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The extended binary phase shift keying (EBPSK) is an efficient modulation technique, and a special impacting filter (SIF) is used in
its demodulator to improve the bit error rate (BER) performance. However, the conventional threshold decision cannot achieve the
optimum performance, and the SIF brings more difficulty in obtaining the posterior probability for LDPC decoding. In this paper,
we concentrate not only on reducing the BER of demodulation, but also on providing accurate posterior probability estimates
(PPEs). A new approach for the nonlinear demodulation based on the support vector machine (SVM) classifier is introduced. The
SVM method which selects only a few sampling points from the filter output was used for getting PPEs. The simulation results show
that the accurate posterior probability can be obtained with this method and the BER performance can be improved significantly
by applying LDPC codes. Moreover, we analyzed the effect of getting the posterior probability with different methods and different
sampling rates. We show that there are more advantages of the SVM method under bad condition and it is less sensitive to the
sampling rate than other methods. Thus, SVM is an effective method for EBPSK demodulation and getting posterior probability
for LDPC decoding.

1. Introduction

Nowadays, wireless communication is playing a very impor-
tant role in our daily life. The growing demands on wireless
multimedia services and products lead to increasing needs
for radio spectrum and data rates. Thereby, the research
on modulations with high bandwidth efficiency is on focus
[1]. In order to satisfy the higher and higher demand for
communication systems, an extended binary phase shift
keying (EBPSK) system with very high spectra efficiency is
introduced in [2]. A special impacting filter (SIF) which can
produce high impact at the phase jumping point, narrow in
bandwidth, and great improvement in SNR, was applied at
the demodulator [3]. Therefore, a simple amplitude detector
followed would perform the demodulation of EBPSK signals
[4]. However, the conventional threshold decision may not
be best to achieve the optimum performance, and the
SIF used in EBPSK demodulator brings more difficulty in
obtaining posterior probability for low-density parity check
(LDPC) codes decoding. A simple and general bit metric
generation method is proposed by Hyun and Yoon [5] for
the soft information to initial channel decoding. We modify
the scheme to suit our system and the method is referred

to as MHY in this paper. Meanwhile, nonlinear detectors
are specifically designed to get the optimum performance
of a blind multiuser detector [6, 7] and nonlinear channel
equalization [8–10] and providing accurate posterior prob-
ability estimates (PPEs) for LDPC decoding [11, 12]. All
results have shown that a nonlinear demodulator performs
similar to an optimum receiver. One of the goals of this paper
is the analysis of nonlinear demodulation with the channel
decoder. We make use of the fact that the demodulator
performance should not only be measured by low BER,
but also in its ability to provide accurate PPEs that can be
exploited by a soft-input channel decoder to achieve capacity.
In this paper, we will introduce a nonlinear demodulation
technique called the support vector machine (SVM) classifier
[13]. The design approach is completely novel, where we
select only a few samples of the SIF output for SVM
training and testing at intermediate frequency (IF) without
downconversion. We propose to measure the performance
of this demodulator after an LDPC channel decoder, and
the ability of SVM to provide accurate posterior probability
predictions boosts the demodulator performance compared
to the MHY method.
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The rest of the paper is organized as follows. Section 2 is
devoted to introducing SVM. We present the receiver scheme
in Section 3 and briefly describe the EBPSK modulation
and LDPC decoding. In Section 4, we include illustrative
experiments to compare the performance of the proposed
demodulators. We conclude in Section 5 with some final
comments.

2. Support Vector Machine

The SVM is a classifier introduced by Cortes and Vapnik
[14], which can realize the same performance as the so-
called artificial neural networks (ANNs) for classification.
Generally, ANN has the problem of a local minimum. On
the other hand, the SVM is mathematically transparent and
can provide global and unique solutions.

2.1. Binary Classification of SVM. For the binary classifica-
tion problem, the training set consists of vectors from the
pattern space xi ∈ Rn, i = 1, 2, . . . , L and to each vector a
classification yi ∈ {1,−1}. During the initial training stage,
a decision function is constructed via

f (x) =
L∑

i=1

αiyiK(x, xi) + b, (1)

where αi is a Lagrangian constant, K(x, xi) = Ψ(xi)
T
·Ψ(x) is

a kernel function, Ψ(x) maps the training data vector xi into
the high-dimensional feature space, and b is a bias term.

