# NONLINEAR DIFFERENTIAL EQUATIONS OF SECOND PAINLEVÉ TYPE WITH THE QUASI-PAINLEVÉ PROPERTY ALONG A RECTIFIABLE CURVE 

Shun Shimomura

(Received March 3, 2008, revised June 4, 2008)


#### Abstract

We present a class of nonlinear differential equations of second Painlevé type. These equations, with a single exception, admit the quasi-Painlevé property along a rectifiable curve, that is, for general solutions, every movable singularity defined by a rectifiable curve is at most an algebraic branch point. Moreover we discuss the global many-valuedness of their solutions. For the exceptional equation, by the method of successive approximation, we construct a general solution having a movable logarithmic branch point.


1. Introduction. For a general solution of the first order nonlinear differential equation

$$
\begin{equation*}
y^{\prime}=R_{1}(x, y) \tag{1.1}
\end{equation*}
$$

$\left.{ }^{\prime}=d / d x\right)$ with $R_{1}(x, y) \in \boldsymbol{C}(x, y)$, every movable singularity (singularity depending on initial data) is at most an algebraic branch point ([6, §§3.2, 3.3], [7, §12.5]). In particular, equation (1.1) admits the Painlevé property, that is, every movable singularity of a general solution is a pole, if and only if (1.1) is of Riccati type.

Consider a second order nonlinear differential equation of the form

$$
\begin{equation*}
y^{\prime \prime}=R_{2}\left(x, y, y^{\prime}\right) \tag{1.2}
\end{equation*}
$$

with $R_{2}\left(x, y, y^{\prime}\right) \in \boldsymbol{C}\left(x, y, y^{\prime}\right)$. For a general solution of (1.2), a movable singularity is not always an algebraic branch point. For example,

$$
y^{\prime \prime}=-\left(1+2 y^{2}\right)\left(y^{\prime}\right)^{2} / y \quad\left(\text { resp. } \quad y^{\prime \prime}=(1+i)\left(y^{\prime}\right)^{2} / y\right)
$$

has the general solution $y=\sqrt{C_{1}+\log \left(x-C_{2}\right)}$ with a logarithmic branch point at $x=C_{2}$ and an algebraic branch point at $x=C_{2}+e^{-C_{1}}$ (resp. $y=C_{1}\left(x-C_{2}\right)^{i}$ with an essential singularity at $x=C_{2}$ ). Let $y(x)$ be a general solution of (1.2) analytic at a base point $x=x_{0}$. For rectifiable curves $\Gamma$ and $\Gamma^{\prime}$ issuing from $x_{0}$ and terminating in $a_{0}$, suppose that $y(x)$ is analytic along $\Gamma$ and $\Gamma^{\prime}$ except at $a_{0}$. These curves are said to be equivalent, if, for every neighbourhood $U$ of $a_{0}$, there exists an open set $\Delta_{U}$ such that $a_{0} \in \Delta_{U} \subset U$ and that the function elements of $y(x)$ at any points on $\Gamma \cap \Delta_{U} \backslash\left\{a_{0}\right\}$ and on $\Gamma^{\prime} \cap \Delta_{U} \backslash\left\{a_{0}\right\}$ are analytic continuations of each other along a suitable curve in $U$. An equivalence class containing $\Gamma$

[^0]defines a singularity of $y(x)$ at $a_{0}$, if $y(x)$ is not analytic at $a_{0}$. Let us say that equation (1.2) admits the quasi-Painlevé property along a rectifiable curve, if every movable singularity (defined by a rectifiable curve as above) of $y(x)$ is at most an algebraic branch point (cf. [12]). It is natural to regard the Painlevé equations (admitting the Painlevé property) as special cases belonging to some family of second order differential equations with the quasi-Painlevé property along a rectifiable curve, like Riccati equations in the category of the first order differential equations. In [12] we presented a class of differential equations of the form
\[

$$
\begin{equation*}
y^{\prime \prime}=\frac{2(2 k+1)}{(2 k-1)^{2}} y^{2 k}+x \quad(k \in N), \tag{1.3}
\end{equation*}
$$

\]

and proved that each of them admits the quasi-Painlevé property along a rectifiable curve. If $k=1$, this coincides with the first Painlevé equation. We stress that, for solutions of (1.2), a movable singularity treated here is defined by a rectifiable curve. As pointed out in [2] (see also [13]), in the case of a higher order equation, for solutions admitting movable branch points, a movable singularity defined by a curve of infinite length should be considered separately. For (1.3) or $\left(\mathrm{E}_{k}\right)$, which will be studied in this paper, it is not known whether a non-algebraic singularity of such type exists or not. For this reason, in this paper, we use the term 'quasi-Painlevé property along a rectifiable curve' instead of 'quasi-Painlevé property' in [12].

Let us consider differential equations of the form

$$
\begin{equation*}
y^{\prime \prime}=\frac{k+1}{k^{2}} y^{2 k+1}+x y+\alpha \quad(k \in N) \tag{k}
\end{equation*}
$$

with $\alpha \in \boldsymbol{C}$. In this paper, we examine the quasi-Painlevé property along a rectifiable curve for them, and the global many-valuedness of their solutions. Equation $\left(\mathrm{E}_{1}\right)$ is nothing less than the second Painlevé equation. Equation ( $\mathrm{E}_{k}$ ) with $\alpha=0$ is equivalent to a special case of

$$
y^{\prime \prime}=2 y^{2 \tau+1}+x y \quad(\tau>0) .
$$

This equation was given by de Boer and Ludford ([1]) in connection with a problem in plasma physics, and Hastings and McLeod ([4]) discussed a boundary value problem on the real axis.

Our main results are stated as follows:
THEOREM 1.1. For each $k \in N \backslash\{2\}$, equation $\left(\mathrm{E}_{k}\right)$ admits the quasi-Painlevé property along a rectifiable curve, that is, every movable singularity defined by a rectifiable curve of a general solution is at most an algebraic branch point. None of the solutions of $\left(\mathrm{E}_{2}\right)$ have a movable algebraic branch point.

If $k \geq 3$, a general solution can be represented by a Puiseux series around its movable singularity.

THEOREM 1.2. Let $y(x)$ be a general solution of $\left(\mathrm{E}_{k}\right)$ with $k \in \boldsymbol{N} \backslash\{2\}$, and suppose that $x_{0}$ is a movable algebraic branch point (or a movable pole) of $y(x)$. Then, around $x=x_{0}$,

$$
\begin{align*}
y(x)= & \omega_{k} \xi^{-1 / k}-\frac{\omega_{k} k x_{0}}{6} \xi^{2-1 / k}-\frac{k^{2} \alpha}{3 k+1} \xi^{2}+c \xi^{2+1 / k} \\
& +\frac{\omega_{k} k}{4(k-2)} \xi^{3-1 / k}+\sum_{j \geq 3 k} c_{j} \xi^{j / k}, \quad \xi:=x-x_{0}, \quad \omega_{k}=1 \text { or } e^{\pi i / k}, \tag{1.4}
\end{align*}
$$

where $c$ is an integration constant, $c_{j}(j \geq 3 k)$ are polynomials in $c$ and $x_{0}$, and $\xi^{1 / k}$ denotes an arbitrary branch of $\sigma$ such that $\sigma^{k}=\xi$.

