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NONLINEAR DEMOGRAPHIC DYNAMICS: MATHEMATICAL 

MODELS, STATISTICAL METHODS, AND 

BIOLOGICAL EXPERIMENTS 1 
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Abstract. Our approach to testing nonlinear population theory is to connect rigorously 

mathematical models with data by means of statistical methods for nonlinear time series. 

We begin by deriving a biologically based demographic model. The mathematical analysis 

identifies boundaries in parameter space where stable equilibria bifurcate to periodic 2-cy­

cles and aperiodic motion on invariant loops. The statistical analysis, based on a stochastic 

version of the demographic model, provides procedures for parameter estimation, hypothesis 

testing, and model evaluation. Experiments using the flour beetle Tribolium yield the time 

series data. A three-dimensional map of larval, pupal, and adult numbers forecasts four 

possible population behaviors: extinction, equilibria, periodicities, and aperiodic motion 

including chaos. This study documents the nonlinear prediction of periodic 2-cycles in 

laboratory cultures of Tribolium and represents a new interdisciplinary approach to un­

derstanding nonlinear ecological dynamics. 

Key words: bifurcation analysis; chaos; cycles; equilibrium; hypothesis testing; model evaluation; 

nonlinear demographic dynamics; parameter estimation; stability; Tribolium. 

INTRODUCTION 

Understanding the complex fluctuations in animal 

population numbers has far-reaching applications in ar­

eas ranging from food production to the conservation 

of species diversity. The hypothesis that the fluctua­

tions are the result of nonlinear dynamic forces has 

proved to be elusive to test due to the difficulties of 

gathering adequate ecological data, of experimentally 

manipulating ecological systems, and of evaluating 

complex mathematical models with ecological data 

(Bartlett 1990, Costantino and Desharnais 199 I, Logan 

and Hain 1991, Logan and Allen 1992, Hastings et al. 

1993). Our approach to testing population theory is to 

connect rigorously a nonlinear demographic model 

with biological data by means of newly developed sta­

tistical methods for nonlinear time series. 

Nonlinear demographic models were introduced 

along with the more familiar linear matrix models (Les­

lie 1948). Since that time, many density-dependent 

models have been studied (see Cushing 1988, Caswell 

1989, and references therein). Linear models yield ex­

ponential growth whereas nonlinear models have the 

potential for more complex dynamical behaviors in-

1 Manuscript received 18 January I 994; revised 8 August 

I 994; accepted I I October I 994; final version received 21 

November I 994. 

eluding periodic and aperiodic cycles and chaos. Some 

of the earliest examples of chaotic dynamics were rec­

ognized in ecological models (May 1974a). The de­

tection of these more complex dynamics is an area of 

active research. Schaffer ( 1984, 1985)-and Schaffer and 

Kot (1985, 1986a, b) emphasized the important role of 

chaos in ecology. Alternatives to Schaffer and col­

leagues' geometrical analyses (Takens 1980) include 

response surface methodology (Turchin and Taylor 

1992, Turchin 1993) and model-free methods of esti­

mating Lyapunov exponents in a time series with non­

parametric regression (Ellner et al. 1991, McCaffrey et 

al. 1992). 

The approach here begins with the construction of a 

biologically based dynamical model. Analytical and 

numerical methods are used to gain a mathematical 

understanding of the dynamical behavior predicted by 

the model. A key aspect of connecting model with data 

is the reformulation of the model in stochastic terms, 

which provides an explicit likelihood function for sta­

tistical estimation and testing. The nonlinear mathe­

matical model then becomes a vulnerable scientific hy­

pothesis that can be confronted by data. 

The working hypothesis in the present study is that 

the dynamics of cultures of the flour beetle Tribolium 

can be explained by a mechanistic biologically based 

system of nonlinear difference equations. The mathe-
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matical analysis of the model involves a study of the 

equilibrium states and their stability and a bifurcation 

study of nonequilibrium states. This analysis identifies 

boundaries in parameter space where stable equilibria 

bifurcate to 2-cycles and aperiodic motion on invariant 

loops. The statistical analysis is based on a stochastic 

version of the demographic model. This analysis pro­

vides procedures for parameter estimation, hypothesis 

testing, and model evaluation. The biological experi­

ments yield the time series data. Statistical inference 

methods are applied to these data to estimate model 

parameters and evaluate model predictions. In so doing 

we locate the biological population in model parameter 

space and identify the type of dynamical behavior dis­

played by the population. 

MATHEMATICAL MODEL 

Biologically based dynamical model 

The Tribolium system possesses great potential for 

the experimental study of nonlinear dynamics (Cos­

tantino and Desharnais 1991). The combination of (I) 

high reproductive rates, (2) short life cycle (4 wk from 

egg to adult), (3) ease of culture, (4) accurate censusing 

of all life stages, and (5) the complexities of metazoan 

life history that include strong nonlinear life stage in­

teractions, make it a good laboratory system. In par­

ticular, some species of Tribolium are cannibalistic 

(Park et a!. 1965). Adults feed on eggs, larvae, pupae, 

and callows (young adults) while larvae eat eggs, pu­

pae, and callows. Neither larvae nor adults eat mature 

adults and larvae do not feed on larvae. Although not 

biologically complete, an approximation to a particular 

cannibalistic interaction can be described easily. Con­

sider a group of L, feeding larvae. Assume that a larval­

egg contact means that the egg is eaten and also that 

the contacts are randomly distributed among the eggs. 

The probability of an egg not being eaten is computed 

USing the binomial distribution aS (J - Ce1)Lr = 
exp( -ce1L,) where ce1 is the coefficient of larval can­

nibalism on eggs. Dynamic complexity arises from 

these many nonlinear behavioral interactions. 

We propose a model with three state variables cor­

responding to three functional life stages: feeding lar­

vae, denoted by L, last instar (nonfeeding) larvae, pu­

pae, and callow adults, denoted by P,, and mature 

adults, denoted by A,. We will refer to these state vari­

ables for convenience as "larvae," "pupae," and 

"adults" throughout this paper, but we will be careful 

to draw distinctions where confusion might arise. Pub­

lished data on the feeding behavior of Tribolium larvae 

are scarce, but the results of Park et a!. (1965: Table 

1 0) for T. castaneum suggest that 14 d is a reasonable 

estimate of the feeding larva stage duration. More in­

formation is available on developmental periods; Moffa 

and Costantino (1977: Table 1) estimate a time from 

egg to adulthood of =27 d for the corn oil sensitive 

strain of T. castaneum. The 27 d include 2-4 d in the 

egg stage, but an additional 2-4 d are spent as a callow 

adult. Thus, the durations of the first two stages are 

roughly identical, = 14 d under standard laboratory 

conditions. We exploit the coincidence of the two-stage 

developmental times by taking the unit of time in the 

model between censuses to be 2 wk. 

We omitted an egg stage from the model. Though 

eggs can be and are sometimes counted in flour beetle 

studies, an inordinate amount of time is required to 

separate eggs from the media. Counting just larvae, 

pupae, and adults allows many more cultures to be 

maintained in a given experiment. The egg stage is 

fairly short in duration, =4 d (Sokoloff 1974), and so 

most eggs laid within a 2-wk period become larvae by 

the end of the period. 

Larvae are thus the stage being recruited in the mod­

el. Recruitment of larvae at time t is assumed to be 

proportional to the number of adults at time t - 1. The 

assumption potentially introduces some bias in the 

model predictions in that a limited number of eggs laid 

just prior to time t - 1 can in reality be present in the 

larval class at time t; adults at time t - 2 have some 

limited contribution to larval recruitment at time t. 

However, our hypothesis is that the effect of A,_2 on 

larval recruitment at time t is slight compared to the 

effects of other factors (namely, A,_ 1 through egg-lay­

ing and cannibalism and L,_ 1 through cannibalism). 

Whether or not our model can account for a substantial 

portion of the dynamics of the system is a question we 

address later with data (see Biological experiments sec­

tion below). 

