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Abstract. The dynamics of Gaussian states for systems with Hamiltonians, quadratic in the position and momentum operators,
gives rise to the definition of a system of nonlinear coupled differential equations for the density matrix parameters of the system
states. In this work, we show that, using the Gaussian-state covariance-matrix evolution, it is possible to solve the system of these
nonlinear equations. Some examples of applications of the method developed are given for one- and two-dimensional quadratic-
system Gaussian states. It is noted that this formalism can also be used to find new constants of motion related to the covariance
matrices of quadratic systems.

INTRODUCTION

In quantum mechanics, the physical system states are identified either with wave functions [1] (pure states) or
with density matrices [2, 3] (mixed states). For given system Hamiltonians, the wave functions satisfy the linear
Schrödinger evolution equation [4], and the density matrices satisfy the linear von Neumann equation [5]; for open
systems, the density matrices satisfy the linear Gorini–Kossakowski–Sudarshan–Lindblad equation [6, 7]. Thus, the
quantum dynamics is associated with linear quantum evolution equations, and the solutions of these equations are
functions depending, in chosen representations, on quantum states, e.g., in the position representation on the posi-
tion – coordinates, and extra depending-on-time parameters related to the properties of the functions and determining
the physical characteristics of the solutions. Thus, the linear equations for the wave functions and density matrices, if
one chooses different forms of the wave functions or density matrices depending on the evolving parameters, dictate
the evolution equations for the time-dependent parameters, and these equations are nonlinear ones.

Thus, the linear quantum dynamics of the wave functions and density matrices determines the nonlinear dynamics of
classical-like parameters describing the characteristics of the functions – solutions to the quantum evolution equations.
This connection of the linear dynamics in quantum mechanics with nonlinear classical-like dynamics in the set of
parameters characterizing the solutions of the Schrödinger evolution equation was employed in [8, 9, 10, 11, 12, 13,
14].

The important and useful ingredients of using the above-described connection of quantum linear dynamics with
classical-like nonlinear dynamics is the possibility to use extra information on the nonlinear classical-like equations for
the parameters characterizing the studied solutions of linear quantum evolution equations in order to obtain and solve
the system of nonlinear equations. The important class of quantum systems is the systems described by Hamiltonians
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for which the integrals of motion are known. Such systems are, e.g., the sets of parametric oscillators. The linear in
the position-and-momentum integrals of motion for such systems were found in [15, 16]. They were used to obtain
the coherent-state wave functions for multimode parametric oscillators [17].

The quadratic in the position-and-momentum integrals of motion for quantum parametric oscillator were obtained
in [18], where the quantum generalization of Ermakov invariant for classical parametric oscillator [19] was used
to solve the Schrödinger equation. In this approach, the relation of the linear equation for the classical motion of
parametric oscillator with nonlinear Riccati equation is elaborated [9, 14]; this method was also used in [8]. A
particular example of the wave functions and density matrices considered in [10] are Gaussian functions.

The study of Gaussian states has lead to the many theoretical and practical advancements in science. These states
are used in different subjects of quantum mechanics. A way to convert Gaussian states into non-Gaussian ones has
been explored in [20]. In [21], it was shown that Gaussian states minimize the von Neumann entropy in the output of
a Gaussian channel, which models the attenuation of an electromagnetic wave in the quantum case. The extendibility
of bipartite system in a bosonic Gaussian state was studied in [22]. In [23], the symmetric logarithmic derivative for
fermionic Gaussian states was used to obtain the quantum Fisher information of this type of states. The bounds for
the negativity as a measure of entanglement in a fermionic Gaussian state has been computed in [24]. The entropy
of formation of the Gaussian states was found in [25]. A way to simulate different quantum channels through the
teleportation protocol has been given in [26]. Optimum quantum fidelity measures for Gaussian states have been
reported in [27]. The Gaussian states have been considered as minimum uncertainty states in a information theory
redefinition of the uncertainty relations. Also the study of Gaussian states through the solution of nonlinear equations,
as the one defined by Riccati, has been studied in [12, 13, 14].