Define a coefficient vector w, such that

w =

L∑

i=1

αiyiΨ(xi), (2)

then the training is completed by solving the following
optimization problem:

min
w∈H, b∈R, ξ∈RL

1

2
‖w‖2 + C

L∑

i=1

ξiyi((w · xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, 2, . . . , L,

(3)

where C is the tradeoff parameter between the training error
and the margin of the decision function, and ξi is a slack
variable to compensate for any nonlinearly separable training
points.

In this paper, the SVM demodulator uses two types
of kernel functions to compare the performance with each
other. The first is the simplest linear kernel, shown as

K
(
xi, x j

)
= xTi x j . (4)

The second is a more popular radial basis function (RBF)
kernel, shown as

K
(
xi, x j

)
= exp

(
−γ
∥∥∥xi − x j

∥∥∥2
)

, γ > 0, (5)

where γ controls the width of the function.

2.2. Complexity Analysis. The complexity of training an
SVM for binary classification is O(n2), using the sequential
minimal optimization [15], and Platt’s method adds a
computational complexity of O(n2). However, the SVM
demodulator should be analyzed for the testing stage only
because the training time is very small compared with the
actual testing time. The main focus thus becomes analyzing
the complexity required for the computing decision function
in (1), which is using the simplest kernel. This issue will be
discussed in detail later. A great amount of complexity can
be reduced further in (1) if the expression is simplified as
follows:

f (x) =
L∑

i=1

αiyiK(x, xi) + b =
L∑

i=1

αiyi
(
xTi x

)
+ b

=

⎡
⎣

N∑

j=1

y jα j

⎛
⎝

n∑

i=1

x j,ixi

⎞
⎠
⎤
⎦ + b =

n∑

i=1

xi

⎛
⎝

N∑

j=1

yiαix j,i

⎞
⎠ + b

=

n∑

i=1

Aixi + b,

(6)

where N is the number of support vectors, and the constants

Ai =
∑N

j=1 yiαix j,i and b can be precomputed before the
testing stage to save the computation time. Therefore, the
complexity of the SVM demodulator is O(n).

2.3. Probabilistic Outputs of SVM. Instead of predicting the
label, many applications require a posterior class probability
P(y = 1 | x). The transformation of SVM output into
posterior probabilities has been proposed by Platt in [16].
Platt’s method squashes the SVM soft output through a
trained sigmoid function to predict posterior probabilities:

p
(
y = 1 | x

)
≈ PA,B

(
f
)
=

1

1 + exp
(
A f + B

) , (7)

where f = f (x), let each fi be an estimate of f (xi). The best
parameter setting z∗ = (A∗,B∗) is determined by solving the
following regularized maximum likelihood problem:

min
z=(A,B)

F(z) = −
l∑

i=1

(
ti log

(
pi
)

+ (1− ti) log
(
1− pi

))
, (8)

where pi = PA,B( fi), ti = (yi + 1)/2.
Furthermore, log and exp could easily cause an overflow,

if A fi +B is large, exp(A fi +B) → ∞ and 1− pi = 1− 1/(1 +
exp(A fi +B)) is a “catastrophic cancellation” when pi is close
to one. The problem can usually be resolved by reformulation
[17]:

−
(
ti log pi + (1− ti) log

(
1− pi

))
(9)

= (ti − 1)
(
A fi + B

)
+ log

(
1 + exp

(
A fi + B

))
(10)

= ti
(
A fi + B

)
+ log

(
1 + exp

(
−A fi − B

))
. (11)
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If A fi + B ≥ 0 then use (11), else use (10). Then (7) can
be rewritten as follows:

p
(
y = 1 | x

)
≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

1 + exp
(
A f + B

) , A f + B < 0,

exp
(
−A f − B

)

1 + exp
(
−A f − B

) , A f + B ≥ 0.

(12)

From (12), we can see that SVM does not provide PPE
and its output needs to be transformed, before it can be
interpreted as posterior probabilities; therefore, the posterior
probability is an approximate one.