The model, which we term the "LPA model," is a 

system of three difference equations: 

Pt+ 1 = L,(l - J.L1), (2) 

Ar+l = P,exp(-cpaA,) + A,(1 - f.La). (3) 

The quantity b > 0 is the average number of larvae 

recruited per adult per unit time in the absence of can­

nibalism. The fractions f.L1 and f.La are the larval and 

adult probabilities, respectively, of dying from causes 

other than cannibalism. The exponential nonlinearities 

account for the cannibalism of eggs by both larvae and 

adults and the cannibalism of pupae by adults. The 

fractions exp( -ceA,) and exp( -ceiL,) are the probabil­

ities that an egg laid between times t and t + 1 is not 

eaten in the presence of A, adults and L, larvae. Can­

nibalism of larvae by adults and of pupae and callows 

by larvae typically occurs at much reduced rates and 

is assumed negligible in the model. The fraction 

exp( -cPA,) is the survival probability of a pupa in the 

presence of A, adults. The coefficients cem ce1, and cpa 

2: 0 determine the strength of the cannibalism and are 

called the "cannibalism coefficients." It is assumed 

here, based on present knowledge, that the only sig­

nificant source of pupal mortality is adult cannibalism. 
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Eqs. 1-3 define a (three dimensional) map of the 

larval, pupal, and adult numbers from one point of time 

to the next. In the remainder of this section, we try to 

understand as much as possible about the dynamics 

implied by these equations, that is to say, about the 

sequences of triples (L,, P,, A,) generated by these equa­

tions from initial values (L0 , P0 , A 0 ). Any knowledge 

we can obtain about these "orbits" will tell us some­

thing about the long-term predictions of the model 

equations. 

To study the dynamics implied by a set of model 

equations like Eqs. 1-3, a standard procedure is to lo­

cate equilibrium points and to determine their local 

stability properties. It is perhaps not surprising that a 

complete analytical description of equilibrium stability 

in terms of the system parameters is not obtainable for 

this system of nonlinear difference equations. There is 

a simplified case, however, for which a complete an­

alytical description of the equilibrium stability region 

(local asymptotic stability) can be given. Moreover, in 

this case a description can also be given of the dynam­

ics resulting when equilibrium stability is lost by 

changes in parameters across the boundary of this re­

gion. This simplified case occurs when larval canni­

balism of eggs is not present, i.e., ce1 = 0. In order to 

gain some insight into the possible dynamics of the 

model (Eqs. 1-3), we give the analytical results for this 

special case. 

Mathematical analysis: larval 

cannibalism of eggs is absent 

Equilibria are solutions (L, P, A) of the three equa­

tions 

L = bA exp( -ceaA), (4) 

P = L(l - f.l-1), (5) 

A = P exp( -cpaA) + A(l - !La). (6) 

Clearly, (L, P, A) = (0, 0, 0) is an equilibrium. The 

only other non-negative equilibrium is the positive 

equilibrium (L, P, A) = (L *, P*, A*) given by the 

formulae 

A* = (cea + Cpa)- 1ln(b(l - f-l-1)/f.l-a), (7) 

L* = bA*exp(-ceaA*), (8) 

P* = L*(l - f-l-1), (9) 

when 

(10) 

The local stability of an equilibrium point is deter­

mined by the eigenvalues of the Jacobian (matrix of 

partial derivatives with respect to each state variable) 

of the right-hand sides of Eqs. 1-3 evaluated at the 

equilibrium point (Lankshmikantham and Trigiante 

1988). If these eigenvalues lie inside the unit circle of 

the complex plane then the equilibrium is (locally as-

ymptotically) stable. An eigenvalue outside this unit 

circle implies instability of the equilibrium. 

The Jacobian at the origin is easily shown to have a 

dominant real and positive eigenvalue that is >I if and 

only if Eq. I 0 holds. Thus, the extinction state (0, 0, 

0) is unstable if and only if a positive equilibrium ex­

ists. If Eq. 10 does not hold, the extinction state is 

stable and the population disappears from any initial 

state. 

The Jacobian at the positive equilibrium (Eqs. 7-9) 

is complicated to analyze. Nonetheless a complete de­

scription of the region of parameter values within 

which all eigenvalues lie inside the complex unit circle 

can be given as follows. For any f-l-1 in the interval [0, 

1) and any "cannibalism ratio" 

(11) 

define the following functions of !La: 

beCfLa) = -
1 

!La , (12) 
- f-l-1 

where 

K±(!Lm r) 

= ~[ ~ ~ ~] 
·(-(r- 3)!La-

± Y[(r- 3)f.l-a +IF+ 4(1- r)(l- f.l.a)(2f.l.a +I)). 

(15) 

In the (f.l.m b)-plane the functions b = bi!La) and b = 
b/C!La) define curves on which the Jacobian has ei­

genvalues on the complex unit circle. On the curve b 

= bzCf.l-a) the Jacobian has an eigenvalue equal to - 1 

and on the curve defined by b = b/(f.l.a) the Jacobian 

has a pair of complex conjugate eigenvalues lying on 

the unit circle. For no parameter values is + 1 an ei­

genvalue. Thus, these curves define the boundaries of 

the stability region in the (fLa, b)-plane. The possible 

configurations of these boundaries depend on the can­

nibalism ratio r and are shown in Fig. I. 

A bifurcation (or final state) diagram allows the long­

term behavior of the LPA model to be visualized as a 

function of a particular parameter. A sample of the 

klnds of bifurcations that can occur are illustrated in 

Fig. 2. If the boundary of the stability region in the 

(f.l-
0

, b)-plane is crossed, then the positive equilibrium 

(Eqs. 7-9) loses its stability. If the boundary defined 
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by b = b 2 (~J-a) is crossed then there is a bifurcation to 

a stable 2-cycle (see Fig. 2B). If the boundary defined 

by b = b/C!La) is crossed, then there is a bifurcation 

to an "invariant loop" (see Fig. 2A). This means that 

there exists a closed loop in the (L, P, A) phase plane 

that is invariant under Eqs. 1-3 (i.e., orbits starting on 

the loop will remain on the loop). The orbits on the 

loop are, in general, aperiodic or "chaotic" (although 

"period locking" can occur). Orbits starting nearby the 

loop are attracted to the loop. 

Numerical analysis: larval 

cannibalism of eggs is present 

While the above analysis is for the case of no larval 

cannibalism (ce1 = 0) we can expect similar kinds of 

stability regions and bifurcation scenarios in the (fLa, 

b)-plane when larval cannibalism is present (ce1 > 0). 

A numerically calculated stability region is shown in 

Fig. 3 for this case using parameter values estimated 

for a laboratory population (see Table 1). As before, 

the positive equilibrium destabilization boundaries are 

of two types. There is a boundary at which a bifurcation 

to a branch of 2-cycle solutions occurs, and there is a 

boundary at which bifurcation to an invariant loop oc­

curs. As one of these boundaries is crossed a "stable" 

bifurcation usually occurs, that is to say, the resulting 

branch of bifurcating 2-cycles or invariant loops exists 

outside of the stability region, and the 2-cycles and 

loops are "locally stable" or "locally attracting." 

However, numerical evidence indicates that in our mod­

el an "unstable" bifurcation of 2-cycles can occur, in 

which case the 2-cycles exist locally just inside the 

stability region near the boundary and are unstable. 

This seems to occur along the rising portion of the 

2-cycle bifurcation boundary (see Fig. 3). The bifur­

cating branch "turns around," however, and stabilizes 

before returning to the region of instability (i.e., a sad­

dle-node bifurcation occurs). This creates the interest­

ing possibility of multiple attractors in our model (and 

hysteresis effects). For parameter values just inside the 

region of stability, but near the rising portion of the 

2-cycle bifurcation boundary, there exists both a stable 

equilibrium and a stable 2-cycle. 

Three bifurcation diagrams associated with the sta­

bility diagram in Fig. 3 are shown in Fig. 4. With b = 

5 (Fig. 4A) there are stable positive equilibria until at 

very high levels of adult mortality the boundary of the 

stability region is crossed, which leads to an invariant 

loop. An increase in the birth rate to the experimentally 

determined value of b = 1 1.68 (see Table 1) alters the 

system's behavior (Fig. 4B). At very low values of 

mortality there are stable positive equilibria, but as 

adult mortality is increased stable equilibria bifurcate 

to stable 2-cycles. Still higher rates of mortality yield 

a very small region of multiple attractors (0.357 :S !La 

:S 0.363) where stable equilibria coexist with stable 

2-cycles. As !La increases, the stable positive equilibria 

persist while the stable 2-cycles disappear. At high val­

ues of adult mortality there is a bifurcation to an in­

variant loop. In the third example, with b = 20 (Fig. 