We established the nonlinear formalism to study the dynamics of Gaussian states in our previous work [10]. This
type of formalism was used to determine the invariant states for such systems with quadratic Hamiltonians as the
frequency converter and quasi-invariant states for the parametric amplifier. In this paper, we present an extension of
our previous work; in particular, we study the solutions to quantum evolution equations within the framework of the
nonlinear differential formalism in a more detailed way. To illustrate the application of this formalism in one- and
two-dimensional quantum systems, we present some explicit examples.

This paper is organized as follows.
In section 2, a review of the differential formalism for the dynamics of the density matrix parameters of a Gaussian

state is given. The solutions for the one-dimensional case are explored in section 3. Later in section 4, some examples
for the evolution of a bipartite state are presented. Finally, some conclusions are given in section 5.

NONLINEAR DIFFERENTIAL FORMALISM FOR THE EVOLUTION OF GAUSSIAN
STATES

Here, we construct the nonlinear differential formalism for an arbitrary Gaussian density matrix 〈x|ρ̂|x′〉 in N dimen-
sions; for this, we study the dynamics of the system determined by the Hamiltonian Ĥ(t), i.e., we obtain the solution
to the von Neumann equation

d
dt
〈x|ρ̂(t)|x′〉= i

h̄
〈x|[Ĥ(t), ρ̂(t)]|x′〉 , (1)

where x = (x1,x2, . . . ,xN). Assume a Gaussian density matrix in the coordinate representation, which reads

ρ(x,x′, t) = exp
(
G(x,x′, t)

)
, (2)

where the exponent is given by the following quadratic function:

G(x,x′, t) =
1

2

N

∑
j=1

N

∑
k �= j

(a j,kx jxk +a∗j,kx′jx
′
k +a j,k+Nx jx′k +a∗j,k+Nx′jxk)

−
N

∑
j=1

(a j, jx2
j +a∗j, jx

′2
j −a j, j+N x jx′j)+

N

∑
j=1

(b jx j +b∗j x
′
j). (3)

If the system dynamics is determined by a quadratic Hamiltonian

Ĥ = ξ̂ Ω(t) ξ̂ + c(t)ξ̂ , (4)
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where ξ̂ = ( p̂1, x̂1, p̂2, x̂2, . . . , p̂N , x̂N), c(t) = (c1(t),c2(t), . . . ,cN(t)), and

Ω(t) =

⎛
⎜⎜⎝

ω1,1(t) ω1,2(t) · · · ω1,2N(t)
ω1,2(t) ω2,2(t) · · · ω2,2N(t)

...
...

. . .
...

ω1,2N(t) ω2,2N(t) · · · ω2N,2N(t)

⎞
⎟⎟⎠ , (5)

then von Neumann equation can be rewritten as follows:

Ġ(x,x′, t)ρ(x,x′, t) = (H(x, t)−H(x′, t))ρ(x,x′, t). (6)

Here, H(x, t) = 〈x|Ĥ(t) and H(x′, t) = Ĥ(t)|x′〉 are the expressions of the Hamiltonian in differential form. By rep-
resenting the momentum operators in the position representation p̂ j = −i∂/∂x j, one can obtain a set of nonlinear
equations for the density matrix parameters akl . It is possible to solve this set of nonlinear differential equations, in
view of the connection between the density matrix parameters and the covariance matrix.

As examples, we present the general one-dimensional Hamiltonian and some particular two-dimensional Hamilto-
nians, along with the nonlinear equations which they define.

ONE-DIMENSIONAL CASE

Let us consider an arbitrary Hamiltonian given by the following expression:

Ĥ = ν1(t)p̂2 +ν2(t)q̂2 +ν3(t)( p̂q̂+ q̂ p̂)+ c1(t) p̂+ c2(t)q̂.

This Hamiltonian dictates the dynamics of the following initial Gaussian state in the coordinate representation

〈x′|ρ̂(0)|x〉= N exp
{−ax2 +a12xx′ −a∗x′2 +bx+b∗x′

}
(7)

where the normalization constant N is given by

N =

(
a1 +a∗1 −a12

π

)1/2

exp

{
− (b1 +b∗1)

2

4(a1 +a∗1 −a12)

}
.

