows graphically the classification rates for the
training and validation set for both types of networks. The
proposed network can be trained using five measurements to
classify correctly all patterns in the training set. The linear
network does not reach this optimum rate even if all ten
available measurements are utilized. This shows that the non-
linear boundaries separate the populations more effectively.
Furthermore, the linear network requires seven measurements
to reach the same rate achieved by the proposed network with
only two measurements. Hence, the separation is also achieved
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Fig. 11. Distributions in the space of the best pair of measurements for
the Butterworth low-pass filter; both measurements are samples of the filter’s
output response for an ac input signal of frequency 16 kHz and magnitude 1 V.
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Fig. 12. Performance on the training set J and generalization performance P
of the linear and nonlinear boundaries for the Butterworth low-pass filter.

in a lower dimensional space. On the validation set, the linear
network reaches the classification rate of 92.8% when all ten
measurements are used, which is achieved by only two mea-
surements for the second-order network. In addition, this rate
is much smaller than the best rate of 96.7% for the second-
order network, which is achieved for four measurements. Thus,
the second-order network not only exhibits better generalization
performance, but it also reaches a specified generalization rate
using fewer measurements.

In Fig. 12, it is observed that the misclassification for the
training set is reduced by using a larger set of measurements,
but the rate of improvement decreases as the number of mea-
surements increases. This suggests that the search of the feature
selection algorithm in low-dimensional spaces is crucial in or-
der to find the most relevant measurements. The curse of di-
mensionality is slightly evident on the validation set for the
second-order network. The best generalization performance
is achieved for four measurements and monotonicity is not
always satisfied for larger sets of measurements. This phe-
nomenon is not observed in the linear network. The fact that
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Fig. 13. Distributions in the space of the best pair of measurements for the
operational amplifier; 1 is a sample of the response for an ac signal of
frequency 100 kHz and magnitude 1 V, when the amplifier is configured in
a differentiating topology [6], and x> is the dc response for an input of 100 mV,
when the amplifier is configured in an inverting topology.
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Fig. 14. Performance on the training set J and generalization performance P
of the linear and nonlinear boundaries for the operational amplifier.

the curse is slightly evident for the second-order network and
absent for the linear one implies that the core of the measure-
ment patterns remains tight in this particular ten-dimensional
space.

C. Operational Amplifier

Fig. 13 shows the two distributions projected onto the space
of the best measurement pair with regards to the nonlinear
neural network. The feature selection algorithm produced a
different best pair for the linear network. Nevertheless, the
respective linear boundaries for the best pair with regards to the
nonlinear case are also shown in the figure in order to illustrate
the acceptance regions established by the two networks. Once
again, it can be observed that the acceptance area defined by
the five nonlinear boundaries, ﬂi:l A(2), approximates very
effectively the actual area of nominal circuits.
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The classification capabilities for all best subsets of measure-
ments and for both types of networks are illustrated graphically
in Fig. 14. As in the previous example, the improvement of the
classification rate for the training set decreases as the number
of measurements increases. With respect to the training set,
the proposed network achieves a better classification rate using
three measurements than the rate produced by the linear net-
work using the complete set of measurements. The best general-
ization performance for the proposed network is achieved using
four measurements and is appreciably larger than the respective
best generalization performance for the linear network, which
occurs for the best subset of cardinality three.

The curse of dimensionality is evident for both types of
networks. Specifically, concerning the proposed network, the
generalization rate reaches a peak and then decreases mono-
tonically. Similarly, for the linear network, the monoto-
nicity of the generalization rate is not satisfied after the third
measurement.

VII. CONCLUSION

An implicit functional test method for analog circuits that
relies on a nonlinear artificial neural classifier was discussed.
The classifier reaches a decision on the acceptability of the
performance parameters of the circuit based on a small set of
measurements. This assessment is independent of the fault ori-
gins that cause violation of specifications and, thus, it does not
rely on a particular fault model. A feature selection algorithm
interacts with the neural network to choose the most useful
measurements for the classification task. Experimental results
show that the proposed network provides a substantially better
generalization performance than previously reported methods
that establish linear separation boundaries in the measurement
space. It was also demonstrated that the proposed network
achieves higher classification rates using a smaller number
of measurements. Furthermore, through the experiments, the
occurrence of the curse of dimensionality was pointed out,
which suggests that, for this type of test methods, an effi-
cient combination of measurements is desired, rather than a
large set.
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