4C), there are stable 2-cycles until !La = 0.628. For 

0.628 :S !La :S 0.723 there occur multiple attractors: 

initially stable 2-cycles together with stable fixed 

points followed by 2-cycles co-occurring with invariant 
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FIG. 2. Bifurcation diagrams for the LPA model (Eqs. 1-

3), with no larval cannibalism of eggs, using adult mortality, 

!Lao as the bifurcation parameter. In these examples r = 9 

(case D in Fig. 1). In example (A) we set b = 20. As fLa 

increases there is a bifurcation from a stable fixed point at­

tractor to an invariant loop as the boundary defined by b = 
b/(fLa) is crossed. In example (B) we set b = 35. As fLa 

increases there is a bifurcation to a 2-cycle as the boundary 

defined by b = b2(fLa) is crossed. 

loops. These multiple attractors are explained by a 

"subcritical bifurcation" of 2-cycles from the equilib­

rium at the point !La = 0.628, which gives rise to a 

branch of unstable 2-cycles for f.La > 0.628. This branch 

"turns around" at !La = 0.723 where a saddle-node 

bifurcation occurs, giving rise to large-amplitude 2-cy­

cles for f.La < 0.723 (Fig. 4). For f.La > 0.723 the dy­

namics are quite complex. 

The LPA model (Eqs. 1-3) incorporates a charac­

teristic time scale, namely, that larvae at time t become 

pupae at time t + I, which, in turn, emerge as new 

adults at time t + 2. This time scale is experimentally 

testable and can be visualized in the simulated time 

series (Fig. 5). In the case of the 2-cycle there are two 

typical sequences: high numbers of larvae (L, = 325), 

pupae (Pr+ 1 = 158), and new adults (A,+ 2 = 118) and 

low numbers of larvae (L, = 18), pupae (P,+ 1 = 9), and 

new adults (A,+ 2 = 106). In the case of a stable point 

attractor, the time scale combines with the stage inter­

actions to yield constant animal numbers (Fig. 5). 

While more complex, aperiodic cycles are still bound 

by the basic biology of the beetle. Larval numbers at 

time t in this case are still followed by a corresponding 

group of pupae at time t + I and so on; the stage 

interactions on the characteristic time scale produce the 

irregular, unpredictable behavior of aperiodicity or 

"chaos" (Fig. 5). 

There is an important final point to be made about 

the stable equilibria of our model Eqs. 1-3. "Almost 

all" orbits that approach a stable equilibrium do so in 

an oscillatory manner. This is proved analytically by 

showing that the cubic polynomial characteristic equa­

tion for the eigenvalues of the Jacobian obtained from 

Eqs. 1-3 by linearization at a stable equilibrium can 

never have three positive real roots between 0 and I. 

Thus, there is always at least one negative real eigen­

value between -I and 0 or a pair of complex conjugate 

eigenvalues of magnitude < 1. In either case this fact 

implies that orbits near the equilibrium have either a 

"period two" damped oscillation or an aperiodic 

damped oscillation (except for at most a two-dimen­

sional manifold of orbits embedded in three-dimen­

sional phase space). Thus, in the stable equilibrium 

regions of Figs. 1 and 3 orbits will generally exhibit 

transitory damped oscillations in their approach to the 

equilibrium. While these damped oscillations will be 

mild for parameter values near the lower boundary of 

the stability region, adjoining the extinction region, 

they will be pronounced for parameter values near the 

2-cycle and the invariant loop bifurcation boundaries. 

It follows that transient behavior might make sustained 

oscillations indistinguishable from slowly damped 

equilibration for orbits viewed over finite lengths of 

time. Consequently, the bifurcation boundaries, which 

are theoretically sharply defined, become blurred from 

a practical point of view. 

25 
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FIG. 3. Stability boundaries for the LPA model (Eqs. 1-

3) for parameter values based on the experimental data (Table 
1, all). The asterisk locates the estimated values of b = 11.68 

and !La = 0.1108. The elongated closed curve (-- -) repre­

sents a 95% joint confidence region for b and !La based on 

the profile likelihood. 
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TABLE I. Maximum likelihood (ML) and conditional least squares (CLS) parameter estimates for the three-state-variable 
Tribolium model. 

Replicate 

Para-
A B c D All* 

meter ML CLS ML CLS ML CLS ML CLS ML 95% CI 

b 19.8495 23.3688 15.4928 I 1.2483 5.5380 5.3422 9.1323 7.2024 11.6772 (6.2, 22.2) 

J.La 0.0959 0.0934 0.1002 0.0930 0.1477 0.1468 0.1034 0.1099 0.1108 (0.07, 0.15) 

J.l-1 0.4725 0.4726 0.5009 0.5014 0.5082 0.5082 0.5647 0.5646 0.5129 (0.43, 0.58) 

c,a 0.0157 0.0175 0.0127 0.0087 0.0059 0.0044 0.0094 0.0068 0.0110 (0.0040, 0.0 I 80) 

c,, 0.0100 0.0098 0.0100 0.0105 0.0073 0.0080 0.0079 0.0080 0.0093 (0.008 I, 0.0 I 05) 

Cpa 0.0195 0.0198 0.0168 0.0174 0.0179 0.0180 0.0168 0.0162 0.0178 (0.0154, 0.0207) 

*The 95% confidence intervals (cl) were calculated from profile likelihoods. The ML estimates of the variances and 

covariances (matrix !) of the random elements are &- 11 = 0.2771, &- 12 = 0.02792, 6- 13 = 0.009796, 6-22 = 0.4284, &-23 = 
-0.008150 and &-33 = 0.01 I 12. 

STATISTICAL METHODS 

Stochastic model 

In this section, we describe our approach to con­

necting the LPA model with time series data. The ap­

proach can be used in conjunction with many other 

difference equation models of population dynamics, 

and so we treat the topic in some detail. Interested 

readers should also consult Ludwig and Walters ( 1989), 

Hilborn and Walters (I 992), and Carpenter eta!. ( 1994) 

for alternative approaches, particularly for situations 

involving observation errors. 

In order to conduct any statistical inferences, the 

deterministic difference equations must be converted 

to stochastic difference equations. The model must in­

clude a probabilistic portion that specifies how the vari­

ability in the data arose. For the LPA model (Eqs. 1-

3), adding noise on a logarithmic scale produces the 

following stochastic model: 

L,+ 1 = bA,exp(-c,aA,- Ce~L, + E 1,), (16) 

P,+, = L,(l - fL1)exp(E2,), (17) 

A,+ 1 = [P,exp(-cpaA,) + A,(1 - fLa)]exp(£3,). (18) 

Here [£,, E2, £ 3,]' = E, is a random vector and is 

assumed to have a trivariate normal distribution with 

a mean vector of 0 and a variance-covariance matrix 

of I. Covariances among £ 1,, E2,, and £ 3, at any given 

time t are assumed (and represented by off-diagonal 

elements of I), but we expect the covariances between 

times to be small by comparison. Thus we assume that 

E 0, E 1, ••• are uncorrelated. 

The stochastic construction represented by Eqs. 16-

18 has a number of statistical advantages. First, on a 

logarithmic scale the model is of the general form 

W,+, = h(W,) + E, (19) 

where W, = [In L, In P,, In A,]' is the column vector 

of log-transformed state variables, h(W,) = [In· 

{bA,exp(-c,,;\,- Ce~L,)}, In{(l - !L1)L,}, ln{P,exp(-cP,;\,) 

+ (I - !La)A,} ]' is a column vector of functions, and 

E, has a multivariate normal (0, I) distribution. A sto­

chastic model of this form is a type of multivariate, 

nonlinear, autoregressive model. Development of sta­

tistical methods for nonlinear autoregressive models 

(estimation, testing, evaluation) has received much at­

tention in recent years (Tong I 990). Second, the non­

linear map of the deterministic model on the logarith­

mic scale is preserved in the conditional expected val­

ues of In Lr+,, In P,+ 1, In A,+, given values of L,, P,, and 

A,: 

E (In L,+ 1 I L, = 1,, P, = p,, A, = a,) 

= ln[ba,exp(- ceaat - cell,)], (20) 

E (In P,+,IL, = 1,, P, = p, A,= a,) 

= ln[(l - !l-1)1,], (21) 

E (In A,+ 1 IL, = 1, P, = p,, A,= a,) 

= ln[p,exp( -cpaa,) + (1 - fLa)a,]. (22) 

Thus the stochastic version retains the essential dy­

namical properties that we described in the Mathe­

matical models section. Other statistical advantages are 

that the model is easy to simulate and that parameter 

estimates are straightforward to compute from data. 