The dynamics of such system leads us to the definition of the following nonlinear differential equations:

ȧ1(t) = i(a2
12(t)−4a2

1(t))ν1(t)−4a1(t)ν2(t)+ iν3(t),

ȧ∗1(t) =−i(a2
12(t)−4a∗2

1 (t))ν1(t)−4a∗1(t)ν2(t)− iν3(t),
ȧ12(t) = 4a12(t)(i(a∗1(t)−a1(t))ν1(t)−ν2(t)), (8)

On the other hand, the covariance matrix of the state (7) can be written as

σ(0) =

(
σpp σpq
σpq σqq

)
=

1

2(2a1R −a12)

(
4|a1|2 −a2

12 −2a1I
−2a1I 1

)
. (9)

This covariance matrix satisfies the differential equation σ̇(t) = 2 [σ(t)Ω(t)Σ−ΣΩ(t)σ(t)], where Ω(t) is defined
by the Hamiltonian parameters, and Σ is a symplectic matrix

Ω=
1

2

(
ν1(t) ν2(t)
ν2(t) ν3(t)

)
, Σ=

(
0 1
−1 0

)
.

The explicit differential equations, which the covariances must satisfy, are

σ̇pp(t) =−4(ν2(t)σpp(t)+ν3(t)σpq(t)), σ̇pq(t) = 2(ν1(t)σpp(t)−ν3(t)σqq(t)),
σ̇qq(t) = 4(ν1(t)σpq(t)+ν2(t)σqq(t)). (10)

The decoupling of these differential equations is not trivial, unless specific functions for the Hamiltonian parameters
are taken into account. However, if this system is solvable then, using the inverse relation of Eq. (9), one can obtain
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the solutions to Eq. (8). To show this, we can think of the parameters νi, i = 1, . . . ,3 as time independent; in this case,
Eq. (10) can be written in matrix form

ṡ(t) = Ms(t), sT (t) = (σpp(t),σpq(t),σqq(t)), M = 2

⎛
⎝ −2ν2 −2ν3 0

ν1 0 −ν3

0 2ν1 2ν2

⎞
⎠ .

This system can be decoupled, using the eigenvectors matrix of M (E). By the change of variables u(t) =
(u1(t),u2(t),u3(t))T = E−1s(t), the decoupled system of equations obtained by this change of variables is

u̇ = Wu, W = diag

(
0,−4

√
ν2

2 −ν1ν3,4
√

ν2
2 −ν1ν3

)
,

which has the solution for ν1ν3 −ν2
2 �= 0, namely,

u1(t) =C =
ν1(ν1σpp(t)+2ν2σpq(t)+ν3σqq(t))

2(ν1ν3 −ν2
2 )

, u2(t) = u2(0)exp(−4ωt), u3(t) = u3(0)exp(4ωt), (11)

with ω =
√

ν2
2 −ν1ν3 which, in the case ν1ν3 > ν2

2 , allows periodic solutions. It is important to notice the invariance

of u1(t) =C, which is a constant of motion of our system. These expressions then lead to the following solutions for
the covariance matrix elements:

σpp(t) =
ω cosh(4ωt)(ν1σpp(0)−Cν3)+Cν3ω −ν1 sinh(4ωt)(ν2σpp(0)+ν3σpq(0))

ω ν1
,

σpq(t) = cosh(4ωt)
(

Cν2

ν1
+σpq(0)

)
− Cν2

ν1
+

sinh(4ωt)(ν1σpp(0)−ν3σqq(0))

2ω
,

σqq(t) = (σqq(0)−C)cosh(4ωt)+C+
sinh(4ωt)(ν1σpq(0)+ν2σqq(0))

ω
. (12)

These solutions for the covariances lead to the following solutions to the nonlinear equations (8), which can be written
as

a(t) =
1+4(d − iσpq(t))

8σqq(t)
, a∗(t) =

1+4(d + iσpq(t))
8σqq(t)

, a12(t) =
4d −1

4σqq(t)
, (13)

where d = σpp(t)σqq(t)−σ2
pq(t) is the invariant determinant of the covariance matrix.