REMARK 1.1. For ( $\mathrm{E}_{2}$ ) we can construct a general solution having a movable logarithmic branch point (see Theorem A. 1 in Appendix).

Equation $\left(\mathrm{E}_{k}\right)$ admits the trivial solution $y \equiv 0$ if and only if $\alpha=0$. For entire, meromorphic or algebraic nontrivial solutions we have the following:

THEOREM 1.3. (i) Equation $\left(\mathrm{E}_{k}\right)$ admits no nontrivial entire solution. Moreover, if $k \geq 2$, then equation $\left(\mathrm{E}_{k}\right)$ admits no nontrivial meromorphic solution.
(ii) If $k=2$ or if $k$ is an odd integer such that $k \geq 3$, then $\left(\mathrm{E}_{k}\right)$ admits no nontrivial algebraic solution, that is, every nontrivial solution is transcendental.

As mentioned above, if $k \geq 2$, each nontrivial solution of $\left(\mathrm{E}_{k}\right)$ is a many-valued function. In general, for a solution with movable branch points, it is not easy to know about global many-valuedness, for example, whether it is algebroid or not, because such a property depends on their global behaviour. For this question, we have the following:

Theorem 1.4. Suppose that $k \geq 2$. For every $v \in N$, equation $\left(\mathrm{E}_{k}\right)$ admits a twoparameter family of solutions which are at least $v$-valued.

In Section 2 we first prove Theorem 1.2 by computing the coefficients of a Puiseux series expansion around an algebraic branch point. In Section 3, by using a system of equations derived from (1.4), Theorem 1.1 is established. In showing the quasi-Painlevé property along a rectifiable curve, we regard a solution of $\left(\mathrm{E}_{k}\right)$ as a function on its Riemann surface, and modify the classical method of proving Painlevé property in such a way that it is applicable to this case. Sections 4 and 5 are devoted to the proofs of Theorems 1.3 and 1.4, respectively. In the proof of Theorem 1.4, letting a solution of $\left(\mathrm{E}_{k}\right)$ degenerate to the inverse function of a hyperelliptic integral, we apply the $\alpha$-method due to Painlevé to show its many-valuedness, while he introduced the method to exclude equations admitting many-valued solutions ([10], [7]). In Appendix, we give a general solution of $\left(\mathrm{E}_{2}\right)$ expressed by a series containing logarithmic terms. To construct such a solution, we employ the method of successive approximation, by which the existence and the convergence are simultaneously shown.

Recently, for a more general class of second order equations containing (1.3) and ( $\mathrm{E}_{k}$ ) with $k \in N \backslash\{2\}$, under the resonance condition, Filipuk and Halburd ([2]) proved the quasiPainlevé property along a rectifiable curve and discussed a singularity corresponding to a curve of infinite length. The author is grateful to them for bringing their paper [2] to his attention.
2. Proof of Theorem 1.2. 2.1. Preparatory lemma. Consider the system of differential equations

$$
\begin{equation*}
d v_{1} / d t=F_{1}\left(t, v_{1}, v_{2}\right), \quad d v_{2} / d t=F_{2}\left(t, v_{1}, v_{2}\right) \tag{2.1}
\end{equation*}
$$

where $F_{l}\left(t, v_{1}, v_{2}\right)(l=1,2)$ are analytic in a neighbourhood of $\left(t_{0}, v_{1,0}, v_{2,0}\right) \in \boldsymbol{C}^{3}$. Then we have the following lemma (cf. [3, Corollary A.4], [6, §3.2], [7, §12.3]), which will be used in the proofs of Theorems 1.1 and 1.2.

Lemma 2.1. Let $C(\subset \boldsymbol{C})$ be a rectifiable curve terminating in $t=t_{0}$. Suppose that a solution $\left(v_{1}, v_{2}\right)=(\varphi(t), \psi(t))$ of (2.1) satisfies the following:
(i) $\varphi(t)$ and $\psi(t)$ are analytic along $C$ except at $t_{0}$;
(ii) there exists a sequence $\left\{t_{n}\right\}_{n \in N} \subset C \backslash\left\{t_{0}\right\}$, $t_{n} \rightarrow t_{0}(n \rightarrow \infty)$ such that $\left(\varphi\left(t_{n}\right), \psi\left(t_{n}\right)\right) \rightarrow\left(v_{1,0}, v_{2,0}\right)$.
Then, $\varphi(t)$ and $\psi(t)$ are analytic at $t=t_{0}$.
2.2. Proof of Theorem 1.2. If $k=1$, then (1.4) coincides with a general solution of the second Painlevé equation around a movable pole (cf. [3, §2], [11, §6]). In what follows we suppose that $k \geq 2$. Let $x=x_{0}$ be a movable algebraic branch point (or a movable pole) of $y(x)$. If $|y(x)|$ is bounded along a segment $\left[x_{0}^{*}, x_{0}\right]$, then

$$
y^{\prime}(x)=y^{\prime}\left(x_{0}^{*}\right)+\int_{x_{0}^{*}}^{x}\left(\frac{k+1}{k^{2}} y(t)^{2 k+1}+t y(t)+\alpha\right) d t
$$

is also bounded, and by Lemma 2.1, $y(x)$ is analytic at $x=x_{0}$, which is a contradiction. Hence $\left|y\left(x_{0}\right)\right|=\infty$, and we may write

$$
y(x)=A_{0} \xi^{\gamma}(1+o(1)), \quad \xi=x-x_{0}, \quad \gamma<0, \quad A_{0} \neq 0 .
$$

Substitution of this into $\left(\mathrm{E}_{k}\right)$ yields $\gamma=-1 / k, A_{0}^{2 k}=1$.
Consider the case where $A_{0}=\omega_{k}=1$ or $e^{\pi i / k}$. Then

$$
y(x)=\omega_{k} \xi^{-1 / k}+\sum_{j=m}^{\infty} c_{j} \xi^{j /(k \mu)}
$$

for some integers $m$ and $\mu$ satisfying $m \geq-\mu+1$ and $\mu \geq 1$, where $\xi^{1 /(k \mu)}$ denotes an arbitrary branch. Substituting this series into $\left(\mathrm{E}_{k}\right)$, and comparing the coefficients of $\xi^{-2+j /(k \mu)}$, we have

$$
\left(\frac{j}{\mu}+k+1\right)\left(\frac{j}{\mu}-(2 k+1)\right) c_{j}=\Xi_{j}\left(x_{0}, c_{i} ; i \leq j-1\right), \quad c_{-\mu}=\omega_{k}
$$

where $\Xi_{j}$ are polynomials in $x_{0}$ and $c_{i}$. Suppose that $J=\left\{j \in \boldsymbol{Z} ; c_{j} \neq 0, j / \mu \notin \boldsymbol{Z}\right\} \neq \emptyset$. Then $j_{0}=\min J$ satisfies $\Xi_{j_{0}}=0$, and hence we have $j_{0}=(2 k+1) \mu$ or $c_{j_{0}}=0$, which contradicts the supposition. Therefore $\mu=1$. Using the relation above, we have

$$
c_{2 k-1}=-\frac{\omega_{k} k x_{0}}{6}, \quad c_{2 k}=-\frac{k^{2} \alpha}{3 k+1}
$$

and $c_{j}=0$ for $0 \leq j \leq 2 k-2$. For $j=2 k+1$, we have

$$
\Xi_{2 k+1}= \begin{cases} \pm 4 & \text { if } k=2  \tag{2.2}\\ 0 & \text { if } k \geq 3\end{cases}
$$