The stochastic construction has biological advantag­

es as well. First, the noise structure is realistic. Ecol­

ogists have drawn a distinction between demographic 

(intrinsic chance variation among individuals in the 

timing of births and deaths) and environmental (chance 

variation from extrinsic sources affecting many indi­

viduals) fluctuations in populations (see May 1974b, 

Shaffer 198 I, Simberloff 1988). Models with noise ad­

ditive on a logarithmic scale correspond to environ­

mental-type fluctuations (Dennis et a!. 199 I). At the 

large sizes typical of Tribolium cultures, we expect the 

variability component due to environmental fluctua­

tions to outweigh the component due to demographic 

fluctuations (Dennis and Costantino 1988). Second, the 

model allows for covariance of fluctuations in larvae, 

pupae, and adults in a given time period, as described 

by the covariance of the elements in E,. A bad/good 

week for adults is likely related to having a bad/good 

week for larvae, etc. Autocovariances of the noise el-
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there is a bifurcation from a stable fixed-point attractor to an 
invariant loop as the stability boundary is crossed at fLa = 

0.876. Case (B) represents the estimated value of b = I I .68. 
There is a bifurcation to a 2-cycle at a small value of fLu = 

0.011. As adult mortality increases, the population reenters 
the region of parameter space where the positive equilibria 
are stable (see Fig. 3). However, there is a narrow interval 
0.357 < fLa < 0.363 where a stable 2-cycle and fixed-point 
equilibria coexist, separated by an unstable 2-cycle (---). 
In case (C) we set b = 20. In this case, when the population 
reenters the region of stable equilibria (at fLa = 0.628) a 
branch of unstable 2-cycles bifurcates to the right (-- -). 
This branch "turns around" at fL, = 0.723 where a saddle­
node bifurcation occurs, creating the stable large-amplitude 
2-cycles shown in (C). In the meantime, prior to fLa = 0.628 
the population crosses the equilibrium stability boundary at 
fLa = 0.689 where stable invariant loops bifurcate from the 
equilibria. This complicated scenario creates a region 0.628 
< fLa < 0.723 of multiple attractors. Specifically, there co­
exists stable equilibria and stable 2-cycles for 0.628 < fLa < 
0.689 and stable invariant loops and stable 2-cycles for 0.689 
< fLa < 0.723. For larger values of b the dynamics are even 
more complex. 
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FIG. 5. Simulated time series corresponding to the three 
classes of behavior indicated in Figs. 3 and 4. Parameters are 
based on the experimental data (Table I, all). Case (A) rep­

resents the estimated value of fL, = 0. I I 08, which produces 
a stable 2-cycle. In case (B) we set fLu = 0.6, which results 
in a stable equilibrium. In case (C) we set fLa = 0.9, which 
yields an aperiodic cycle. 

ements through time, though, are not expected to be 

important compared to the covariances between the el­

ements within a time, provided the underlying dynam­

ics (deterministic equations) are specified correctly. Fi­

nally, the different scales of variability for larvae, pu­

pae, and adults are accounted for through the param­

eters on the main diagonal of the variance-covariance 

matrix I. 

Likelihood function 

The stochastic LPA model (Eqs. 16-18) provides an 

explicit likelihood function. A likelihood function 

gives the chance that an outcome of a proposed sto­

chastic mechanism would result in the observed data, 

relative to all other possible outcomes. A likelihood 

function is a fundamental tool in statistical inference 

(see Stuart and Ord 1991) and represents the crucial 

connection between model and data. Data for a partic­

ular Tribolium population are a realization of the joint 

stochastic variables L
1
, P

1
, and A

1
• The data take the 

form of a trivariate time series: (!0 , p0 , a 0), (l,, p 1, a,), 
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... , (lq, pq, aq) (see Fig. 7). Let w, denote the column 

vector of observations at time t: w, = [In !,, In p,, In 

a,]'. Suppose e denotes the unknown parameters in the 

functions in h(-) of Eq. I 9 (that is, the parameters in 

the deterministic model equations). Additional un­

known parameters are in the variance-covariance ma­

trix, 'l:. The likelihood function, L(6, I), is given by 

q 

L(6, I)= ll p(w,lwt-1), (23) 
t=l 

where p(w, I w,_ 1) is the joint transition probability den­

sity function (pdf), that is, the joint pdf for W, con­

ditional on W,_ 1 = w,_ 1 and evaluated at w,. It is a 

multivariate normal pdf with a mean vector of 

h(wH) and a variance-covariance matrix of I: 

p(w, I w,_l) = III-112(21T)-312 

· exp[ -(w,- ht-I )''l: - 1(w,- ht-I)/2], (24) 

where h,_ 1 denotes h(w,_ 1). Most of the actual statistical 

calculations utilize the log-likelihood given by 

q 

In L(6, I) = LIn p(w,l w,_ 1) 

t=l 

-q(3/2)In(21T) - (q/2)Iniii 

q 

- (1/2) L (w,- h,_ 1)'I- 1(w,- h,_ 1). 

t=l 

(25) 

Maximum likelihood estimates 

Maximum likelihood (ML) estimates of parameters 

in 6 and I are those values that jointly maximize L(6, 

I), or In L(6, I). No closed formulas for such estimates 

exist, although it can be shown that the ML estimates 

of the parameters in I can be written in terms of the 

ML estimates of parameters in 6 (see paragraph con­

taining Eq. 34 for formula). The ML estimates of pa­

rameters in 6 must be obtained numerically for any 

particular data set. We have found that maximizing the 

log-likelihood using the Nelder-Mead simplex algo­

rithm (see Olsson and Nelson 1975, Press et a!. I 986) 

is convenient, reliable, and easy to program. The al­

gorithm only requires a subroutine to evaluate the log­

likelihood (Eq. 25) for any particular set of parameter 

values. 

ML estimates for the stochastic LPA model (Eqs. 

16-18) have desirable statistical properties. ML esti­

mates are asymptotically unbiased (bias approaches 

zero as sample size increases), asymptotically efficient 

(variance approaches theoretical lowest bound as sam­

ple size increases), and asymptotically normally dis­

tributed (allowing construction of approximate confi­

dence intervals) (see Stuart and Ord 1991). For non­

linear time series models, the sample size is the number 

of observations in the time series, and the theorems 

about ML properties generally require that the sto-
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FIG. 6. Response surfaces in the LPA model (Eqs. 1-3). 
Plot (A) shows how larval numbers at timet+ I are a function 
of the number of larvae and adults at timet. Plot (B) shows 
how adult numbers at time t + I are a function of the number 
of pupae and adults at time t. On a logarithmic scale, these 
surfaces represent predicted values for one-step transitions. 

chastic model have a statistical equilibrium in the form 

of a stationary distribution (Tong 1990). A nonlinear 

autoregressive model of the form of Eq. 19 will typi­

cally have a stationary distribution when every trajec­

tory of the underlying deterministic model w,+ 1 = h(w,) 

has a bounded attractor. It is easy to demonstrate with 

simulations that the stochastic LPA model possesses a 

stationary distribution (see Discussion section, Fig. 

22). 

However, the properties of ML estimates do not hold 

if the model is a poor description of the underlying 

stochastic mechanisms producing the data. In partic­

ular, if the noise vector E, in Eq. 19 does not have a 

multivariate normal distribution, or is correlated 

through time, then the ML estimates could be biased. 

Since we aim to identify dynamic behavior by esti­

mating where the parameters in 6 are in parameter 

space (Fig. 3), an alternative estimation method that 

yields more robust parameter estimates is useful. 