Example

As a further example, we can take the evolution of a Gaussian state for a free particle Hamiltonian. This implies the
following values for the Hamiltonian parameters ν1 = 1/2 and ν2 = ν3 = 0. In this example, the equations for the
covariances are σ̇pp(t) = 0, σ̇pq(t) = σpp(t), and σ̇qq(t) = 2σpq(t); with nonlinear Eqs. (8)

ȧ1(t) = i(a2
12(t)−4a2

1(t))/2,

ȧ∗1(t) =−i(a2
12(t)−4a∗2

1 (t))/2,

ȧ12(t) = 2ia12(t)(a∗1(t)−a1(t)). (14)

By taking into account the initial thermal light state with frequency φ , given by the following Gaussian function:

〈x|ρ̂|x′〉= exp
[− 1

2 (x
2 + x′2)coth(βφ)+ xx′csch(βφ)

]
π(1− e−βφ )

√
1− e−2βφ

, β = 1/T,

then the initial parameters of the density matrix and the initial covariances are

a(0) = a∗(0) =
1

2
coth(βφ) , a12(0) = csch(βφ), σpp(0) = σqq(0) =

1

2
coth

(
βφ
2

)
, σpq(0) = 0.
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The evolution of the covariance matrix components can be obtained by direct integration or by taking the limit of
Eq. (12) when ω → 0, in other words,

a(t) =
coth(βφ)− it

2(1+ t2)
, a∗(t) =

coth(βφ)+ it
2(1+ t2)

, a12(t) =
csch(βφ)

1+ t2
,

σpp(t) =
1

2
coth

(
βφ
2

)
, σqq(t) =

1

2

(
1+ t2

)
coth

(
βφ
2

)
, σpq(t) =

1

2
t coth

(
βφ
2

)
. (15)

From these results, one can see the time invariance of the determinant of the covariance matrix σppσqq − σ2
pq =

1
4 coth2(βφ/2) and the constant of motion u1 = σpp.

TWO-MODE CASE

In the two-mode case, the most general Gaussian state can be written as

〈x1,x2|ρ̂(0)|x′1,x′2〉= N exp
[
−a11x2

1 −a∗11x′21 −a22x2
2 −a∗22x′22 +a12x1x2 +a∗12x′1x′2 +a13x1x′1

+a14x1x′2 +a∗14x′1x2 +a24x2x′2
]
, (16)

which satisfies the hermiticity condition 〈x1,x2|ρ̂(0)|x′1,x′2〉= (〈x′1,x′2|ρ̂(0)|x1,x2〉)∗. The Hamiltonian of the system
can be expressed as

Ĥ = ω11 p̂2
1 +ω22x̂2

1 +ω33 p̂2
2 +ω44q̂2

2 +ω12( p̂1x̂1 + x̂1 p̂1)+2ω13 p̂1 p̂2 +2ω14 p̂1x̂2

+2ω23 p̂2x̂1 +2ω24x̂1x̂2 +ω34( p̂2x̂2 + x̂2 p̂2)+ c1 p̂1 + c2x̂1 + c3 p̂2 + c4x̂2. (17)

For this quadratic Hamiltonian, the nonlinear equations for the density matrix parameters resulting from the study of
the von Neumann equation (1) are

ȧ11 = iω22 −4ω12a11 +2ω23a12 + iω11(−4a2
11 +a2

13)+2iω13(2a11a12 +a13a14)− iω33(a2
12 −a2

14) ,

ȧ22 = iω44 +2ω14a12 − iω11(a2
12 −a∗2

14)−4ω34a22 +2iω13(2a12a22 +a∗14a24)+ iω33(−4a2
22 +a2

24) ,

ȧ12 =−2iω24 +4ω14a11 −2ω12a12 −2ω34a12 −2iω11(2a11a12 +a13a∗14)+4ω23a22

+2iω13(a2
12 −a14a∗14 +4a11a22 −a13a24)−2iω33(2a12a22 +a14a24) , (18)