3. Communication System

3.1. EBPSK Modulation. EBPSK is a modulation method
with high frequency spectra efficiency, which is defined as
follows:

f0(t) = A sin 2π fct, 0 ≤ t < T ,

f1(t) =

⎧⎪⎨
⎪⎩

B sin
(
2π fct + θ

)
, 0 ≤ t < τ, 0 ≤ θ ≤ π,

A sin
(
2π fct

)
, τ ≤ t < T ,

(13)

where f0 and f1 are modulation waveforms corresponding to
bit “0” and bit “1,” respectively, T = N/ fc is the bit duration,
τ = K/ fc is the phase modulation duration, and θ is the
modulating angle. Obviously, if τ = T and θ = π, (13)
degenerates to the classical binary phase shift keying (BPSK)
modulation.

3.2. LDPC Decoding. LDPC codes can be decoded by an
iterative message-passing (MP) algorithm which passes mes-
sages between the variable nodes and check nodes iteratively.
If the messages passed along the edges are probabilities,
then the algorithm is also called belief propagation (BP)
decoding, which is the optimal if there are no cycles or
cycles are ignored. Moreover, with BP decoding, complicated
calculations are distributed among simple node processors,
and after several iterations, the solution of the global problem
is available. The steps of BP decoding are as follows.

(1) Initialization: p0
n(x) = q0

nm = p(xn = x | yn), where
p(xn = x | yn) is the soft information of channel
outputs.

(2) Horizontal step: the MAP output from cm to vn:

rkmn(0) = p
(
vn = 0 | cm = 0, yi∈B(m)\n

)
,

rkmn(0) =
1

2
+

1

2

∏

i∈B(m)\n

(
1− 2qkim(1)

)
,

rkmn(1) = 1− rkmn(0).

(14)

Channel
output

SIF
Feature

extraction
SVM

demodulator
Channel
decoding

w(k) y(k) piỹ(ηk) x̂i

Figure 1: The block diagram of EBPSK receiver.

(3) Vertical step: updating the message from vn to cm:

qk+1
nm (0) = θp0

n(0)
∏

j∈A(n)\m

r jn(0),

qk+1
nm (1) = θp0

n(1)
∏

j∈A(n)\m

r jn(1), θ is chosen to ensure

qk+1
nm (0) + qk+1

nm (1) = 1, Compute pkn(x),

pk+1
n (0) = θp0

n(0)
∏

j∈A(n)

r jn(0),

pk+1
n (1) = θp0

n(1)
∏

j∈A(n)

r jn(1).

(15)

(4) Tentative output:

vk+1
n =

{
1, pk+1

n (1) ≥ 0.5,

0, pk+1
n (1) < 0.5,

(16)

if all parity check equations are satisfied or the maxi-
mum iteration number is reached, stop iteration, else
return to Step (2).

In this paper, we focus on the initialization step for the
posterior probabilities obtained by the nonlinear demodula-
tor.

3.3. System Model. Figure 1 shows the receiver of EBPSK
system. Suppose the system is synchronized, the signal of
the channel output can be expressed as w(k) = z(k) + n(k),
where n(k) is Gaussian white noise with zero mean. Input
w(k) into a SIF, and then the output signal can be expressed
as y(k) = w(k) ∗ h(k), where h(k) is the impulse response
of SIF. In order to reduce the demodulation complexity, we
select a few sample points as the features for SVM training
and testing. Then, using the decision function (1), we can get
the binary output as follows:

sign
(
f
(

ỹ
(
ηk
)))

= sign

⎛
⎝

l∑

i=1

αiciK
(

ỹi
(
ηk
)
, ỹ
(
ηk
))

+ b

⎞
⎠.

(17)

Then, we can get the posterior probability p(x̃i = 1 | ỹi(ηk))
and p(x̃i = 0 | ỹi(ηk)) = 1− p(x̃i = 1 | ỹi(ηk)) through (12):
finally, we use p(xi = x | yi) to initiate the LDPC decoder.

4. Simulation Results and Discussions

In this section, we illustrate the performance of the proposed
SVM demodulation and its soft output for LDPC decoding.
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Table 1: Comparison of SVM models.