Conditional least squares estimates 

Conditional least squares (CLS) estimates relax most 

distributional assumptions about E, (Klimko and Nel­

son 1978, Tong 1990). As such, we use CLS estimates 

as a check on the ML estimates. If the normality as­

sumptions are reasonable, both ML and CLS estimates 

are consistent (converge to the true parameters as sam-
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(0) for control replicate A of Desharnais and Liu (I 987). 
Solid lines connect the observed census data. Dashed lines 
connect the observed numbers at time t with the forecast 
at timet+ I. 

pie size increases) and thus should be similar. CLS 

estimates remain consistent, though, even if E, is non­

normal and autocorrelated, provided the stochastic 

model has a stationary distribution (Klimko and Nelson 

1978, Tong 1990). 

CLS estimates for multivariate time series models 

have not received much study; the estimates are typi­

cally described only for univariate models (Tong 1990). 

Fortunately, in the LPA model, CLS estimates reduce 

to 3 univariate cases, because any given parameter 

(e.g., f.L1) does not appear in more than one model equa­

tion (Eq. 17). CLS estimates are based on the sum of 

squared differences between the value of a variable 

observed at timet and its expected (or one-step fore­

cast) value, given the observed state of the system at 

time t - I. For the LPA model, there are three such 

conditional sums of squares: 

q 

L {In l, 
t=l 
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FIG. 8. Time series data (e) and one-step forecasts 
(0) for control replicate B of Desharnais and Liu (1987). 
Solid lines connect the observed census data. Dashed lines 
connect the observed numbers at time t with the forecast 
at timet+ I. 

.f {In p, - ln[(l - f.L 1)l,_t] )2, (27) 
t=l 

q 

Qi93) = L {In a, - ln[pt-texp( -craa,_ 1) 

t=l 

(28) 

Here 9 1 = [b, c,1, c,a]', 92 = f.L1, and 63 = [cpa• ILal' are 

the parameter vectors from the individual model equa­

tions (Eqs. 16-18). The conditional sums of squares 

are constructed on the logarithmic scale because that 

is the scale on which we assume noise is additive (Eq. 

19). The conditional one-step expected values appear­

ing in Eqs. 26-28 are from Eqs. 20-22. 

CLS estimates minimize the conditional sums of 

squares (Eqs. 26-28). Three separate numerical mini­

mizations are required, one for each of the sums of 

squares. We find the Nelder-Mead simplex algorithm 

convenient. Alternatively, the CLS estimates can be 

obtained by minimizing Q 1, Q 2, and Q3 in turn with a 

standard nonlinear regression package. The estimates 

of the parameters in the variance-covariance matrix of 
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connect the observed numbers at time t with the forecast 
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E, are then found from the sums of squares and cross 

products matrix constructed using the conditional re­

siduals (observed log-scale variable at time t minus 

estimated expected value given variables at time t -

I). 

Hypothesis testing and confidence intervals 

One test of a dynamic model is that we would expect 

replicate populations to have the same parameter val­

ues. Laboratory Tribolium populations come as close 

as is practical in population biology to being replicates, 

provided careful laboratory protocol is followed. Under 

such circumstances, we can test whether or not the 

parameter estimates obtained by fitting the model sep­

arately to the replicates could have arisen from one 

common model with identical parameters. 

The test is a likelihood ratio test (Stuart and Ord 

1991 ). Suppose r replicate populations are cultured and 

censused. The result would be r multivariate time se­

ries. It is not necessary that each culture be followed 

for the same total length of time. The log-likelihood 

for the j'h replicate, denoted In L/(J
1
, I), is given by 

Eq. 25, except with q1, wJt, and h}(I-IJ substituted for q, 
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FIG. 10. Time series data (e) and one-step forecasts 
(0) for control replicateD of Desharnais and Liu (1987). 

Solid lines connect the observed census data. Dashed lines 
connect the observed numbers at timet with the forecast 
at timet+ I. 

w, and hr-1. Here% is the sample size for replicate j, 

wJt is the vector of observed logarithmic population 

sizes for the p replicate at timet, and h}(r-l) is the vector 

of conditional expected values for ~~given ~(r-IJ = 

w1u_ 11 (Eqs. 20-22). The joint log-likelihood for all r 

replicates, provided they are independent replicates, is 

the sum of the individual log-likelihoods: 

I 

In L(9 1, ••• , 9,; I~r ... , I,) = L In L/91, I). (29) 
}~1 

Here 9
1 

and I 1 contain the parameters for the j'h rep­

licate. 

The null hypothesis of the test is that the r replicates 

are trajectories from the stochastic model (Eqs. 19) 

with identical parameters: 

H0: 9 1 = 92 = ... = 9, = 9, 

I1 = I 2 = ... = I, = I. (30) 

The alternative hypothesis is that one or more param­

eters among the replicates is different. 

The test requires ML parameter estimates under both 

null and alternative hypotheses. For the alternative hy­

pothesis, the model is fitted individually to each rep-
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TABLE 2. Residual analyses. First (p 1) and second-order (p2) sample autocorrelations and Lin-Mudholkar (z) test statistic 
for normality. 

Test Replicate 

sta-
A B c 

tis-
D 

tic Larvae Pupae Adults Larvae Pupae Adults Larvae Pupae Adults Larvae Pupae Adults 

p, -0.04 0.05 0.30 -0.29 -0.07 0.05 0.00 0.18 0.34 -0.20 -0.38 0.03 

P2 -0.12 0.15 -0.45 0.54* 0.56 -0.48* -0.16 0.16 -0.17 0.06 0.13 0.08 

z 1.88 2.70** 1.85 0.81 -0.85 -1.21 1.68 2.20** 2.08** 0.32 0.70 -0.63 

* Significant (0.05 level of probability) j'" order autocorrelation if Jp J exceeds 0.46. 
** Significant (0.05 level of probability) departure from normality if Jzl exceeds 1.96. 

licate (that is, Eq. 25 is maximized), to obtain the ML 

estimates 9,, ... , 9, :.i,, ... , :irA substitution of the 

ML estimates into Eq. 29 produces the maximized log­

likelihood under the alternative hypothesis: 

In LA= In L(0 1, ••• , 0,; :.i,, ... , :.i,). (31) 

For the null hypothesis, we substitute 9 for 9 1, 92, 

... and 9, and I for I,, I 2, .•• and I, in the log-

likelihood (Eq. 29). Then, ML estimates 9 and i are 

found by maximizing Eq. 29. The maximized log-like­

lihood under the null hypothesis then becomes 

In LN = In L(O, ... , 0; i, ... , :.i). (32) 

If the null hypothesis is true, the likelihood ratio test 

statistic given by 

(33) 

will have an approximate chi-square distribution with 

12(r - 1) degrees of freedom (the number of param­

eters estimated under the alternative hypothesis minus 

the number of parameters estimated under the null hy­

pothesis). The conditions for the chi-square approxi­

mation to hold are the same as the conditions for as­

ymptotic efficiency of the ML estimates: stationary dis­

tribution, large sample size, and appropriateness of the 

model itself. 

One of the main objectives of our analyses is to 

classify the dynamical behavior of the system. We do 

this by locating the ML estimate of 9 in parameter space 

and identifying the type of behavior (stable point equi­

librium, 2-cycles, and so on) displayed by the deter­

ministic LPA model (Eqs. 1-3) at those parameter val­

ues. Naturally, there is uncertainty attached to the pa­

rameter estimates. However, confidence intervals for 

individual parameters, and joint confidence regions for 

sets of parameters, are straightforward to compute with 

likelihood methods. 

We use confidence intervals and regions based on 

the profile likelihood. Profile likelihood intervals re­

quire much computing, but can be applied to many 

different types of statistical models (see McCullagh and 

Neider 1989: 254, Venzon and Moolgavkar I 988). Pro­

file likelihood intervals are only approximate, that is, 

their coverage frequencies asymptotically converge to 

95% as the sample size (time series length) becomes 

large. The intervals are usually asymmetric, and typ­

ically have better small-sample coverage frequencies 

than do symmetric confidence intervals arising from 

the matrix of second derivatives of the log-likelihood 

function. 