If $k \geq 3$, then $c_{2 k+1}=c$, where $c$ is an arbitrary constant. If $k=2$, (2.2) yields $0 \cdot c_{5}= \pm 4$, which implies that $\left(\mathrm{E}_{2}\right)$ does not admit a solution with a movable algebraic branch point.

In addition, for each $h \in \boldsymbol{Z}$, we get a solution expanded into a series in $\left(e^{2 \pi i h} \xi\right)^{1 / k}=$ $e^{2 \pi i h / k} \xi^{1 / k}$ with the same coefficients as above, which corresponds to the case where $A_{0}=$ $e^{\pi i(-2 h) / k}$ (if $\omega_{k}=1$ ) or $A_{0}=e^{\pi i(-2 h+1) / k}$ (if $\omega_{k}=e^{\pi i / k}$ ). This fact means that, for every $l \in \boldsymbol{Z}$, the solution with $A_{0}=e^{\pi i l / k}$ is an analytic continuation of the solution with $\omega_{k}=1$ or $e^{\pi i / k}$. In this way we obtain the theorem.
3. Proof of Theorem 1.1. If $k=1$, then $\left(\mathrm{E}_{1}\right)$ admits the Painlevé property. In what follows we suppose that $k \geq 3$.
3.1. System of equations. Let us find a system of equations corresponding to the integration constants $x_{0}, c$ of (1.4) and equivalent to $\left(\mathrm{E}_{k}\right)$, which is a key to proving Theorem 1.1. Series expansion (1.4) is written in the form

$$
\begin{equation*}
y(x)=\omega_{k} \xi^{-1 / k}\left(1-\frac{k x}{6} \xi^{2}-\frac{\omega_{k}^{-1} k^{2} \alpha}{3 k+1} \xi^{2+1 / k}+\omega_{k}^{-1} c \xi^{2+2 / k}+\frac{(2 k-1) k}{12(k-2)} \xi^{3}+\cdots\right) \tag{3.1}
\end{equation*}
$$

near $x=x_{0}$, since $x_{0}=x-\xi$. Putting $u(x)=1 / y(x)$ around $x=x_{0}$, we have

$$
\begin{aligned}
\xi^{1 / k}= & \omega_{k} u(x) \\
= & \left(1-\frac{k x}{6} \xi^{2}-\frac{\omega_{k}^{-1} k^{2} \alpha}{3 k+1} \xi^{2+1 / k}+\omega_{k}^{-1} c \xi^{2+2 / k}+\frac{(2 k-1) k}{12(k-2)} \xi^{3}+\cdots\right) \\
& \left.+\frac{(2 k-1) k}{6} u(x)^{2 k}-\frac{k^{2} \alpha}{3 k+1} u(x)^{2 k+1}+\omega_{k} c u(x)^{2 k+2} u(x)^{3 k}+\cdots\right)
\end{aligned}
$$

Substituting this into

$$
\begin{aligned}
y^{\prime}(x)= & -\frac{\omega_{k}}{k} \xi^{-1-1 / k}+\frac{(2 k-1)(3 k-1)}{12(k-2)} \omega_{k} \xi^{2-1 / k}-\frac{\omega_{k} k x}{6}\left(2-\frac{1}{k}\right) \xi^{1-1 / k} \\
& -\frac{\omega_{k} k}{6} \xi^{2-1 / k}-\frac{2 k^{2} \alpha}{3 k+1} \xi+\left(2+\frac{1}{k}\right) c \xi^{1+1 / k}+\cdots,
\end{aligned}
$$

and observing that $\omega_{k}^{k}= \pm 1$, we have

$$
\begin{aligned}
y^{\prime}(x)=\frac{k^{2}}{2(k-2)} u(x)^{2 k-1} \mp \frac{u(x)^{-k-1}}{k}( & 1+\frac{k^{2} x}{2} u(x)^{2 k}+k^{2} \alpha u(x)^{2 k+1} \\
& \left.-(3 k+2) \omega_{k} c u(x)^{2 k+2}+\cdots\right) .
\end{aligned}
$$

Viewing these identities, we define new unknowns $u$ and $v$ by

$$
\begin{align*}
& y=u^{-1}  \tag{3.2}\\
& y^{\prime}=B u^{2 k-1} \mp \frac{u^{-k-1}}{k}\left(1+\frac{k^{2} x}{2} u^{2 k}+k^{2} \alpha u^{2 k+1}+u^{2 k+2} v\right) \tag{3.3}
\end{align*}
$$

with $B=k^{2} /(2(k-2))$. Then, equation $\left(\mathrm{E}_{k}\right)$ is written in the form

$$
\frac{d u}{d x}= \pm u^{1-k} \Phi_{ \pm}(x, u, v), \quad \frac{d v}{d x}=\mp u^{k-2} \Psi_{ \pm}(x, u, v)
$$

where

$$
\begin{aligned}
\Phi_{ \pm}(x, u, v)= & \frac{1}{k}\left(1+\frac{k^{2} x}{2} u^{2 k}+k^{2} \alpha u^{2 k+1}+u^{2 k+2} v \mp B k u^{4 k-1}\right) \\
\Psi_{ \pm}(x, u, v)= & \frac{1}{k}\left(\frac{k^{2} x}{2}+k^{2} \alpha u+u^{2} v \mp B k u^{k}\right) \\
& \times\left(\frac{k^{2}(k-1) x}{2}+k^{3} \alpha u+(k+1) u^{2} v \mp B k(2 k-1) u^{k}\right)
\end{aligned}
$$

For the solution $(u, v)=(u(x), v(x))$ corresponding to $y(x)$, we regard $(x, v)$ as a function of $u$; which is a solution of the system

$$
\begin{equation*}
\frac{d x}{d u}= \pm \frac{u^{k-1}}{\Phi_{ \pm}(x, u, v)}, \quad \frac{d v}{d u}=-\frac{u^{2 k-3} \Psi_{ \pm}(x, u, v)}{\Phi_{ \pm}(x, u, v)} \tag{3.4}
\end{equation*}
$$

