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Abstract-A new approach to adaptive control of linear systems 
abandons the traditional certainty-equivalence concept and treats 
the control of linear plants with unknown parameters as a 
nonlinear problem. A recursive design procedure introduces at 
each step new design parameters and incorporates them in a novel 
Lyapunov function. This function encompasses all the states of 
the adaptive system and forces them to converge to a manifold of 
smallest possible dimension. Only as many controller parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
are updated as there are unknown plant parameters, and the 
dynamic order of the resulting controllers is no higher (and in 
most cases is lower) than that of traditional adaptive schemes. A 
simulation comparison with a standard indirect linear scheme 
shows that the new nonlinear scheme significantly improves 
transient performance without an increase in control effort. 

I. INTRODUCTIONAND PROBLEM STATEMENT 

N this paper we present a new approach to adaptive control I of linear systems. We abandon the traditional certainty- 
equivalence design, in which a parameter update law tunes a 
would-be linear controller [ 11-[3]. Instead, we treat the control 
of linear plants with unknown parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a nonlinear 
problem to which we apply tools of adaptive nonlinear control 
[7]-[ 111. We develop a recursive procedure to design different 
types of adaptive controllers. At each step, this procedure 
introduces new design parameters and incorporates them in a 
novel Lyapunov function, which is also constructed in a step- 
by-step fashion. This function encompasses all the states of the 
adaptive system and forces them to converge to a manifold of 
smallest possible dimension. 

Another advantage of the new design procedure is that it 
is uncertainty-specific, with respect to both the number of 
unknown parameters and their locations: the closer unknown 
parameters are to the control input, the simpler is the adaptive 
controller. Only as many controller parameters are updated as 
there are unknown plant parameters. As for additional filters, 
only two are employed, one at the control zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu and one at the 
output y. Each of these filters is of dimension equal to the 
plant order. This means that the dynamic order of the resulting 
controllers is no higher (and in most cases is lower) than in 
traditional adaptive schemes. 
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Different choices of design parameters offer new possibil- 
ities for improvement of transient performance and reduction 
of control effort. Particularly important are the “nonlinear 
damping” terms, which, when compared to update law normal- 
izations, lead to faster and better-damped transients without 
an increase in control effort. 

Problem statement: The control objective is to asymptoti- 
cally track a reference signal yr(t) with the output y of the 
olant 

An adaptive approach to this problem is required because some 
or all of the ai’s and bi’s are unknown. We make the following 
standard assumptions about the plant and the reference signal. 

Assumption 1.1 : The plant is minimum phase, i.e., the 
polynomial B(s)  = b,sm +. . . + bls + bo is Hurwitz, and the 
plant order (n), relative degree ( p  = n - m), and sign of the 
high-frequency gain (sgn (b,))  are known. 

Assumption 1.2 : The reference signal yr(t) and its first p 
derivatives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare known and bounded, and, in addition, y!”(t) is 
piecewise continuous. In particular, yr(t) may be the output of 
a reference model of relative degree pr  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 p with a piecewise 
continuous input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ( t )  . 

The paper is organized as follows. We first select a state 
estimation scheme and then present our design procedure 
followed by the proof of stability and tracking. Then we 
illustrate our procedure on an unstable third-order plant, and, 
using simulation results for this plant, we compare the new 
nonlinear design with a traditional certainty-equivalence de- 
sign. This comparison illustrates the improvements in the 
trade-off between transient performance and control effort. 

11. STATE ESTIMATION 

Since only the output y is available for measurement, we 
design a Kreisselmeier observer [4] by first representing the 
plant (1.1) as . 

21 = 2 2  - an-1y 

x 2  = x3 - an-2y 

xn = -uoy + bou 

Y = x1 
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and then rewriting it in the form 

X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= A02 + ( k  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU ) Y  + b~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y = eTx (2.2) 

where e; denotes the ith coordinate vector in W” and 

- kl 

A o =  [ 1,  k =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[:I, 
-ICn o . - * o  kn 

an-1 bm 
a =  [ i 1,  6 =  [io], b =  [“(p-i)xl]. (2.3) 

a0 

The observer matrix A0 is Hurwitz due to the choice of I C .  It 
is easy to check that 

Abe, = en-;,  0 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi 5 n - 1 

Are,  = - k ,  (2.4) 

so that the polynomial functions A ( . )  and B(.) from (1.1) 
satisfy 

A(Ao)en = a - k 

B(Ao)en = b. (2.5) 

6 = Aov + eny 
i = AoX + enu 

By filtering U and y with two n-dimensional filters 

(2.6) 

the state estimate is formed as 

2 B(Ao)X - A(Ao)v. (2.7) 

Using (2.2) and (2.5)-(2.7), it is easy to verify that the 
estimation error E = 5 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP satisfies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = Aoc. In the 
expression (2.7) for 2, the vector signals multiplying the 
unknown parameters ao, . . . , an-l and bo, . . , bm are Ji = 
A;v,O 5 i 5 n - 1, and w; = A&O 5 i 5 m, respectively. 
For convenience we also define Jn = -A:v and rewrite (2.7) 
as 

n-1 m 

i=O i=O 

All the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ- and v-signals and their derivatives are explicitly 
available: 

Jn = -A; i n  = AoJn + 
ti = Abv’ [; = Ao& + en- ;y ,  

vi = AbX i~; = Aov; + en-+ 0 5 i 5 m. (2.9) 

It is important to point out that these expressions are im- 
plemented as algebraic identities, along with filter equations 
(2.6). 

In the adaptive controller design the unknown parameters 
ao, . . . , an-1 and bo, . . . , bm, appearing in the state estimation 
equation (2.Q will be replaced by their estimates. 