Selected kernel

RBF Linear

C 4 2

γ 8 —

SVs 271 210

Unless specified otherwise, all simulations assume that the
system had 3000 random symbols for training and the
reported BER is computed using 105 symbols and we
average the results over 1000 independent trials with random
training and test data. We choose K = 2, N = 20,
A = B = 1, θ = π as the parameters of EBPSK
modulation. LDPC codes are also applied to measure the
BER performance of the communication system and the
accurate posterior probability obtained by the SVM method.
During simulations, we use a 1/2 rate regular LDPC code
with 1000 bits per codeword and 3 ones per column. The
whole system was simulated under MATLAB.

4.1. Kernel Selection and Demodulation. In this subsection,
the performance of the SVM demodulator, using the kernel
functions (4) and (5), introduced in Section 2, is compared.
For the RBF kernel, a 10-fold cross-validation sweep from the
training samples was used to find the optimum parameters
of C and γ. A similar search was conducted for the linear
kernel, but it only has the C parameter to adjust. Table 1
summaries the optimum SVM model obtained after the
parameter search.

The linear kernel has less support vectors than the RBF
one; therefore, it has a less computational complexity and
thus would perform faster. In order to compare the BER
performance fairly, both kernels used by the SVM receiver
were classifying exactly the same received signals.

Figure 2 shows the BER performance of the SVM
demodulator when employing different kernels; also, the
performance of conventional threshold decision is analyzed.
Evidently, the linear kernel, though much simpler, has
slightly better performance than the RBF kernel. Moreover,
the SNR gain between the SVM method and the threshold
decision is around 1.8 dB; therefore, a linear SVM is chosen
for the task. Training on a “worse-case” scenario works well
(SNR = −7 dB in this case), proving that the SVM receiver
needs not frequently retraining in different SNRs.

4.2. Kernel Optimization. To optimize the linear kernel,
the only controlling parameter is C, which restrains the
maximum size of the Lagrangian dual variable. The SVM
detector is tested on the 20 sets of 20000 noisy sequences
at SNR = 2 dB for various C values. The results are shown
in Figure 3. While the error performance for various C is
very similar, it is still ideal to choose a model with the
least number of support vector (SV) in order to reduce the
complexity. In this case, when C is beyond 6, the model
gives the same number of SV because variable αi is no longer
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Figure 2: Demodulation with SVM-RBF, SVM-linear, and thresh-
old decision.
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Figure 3: Number of support vectors from the SVM model for
different C parameters, n = 5.

constrained by C. The correct rate remains around 99.47%,
as shown in Figure 4.

The training size for the SVM detector is another
parameter that the designer needs to control. In general, for
any machine learning algorithms, the training size should be
as large as possible to improve the prediction of the unknown
testing data. The tradeoff in this application is the increased
time required to produce and collect the training data.
Figures 5 and 6, respectively, show the SVM demodulator’s
error performance and the number of SVs required on the
same system as stated above with different training sizes.
When the C parameter is fixed at 2, and with a training size of
about 200, the performance of the SVM detector would reach
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Figure 4: Correct rate of the SVM model with linear kernel for
different C parameters, SNR = −4 dB, n = 5.
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Figure 5: Correct rate of the SVM model with linear kernel for
different training sizes, n = 5.

to its limit where the increase of SVs would not improve its
accuracy.

4.3. Posterior Probability Estimates. In order to reduce the
complexity of the SVM analyzed in Section 2, we select only
a few samples from the filter output as the features for
training and testing (i.e., n = 5 in this case). We depict
the probabilities obtained by the SVM output of SNR =

−9 dB in Figure 7. The signal in Figure 7 is submerged in
noise, so the optimal performance cannot be achieved by
using a conventional threshold decision. Yet, the probability
which the demodulator output by SVM technique is accurate
while a source symbol sequence [0, 0, 0, 0, 1, 1, 0, 1, 0, 1] is
transmitted, and the noise from the part which did not carry
any information of the waveform of symbol “1” is almost
removed.