Equation $\left(\mathrm{E}_{k}\right)$ is equivalent to (3.4), whose right-hand members are analytic at $(x, u, v)=$ $\left(x_{0}, 0, v_{0}\right), v_{0} \in \boldsymbol{C}$.
3.2. Auxiliary function. By (3.3) and (3.2)

$$
\left(y^{\prime}-B y^{-(2 k-1)}\right)^{2}=\frac{y^{2 k+2}}{k^{2}}\left(1+\frac{k^{2} x}{2} y^{-2 k}+k^{2} \alpha y^{-2 k-1}+y^{-2 k-2} v\right)^{2}
$$

which is written in the form

$$
\begin{align*}
V= & -B^{2} y^{-4 k+2}+\frac{k^{2} x^{2}}{4} y^{-2 k+2}+k^{2} \alpha x y^{-2 k+1}+k^{2} \alpha^{2} y^{-2 k} \\
& +\left(\frac{2}{k^{2}}+x y^{-2 k}+2 \alpha y^{-2 k-1}\right) v+\frac{y^{-2 k-2}}{k^{2}} v^{2} \tag{3.5}
\end{align*}
$$

with

$$
\begin{equation*}
V:=\left(y^{\prime}\right)^{2}-2 B y^{-2 k+1} y^{\prime}-\frac{y^{2 k+2}}{k^{2}}-x y^{2}-2 \alpha y \tag{3.6}
\end{equation*}
$$

Substituting the solution $y(x)$ of $\left(\mathrm{E}_{k}\right)$ into (3.6), we get the auxiliary function $V(x)$ associated with $y(x)$.

PROPOSITION 3.1. If $y(x)^{-1}$ is bounded along a rectifiable curve $\Gamma$, then $V(x)$ is also bounded along $\Gamma$.

Proof. Differentiate $V(x)$ (cf. (3.6)) and eliminate $y^{\prime \prime}(x)$ by using ( $\mathrm{E}_{k}$ ) (with $y=$ $y(x))$. Then we have

$$
\begin{aligned}
V^{\prime}(x)-2(2 k-1) B y(x)^{-2 k} V(x)= & 4(2 k-1) B^{2} y(x)^{-4 k+1} y^{\prime}(x) \\
& +4(k-1) B x y(x)^{-2 k+2}+2(4 k-3) B \alpha y(x)^{-2 k+1} .
\end{aligned}
$$

This is written in the form

$$
\begin{aligned}
\frac{d}{d x} & {\left[\left(V(x)+2 B^{2} y(x)^{-4 k+2}\right) \exp \left(-2(2 k-1) B \int_{\Gamma(x)} y(t)^{-2 k} d t\right)\right] } \\
= & -2 B y(x)^{-2 k+1}\left(2(2 k-1) B^{2} y(x)^{-4 k+1}-2(k-1) x y(x)-(4 k-3) \alpha\right) \\
& \times \exp \left(-2(2 k-1) B \int_{\Gamma(x)} y(t)^{-2 k} d t\right),
\end{aligned}
$$

where $\Gamma(x)$ denotes the part of $\Gamma$ from its starting point to $x$. The boundedness of $V(x)$ immediately follows from this equality.
3.3. Completion of the proof of Theorem 1.1. Let $a_{0}$ be a singularity of $y(x)$ defined by a rectifiable curve $\Gamma$ terminating in $a_{0}$ such that $y(x)$ is analytic along $\Gamma \backslash\left\{a_{0}\right\}$. According to the value $A:=\liminf _{x \rightarrow a_{0}, x \in \Gamma}|y(x)|$, we divide the proof into three cases:
(i) $0<A<\infty$,
(ii) $A=\infty, \quad$ (iii) $A=0$.

Case (i). $0<A<\infty$. Since the auxiliary function $V(x)$ is bounded as $x \rightarrow a_{0}$ along $\Gamma$ (cf. Proposition 3.1), there exists a sequence $\left\{a_{n}\right\}_{n \in N} \subset \Gamma$ such that $a_{n} \rightarrow a_{0}$ and that $y\left(a_{n}\right) \rightarrow y_{0}(\neq 0, \infty)$. Then, by (3.6) with $y=y(x)$, the sequence $\left\{y^{\prime}\left(a_{n}\right)\right\}_{n \in N}$ is also bounded, and we may choose a subsequence $\left\{a_{n(m)}\right\}_{m \in N} \subset \Gamma$ satisfying $a_{n(m)} \rightarrow a_{0}$, $y\left(a_{n(m)}\right) \rightarrow y_{0}$ and $y^{\prime}\left(a_{n(m)}\right) \rightarrow y_{0}^{\prime}(\neq \infty)$. By Lemma 2.1, $y(x)$ is analytic at $x=a_{0}$.

Case (ii). $\quad A=\infty$. Since $y(x) \rightarrow \infty$ as $x \rightarrow a_{0}$ along $\Gamma$, the function $V(x)$ is bounded along $\Gamma$ near $x=a_{0}$. Substitution of $(y, V)=(y(x), V(x))$ into (3.5) yields a quadratic equation with respect to $v$. This equation admits a solution $v=v_{-}(x)$ which is analytic and bounded along $\Gamma \backslash\left\{a_{0}\right\}$. Note that one of the signs $\mp$ in (3.3) (resp. $\pm$ in (3.4)) corresponds to the branch $v_{-}(x)$. Let $u(x)$ be the branch corresponding to $v_{-}(x)$. Denote by $x=x(u)$ the inverse function of $u=u(x)$, whose existence is guaranteed by the fact that $\left|u^{\prime}(x)\right|=\left|y^{\prime}(x) / y(x)^{2}\right| \sim\left|y(x)^{k-1}\right| / k \neq 0, \infty$ along $\Gamma \backslash\left\{a_{0}\right\}$ (cf. (3.6)). Consider the functions $x=x(u)$ and $v=v_{-}(x(u))$ which are analytic in $u$ along $u(\Gamma) \backslash\{0\}=\{u=$ $\left.u(x) ; x \in \Gamma \backslash\left\{a_{0}\right\}\right\}$. Then
(ii.a) $\quad x(u) \rightarrow a_{0}$ as $u \rightarrow u\left(a_{0}\right)=0$ along $u(\Gamma)$;
(ii.b) $\quad v_{-}(x(u))$ is bounded along $u(\Gamma)$;
(ii.c) $\quad(x, v)=\left(x(u), v_{-}(x(u))\right)$ satisfies (3.4).

Choosing a sequence $\left\{b_{n}\right\}_{n \in N} \subset u(\Gamma)$ satisfying $b_{n} \rightarrow u\left(a_{0}\right)=0, x\left(b_{n}\right) \rightarrow a_{0}$ and $v_{-}\left(x\left(b_{n}\right)\right) \rightarrow v_{0}(\neq \infty)$, and using Lemma 2.1, we deduce that $x(u)$ is analytic at $u=0$, which implies that $x=a_{0}$ is at most an algebraic branch point of $y(x)$.