ȧ13 =−4ω12a13 −4iω11(a11 −a∗11)a13 −2ω23(a14 +a∗14)+2iω13((a12 −a∗12)a13

+2a∗11a14 −2a11a∗14)+2iω33(−a∗12a14 +a12a∗14) ,

ȧ14 =−2ω14a13 −2ω12a14 −2ω34a14 −2iω11(a∗12a13 +2a11a14)−2ω23a24

+2iω13((a12 −a∗12)a14 +2a13a∗22 −2a11a24)+2iω33(2a14a∗22 +a12a24) ,

ȧ24 =−2ω14(a14 +a∗14)+2iω11(a12a14 −a∗12a∗14)−4ω34a24 +4iω33(−a22 +a∗22)a24

+2iω13(−2a14a22 +2a∗14a∗22 +(a12 −a∗12)a24), (19)

which satisfy the initial conditions defined by the parameters of the initial Gaussian state. As in the one-dimensional
case, the solutions for this set of equalities can be obtained, using the time evolution of the covariance matrix. As the
covariance matrix satisfies a system of linear, classical-like differential equations, this method is a way to linearize
the previous set of nonlinear equations.
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In such a case, the covariances read

σp1 p1
= 2a11 − (−2a11 +a13)

2σq1,q1
− (a12 +a14)

2σq2,q2
+2(2a11 −a13)(a12 +a14)σq1,q2

,

σp1q1
=

−i
(−4(a11 −a∗11)(a22 +a∗22 −a24)+(a12 +a14)

2 − (a∗12 +a∗14)
2
)

4(a11 +a∗11 −a13)(a22 +a∗22 −a24)−2
(
(a12 +a∗12 +a14 +a∗14)

2
) ,

σp1 p2
=−a12 +(2a22 −a24)(a12 +a14)σq2,q2

+(2a11 −a13)(a12 +a∗14)σq1,q1
,

σp1q2
=

i(2a11(a∗12 +a∗14)−2a∗11(a12 +a14)+a13(a12 −a∗12 +a14 −a∗14))

4(a11 +a∗11 −a13)(a22 +a∗22 −a24)− (a12 +a∗12 +a14 +a∗14)
2

,

σq1q1
=

2(a22 +a∗22 −a24)

4(a11 +a∗11 −a13)(a22 +a∗22 −a24)− (a12 +a∗12 +a14 +a∗14)
2
,

σp2q1
=

−i(a24(−a12 +a∗12 +a14 −a∗14)+2a∗22(a12 +a∗14)−2a22(a∗12 +a14))

4(a11 +a∗11 −a13)(a22 +a∗22 −a24)− (a12 +a∗12 +a14 +a∗14)
2

,

σq1q2
=

a12 +a∗12 +a14 +a∗14

4(a11 +a∗11 −a13)(a22 +a∗22 −a24)− (a12 +a∗12 +a14 +a∗14)
2
,

σp2 p2
= 2a22 − (−2a22 +a24)

2σq2,q2
− (a12 +a∗14)

2σq1,q1
−2(−2a22 +a24)(a12 +a∗14)σq1,q2

,

σp2q2
=

i
(−4(a22 −a∗22)(a11 +a∗11 −a13)+(a12 +a∗14)

2 − (a∗12 +a14)
2
)

2
(
(a12 +a∗12 +a14 +a∗14)

2 −4(a11 +a∗11 −a13)(a22 +a∗22 −a24)
) ,

σq2q2
=

2(a11 +a∗11 −a13)

4(a11 +a∗11 −a13)(a22 +a∗22 −a24)− (a12 +a∗12 +a14 +a∗14)
2
. (20)

In view of these results, an analogous method, as in the one-dimensional case, can be applied to obtain the solutions
to the nonlinear equations (19) following the steps:

1. Obtain the differential equations for the covariance matrix σ̇(t) = 2i(σ(t)ΩD−DΩσ(t)) and rewrite them as
v̇ = Mv, with vT = (σp1 p1

,σp1q1
,σp1 p2

,σp1q2
,σq1q1

,σp2q1
,σq1q2

,σp2 p2
,σp2q2

,σq2q2
).