The profile likelihood intervals and regions are ob­

tained by inverting a likelihood ratio test. Suppose (3 

is a parameter (or vector of parameters) of interest in 

the vector 9, and suppose tjl is the vector of all the 

other parameters: 9 = [(3, ljs]'. We write the likelihood 

function as L(9, I) = L((3, tjl, I). Let ~P and ip denote 

the values of ljJ and I formed by maximizing the like-

lihood for a fixed value of (3. Then L((3, ~P' :.ip) taken 

as a function of (3 is the "profile likelihood"; evalu­

ating this function requires a separate maximization for 

each value of (3. The 95% profile likelihood interval 

(or region) is the set of all values of (3 for which -2[ln 

L((3, ~P' :.ip) - In L(O, :.i)] :S: X2
005(TJ), where X2

0os(T]) 

is the 95th percentile of a chi-square distribution with 

11 degrees of freedom, and 11 is the number of param­

eters in (3 [X2
005(TJ) = 3.843 if (3 represents just one 

parameter]. The interval is the set of all (3 values for 

which a likelihood ratio test on (3 would not reject the 

null hypothesis. 

Model evaluation 

Model evaluation procedures center on the residuals 

defined as the differences of the logarithmic state vari­

ables and their one-step (estimated) expected values: 

(34) 

Here e, is a vector of residuals for In 1,, In p,, and In a, 

in a population at time t, and h denotes the functions 

in h (Eqs. 20-22) evaluated at the ML parameter es­

timates. The ML estimate of the matrix I, incidently, 

can be written in terms of the residuals as :.i) = RR'Jq, 

where R = [e 1, e2, ••• , eq] is a matrix with residual vectors 

as columns. 

If the model fits, then e 1, e 2, ••• , eq should behave 

approximately like uncorrelated observations from a 

trivariate normal distribution. Unlike the original noise 

vectors, the residual vectors are, in fact, correlated, and 

the normality is approximate, with the quality of the 

approximation varying among different nonlinear time 

series models. Thus, autocorrelation tests and normal-
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ity tests should be used only as rough guides to po­

tential areas in which the model is not adequate. Cox 

and Small (I 978) provide some useful approaches to 

testing multivariate normality. A useful scan for out­

liers from multivariate normality is to calculate the 

quadratic form for each vector residual: 

(35) 

If e1 is indeed an observation from a multivariate nor­

mal (0, l:) distribution, then s
1 

is an observation from 

a chi-square distribution with 3 df (e.g., Cox and Small 

1978, Seber I 984). An estimate of I, such as the ML 

estimate i or the moment estimate i = RR'I(q - 1), 

must be substituted for I in Eq. 35; the chi-square 

distribution in practice is thus only approximate. The 

residuals for each individual state variable should have 

small autocorrelations and approximate univariate nor­

mal distributions. Tests such as the Lin-Mudholkar test 

for (univariate) normality against asymmetric alterna­

tives (Lin and Mudholkar I 980, Tong 1990: 324) are 

useful supplements to standard normal probability 

plots. Standard univariate autocorrelation tests (Tong 

I 990: 324) are informative as well. 

Failure of the model to describe some portions of 

the data can have two main causes. First, the distri­

butional assumptions about the noise vector E
1 

in the 

model (Eq. 19) could be incorrect. Under such circum­

stances, CLS estimates are probably superior and 

should be used instead of ML estimates. Second, the 

underlying dynamics of the system, as expressed in the 

deterministic model (Eqs. 1-3) could be incorrectly 

specified. A valuable tool for studying this possibility 

is to plot the map and one-step transitions together 

using interactive three-dimensional plotting software. 

The underlying deterministic map (Eqs. 1-3) gives L,+ 1 

as a function of L1 and AI' P 1+ 1 as a function of L1, and 

Ar+l as a function of P
1 

and A
1 

(Fig. 6). On the loga­

rithmic scale, these functions are essentially response 

surfaces representing the expected values of In Lr+l• In 

Pr+l• In Ar+l given the values of these variables at time 

t. Each three-dimensional graph of surface and obser­

vations can be rotated interactively to detect areas 

where the surface is not adequately describing the data. 

BIOLOGICAL EXPERIMENTS 

Experimental protocol 

We now turn our attention to the data and to the 

application of the procedures just described to connect 

the mathematical model (Eqs. 1-3) with the time series 

observations. First we look at the experimental pro­

tocol. 

Desharnais and Costantino (1980) initiated 13 cul­

tures of the corn oil sensitive strain of Tribolium cas­

taneum Herbst with 64 young adults, 16 pupae, 20 large 

larvae, and 70 small larvae. Each population was con­

tained in a half-pint milk bottle (237 ml) with 20 g of 

corn oil media (90% wheat flour, 5% brewer's yeast, 

and 5% liquid corn oil) and kept in an unlighted in­

cubator at a temperature range of 33 ± 1 oc and a 

relative humidity range of 56 ± 1 I%. Every 2 wk all 

stage classes, except eggs, were censused and all stage 

classes, including eggs, were placed in fresh media. 

This procedure was followed for 38 wk. After 10 wk 

of culture, each population was randomly assigned to 

one of four treatments. Three of the treatments, each 

with three replicates, involved demographic perturba-
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tions and one treatment, with four replicates, served as 

a control. The three demographic perturbations were: 

(1) 100 adults added, (2) all adults removed, and (3) 

all immatures removed. The control cultures were not 

disturbed. The census data are given in Table 2 of De­

sharnais and Liu (1987). 

Parameter estimates obtained 

from control replicates 

We fitted the stochastic model (Eqs. 16-18) to the 

time series of the four control replicates (see Figs. 7-

10). The maximum likelihood and conditional least 

squares parameter estimates are given in Table 1. The 

CLS estimates were obtained by minimizing the con­

ditional sums of squares (Eqs. 26-28) using the Nelder­

Mead method. The ML estimates were calculated by 

maximizing Eq. 25 using the Nelder-Mead method. 

Starter values for the iterative ML calculations were CLS 

estimates. The ML calculations converged for other 

starter values as well. The ML and CLS estimates are 

Pt 

similar, which suggests that the distributional assump­

tions about the noise vector E, in Eq. 19 are reasonable. 

The observed time series together with the one-step 

predictions, calculated from Eqs. 20-22 using the ML 

parameter estimates, are sketched in Figs. 7-10. Since 

the one-step forecasts are conditional predictions of 

animal numbers at timet + 1 given the actual numbers 

at time t, we attempted to incorporate that idea into the 

data presentation. In each figure solid lines connect the 

observed census data (e). Dashed lines connect the 

observed numbers at time t with the forecast (0) at 

time t + 1. The accuracy of a particular forecast can 

be judged by comparing the prediction at time t + 1 

with that actually observed at time t + 1. Keep in mind 

that the one-step forecast, say, for the number of feed­

ing larvae at time t + I is conditional on both the 

number of larvae at time t and the number of adults at 

time t, and not on just the number of larvae at time t. 

The graphs associate the data at time t with a forecast 

at time t + 1 and allow a visualization of how well 
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prediction and observation agree. In general, the graphs 

reveal a close association between the one-step fore­

casts and the actual animal counts. 

Theoretically, these four populations should be aris­

ing from the same model with the same parameter val­

ues. We tested the hypothesis that the parameters are 

identical for all four populations (null) vs. the hypoth­

esis that the parameter values are different between 

populations (alternative). We used the likelihood ratio 

statistic (Eq. 33) for the test. For these data, we failed 

to reject at the 0.05 significance level the null hypoth­

esis that the parameters of the four control populations 

are identical (G2 = 49.6, df = 36, P = 0.065). 

The ML parameter estimates for the model fitted to 

all four control populations (Table I, all) place the 

system in a zone of stable 2-cycles (asterisk, Fig. 3). 

The ML location of the system in parameter space is 

but a point estimate: how much uncertainty is attached 

to the estimate? Depicted in Fig. 3 is a dashed, cigar­

shaped closed curve representing a 95% confidence 

region for the key parameters b and f.La· The region was 

calculated with the profile likelihood method. The like­

lihood function was maximized for each point on a I 00 

X I 00 grid of b and f.La values. The dashed curve is a 

contour indicating where the likelihood ratio test sta­

tistic for two parameters equals 5.992 (the approximate 

95th percentile of a chi-squared distribution with 2 df). 