Case (iii). $A=0$. In this case, we regard $y(x)$ as an analytic function on the Riemann surface $\mathfrak{R}_{y}$ with the projection $\pi_{y}: \mathfrak{R}_{y} \rightarrow \boldsymbol{C}$. Then $\Gamma \backslash\left\{a_{0}\right\}$ lies on $\mathfrak{R}_{y}$, and $\pi_{y}\left(a_{0}\right):=$
$\lim _{x \rightarrow a_{0}, x \in \Gamma} \pi_{y}(x)$ is the end point of $\pi_{y}\left(\Gamma \backslash\left\{a_{0}\right\}\right)$. For any curve $C \subset \mathfrak{R}_{y}$, denote by $\|C\|$ the length of $\pi_{y}(C) \subset C$. For $a \in \mathfrak{R}_{y}$ and for $\rho_{0}>0$, denote by $U\left(a ; \rho_{0}\right)\left(\subset \mathfrak{R}_{y}\right)$ the connected component of $\pi_{y}^{-1}\left(\left\{\zeta \in C ;\left|\zeta-\pi_{y}(a)\right|<\rho_{0}\right\}\right) \subset \Re_{y}$ containing $a$. The projection $\pi_{y}: U\left(a ; \rho_{0}\right) \rightarrow\left\{\zeta \in \boldsymbol{C} ;\left|\zeta-\pi_{y}(a)\right|<\rho_{0}\right\}$ is a homeomorphism, provided that $\rho_{0}$ is sufficiently small.

The following fact is obtained from [11, Lemma 2.2] with $R_{0}=\Delta=1 / 2, K=1+$ $\left|\pi_{y}\left(a_{0}\right)\right|+|\alpha|$.

Lemma 3.2. Set $\theta_{0}:=\left(1+\left|\pi_{y}\left(a_{0}\right)\right|+|\alpha|\right)^{-1} / 42$. Let $c \in \Re_{y}$ be a point such that $\left|\pi_{y}(c)-\pi_{y}\left(a_{0}\right)\right|<1 / 4$. If the inequalities $|y(c)| \leq \theta_{0} / 6$ and $\left|y^{\prime}(c)\right| \geq 2$ hold, then $y(x)$ is analytic in $U\left(c ;\left|y^{\prime}(c)\right|^{-1} \theta_{0}\right)$ and satisfies $|y(x)| \geq \theta_{0} / 4$ on the boundary $\partial U\left(c ;\left|y^{\prime}(c)\right|^{-1} \theta_{0} / 2\right)$.

Put $\Gamma_{0}:=\left\{x \in \Gamma ;|y(x)| \leq \theta_{0} / 6\right\} \subset \mathfrak{R}_{y}$. The supposition $A=0$ implies $\Gamma_{0} \cap\{x \in$ $\left.\Gamma ;\left\|\Gamma\left(x, a_{0}\right)\right\|<\varepsilon\right\} \neq \emptyset$ for every $\varepsilon>0$, where $\Gamma\left(x, a_{0}\right)$ denotes the part of $\Gamma$ from $x$ to $a_{0}$. We may suppose that $\left|y^{\prime}(x)\right| \geq 2$ for $x \in \Gamma_{0}$. Indeed, if this is not the case, then $y(x)$ is analytic at $x=a_{0}$ (cf. Lemma 2.1). Let $a_{*} \in \Re_{y}$ be a point such that $\left\|\Gamma\left(a_{*}, a_{0}\right)\right\|<$ $1 / 4$. Let us start from $a_{*}$ and proceed along $\Gamma$ toward $x=a_{0}$. Let $c_{1}$ be the point in $\Gamma_{0}$ that we meet for the first time. By Lemma 3.2, there exists $D_{1}:=U\left(c_{1} ;\left|y^{\prime}\left(c_{1}\right)\right|^{-1} \theta_{0} / 2\right)$ such that $|y(x)| \geq \theta_{0} / 4$ on $\partial D_{1}$. Then $a_{0} \notin D_{1}$, and $\partial D_{1} \cap \Gamma_{0}=\emptyset$. Restart from $c_{1}$ and proceed along $\Gamma$ toward $a_{0}$ until we meet $c_{2} \in \Gamma_{0} \backslash D_{1}$. Then, $|y(x)| \geq \theta_{0} / 4$ on $\partial D_{2}$, where $D_{2}:=U\left(c_{2} ;\left|y^{\prime}\left(c_{2}\right)\right|^{-1} \theta_{0} / 2\right)$, which satisfies $a_{0} \notin D_{2}$ and $\partial D_{2} \cap \Gamma_{0}=\emptyset$. Repeating this procedure, we get the sequences $\left\{D_{n}\right\}_{n \in N}$ and $\left\{c_{n}\right\}_{n \in N} \subset \Gamma_{0}$ of discs and their centres with the properties:
(iii.a) $\quad D_{n}:=U\left(c_{n} ; r_{n}\right), r_{n}:=\left|y^{\prime}\left(c_{n}\right)\right|^{-1} \theta_{0} / 2$;
(iii.b) $|y(x)| \geq \theta_{0} / 4$ on $\partial D_{n}$;
(iii.c) $a_{0} \notin D_{n}$ and $\partial D_{n} \cap \Gamma_{0}=\emptyset$;
(iii.d) $\left\|\Gamma\left(c_{n}, c_{n+1}\right)\right\|>r_{n}$ and $\sum_{n \geq 1} r_{n} \leq\|\Gamma\|$, where $\Gamma\left(c_{n}, c_{n+1}\right)$ is the part of $\Gamma$ from $c_{n}$ to $c_{n+1}$.
If $c_{n}$ approaches some point $c_{\infty} \in \Gamma \backslash\left\{a_{0}\right\}$, then $r_{n}=\left|y^{\prime}\left(c_{n}\right)\right|^{-1} \theta_{0} / 2 \rightarrow 0$ as $n \rightarrow \infty$ (cf. (iii.a) and (iii.d)), that is, $\left|y^{\prime}\left(c_{\infty}\right)\right|=\infty$, which contradicts the analyticity of $y(x)$ along $\Gamma \backslash\left\{a_{0}\right\}$. This implies that $c_{n} \rightarrow a_{0}$ as $n \rightarrow \infty$, and hence $\Gamma_{0} \subset \bigcup_{n=1}^{\infty} D_{n}$. For each $n$, there exist only a finite number of $D_{j}(j \neq n)$ such that $D_{j} \cap D_{n} \neq \emptyset$. By (iii.d), we may choose a rectifiable curve $\Gamma_{*}$ with the properties:
(iii.e) $\quad \Gamma_{*} \subset \partial\left(\Gamma \cup\left(\bigcup_{n=1}^{\infty} D_{n}\right)\right) \subset \mathfrak{R}_{y}$;
(iii.f) $\Gamma_{*}$ terminates in $a_{0}$;
(iii.g) $|y(x)| \geq \theta_{0} / 6$ on $\Gamma_{*} \backslash\left\{a_{0}\right\}$;
(iii.h) $y(x)$ is analytic along $\Gamma_{*} \backslash\left\{a_{0}\right\}$.