2. Using the eigenvalues of M (E), one can decouple the linear system in the case of a time-independent Hamil-
tonian (Ω �= Ω(t)). This is done by the change of variables u = E−1v. The system in the new coordinates is
u̇ = Wu, with W being the matrix made of the eigenvalues of M.

3. The solutions given u(t) = u(0)eWt are then used by applying E, i.e., v(t) = Eu(t).

4. Finally, the solutions for the nonlinear differential equations for the density matrix parameters are obtained by
the inversion of Eqs. (20).

In the cases, where it is difficult to obtain the solutions following this procedure, one can solve numerically the linear
differential equations for the covariance matrix elements without the decoupling of the variables and then, by the
inversion of Eq. (20), arrive at the solution for the density matrix parameters a jk.

Example

As an example of the procedure elaborated, we present a pair of coupled harmonic oscillators with degenerated
frequency ω and coupling constant ω12, which can be characterized by the Hamiltonian

Ĥ(t) =
1

2
(p̂2

1 + p̂2
2 +ω2(q̂2

1 + q̂2
2))+ω12q̂1q̂2. (21)

We introduce the matrix

Ω =
1

2

⎛
⎜⎜⎝

1 0 0 0

0 ω2 0 2ω12

0 0 1 0

0 2ω12 0 ω2

⎞
⎟⎟⎠ .
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Following the procedure of decoupling the differential equations described above for the covariance matrix compo-
nents, we arrive at the conclusion that there exist two different linear constants of motion in this system, which can be
written as follows:

u1 =
1

2
(σp1 p1

(t)+σp2 p2
(t)+ω2(σq1q1

(t)+σq2q2
(t)))+2ω12σq1q2

(t),

u2 = (σp1 p1
(t)+σp2 p2

(t))ω2 +(σq1q1
(t)+σq2q2

(t))ω4 +4ω12(σp1 p2
(t)+(σq1q1

(t)+σq2q2
(t))ω2). (22)

If we consider the initial coherent state |α1,α2〉 given by the following Gaussian:

〈x1,x2|ρ̂|x′1,x′2〉= N exp

{
−1

2
(x2

1 + x2
2 + x′21 + x′22 −2

√
2(α∗

1 x1 +α1x′1 +α∗
2 x2 +α2x′2))

}
,

with the normalization constant

N =
1

π
exp

(
−1

2
(α2

1 +α∗2
1 +α2

2 +α∗2
2 +2|α1|2 +2|α2|2)

)
,

then the solutions for the covariances differential equations σ̇(t) = 2i(σ(t)ΩD−DΩσ(t)) can be listed as

σp1 p1
(t) =

1

8

(
−( f1 −1)cos

(
2
√

f1t
)
− ( f2 −1)cos

(
2
√

f2t
)
+2

(
ω2 +1

))
,

σp1q1
(t) =−1

8

(
( f1 −1)sin

(
2
√

f1t
)

√
f1

+
( f2 −1)sin

(
2
√

f2t
)

√
f2

)
,

σp1 p2
(t) =

1

8

(
−( f1 −1)cos

(
2
√

f1t
)
+( f2 −1)cos

(
2
√

f2t
)
+4ω12

)
,

σp1q2
(t) =

1

8

(
( f2 −1)sin

(
2
√

f2t
)

√
f2

− ( f1 −1)sin
(
2
√

f1t
)

√
f1

)
,

σq1q1
(t) =

( f1 −1) f2 cos
(
2
√

f1t
)
+ f1( f2 −1)cos

(
2
√

f2t
)
+2

(
f1 f2 +ω2

)
8 f1 f2

,

σp2q1
(t) =

1

8

(
( f2 −1)sin

(
2
√

f2t
)

√
f2

− ( f1 −1)sin
(
2
√

f1t
)

√
f1

)
,

σq1q2
(t) =

( f1 −1) f2 cos
(
2
√

f1t
)− f1( f2 −1)cos

(
2
√

f2t
)−4ω12

8 f1 f2
,

σp2 p2
(t) =

1

8

(
−( f1 −1)cos

(
2
√

f1t
)
− ( f2 −1)cos

(
2
√

f2t
)
+2

(
ω2 +1

))
,

σp2q2
(t) =−1

8

(
( f1 −1)sin

(
2
√

f1t
)