20 

Note that most of the confidence region lies within the 

zone of 2-cycles. However, the tip of the region extends 

into the zone of stable point equilibria, in an area where 

the system undergoes damped oscillations. 

Distinguishing damped oscillations from sustained 

oscillations in a noisy environment has always been 

problematic. Our analysis suggests that while there are 

plausible values of b and J.La leading to damped oscil­

lations, a far larger region of plausible b and f.La values 

predicts sustained oscillations. The uncertainty stems 

primarily from the parameter b (see univariate confi­

dence intervals, Table I). In future experiments, the 

value of b (larvae recruitment) could be estimated in­

dependently with more precision. Note that we with­

held data from nine additional populations (three treat­

ments, three replicates per treatment) from the param­

eter estimation process, in order to evaluate the pre­

dictive capabilities of the model (see Model evaluation: 

demographically perturbed replicates section). 

Including the nine additional time series in the ML 

estimates narrows considerably the confidence inter­

vals for all the model parameters. 

Model evaluation: control replicates 

Is the noise structure assumed in the stochastic LPA 

model (Eqs. 16-18) adequate? Table 2 displays results 

of analyzing residuals of the combined model ("all," 
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for replicate B of Desharnais and Liu (I 987) where 100 adults 
were added at t = 5. Solid lines connect the observed census 
data. The one-step forecasts (dashed-line projections) are 
based on the parameter estimates obtained from the control 
cultures. 

Table 1) for univariate normality. First- and second­

order autocorrelations and the Lin-Mudholkar normal­

ity statistic were calculated for each state variable in 

each of the replicates (A, B, C, D) used to estimate 

parameters. Replicate B revealed some second-order 

autocorrelation, but no first-order autocorrelation. Mild 

normality departure is displayed by the pupae of rep­

licates A and C, and the adults of replicate C (Table 

2). 

Overall, the residuals conform adequately to the uni­

variate normal model. Quantile-quantile (Q-Q) plots of 

the logarithmic residuals for larvae, pupae, and adults 

(Fig. 11 A-C) reveal that the departures from normality 

indicated in Table 1 are due to a small number of out­

liers. In Fig. liD, the multivariate normal residuals 

(quadratic forms, Eq. 35) are displayed in a chi-square 

Q-Q plot. The multivariate normal model describes the 

data reasonably well, except for four outliers (the four 

points on the extreme right of Fig. I 1 D). The four 

outliers (replicate A, t = I; replicate B, t = I; replicate 

B, t = 17; replicate C, t = 5) are evident in the original 

data and one-step plots (Figs. 7-10). As noted earlier, 
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Fro. 15. Time series data (e) and one-step forecasts (0) 

for replicate C of Desharnais and Liu ( 1987) where I 00 adults 
were added at t = 5. Solid lines connect the observed census 
data. The one-step forecasts (dashed-line projections) are 
based on the parameter estimates obtained from the control 
cultures. 

the deterministic LPA model can be viewed as a re­

sponse surface representing the expected value of the 

logarithm of larval, pupal, and adult numbers at time 

t + 1 given the values of these variables at timet (Eqs. 

20-22). The differences between the observed and 

model-predicted number of animals (residuals) are 

graphed in Fig. 12. The overall magnitude of the de­

viations is not large; furthermore, the residuals do not 

seem to vary systematically with the sizes of the state 

variables. 

Model evaluation: demographically 

perturbed replicates 

Can the model successfully forecast larval, pupal, 

and adult numbers for populations that were not used 

to estimate the parameters? One-step predictions, based 

on the parameter values obtained from the control cul­

tures (Table 1), are compared with the observed time 

series data for nine demographically perturbed popu­

lations in Figs. 13-21. In the first treatment, 100 adults 

were added to each of the three cultures following the 

census at week 10 (t = 5). The model (Figs. 13-15) 
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FIG. 16. Time series data (e) and one-step forecasts (0) 
for replicate A of Desharnais and Liu (1987) where all adults 
were removed at t = 5. Solid lines connect the observed 
census data. The one-step forecasts (dashed-line projections) 
are based on the parameter estimates obtained from the con­
trol cultures. 

appears to handle the added adults quite adequately. In 

the second treatment, all of the adults were removed 

after the week 10 census. The predicted number of 

adults at week 12 (t = 6) are in agreement with the 

observed numbers (Figs. 16-18). The forecasts of lar­

val numbers at week 12 are not good; removing all 

adults means that the model predicts no larvae at week 

12, but larvae were observed. While the experimenters 

did remove adults they did not remove the eggs laid 

by those adults, consequently, larvae were observed at 

the next census. After this inconsistency between math­

ematical model and experimental protocol, the model 

recovers to make accurate population forecasts for t ~ 

8. In the third treatment, all of the immature life stages 

(eggs, larvae, pupae) were removed (Figs. 19-21). The 

biology suggests a cascade of effects will follow. First, 

larval numbers at time t + I will be solely a function 

of adult numbers at time t. Second, no pupae will be 

observed at time t + 1, but this class will be present 

at t + 2. Finally, adult numbers at time t + 3 (6 wk 

following the removal of immatures) will increase. 

Each of these events are realized and the model sue-
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FIG. 17. Time series data (e) and one-step forecasts (0) 
for replicate B of Desharnais and Liu (1987) where all adults 
were removed at t = 5. Solid lines connect the observed 
census data. The one-step forecasts (dashed-line projections) 
are based on the parameter estimates obtained from the con­
trol cultures. 

cessfully predicts each event both qualitatively and 

quantitatively. The ability of the model to reflect the 

behavior of the demographically perturbed populations 

gives us added confidence that the deterministic equa­

tions (Eqs. 1-3) capture the essential dynamical rela­

tionships among the state variables. 

The prediction error analyses for each of the de­

mographic treatments are summarized in Table 3. In 

the adults-added treatment, replicate A shows second­

order autocorrelation by the larvae but no first-order 

autocorrelation, and replicate C reveals some first-order 

autocorrelation by adults. In the adults-removed treat­

ment, replicate B shows some second-order autocor­

relation by pupae. Departure from normality is dis­

played in 10 of the 27 treatment time series: by pupae 

(replicate B) and adults (replicates A, B) in the adults­

added treatment, by larvae (replicates B, C) and pupae 

(replicate A) in the adults-removed treatment, and by 

larvae (replicate C), pupae (replicate A, C), and adults 

(replicate C) of the immatures-removed treatment. The 

normality departures are mostly moderate and can be 

traced to a small number of outliers in each time series. 
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(0) for replicate C of Desharnais and Liu (1987) where 
all adults were removed at t = 5. Solid lines connect the 
observed census data. The one-step forecasts (dashed-line 
projections) are based on the parameter estimates obtained 
from the control cultures. 

Recall that these are prediction error analyses, rather 

than analyses of residuals as in Table 2, since these 

cultures were not part of the parameter estimation pro­

cess. Overall, the predictions support the stochastic 

LPA model. 

DISCUSSION 

The role of nonlinear demographic theory in ecology 

will ultimately be decided by tests with experimental 

data. If demographic models cannot yield quantitative 

predictions in well-studied laboratory and field sys­

tems, it is unlikely that such models will yield con­

vincing qualitative insights into any other ecological 

systems. The Tribolium system has been studied ex­

tensively for over 60 yr and is a prime candidate for 

an attempt at a detailed mathematical understanding. 