0 5 i 5 n - 1 

111. AN INTRODUCTORY EXAMPLE 

Our recursive design procedure employs integrator back- 
stepping in the observer [8] combined with tuning functions 
[lo]. In that sense, it removes the overparameterization em- 
ployed in [9], where the results of [7] and [8] were combined 
to design adaptive output-feedback controllers for nonlinear 
systems. For readers unfamiliar with these references, the 
procedure is introduced by designing an adaptive controller 
for the plant y(s) = (l/s(s - a) )u (s ) ,  represented as 

X I  = 2 2  + a21 

X, = U (3.1) 

where a is unknown, and y = 2 1  is measured. For simplicity 
we let y,=const. 

The observer filters (2.6) and the corresponding [ and v 
variables are implemented as 

6 = Aorl+ ezy, (1 = A o ~ ,  1 2  = -A i v  (3.2) 

i = A ~ A  + ezu, = [+ ,,I. (3.3) 
-kl 1 

v = A, 

From (2.8), using ii as an estimate of a, the unmeasured state 
2 2  is expressed as 

The plant (3.1) is of relative degree p = 2, and the design 

Step 1: The equation for the tracking error z1 = y - y,. = 
is in two steps. 

21 - y,. is (since ir 3 0) 

The backstepping idea is to treat the filter state 02 as a virtual 
control, replace it by v2 = Z Z + ( Y ~ .  and design al(y, ii, y,., 7) 
to stabilize the zl-equation 

21 = 2 2  + a1 + J2,2 + €2 + iiw + ( a  - ii)w, 

w = G, 2 + Y (3.6) 

in the absence of z2 and (a - 6)w. This is simply achieved by 

With this stabilizing function, (3.6) reduces to 

The reason for using two separate positive coefficients c1 
and dl will become obvious at the next step, where dz is 
a nonlinear gain. If an update law for.& were to be designed at 
this step, a simple choice would be ii = 71 = y q w ,  because 
then the derivative of VI = (l/2)zt + (1/27)(a - 2)’ + 
( l/dl)cTPoe along (3.8) would be V 5 -clzt - (3/4dl)eT€+ 
zlz2, which is nonpositive when z2 0. However, 71 = yzlw 
will not be used to update 6. It only defines our first “tuning 
function.” 
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Step 2: To step back through the second integrator, we 

differentiate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= "2 - a1 and get 

22 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIC2211 - &I 

(3.9) 

Now the actual control U is available and for it we design the 
control law 

(3.10) 

where U, is yet to be determined. The nonlinear damping 
term -d2(dal/dy)2z2 was introduced in [8] to counteract 
the destablizing effect of (dal/dy)cz. To choose U, and the 
update law for iL we consider the Lyapunov function 

1 1 
v2 = VI + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-22" + -€TP,E 

2 d2 
1 1  1 

= -2; + -2" + -(a - &)Z + + - ppoc. 
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 27 j2) 

Its derivative for the system (3.8), (3.9) with the control (3.10) 
is 

Observe that the last two terms in I& are indefinite. To cancel 
them, we select the actual update law 

rfnd let U, = ( d a l / d & ) ~ z .  The design is completed because 
VZ I -cl$ -c2z$ -( 3/4) (( l /d l )+ (  l/d2))cTE is nonpositive. 

This guarantees stability of the origin z1 = z2 = 0, E = 0, 
2 = a ,  as well as the regulation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21, z ~ ,  E to zero, which, 
in particular, means that asymptotic tracking is achieved; 
limt,oo [ y ( t )  - y,.] = 0. 

IV. THE DESIGN PROCEDURE 

The general recursive design procedure defines at each step 
a new stabilizing function and a new tuningfunction. In the 
final p- th step, these functions determine the actual control 
law and the actual update law. 

The first two steps of the general procedure are as in the 
above relative-degree-two example, except that now the high 
frequency gain b, is also unknown. Like in other adaptive 

schemes, an additional parameter 6 is introduced to estimate 
b;l. 

A more substantial change occurs beyond Step 2, that is, 

for plants with p 2 3. As shown in [lo], the stabilizing 
functions designed at Steps 3 , . . . , p  must also compensate 
for the mismatch between the tuning functions and the actual 
update law, because only the last tuning function rp is the 
actual update law. 

Introducing the positive constants y, c i ,  di, i = 1, . . . , p 
and the positive definite matrix I' of dimension (n  + m + 
1) x (n + m + 1) as design parameters, we are now ready to 
present the design procedure. 

Step 1: The derivative of the tracking error 21 = y - yr is 

z1 = 5 2  - an-ly - yr. (4.1) 

If x2  were measured, we would treat it as a "virtual control" 
and use it to stabilize (4.1). Since x2  is not measured, we 
replace it by its expression from (2.8) 

(4.2) 2 2  = In, 2 - t(2)U + "(2)b + €2 

where €2 is an exponentially decaying signal and 

t ( 2 )  = [Sn-1,2,..-,t0,2], "(2) = ["m,2,~..,"0,21. 

(4.3) 

(4.4) 

A choice is now to be made of a measured variable in (4.4) 
to replace x2  as a virtual control. We choose w,,2, because 
(2.9) shows that the actual control U appears after only p - 1 

differentiations of w,, 2 ,  earlier than for any other variable in 
(4.4). Then, we denote 

Substituting (4.2) into (4.1), we obtain 

21 = &l, 2 - t ( 2 ) U  + "(a)$ - an-1y - yr + €2. 