Hence this case is reduced to either (i) or (ii). Consequently $x=a_{0}$ is at most an algebraic branch point of $y(x)$, which completes the proof of Theorem 1.1.
4. Proof of Theorem 1.3. Let us review some facts of value distribution theory.

For a meromorphic function $f(z)$ in $\boldsymbol{C}$, the proximity function, the counting function and the characteristic function are given by

$$
\begin{aligned}
& m(r, f):=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \phi}\right)\right| d \phi, \quad \log ^{+} s:=\max \{\log s, 0\} \\
& N(r, f):=\int_{0}^{r}(n(\rho, f)-n(0, f)) \frac{d \rho}{\rho}+n(0, f) \log r \\
& T(r, f):=m(r, f)+N(r, f),
\end{aligned}
$$

respectively, where $n(r, f)$ denotes the number of poles of $f(z)$ in the disc $|z| \leq r$, each counted according to its multiplicity. The characteristic function $T(r, f)$ is monotone increasing with respect to $r$. Furthermore $T(r, f)=O(\log r)$ if and only if $f(z)$ is a rational function (cf. [5], [9]). The following lemma is useful in the study of nonlinear differential equations (cf. [3, Lemma B.11], [9, Lemma 2.4.2]).

Lemma 4.1. Suppose that a meromorphic function $w=f(z)$ satisfies the differential equation $w^{p+1}=P(z, w), p \in N$, where $P(z, w)$ is a polynomial in $z, w, w^{\prime}, \ldots, w^{(q)}$. If the total degree of $P(z, w)$ with respect to $w$ and its derivatives does not exceed $p$, then $m(r, f)=O(\log T(r, f)+\log r)$ as $r \rightarrow \infty, r \notin E$, where $E \subset(0, \infty)$ is an exceptional set of finite linear measure.

To prove the first assertion of Theorem 1.3, suppose that $y_{*}(x)$ is a nontrivial entire solution of $\left(\mathrm{E}_{k}\right)$. If $y_{*}(x)$ is a polynomial such that $y_{*}(x)=C x^{\gamma_{0}}+O\left(x^{\gamma_{0}-1}\right), \gamma_{0} \in N$, $C \neq 0$ near $x=\infty$, then we have $(2 k+1) \gamma_{0}=\gamma_{0}+1$, which is a contradiction. Hence $y_{*}(x)$ is transcendental and entire, so that $m\left(r, y_{*}\right)=T\left(r, y_{*}\right)$. By Lemma 4.1, for some $K_{0}>0$, we have $T\left(r, y_{*}\right) \leq K_{0} \log r$ outside an exceptional set $E_{0}$ of total length $\mu_{0}<\infty$. For each $r$, we may choose a number $r^{\prime}(r) \geq r$ satisfying $r^{\prime}(r)-r \leq 2 \mu_{0}$ and $r^{\prime}(r) \notin E_{0}$. Then

$$
T\left(r, y_{*}\right) \leq T\left(r^{\prime}(r), y_{*}\right) \leq K_{0} \log \left(r^{\prime}(r)\right) \leq K_{0} \log \left(r+2 \mu_{0}\right)=O(\log r)
$$

for $r>0$, which contradicts the transcendence of $y_{*}(x)$. This implies that $\left(\mathrm{E}_{k}\right)$ admits no nontrivial entire solution. Theorems 1.1 and 1.2 imply that each solution of $\left(\mathrm{E}_{k}\right)$ with $k \geq 2$ admits no pole. In this way we obtain the first assertion.

By Theorem 1.1 again, equation ( $\mathrm{E}_{2}$ ) admits no nontrivial algebraic solution. It is sufficient to show the second assertion for each odd integer $k \geq 3$. To prove by contradiction, we suppose the existence of a nontrivial algebraic solution. It is expanded into a Puiseux series of the form $\left(-k^{2} /(k+1)\right)^{1 /(2 k)} x^{1 /(2 k)}+\sum_{j=2 k}^{\infty} b_{j} x^{-j /(2 k)}$ around the point $x=\infty$, for which the degree of ramification is $e_{\infty}-1=2 k-1$. By Theorem 1.2, for each branch point $x_{\iota} \neq \infty$, the degree of ramification is $e_{\iota}-1=k-1$, which is even. These facts contradict the Riemann-Hurwitz formula

$$
2(1-g)=2 d-\sum_{l \neq \infty}\left(e_{l}-1\right)-\left(e_{\infty}-1\right)
$$

where $d$ is the degree and $g$ is the genus (see, for example [8]). Therefore ( $\mathrm{E}_{k}$ ) admits no nontrivial algebraic solution.
5. Proof of Theorem 1.4. 5.1. Inverse function of a hyperelliptic integral. The hyperelliptic integral

$$
\begin{equation*}
t-t_{0}=\int_{w_{0}}^{w(t)} \frac{d s}{\sqrt{s^{2 k+2}+C}}, \quad C \neq 0 \tag{5.1}
\end{equation*}
$$

defines the function $Y=w(t)$ satisfying the differential equations

$$
\begin{equation*}
\dot{Y}^{2}=Y^{2 k+2}+C \quad(\dot{Y}=d Y / d t) \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\ddot{Y}=(k+1) Y^{2 k+1} . \tag{5.3}
\end{equation*}
$$

By (5.1), every movable singularity of $w(t)$ is an algebraic branch point (see also [7, Chap. 13]).

Suppose that $k \geq 3$. We construct the Riemann surface of $\sqrt{s^{2 k+2}+C}$ in the standard manner. Set $\zeta_{h}:=(-C)^{1 /(2 k+2)} e^{2 \pi i h /(2 k+2)}(h=0,1, \ldots, 2 k+1)$, and denote by $X^{\varepsilon}(\varepsilon=$ $1,2)$ two copies of $P^{1}(\boldsymbol{C}) \backslash\left(\bigcup_{j=0}^{k} \Sigma_{j}\right)$ cut along the segments $\Sigma_{j}:=\left[\zeta_{2 j}, \zeta_{2 j+1}\right](j=$ $0,1, \ldots, k)$, where $P^{1}(\boldsymbol{C})=\boldsymbol{C} \cup\{\infty\}$. Let $\Sigma_{j}^{-}$and $\Sigma_{j}^{+}$be the edges of the cut $\Sigma_{j}$. Gluing $\Sigma_{j}^{-}$(resp. $\Sigma_{j}^{+}$) of $X^{1}$ to $\Sigma_{j}^{+}$(resp. $\Sigma_{j}^{-}$) of $X^{2}$, we get the Riemann surface of $\sqrt{s^{2 k+2}+C}$ admitting $2 k$ cycles. Let $\gamma_{1}$ (resp. $\gamma_{2}$ ) be the cycle lying in $X^{1}$ and surrounding only $\Sigma_{0}=$ $\left[\zeta_{0}, \zeta_{1}\right]$ (resp. $\Sigma_{1}=\left[\zeta_{2}, \zeta_{3}\right]$ ) in the positive sense. In addition, choose another cycle $\gamma_{0}=$ $S_{1} \cup S_{2}$, where $S_{1}$ (resp. $S_{2}$ ) is the segment in $X^{1}$ (resp. in $X^{2}$ ) from $\zeta_{1}$ to $\zeta_{2}$ (resp. $\zeta_{2}$ to $\zeta_{1}$ ). Now consider periods of $w(t)$ written as

$$
\omega_{j}:=\int_{\gamma_{j}} \frac{d s}{\sqrt{s^{2 k+2}+C}} \quad(j=0,1,2)
$$

where the branches of the integrands are taken in such a way that they coincide at the point $s=\left(\zeta_{1}+\zeta_{2}\right) / 2 \in X^{1}$. It is easy to check that $\omega_{1}=\omega_{0} e^{-\pi i /(k+1)}$ and that $\omega_{2}=\omega_{0} e^{\pi i /(k+1)}$.