Locating populations in 

model parameter space 

Consistent with earlier work (Chapman 1928, Lan­

dahl 1955, Taylor 1965, Desharnais and Costantino 

1985, Hastings and Costantino 1987, 1991, Costantino 
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FIG. I 9. Time series data (e) and one-step forecasts 
(0) for replicate A of Desharnais and Liu (1987) where 
all immatures were removed at t = 5. Solid lines connect 
the observed census data. The one-step forecasts (dashed­
line projections) are based on the parameter estimates ob­
tained from the control cultures. 

and Desharnais 1991 ), we accept the hypothesis that 

the fluctuations in animal numbers observed in labo­

ratory populations of beetles are due primarily to the 

nonlinear cannibalistic interactions among eggs, lar­

vae, pupae, and adults. We arrive at this conclusion in 

the following way: first, by writing an explicit three­

state-variable demographic model incorporating the 

major factors of the population biology of the beetle 

(specifically, birth, death, and cannibalism); second, by 

mathematical and numerical analyses of the model's 

dynamics; third, by incorporating a stochastic com­

ponent in the model that provides an explicit likelihood 

function for estimating parameters from time series 

data; and fourth, by evaluating the full stochastic model 

using an independent data set and using statistical di­

agnostic methods based on an analysis of residuals 

(one-step forecast errors). Culmination of this four-step 

process allows us to estimate the location of the pop­

ulations in parameter space (Fig. 3). Specifically, for 

the data set studied here (Desharnais and Costantino 

1980) the populations are placed in the region of pa­

rameter space that corresponds to stable 2-cycles. 
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for replicate B of Desharnais and Liu (1987) where all im­
matures were removed at t = 5. Solid lines connect the ob­
served census data. The one-step forecasts (dashed-line pro­
jections) are based on the parameter estimates obtained from 
the control cultures. 

Stochastic realizations 

In recent years, we have interpreted fluctuations in 
adult numbers as a stochastic equilibrium with a gam­
ma stationary distribution (Costantino and Desharnais 
I 981, Dennis and Costantino 1988, Desharnais et a!. 
1990, Costantino and Desharnais 1991). Are the gam­
ma model and the stochastic LPA model consistent with 
each other? The answer is yes, provided the underlying 
adult dynamics are either a stable point (Fig. 5B) or a 
stable cycle with oscillations of small magnitude (Fig. 
SA). Fig. 22 depicts a frequency histogram of adult 
numbers simulated from the stochastic LPA model. The 
time series was generated using the parameter values 
estimated from the laboratory populations ("all" in 
Table 1) and contains I 000 observations. As we have 
noted, the parameter values correspond to a 2-cycle of 
adult numbers. The histogram in Fig. 22 resembles a 
gamma probability distribution. The amplitude of the 
underlying 2-cycle fluctuations is small compared to 
the magnitude of the noise fluctuations and so the 
2-cycle is not evident in the histogram. Clearly, sta­
tionary distributions provide limited information con-
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FIG. 21. Time series data (8) and one-step forecasts (0) 
for replicate C of Desharnais and Liu (1987) where all im­
matures were removed at t = 5. Solid lines connect the ob­
served census data. The one-step forecasts (dashed-line pro­
jections) are based on the parameter estimates obtained from 
the control cultures. 

cerning the details of the fluctuations in animal num­
bers. On the other hand, these distributions do provide 
a very practical quantitative assessment of the fre­
quency of occurrence of particular population sizes. 
The adult numbers behave like a population with a 
growth rate that has a stable equilibrium but is per­
turbed by environmental noise, precisely the conditions 
that lead to a gamma-like stationary distribution of 
population abundance (Dennis and Patil 1984). 

An important feature of our argument for the iden­
tification of the deterministic dynamics in the presence 
of stochasticity is that the three-variable stochastic 
model allowed us to quantify the relative contribution 
of the stochastic component. The model diagnostic 
techniques used evaluate explicitly whether the as­
sumed random element adequately describes the data. 
By incorporating a testable stochastic component into 
the model we are able to discern stable 2-cycle behav­
ior. 

New experiments 

The ability to reliably locate populations in param­
eter space opens the possibilities for many new ex-
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TABLE 3. Prediction error anlayses. First (p 1) and second-order (p2) sample autocorrelations and Lin-Mudholkar (z) tesl 
statistic for normality, calculated for each of the three replicates (A, B, C) of three demographic perturbation treatments 

Demographic perturbation treatment 

Adults added Adults removed Immatures removed 

A B c A B c A B c 
L, p, 0.37 -0.43 -0.06 0.04 -0.16 -0.14 -0.14 -0.15 -0.11 

P2 0.59* 0.28 0.18 -0.17 -0.22 -0.28 -0.19 -0.20 -0.07 
z 1.23 -0.24 -0.71 0.15 -2.86** -2.71** 1.50 -0.96 2.74** 

P, p, -0.38 -0.04 -0.01 -0.11 -0.08 0.14 -0.14 -0.24 -0.35 

P2 0.44 0.43 0.08 -0.24 0.51* -0.06 0.39 0.20 0.39 
z -0.84 -2.72** -0.11 -2.94** -0.36 -1.16 -2.19** 1.67 -2.29** 

A, p, 0.35 -0.01 0.51* 0.38 0.21 0.21 -0.39 0.23 -0.01 

P2 0.19 0.07 0.08 -0.09 -0.11 -0.11 -0.14 0.03 -0.11 

z 2.57** 2.65** -0.46 1.52 0.09 -0.67 0.27 -0.46 -3.77** 

* Significant (0.05 level of probability) j'h order autocorrelation if Ji>J exceeds 0.46. 
** Significant (0.05 level of probability) departure from normality if Jzl exceeds I .96. 

periments. The modern theory of nonlinear dynamics 

(i.e., bifurcation theory) provides guidance for the con­

duct of a new phase of population research in which 

the rigorous statistical verification of experimentally 

designed shifts in dynamical behavior would provide 

convincing evidence for the relevance of nonlinear 

mathematics in population ecology, including the pos­

sibility of chaos. For example, on the basis of Fig. 3, 

which was generated from a historical data set, exper­

imentally increasing the rate of adult mortality should 

result in the disappearance of the oscillations in animal 

numbers: the dynamics change from a 2-cycle to a sta­

ble fixed-point attractor. With an additional increase in 

adult mortality we expect aperiodic, "chaos-like" fluc­

tuations in animal numbers. By applying our approach 

we should be able to document predicted transitions in 

dynamical behavior including transitions to chaos. 

CONCLUDING REMARKS 

The prospect of identifying nonlinear demographic 

behaviors in ecological systems continues to provoke 
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FIG. 22. Histogram of adult numbers for the stochastic 

LPA model simulated for 1000 time steps using the parameter 

values (Table I) and variance-covariance matrix estimated 

from the control cultures. The smooth curve represents a gam­

ma probability density function fitted to the stochastic real­

izations. 

debate. Ecologists are comfortable with the assertior 

that nonlinear systems can display limit cycles, mul· 

tiple attractors, and strange attractors, because the as· 

sertion is a mathematical fact. Ecologists for the mos 

part also agree that ecological relationships are fre· 

quently, perhaps largely, nonlinear. Particular nonlinea: 

behaviors, however, are tantalizingly difficult to pin t< 

any given, real ecological system. Ecological system! 

are complex: alternate explanations abound; data col 

lection is challenging; noise is prevalent. Are periodi< 

fluctuations observed in a system really limit cycle! 

caused by some intrinsic, identifiable mechanism, o 

are they caused by some unobserved external forces' 

Did a system get pushed into a different attractor, o 

have conditions assumed by the model simp!) 

changed? Is it chaos or is it noise? 

We believe that part of the difficulty stems from lacl 

of explicit connections between models and data, be 

tween theories and experiments. First, theoretical mod 

els in ecology tend to emphasize qualitative dynamics 

The end product of an investigation is a broad map o 

the phase-parameter space of a simplified deterministi1 

model, with the delimited regions governed by differen 

types of attractors. We presented such a study, of ; 

three-variable difference equation model of Triboliun 

life stages, in the second section of this paper. Becaus1 

of the highly nonlinear interactions of cannibalism, th1 

model has it all: extinction, stable points, periodic cy 

cles, aperiodic orbits, multiple attractors, and strang' 

attractors. Second, the laboratory or field data tend t< 

be collected for reasons other than testing a specifi, 

mathematical model. Data are precious, models an 

cheap. A well-designed empirical study often answer 

many questions and rules out many models. That 

previous Tribolium experiment provided, for our par 

ticular model, data for parameter estimates and separat, 

data for model evaluation, was a fortunate but inci 

dental aspect of the experiment. Third, theoretical ecol 

ogy has had a paradoxically weak statistical tradition 

Even if model and data are in concert, the mathematic2 
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ecology literature provides little guidance as to what 

to do with the data. The statistical interface between 

model and data that we reported here was helpful to­

ward making theories more accountable to experi­

ments. 
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