If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw,, 2 were the actual control input we would design for it a 
control law a1 to stabilize (4.7). Let z2 be the error between 
the actual and desired value of vm,2 

22 = "m, 2 - Q1 (4.8) 

and rewrite (4.7) as 

.i1 = bmza + b m a l  + In, 2 + GTe - yr + €2. (4.9) 

Since the parameters are unknown, one would first think 
of replacing them with estimates. As a1 is multiplied by 
the unknown parameter b,, however, the estimate of b, 
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would have to be bounded away from zero. To avoid this 
inconvenience, we introduce an additional parameter p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= bG1. 
Adding and subtracting (CI + dl)zl,' we rewrite zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4.7) as 

i1 = - C I Z ~  - d l z l +  bmzz 

+ bm{a l+  P ( C I ~ I +  d l z l +  Cn, 2 - &) 
+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApTe} + €,. (4.10) 

We now pause to examine this equation. Although more 
complicated than its predecessor (4.1), this equation is more 
convenient for backstepping, since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz2 is a measured variable. 
In the design of a1 the uhAown parameters p ,  0 will be 
replaced by their estimates 6, 8. The form of (4.10) suggests 
that we define 

~p = ~ 1 ~ 1  + dlzl + cn, 2 - & + ZT6. (4.11) 

Then, adding and subtracting the term b,{@cp + pTe} and 
keeping in mind that b,p = 1, we rewrite (4.10) as 

21 = -c1z1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb m z ~  + bm(al+ @CP) + bm(p - 5 ) ~  
+ZT(O - 8) + €2 - dlzl. (4.12) 

We can now view (4.12) as a first-order system to be stabilized 
by a1 with respect to the Lyapunov function 

1 1  
2 2  

K = -.: + -(e - 8)Tr-1(e - 4) 
1 

+ u ( p  - 5)' + -eTPot (4.13) 
27 dl 

where PO is the positive definite solution of PoAo + ATP0 = 
-I. To design a1 we examine the derivative of VI 

Vi = -C~Z: + b m ~ 1 ~ 2  + bmzl(al+ 5 ~ )  
1 + Ibml(P-2i)y(YSgn(bm)cpzl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-2% 

+ (e - 8)Tr- -1(ml  - e )  
- dlz: + ~ 1 ~ 2  - ' e T € .  (4.14) 

If U,,, were our actual control, we would have z2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs 0 and 
we would eliminate p - p, 8 - 8 and b, from (4.14) with 
the choices 

dl  

= - $ ~ p  = - C [ C ~ Z ~  + dlzl + In, 2 - Gv + ZTb] (4.15) 

2i = Y sgn (bm)pz1 (4.16) 

and 0 = T ~ ,  where 

7-1 = m z 1 .  (4.17) 

With z2 = 0, this would yield the following expression for 
the derivative of VI: 

" h o  separate positive coefficients c1 and dl appear here for uniformity 
with subsequent steps. 

where 

(4.18) O(€)  = €f + --E; 3 + . * + €2. 4 

Since U,,.,, 2 is not our actual control, we have z2 $ 0  and we do 

not use 4 = 71 as the update law for 4, because e will reappear 
in subsequent steps. However, p will not reappear, so we do 
use (4.16) as the actual update law for $. We retain (4.17) 
as our first tuningfunction and (4.15) as our first stabilizing 
function. Substituting (4.15) and (4.17) into (4.12) and (4.14), 
we obtain 

Step 2: Using ( 4 3 ,  we express the derivative of zz = 
um,z - ai as 

(4.20) 

where ,& denotes all the known terms except for um,3. We 
now treat um,3 as a virtual control, that is, introducing the 
new variable z3 = u, ,~ - a,, we use a2 to stabilize the 
( a ,  22, $)-system 

i = - C I Z ~  - dlzl + bmzz + GT(@ - 8) 
+ b m d p  - $1 + €2 

iz = z3 + a2 + p, - 

(4.21) 

with respect to the Lyapunov function 

(4.22) 
1 1 v, = v, + -22" + --€TPO€. 
2 dz 
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The derivative of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV2 for (4.21) is computed as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
% L -c1z: + zz[bmzl+ 23 + a2 + ~2 

acr, 1 1 
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA22-€2  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- E T €  - -O(€). 

ay d2 dl 
(4.23) 

Using z2bmz1 = z2b,z1+z2(bm-bm)z1, we rewrite (4.23) as 

+ [O, . . . , 0, -z1, 0,  . . . , O I T ) z 2  - -41 
aa1 1 1 

- Z2--€2 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- - E T €  - -O(€) 
ay dz dl 

(4.24) 

with -z1 appearing in the (n + 1)st entry of the row vector. 
0 and we 

would eliminate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 - 8 from (4.24) with the update law 6 = 7 2 ,  

where 

If w m , 3  were our control, we would have z3 

aa1 

aY 
= lZz l  - r--wz2 + I’en+lzl(wm, - a1)  

(4.25) 

where we have used (4.6), (4.15), and (4.17). Then, examining 
the terms in the. bracket multiplying z2 in (4.24), we see that, 

if 23 E 0 and 6 = 7 2 ,  the choice 

would yield 

However, since z3 $ 0, we do not use e  ̂ = 7 2  as an update law. 
Instead, we retain 7 2  in (4.25) as our second tuning function 
and a2 in (4.26) as our second stabilizing function. Upon the 

substitution into (4.21), and (4.24), we obtain 

The mismatch term (aal/ae)(-r,  - e) will be dealt with in 
subsequent steps. 

Step i(3 5 i < p) :  We express the derivative of zi = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w,,; - ai-1 as 

(4.28) 

where pi encompasses all the known terms except for Vm, i+1 .  