Lemma 5.1. Set $\lambda:=\left(\omega_{1}+\omega_{2}\right) / \omega_{0}=2 \cos (\pi /(k+1))$. If $k \geq 3$, then there exist infinitely many pairs $(p, q) \in N^{2}$ such that $|q \lambda-p|<1 / q$.

PROOF. It is sufficient to show that $\lambda$ is an irrational number. We write $2(k+1)=$ $2^{d}(2 l+1), d \in N, l \in N \cup\{0\}$. If $l=0$, then $d \geq 3$, and hence $\lambda=2 \cos \left(\pi / 2^{d-1}\right)$ is an irrational number. Next suppose that $l=1$. Since $k \geq 3$, we have $d \geq 2$, and hence $\lambda=2 \cos \left(\theta_{1} / 2^{d}\right), \theta_{1}=2 \pi / 3$ is an irrational number. Finally suppose that $l \geq 2$. Set $\varrho:=e^{2 \pi i /(2 l+1)}$. Since $\left(\varrho^{l}+\varrho^{-l}\right)+\cdots+\left(\varrho+\varrho^{-1}\right)+1=0$, the number $\mu=\varrho+\varrho^{-1}=$ $2 \cos (2 \pi /(2 l+1))$ satisfies

$$
\mu^{l}+\kappa_{l-1} \mu^{l-1}+\cdots+\kappa_{1} \mu+\kappa_{0}=0, \quad \kappa_{j} \in \mathbf{Z}
$$

which implies $\mu$ is irrational. Indeed, if $\mu \in \boldsymbol{Q}$, then $\mu \in \boldsymbol{Z}$, so that $\mu=0$, $\pm 1$, which contradicts $l \geq 2$. Consequently $\lambda=2 \cos \left(\theta_{l} / 2^{d}\right)$ with $\theta_{l}=2 \pi /(2 l+1)$ is also an irrational number.

Proposition 5.2. If $k \geq 3$ and if $C \neq 0$, then $w(t)$ is infinitely many-valued.

Proof. Suppose that $w(t)$ is finitely many-valued. Consider the Riemann surface of $w(t)$ denoted by $\mathfrak{R}_{w}$ with the projection $\pi_{w}: \mathfrak{R}_{w} \rightarrow \boldsymbol{C}$. Choose a point $b_{0} \in \boldsymbol{C}$ with the property: there exists an open set $U_{0} \ni b_{0}$ such that, for every connected component $W$ of $\pi_{w}^{-1}\left(U_{0}\right) \subset \Re_{w}$, the restriction of $\pi_{w}$ to $W$ is a homeomorphism between $W$ and $U_{0}$. Take a point $\beta_{0} \in \pi_{w}^{-1}\left(b_{0}\right)$. By Lemma 5.1, there exists a sequence $\left\{\sigma_{n}\right\}_{n \in N} \subset \Re_{w}$ together with $\left(p_{n}, q_{n}\right) \in N^{2}$ such that $w\left(\sigma_{n}\right)=w\left(\beta_{0}\right)$ and that $\pi_{w}\left(\sigma_{n}\right)=\pi_{w}\left(\beta_{0}\right)+q_{n}\left(\omega_{1}+\omega_{2}\right)-p_{n} \omega_{0} \rightarrow$ $b_{0}$ as $n \rightarrow \infty$. Since $\pi_{w}^{-1}\left(b_{0}\right)$ is a finite set, there exist a subsequence $\left\{\sigma_{n(m)}\right\}_{m \in N}$ and a point $\beta_{\infty} \in \pi_{w}^{-1}\left(b_{0}\right)$ such that $w\left(\sigma_{n(m)}\right)=w\left(\beta_{0}\right)$ and that $\sigma_{n(m)} \rightarrow \beta_{\infty}$ as $m \rightarrow \infty$. Hence $w(t) \equiv w\left(\beta_{0}\right)$ on $\Re_{w}$, which is a contradiction. This completes the proof.

REMARK 5.1. If $k=2$, then (5.2) admits the general solution $w(t)=\sqrt{g\left(t-t_{0}\right)}$, where $g(t)$ is an elliptic function of Jacobi type satisfying $\dot{g}(t)^{2}=4 g(t)^{4}+4 C g(t)$. In this case $w(t)$ is a 2 -valued algebroid function.
5.2. Completion of the proof of Theorem 1.4. If $k=2$, then Theorem A. 1 in Appendix implies the existence of a general solution with a movable logarithmic branch point, from which the conclusion of Theorem 1.4 immediately follows. It is sufficient to prove the theorem under the supposition $k \geq 3$. Let $y(x)$ be a solution of $\left(\mathrm{E}_{k}\right)$ satisfying the initial condition $y(0)=y_{0}, y^{\prime}(0)=y_{1}$. Let $\varepsilon$ be an arbitrary small positive number. The change of variables $y=k^{1 / k} \varepsilon^{-1} Y, x=\varepsilon^{k} t$ takes ( $\mathrm{E}_{k}$ ) into

$$
\begin{equation*}
\ddot{Y}=(k+1) Y^{2 k+1}+\varepsilon^{3 k} t Y+k^{-1 / k} \alpha \varepsilon^{2 k+1}, \tag{5.4}
\end{equation*}
$$

which admits the solution $Y_{\varepsilon}(t)=k^{-1 / k} \varepsilon y(t)$ satisfying $Y_{\varepsilon}(0)=\chi_{0}(\varepsilon):=k^{-1 / k} \varepsilon y_{0}$ and $\dot{Y}_{\varepsilon}(0)=\chi_{1}(\varepsilon):=k^{-1 / k} \varepsilon^{k+1} y_{1}$. Equation (5.4) with $\varepsilon=0$ coincides with (5.3). Let $Y_{0}(t)$ be the solution of (5.3) satisfying the same initial condition

$$
\begin{equation*}
Y_{0}(0)=\chi_{0}(\varepsilon), \quad \dot{Y}_{0}(0)=\chi_{1}(\varepsilon) . \tag{5.5}
\end{equation*}
$$