√
f1

+
( f2 −1)sin

(
2
√

f2t
)

√
f2

)
,

σq2q2
(t) =

( f1 −1) f2 cos
(
2
√

f1t
)
+ f1( f2 −1)cos

(
2
√

f2t
)
+2

(
f1 f2 +ω2

)
8 f1 f2

,

(23)

where the constants f1,2 = ω2 ±2ω12.
From this covariance matrix entries, we can see that the density matrix parameters are

a11(t) = a22(t) =
1

4

(
i( f1 −1)sin

(√
f1t

)
√

f1 cos
(√

f1t
)
+ isin

(√
f1t

) + i( f2 −1)sin
(√

f2t
)

√
f2 cos

(√
f2t

)
+ isin

(√
f2t

) +2

)
,

a12(t) =
i
2

(
( f2 −1)sin

(√
f2t

)
√

f2 cos
(√

f2t
)
+ isin

(√
f2t

) − ( f1 −1)sin
(√

f1t
)

√
f1 cos

(√
f1t

)
+ isin

(√
f1t

)
)
,

a13(t) = a14(t) = a24(t) = 0, (24)
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FIGURE 1. Evolution of the real and imaginary parts of the density matrix parameters a11(t) = a22(t) and a12(t) in a pair of
interacting harmonic oscillators of Eq. (21), with ω = 1 and ω12 = 1/6. Here, Re(a11) is shown by the black solid curve and
Re(a12) is shown by the gray solid curve, while Im(a11) and Im(a12) are shown by the black and gray dashed curves, respectively.

which are the solutions to the following set of nonlinear differential equations:

ȧ11(t) =
1

2
i
(−4a2

11 −a2
12 +a2

13 +a2
14 +ω2

)
, ȧ22(t) =

1

2
i
(−a2

12 +a∗2
14 −4a2

22 +a2
24 +ω2

)
,

ȧ12(t) =−i(2a12(a11 +a22)+a13a∗14 +a14a24 +ω12), ȧ13(t) = i(2a13(a∗11 −a11)+a12a∗14 −a∗12a14),

ȧ14(t) = i(2a14(a∗22 −a11)+a12a24 −a∗12a13), ȧ24(t) = i(a12(t)a14 −a∗12a∗14 +2a24(a∗22 −a22)),

(25)

with the initial conditions a11(0) = a22(0) = 1/2 and the rest parameters equal to zero at zero time.

In fig. 1, the time evolution of the real and imaginary parts of the density matrix parameters are shown. One can
observe here the periodicity of the system even though these parameters are the solutions of a highly nonlinear set of
equations. This property is due to the periodicity of the solutions of the classical problem for two coupled harmonic
oscillators, which are encoded in the covariance matrix.

CONCLUSIONS

The evolution of the density matrix is described by the von Neumann equation. The solutions to this equation give
rise to a set of nonlinear equations for the parameters of the density matrix in the position representation. This set of
nonlinear equations can be solved, and the solutions to these nonlinear equations correspond to the solutions to the
linear von Neumann equation; this correspondence provides a possibility to develop a new tool for explicitly obtaining
the evolution of quantum systems.

We showed that the nonlinear differential equations for the density matrix parameters of the quantum-system Gaus-
sian states can be solved, using the solutions to the covariance matrix evolution equations. From this property, one
can conclude that the mentioned nonlinear equations can be linearized by the definition of different equations (the co-
variance matrix entries defined by the density matrix parameters) and then solved. This also implies that there exists
a whole family of nonlinear differential equations that can be solved by this method.

As examples, we gave explicit solutions for one-dimensional and two-dimensional quantum systems. In the two-
dimensional case, the Hamiltonian for two coupled harmonic oscillators was studied. We demonstrated that this
system has two constants of motion related to the covariance matrix parameters and derived the expressions for these
constants of motion.
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