We now treat w,,i+l as a virtual control, that is, introducing 
the new variable zi+l = - ai, we use a; to stabilize 
the ( X I , .  , zi, Ij)-system 

21 = - ~ 1 ~ 1  - d lz l  + bmzp + ZT(6 - e) 
+ bmq(p - ?j) + €2 

(4.29) 

with respect to the Lyapunov function 

1 1  
2 d; 

(4.30) v; = K-1 + -2; + --€TPO€ 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk1 satisfies 

i - 1  

e - 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI -&z? + Z iZ i -1  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(e  - s ) T r - l ( T i - l  - 8) 
j =1  

(4.3 1) 

Let us first analyze (4.29) and (4.31). The form of 
i 3 ,  ... , i i - 1  is the same as f?le form of 22 except for 
the term - E”,=’, Zk(aak- l /ae) r (a , j - l /ay>w.  Likewise, 
the form e - 1  is the same as that of V, except for 
the term -x i~ i~ ’ - ’  k=2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzk(aak-l/ds)r(daj-l/dy)WZj. 

These terms, incorporated at steps 2,...,i - 1 by the 
stabilizing functions a3, : . , a i - 1 ,  would have cancelled 

C ; z ; z j ( a a j - l / a s ) ( r j  - e )  in e - 1 ,  if the relative degree 

were i - 1, in which case we would have chosen ê  = ~ i - 1 .  

We give below a detailed explanation of these cancellations 
at step i. 

The derivative of Q for (4.29) is computed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas 

i -1  

5 - c c j z ;  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzi 
j=1 

(4.32) 
aai-1 1 i-l 1 

- zi- €2 - - - E T €  - C-n(€). 
di j = l d j  

If v m ,  i+l were our control, we would have zi+l 0 and we 

would eliminate 13 - 8 from (4.32) with the update law d = ~ i ,  

where 

(4.33) 

Then, noting that 

(4.34) 

and making use of the algebraic identities 

we would rewrite as 

i -1  

c < - c c j z ;  + zi 
j=1 

i-1 1 - - - E T €  - C-n(€) 
di j = l d j  

I -1  

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- c c j z ;  + zi 
j =1  

(4.35) 

1 i-l 1 

di j= l  4 
- - - E T €  - C-n(€) 

(4.36) 

The last term in the bracket in (4.36) is due to the mismatch 
between ri and 7 2 ,  . . . , ~ i - 1 .  Along with the other terms in the 
bracket, this term will be cancelled by the stabilizing function 
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For Zi+l E 0 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Ti, this ai would yield Using (4.38) with i = p - 1 and (4.39), the derivative of V, 
is computed as 

Since zi+l $ 0, however, we do not use 8 = ri as an update 
law. Instead, we retain (4.33) as our ith tuning function and 
(4.37) as our ith stabilizing function. Substituting them into 
(4.29) and (4.32), we obtain 

(4.38) 

Step p :  We express the derivative of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzp = U,, - ap-l as 

zp-1+ 'U. + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApp - [ 
d f fp - l  e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
TI 

To eliminate B - 8 from (4.41), we choose the update law 

wzp. d f f p - 1  e = Tp = Tp-l - r- 
dY 

Then, noting that 

(4.42) 

2 5 j 5 p - 1 (4.43) 

and using the identities (4.35) with i = p,  we rewrite Vp as 

Finally, we choose the control U as 
i, = U + p p  - - e - -  €2  - - d f f p - l  B (4.39) 

d f f p - l  T d f f p - l  

dY dY 88 2 
U = -cpzp - dp ( a,) d f fp -1  zp - zp-l - pp 

where pp encompasses all the known terms (including v,, p+ l )  

except U.  Finally the actual control U appears in (4.39). We can P-1 

a8 k=2 

d f f k - 1  (4.45) r- 
dY 

d f f p - 1 W T 8  I dffp-l  
7 p  - c z k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 now design U and and the actual update law 8 to stabilize the 

( 2 1 ,  . . , zp, 9)-system with respect to the Lyapunov function 
+- 

dY 

which yields2 v, = vp-l + -zp 1 2  + --ET& 1 

2 d P  

Vp = -k{ c j z ;  + d j ( z j %  + & ~ 2 ) ~  + ;.(.,}. 
j=1 

j=1 (4.46) 

+ p - 8)Tr-1(o - e).  1 

*For notational convenience we introduce LYO e 0. 
(4.40) 



(4.47) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a a p - 1  2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -cpzp - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd, ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,) z p  - z p - 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

v. DIRECT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASTASILI’IY ANALYSIS 

While the design procedure is intricate, its result-the 
structure of the z-system-is remarkably simple. Substituting 
(4.43) into (4.47), denoting U k i  = ( a a k - l / a e ) r ( a a i - l / a y > ,  

745 

and using (4.6) and (4.15) to derive 

bmZ2 + zT(e - 8) 
= bmzz + wT(8 - 8) - e;+,v,, z ( O  - 8) 

= bmz2 + wT(O - 6 )  - ( b ,  - S m ) ( z ~  + ~ 1 )  

= Smz2 + wT(e - 8) + (b ,  - Sm)?iV 

the z-system is more compactly rewritten as (5.1), shown at 
the bottom of the page. 

The stability properties of this system can be deduced 
by inspection. Thanks to the skew-symmetry of the off- 
diagonal terms, the stabilizing effects of the diagonal terms 
-ci - d ; ( ( a a ; - 1 / t 7 y ) ) 2  dominate. The nonlinear damping 
terms - d ; ( ( d a ; - l / d y ) ) 2 z ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare significant when ( a a ; - l / a y )  

is large, which is crucial, because (dai-l/!y) are the “non- 
linear gains” for the estimation errors 0 - 0 and €2. We shall 
see how the nonlinear damping terms are used to improve 
transients caused by large initial estimation errors. 