To understand the difference in PPEs, we have plotted
the curves for the SVM and the MHY in Figures 8(a)
and 8(b), respectively, with SNR = −5 dB. We depict the
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Figure 6: Number of support vectors from the SVM model for
different training sizes, n = 5.
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Figure 7: The waveform of SIF output and the posterior probability
output obtained by SVM at SNR = −9 dB.

estimated probabilities P(y = 1 | x) versus the ones when
a source symbol sequences with all ones are transmitted.
We can appreciate that the SVM PPEs are closer to “1” and
less spread, most of the values of demodulation output are
between 0.9 and 1. Thereby, SVM estimates are closer to
the true posterior probability, which explains its improved
performance with respect to the MHY, when we measure the
BER after the LDPC decoder.

In a previous subsection, we have shown that the
demodulator is based on an SIF and SVM classifier, when we
compare performances at a low BER. In this section, we focus
on the performance after the sequence has been corrected by
an LDPC decoder. The ability of SVM to provide accurate
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Figure 8: The posterior probability P(y = 1 | x) obtained by
SVM and MHY method, in (a) and (b), respectively, where source
symbols with all ones are transmitted.

posterior probability predictions boosts the demodulator
performance compared to the MHY method.

From Figure 8, we can understand that the improved
performance of the SVM with respect to the MHY is based
on its ability to provide accurate PPEs. In Figure 9, we can
appreciate that the SVM-LDPC significantly reduces the BER
at lower SNR, because the PPEs are more accurate and the
LDPC decoder can rely on these trustworthy predictions.
Also, Figure 9 shows that the performance of SVM-RBF-
LDPC is a little more superior to SVM-linear-LDPC, it is
not the same as the results in Section 4.1 which are analyzed
without channel coding. Moreover, the SVM-linear-LDPC
decoding outperforms the MHY-LDPC decoding by 4.5 dB
and by 18 dB without channel coding when BER = 10−4

and sampling rate fs = 4 fc. In Figure 10, we compare the
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Figure 9: Performance at the output of the LDPC decoder with the
soft-input and threshold decision.

0

SNR (dB)

SVM-4

SVM-6

SVM-10

MHY-4

MHY-6

MHY-10

B
E

R

10−1

10−2

10−3

10−4

10−5

−2−4−6−8−10

Figure 10: BER performance comparisons of the SVM with MHY
method at the output of the LDPC decoder with different sampling
rates. Using SVM-4, SVM-6, and SVM-10 for the SVM method
(solid lines) and MHY-4, MHY-6, and MHY-10 for the MHY
method (dashed lines) with fs = 4 fc, fs = 6 fc, and fs = 10 fc,
respectively.

BER performance of the SVM-LDPC with MHY-LDPC by
a different sampling rate. Compared to the MHY-LDPC,
the SVM-LDPC can upgrade more than 4.6 dB, 1.7 dB, and
1.2 dB for fs = 4 fc, fs = 6 fc, and fs = 10 fc, respectively.
This means that the performance of SVM-LDPC improved
significantly while the sampling rate is low, and it is not
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sensitive to the sampling rate for SVM-LDPC. Also, Figure 10
illustrates that it is more superior for the SVM demodulator
than MHY in a bad condition.

We have shown that SVM-LDPC is far superior to the
MHY method. This result shows that using a method that
can predict accurately the PPEs allows the LDPC decoding
algorithm to perform to its fullest.

5. Conclusions

In this paper, we introduce a nonlinear demodulator which
is a novel solution for the EBPSK scheme. We have shown
that the performance can be significantly improved by
using a linear kernel for demodulation, which has a less
computational complexity thus saves the computation time.

SVM is a nonlinear probabilistic classifier that produces
accurate PPEs. The performance comparisons of different
probabilistic demodulators at the output of an LDPC
channel decoder are made, which has shown that the SVM
outperforms the MHY with probabilistic output.

The SVM probability output method does not need to
estimate the channel noise power σ , and uses only a few
samples as the features of SVM for training and testing,
which reduces the complexity significantly.

A simulator of the system was designed and the BER
performance was significantly improved for the SVM-LDPC
comparing with the MHY-LDPC approach. Moreover, the
SVM method is more robust to sampling rate than MHY
method.

Yet, the performance of the system can be improved
significantly at the cost of complexity, and the probability
is still approximate. More investigations are undertaken to
reduce the computational complexity of this approach and
test its performance under more severe channel conditions,
such as the fading channel.
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