The skew-symmeq in (5.1) is achieved by incorporating 
the terms (aai-l/ae)Ti - ~ ~ ~ ~ z k u k i w  in the stabilizing 
functions a; and the control law (4.45). These terms directly 

compensate for the effect of 8 and thus eliminate the need 
for complicated stability arguments dealing with “swapping 
terms.” 

The stability and tracking properties of the designed adap- 
tive system will now be established through a direct Lyapunov 
analysis which will demonstrate that the closed-loop states 
converge to a manifold of the smallest possible dimension. 
The only variables not guaranteed to, converge in our stability 
proof are the parameter errors 6 - 0 and p - p. 

From the previous section we know that the partial Lya- 
punov function V,, defined in (4.40), is nonincreasing because 
of (4.46). This does not immediately establish the boundedness 
of all closed-loop signals, since Vp encompasses only 3n + 2 
of the 4n + m + 2 states of the closed-loop adaptive system, 
which consists of the n-dimensional plant (2.1), the two n- 
dimensional filters (2.6), and the n+m+2 parameter estimates. 

One of the advantages of this approach is that we can readily 
augment Vp by the remaining n + m states, those of the zero 
dynamics of the plant (2.1) and of the v-filter (2.6). Using a 

0 

QpW 

U3pW 

... - C I  - dl bm 0 0 

... -Sm -CZ - d 2  (%)’ 1 + u 2 3 w  u 2 4 w  

-1  - ( T Z ~ W  - c 3  - d 3  9 1 + ( ~ 3 4 ~  . . .  
0 ( V I 2  

0 -Q4W - 1  - (T34w 

0 -UzpW - c 3 p w  . . -1 - U , - ~ , ~ W  -cp- dp( *) 
1 + u p - 1 ,  pw 

2 



IEEE TRANSACTIONS ON AUTOMATIC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACONTROL, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL. 39, NO. 4, APRIL 1994 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA746 

similarity transformation we represent (2.1) as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2 2  - an-1y 

x 2  = 2 3  - an-2y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X p - 1  1 x p  - am+lY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5.2) 

if = cFZ - amy + bmu 

i Ab< + bbY 

Y = 2 1  

where z = 1x1, 5 2 ,  Cb E UP, bb zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE RP. The 
eigenvalues of the m x m matrix Ab are the zeros of the 
polynomial B(s) ,  which is Hurwitz by Assumption 1.1. Al- 
though the transformation bringing (2.1) into (5.2) depends on 
the unknown plant parameters, this is not important because 
for our stability analysis we only need to know that such a 
transformation exists. Our task is to investigate the stability 
of the trajectories along which the tracking error is zero. The 
zero dynamics along these trajectories zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare governed by 

, x p ,  

c;. = Ab& + bbYr, &(o) = c(0). (5.3) 

For stability analysis we are interested in the deviations ( = 
C - 5,. which are governed by 

( = Ab( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4- b b Z 1 ,  t(0) = 0. (5.4) 

+,. = Ao9,. + %Yr, r ) T ( O )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv(0) (5.5) 

6 = Aoij + e ,z l ,  i j (0)  = 0. (5.6) 

For the r)-variables in (2.6), we analogously define 

so that the deviations i j  = r) - 9,. are governed by 

In the coordinates z,  E ,  e - 8, p - f i ,  i j ,  (, the adaptive 
system, described by (2.8), (4.47), (5.4), and (5.6), has an 
equilibrium at the origin. Its stability will now be investigated 
using the augmented Lyapunov function 

= f: ( fz; + -&€TPoE 1 ) + -(P - 
j=1 

(5.7) 

positive constants to be chosen. Since this Lyapnov function 
is time-invariant, it will allow us to establish uniform stability 
properties. Using (4.46), (5.4), and (5.6), we obtain 

where Pb Satisfies PbAb -t AfPb = -1, and k,, kc are 

- - -- el I; - &I; - f: 
j = 2  j=1 

2 

Thus, if we choose k, and k~ such that 

the derivative of V will be nonpositive: 

(5.8) 

(5.9) 

(5.10) 

The nonpositivity of V proves the uniform stability 
of the origin. This fact, together with the boundedness 
of the refeTnce sipals y,., G,., . . . , y?) implies that 
21,. - .  , zp, f i ,  8, E, i j ,  c are uniformly bounded. 

Next we establish the boundedness of X and U. The bound- 
edness of X I , .  . . , follows from the boundedness of y 
and (2.6), which gives3 

X ,  - si-' + k l ~ ~ - ~  + * * + ki-1 A(s )  
l I i<7h  

B(S)Y' 
(5.11) 

where the polynomials K(s)  =det (SI- Ao) = sn+k1sn-' + 
. . . + k, and B(s)  are Hurwitz. To establish boundedness of 
Xm+2,. . . , A,, we note that since U, = AYX, we have 

K ( s )  
z -  

T 
U,, 2 = Xm+i + gm, i 

3For notational convenience we define ]EO 2 1. 

IT - -  
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This recursively proves that Am+2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . , A, are bounded. 
Therefore, the control zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU is bounded, and it follows from 
(2.8) that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx is bounded. 

To prove the convergence of the tracking error to zero, we 
note that the boundedness of z, q ,  A, 6, 8, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU ,  together 
with (2.6), (2.8), (4.47), (5.4), (5.6), (5.7), and (5.8) implies 
$at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV is bounded and .integrable on [0, m), and moreover, 
V is bounded. Hence, V -t 0 as t -t 00, which proves that 
z 1 , - . .  , z p  + 0 and E ,  fj, C + 0 as t --f 00. Since z1 = y-yT: 

asymptotic tracking is achieved. 
The above results are now summarized as follows. 
Theorem 5. I : The closed-loop adaptive system, which 

consists of (2.8), (4.47), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5.4), and (5.6), has a globally 
uniformly stable equilibrium at the origin. All the solutions 
of this (4n + m + 2)-dimensional dynamical system converge 
to the (n  + m + 2)-dimensional equilibrium manifold 

This means, in particular, that global asymptotic tracking is 
achieved 

M = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(21 = ~2 = * . .  = z,, = 0,  E = 0, ij = 0,  = 0) .  

lim [y(t) - y,(t)] = 0. (5.15) 
t-cc 

VI. A DESIGN EXAMPLE 

This section is a continuation of Section 111. We illustrate 
the new design procedure on an unstable relative-degree-three 
plant 

where a = 3 is considered to be unknown. The relative-degree- 
three design contains all the features of the general design 
procedure. The control objective is to asymptotically track the 
output of the reference model 

To derive the adaptive controller resulting from our nonlin- 
ear design, the plant (6.1) is first rewritten in the state-space 
form (2.1) 

$1 = 2 2  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAax1 

x 2  = x3 

x 3  = U 

y = 2 1 .  

The filters (2.6) and the corresponding E and w variables are 
implemented as 

7i = AOV + e3y, 52 = A&, E3 = - A h  (6.4) 

The signals yT, &., y,, yi3' are implemented from the refer- 
ence model (6.2) as follows: 

y T = r l , j " r = r 2 , ~ T = ~ 3 , y ~ 3 ) = - 3 r 3 - 3 r 2 - r ~ + ~  (6.6) 

where f l  = rz, f 2  = r3, f 3  = -3r3 - 3r2 - r1 + r. 
Since in this example the high-frequency gain is known, in 

the first step we can directly treat u2 as a virtual control and 
do not need the additional parameter p .  The virtual estimate 
(2.8) is (3 + a52 + U,  and by defining w = 52, + y the results 
of the three steps of our design procedure are as follows. 

71 = ywz1 

Step 3: 

23 = U3 - a2 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 
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U Because in this example the high-frequency gain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 
is known, the matrix form of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(21, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 2 ,  23, &)-system is 
simpler than (5.1) 

73 

1 0 

- ~ 2 - d 2 ( 9 ) ’  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 + a w  ] 
0 -1 - ow -c3 - d ~ ( % ) ~  

(6.16) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy ( d a l / d h ) ( d a z / d y ) .  Note again the skew- 
symmetry of the off-diagonal entries and the stabilizing role 
of the diagonal entries. 

The block diagram in Fig. 1 shows that the overall structure 
of the new adaptive system has the familiar form of the input 
and output filters feeding into an estimatorkontroller block. 
The fundamental difference, is however, that this block is 
now a nonlinear controller. Whereas in traditional schemes 
this block would be a “certainty-equivalence” linear controller, 
the new three-step procedure produces the control law (6.15) 

in which both parameter estimates and filter signals enter 
nonlinearly. 

VII. IMPROVEMENT OF TRANSIENT PERFORMANCE 

The new adaptive scheme is now compared with a standard 
certainty-equivalence scheme on the basis of transient perfor- 
mance and control effort. The comparison with a direct MRAC 
scheme is not pursued because such a scheme updates at least 
three parameters. This is clear from its control law 

U (7.1) 1 [ 8os2 + els + 821 [ e3s + e4 
U = ? - +  

52 + m1s + m2 y +  s2+m1s+m2 

where s2 + mls + m2 is a Hunvitz polynomial. A calculation 
using the Bzout identity gives 

s5 + s4[ml - e3 - U] + s3[m2 - e4 - a(ml - e3)]  
- s2[eo + (m2 - e , ) ~ ]  
= (s + + mls + mz) + elS + e2 (7 .a 

Plant 

I 1 Parameter update 

which shows that Bo,  O3 and O4 have to be updated, while 
O1 and Bz can be fixed at B1 = -ml - 3m2, O2 = -m2. 
Simulations showed that the update of three parameters results 
in transient performance inferior to indirect linear schemes 
which update only one parameter estimate. Therefore, we 
compare our new controller to a standard indirect scheme [5 ] ,  
[6], in which the plant equation s2(s-a)y(s)  = u(s)  is filtered 
by a Hurwitz observer polynomial s3 + k ls2  + k2s + k3 to 
obtain the estimation equation 

S2 

Y ( S )  $ = s 3  + klS2 + kzs + k3 

and the parameter update law is a normalized gradient4 

(7.3) 

(7.4) 

The control law (7.1) is implemented by replacing a with 
2 in (7.2) and then solving it for the controller parameters: 
e3 = 3 3  + q, o4 = 4 3  + 3ml + q m l  - e,)], eo = 
- [ i + 3 m 1 + 3 m 2 + ( m 2 - e 4 ) ~ ~ ,  el = -ml-3m2, d2 = -mz. 

The above indirect adaptive linear scheme and our new 
nonlinear scheme were applied to the plant (6.1) with the true 
parameter a = 3. In all tests the initial parameter estimate 
was h(0) = 0, so that, with the adaptation switched off, both 
closed-loop systems were unstable. The reference input was 
~ ( t )  = sint. 

4The simulation results with a least-squares update law were virtually 
identical and are therefore omitted. 

7 -- - 
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?tacking error y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- g, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'h&ing error y - y, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
149 

Parameter estimate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
o r 7  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 

Control U 

;3\J" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 2 4 6 8 10 ip, 0 1 2 3 4  

Fig. 2. Simulation results for the indirect adaptive linear scheme with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y = 500 for y(0) = 0 (left) and y(0) = 1 (right). The nonzero initial 
condition is misinterpreted as a parameter error by the parameter estimator, 
leading to the deterioration of both transient performance and control effort. 

Adjustment of the indirect linear scheme : For a fair com- 
parison, our first task was to adjust the design parameters of the 
indirect scheme to achieve the best transient performance with 
a prescribed control effort. The trade-off between transient 
performance and control effort was examined for various initial 
conditions. To reduce the transients due to the mismatch of 
initial conditions, the initial condition of the reference model 
output was set in all tests to be equal to the initial value of 
the plant output. In spite of numerous attempts, no conclusive 
guidelines were found for initialization of filters in the indirect 
linear scheme. The simulation results shown in Figs. 2 4  for 
y(0) = 0 and y(0) = 1 are representative. The available design 
constants were the adaptation gain y and the coefficients of the 
observer polynomial s3 + IC1 s2 + lczs + k3 and of the controller 
polynomial s2 + mls + m2. After several attempts, all the 
roots of the observer polynomial were placed at s = -2 with 
kl = 6, IC2 = 12, k3 = 8, while the roots of the controller 
polynomial were placed in a Butterworth configuration of 
radius 3 with ml = 4.2426, m2 = 9. These were judged 
to yield the best trade-off between transient performance and 
control effort for different initial conditions. A final choice to 
be made was that of the adaptation gain. Figs. 2-4 present 
simulations results for three different values of that gain: 
y = 500 (Fig. 2), y = 1000 (Fig. 3), and y = 2000 
(Fig. 4). In each of these figures we show two simulation 
runs, one with y(0) = q ( 0 )  = 0 (left) and one with 
y(0) = ~ 1 ( 0 )  = 1 (right), and for each run we show the 
tracking error y - yr (top), the parameter estimate ii (middle), 
and the control effort U (bottom). From these three figures, it is 
evident that the effect of the adaptation gain on the transient 
performance and the control effort is very different for the 
two sets of initial conditions. For y(0) = T ~ ( O )  = 0, both the 
performance and the control effort improve with increasing 
adaptation gain, while for y(0) = q ( 0 )  = 1 they both 

Parameter estimate -& 

Control U 

Y(0) = 0 d o )  = 1 

Fig. 3. The adaptation gain here is increased to y = 1000. For y(0) = 0, 
this leads to faster parameter convergence, which results in better transient 
performance and smaller control compared to Fig. 2. This beneficial effect, 
however, is reversed for y(0) = 1, where both performance and control 
deteriorate further. 

-I I 

Parameter estimate -& 

-4 R 

--o -- 0 1 2 3 4  

Control U 

Fig. 4. A further increase of the adaptation gain to y = 2000 confirms the 
trend detected in Figs. 1 and 2. The improvements obtained for y(0) = 0 
are more than offset by the deterioration observed when y(0) = 1. The best 
compromise was judged to be achieved for y = 1000 (Fig. 3). 

deteriorate. This difference can be explained by examining 
the behavior of the parameter estimate ii. The parameter 
estimator interprets the nonzero initial condition y(0) as a 
parameter error and tries to adjust the parameter estimate to 
reduce it. This results in the simultaneous deterioration of 
both transient performance and control effort. An increase in 
the adaptation gain, while improving parameter convergence 
for y(0) = 0, increases the sensitivity of the estimator to 



750 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATRANSACTIONS ON AUTOMATIC CONTROL, VOL. 39, NO. 4, APRIL 1994 

?tacking error y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- y, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 

Parameter estimate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-8 

I 
Control zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU 0 2 4 6 1 1 1 0  

Tracking error y - y. 

Id 
0 2 1 6 8 1 0  

Fig. 5. Transient performance comparison of indirect linear scheme with new 
nonlinear scheme when y(0) = 0 (top) and when y(0) = 1 (bottom). In both 
cases, the nonlinear scheme achieves a dramatic performance improvement 
without any increase in control effort (see Figs. 6 and 7). 

0 2 4 6  0 2 4 6  

Xndrect linear Nonlinear 

Fig. 6. The nonlinear damping terms provide better transient performance 
with a lower “effective adaptation gain.” Here we see that for y(0) = 0, the 
improvement shown in Fig. 5 is achieved in spite of the slower parameter 
convergence of the nonlinear scheme. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

initial conditions, thus causing both transient performance and 
control to deteriorate even more for y(0) = 1. The best 

Parameter estimate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-B 

compromise was judged to be 7 = 1000 (Fig. 3). The results 
in this figure were used for our comparison with the new 
nonlinear scheme. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Comparison with the nonlinear scheme : For a compar- 
ison of transient performance, the nonlinear scheme was 
adjusted to employ about the same control effort as that 
of the indirect linear scheme in Fig. 3. This was achieved 
with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIcl = 6, IC2 = 12, k3 = 8,  c1 = c2 = c3 = 1, dl = 
d2 = d3 = 0.1, and the adaptation gain 7 = 0.5. The 
plots in Fig. 5 show that the transient performance of the 
nonlinear scheme was far superior for both sets of initial 
conditions. Measured by any norm, the tracking error with 
the nonlinear scheme is only a fraction of the indirect linear 
scheme error. 

We now proceed to discuss the three most important factors 
which contributed to the superior performance of our nonlinear 
scheme: nonlinear damping, incorporation of ii in the control 
law, and filter initialization. 

Nonlinear damping: The nonlinear damping terms 
- d i ( ( a c ~ i - l / a y > ) ~ z i  contributed to a significant reduction of 
the effect of initial conditions on the new adaptive system. 
Their role is interpreted using Figs. 6 and 7. In Fig. 6, 
for y(0) = 0, the parameter convergence is slower in the 
nonlinear scheme. Fig. 5 shows that, in spite of this, the 
transient performance is much better without an increase in 
control effort. This was achieved by nonlinear damping, which 
attenuated the effect of initial parameter errors, so that fast 
parameter convergence was not required for good transient 
performance. The main benefit is the reduced sensitivity to 
initial conditions, as illustrated in Fig. 7. In contrast to the 
multiswing transient of the indirect linear scheme, the transient 
of the nonlinear scheme is nonoscillatory. The attenuating 
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Fig. 7. The lower effective adaptation gain of the nonlinear scheme makes 
its parameter estimator less erratic when y(0) = 1. The benefits are evident 
not only in the transient performance (Fig. 5), but also in the control effort. 

effect of nonlinear damping is particularly evident in Fig. 8. If 
the damping is increased over an optimum rate, the tracking 
error continues to decrease, but the control effort increases. 

Zncorporation of& in U : Another important property of 
the nonlinear scheme is that the update law & = 73 is 
contained explicitly in the control (6.15). This is not .the 
case with certainty-equivalence schemes. The presence of & in 
U indicates that some form of differential action is employed. 
The effect of this additional information about 6 is that the 
settling time of the tracking error is much shorter for the 
nonlinear scheme. Figs. 5-7 show that the settling time of 
the tracking error is closely coupled to that of the parameter 
error. In contrast, the tracking error of the indirect linear 
scheme continues to grow even after the parameter estimate 
has converged to its true value. 
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initialized dl = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd2 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAds = 0.001 

The effect of nonlinear damping for y(0) = 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdl = dz = ds = 0.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdl = di = d3 = 0.6 non-initialized 

Filter initialization for y(0) = 1. Fig. 8. Fig. 9. 

Filter initialization : In contrast to the indirect scheme, the 
new nonlinear scheme provides clear guidelines for filter and 
reference model initialization, which follow from the design 
objective of driving the z-variables to zero. According to (6.7), 
(6.10), and (6.13), the initial values of z-variables are set 
to zero by choosing q(0 )  = y(O), wz(0) = al(O), ~ ( 0 )  = 
az(0). In general, it is always possible to set zl(0) = zz(0) = 
. . .  = zp(0)  = 0 by either one of the two methods: 

1) Setting z(0)  = 0 by initializing the X-jilter. Choos- 
ing y T ( 0 )  = y(O), we set ~ ‘ ( 0 )  = 0. Now, we 
perform the initializatipn using (5.14). For given 
d o ) ,  Y T ( O ) ,  YT(O), a m  flm V(0L Xl (O) ,  . . . 1 &TI + i-1 

(0) we set z;(O) = 0 by choosing X,+i(O) = 
-gz,i[X1(0),.-. , X m + i - - 1 ( O ) I T + ~ i - 1 I t = O ,  for i = 
2 , .  . * , p .  

2 )  Setting z(0)  = 0 by initializing the reference model. 
Again, by choosing y T ( 0 )  = y(O), we set q ( 0 )  = 0. 
Now, examining the expressions for ai, we note that 
(aal/a&)= * = ( ~ a , - ~ / ~ y $ “ - ’ ) ) =  f i  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzi= 

It is reasonable to take $(O) $ 0, because it reflects 
the fact that the high-frequencyAgain b, is finite. Now, 

z;(O) = 0 by choosing y?-’)(O) = - ( l / $ ( O ) ) & l t = ~ ,  

f o r i  = 2 , . - . , p .  

One simple way of setting z (0 )  = 0, which fits both cases 
a) and b) above, is to set y,(O) = y(0) and all remaining filter 
initial conditions to zero: y?)(O) = 0, i = 1 , .  . . , p-1, X(0) = 

In all tests, filter initialization was found to significantly 
improve both the transisent performance and the control effort. 
A typical example is Fig. 9, where y,(O) = y(O), &(O) = 
yJ0) = 0, X(0) = ~ ( 0 )  = 0 have set z(0)  = 0. 

An explanation for the improvement of performances due 
to initialization is that by setting z l (0)  = zz(0)  = ... = 
zp(0)  = 0, we reduce the initial value of the Lyapunov 
function (5.7), that is, we reduce the initial deviation from 
the globally attractive manifold M. Recall from (5.4)-(5.6) 
that i j (0)  = 0 and i(0) = 0. Thus, the only variables in 

- (i--2) 
w m ,  i+ai-l =gi(y, yT, . . . , yr ,$, e , ~ ,  ~)+k?-’). 

for a given Y(O), Y T ( O ) ,  f l (O), V ( O ) ,  A@), we set 

q(0) = 0. 

@e Lyapunov function which are not initialized to zero are 
8 - 8, @ - p and E, that is, only those which are not known 
or not measured. 

VHI. CONCLUDING REMARKS 

The results of this paper show that recently developed 
tools for adaptive nonlinear control [7]-[ll] can be used to 
design adaptive controllers for linear systems, which promise 
to outperform existing schemes. A particularly significant new 
property is the possibility to improve transient performance 
without an increase in control effort. This is achieved by non- 
linear damping, which attenuates the effect of initial parameter 
errors so that fast parameter convergence is not required for 
good transient performance. The proof of stability is direct 
and reveals that the states of the adaptive system converge 
to a manifold whose dimension is the smallest possible. The 
robustness of the new class of adaptive controllers is a topic 
of current research. 
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