Then $Y_{0}(t)$ is also a solution of

$$
\begin{equation*}
\dot{Y}^{2}=Y^{2 k+2}+\chi_{1}(\varepsilon)^{2}-\chi_{0}(\varepsilon)^{2 k+2} . \tag{5.6}
\end{equation*}
$$

Consider the Riemann surface of $Y_{0}(t)$ denoted by $\Re_{0}$ with the projection $\pi_{0}: \mathfrak{R}_{0} \rightarrow \boldsymbol{C}$. Let $\tau_{0} \in \mathfrak{R}_{0}$ be a point such that $\pi_{0}\left(\tau_{0}\right)=0$ at which initial condition (5.5) is given. Let $v$ be an arbitrary natural number. By Proposition 5.2 with $C=1 / 2$ and the continuity with respect to initial data, we may choose $\delta=\delta(\nu)>0$ so small that the conditions

$$
\begin{equation*}
\left|\chi_{0}(\varepsilon)-2^{-1 /(2 k+2)}\right|<\delta, \quad\left|\chi_{1}(\varepsilon)-1\right|<\delta \tag{5.7}
\end{equation*}
$$

guarantee the existence of $v$ rectifiable paths $\Gamma_{j} \subset \mathfrak{R}_{0}(1 \leq j \leq \nu)$ with the properties:
(i) $\Gamma_{j}$ starts from $\tau_{0}$ and terminates in $\tau_{j}$, where $\tau_{j}(1 \leq j \leq \nu)$ satisfy $\pi_{0}\left(\tau_{1}\right)$ $=\cdots=\pi_{0}\left(\tau_{\nu}\right)$;
(ii) $\Gamma_{j}$ is independent of $\chi_{0}(\varepsilon)$ and $\chi_{1}(\varepsilon)$;
(iii) $Y_{0}(t)$ continues analytically along $\Gamma_{j}(1 \leq j \leq \nu)$;
(iv) $\left|Y_{0}\left(\tau_{j}\right)-Y_{0}\left(\tau_{j^{\prime}}\right)\right|>\delta$ for every pair $\left(j, j^{\prime}\right)$ such that $j \neq j^{\prime}$.

Then $Y_{\varepsilon}(t)$ satisfying (5.4) also continues analytically along $\Gamma_{j}(1 \leq j \leq v)$ to $v$ different branches, provided that $\varepsilon>0$ is sufficiently small. For such $\varepsilon$, as long as the initial data $y_{0}$ and $y_{1}$ satisfy (5.7), the solution $y(x)$ is a $v$-valued function. This completes the proof of Theorem 1.4.

Appendix. General solution of $\left(\mathbf{E}_{2}\right)$. There exists a general solution of $\left(\mathrm{E}_{2}\right)$ with a movable logarithmic branch point described as follows:

THEOREM A.1. For given complex numbers $x_{0}$ and $c$, equation $\left(\mathrm{E}_{2}\right)$ admits a solution expressible in the form

$$
\begin{gathered}
y(x)=\omega_{2} \xi^{-1 / 2}-\frac{\omega_{2} x_{0}}{3} \xi^{3 / 2}-\frac{4 \alpha}{7} \xi^{2}+\left(\frac{\omega_{2}}{4} \log \xi+c\right) \xi^{5 / 2}+\sum_{j \geq 6} \Lambda_{j}(\log \xi) \xi^{j / 2} \\
\xi=x-x_{0}, \quad \omega_{2}=1 \text { or } i
\end{gathered}
$$

with the properties:
(i) $\Lambda_{j}(L) \in \boldsymbol{A}_{x_{0}, c}[L], \boldsymbol{A}_{x_{0}, c}:=\boldsymbol{C}\left[x_{0}, c\right], 2 \operatorname{deg}_{L} \Lambda_{j}+7 \leq j ;$
(ii) the series on the right-hand side converges for $\xi \in \mathcal{R}$ satisfying $|\xi|<r,|\arg \xi|<$ $R$, where $R$ is an arbitrary large positive number, $r=r(R)$ is a sufficiently small positive number depending on $R$, and $\mathcal{R}$ is the universal covering of $\boldsymbol{C} \backslash\{0\}$.
A.1. Derivation of an integral equation. In what follows we suppose that $\omega_{2}=1$. The case $\omega_{2}=i$ can be treated in a similar manner. By the same argument as in Section 2.2, we get the first three terms $\xi^{-1 / 2}-\left(x_{0} / 3\right) \xi^{3 / 2}-(4 \alpha / 7) \xi^{2}$. Set

$$
\begin{equation*}
y=\xi^{-1 / 2}-\frac{x_{0}}{3} \xi^{3 / 2}-\frac{4 \alpha}{7} \xi^{2}+\xi^{5 / 2} v, \quad \xi=x-x_{0} \tag{A.1}
\end{equation*}
$$

and substitute this into $\left(E_{2}\right)$. Then we have

$$
\begin{align*}
\xi^{2} \frac{d^{2} v}{d \xi^{2}}+5 \xi \frac{d v}{d \xi}= & 1+\xi g_{0}(\xi)+\xi^{2} g_{1}(\xi) v+\xi^{3} g_{2}(\xi) v^{2}+\xi^{6} g_{3}(\xi) v^{3}  \tag{A.2}\\
& +\xi^{9} g_{4}(\xi) v^{4}+\frac{3}{4} \xi^{12} v^{5}
\end{align*}
$$

with $g_{\iota}(\xi) \in \boldsymbol{A}_{x_{0}}\left[\xi^{1 / 2}\right], \boldsymbol{A}_{x_{0}}:=\boldsymbol{C}\left[x_{0}\right](0 \leq \iota \leq 4), g_{0}(0)=x_{0} / 2$. The change of variables

$$
\xi^{1 / 2}=t, \quad v=\frac{1}{4} \log \xi+c+w=\frac{1}{2} \log t+c+w
$$

takes (A.2) into

$$
\begin{equation*}
\frac{d^{2} w}{d t^{2}}+9 t^{-1} \frac{d w}{d t}=F(t, w) \tag{A.3}
\end{equation*}
$$

with

$$
\begin{equation*}
F(t, w)=\sum_{\iota=0}^{5} P_{\iota}(t, \log t) w^{\iota}, \quad P_{\iota}(t, L)=\sum_{h=e(\imath)}^{m(t)} p_{\iota h}(L) t^{h} \tag{A.4}
\end{equation*}
$$

satisfying
(A.5)

$$
e(\iota) \geq 2 \iota,
$$

$$
\begin{equation*}
p_{t h}(L) \in \boldsymbol{A}_{x_{0}, c}[L], \quad 2 \operatorname{deg}_{L} p_{t h} \leq h, \quad p_{00}(L) \equiv 2 x_{0} \tag{A.6}
\end{equation*}
$$

Observing that the equation $d^{2} w / d t^{2}+9 t^{-1} d w / d t=0$ admits the solutions $w=1$ and $w=t^{-8}$, we consider the integral equation

$$
\begin{equation*}
w(t)=\frac{1}{8} \int_{0}^{t}\left(s-t^{-8} s^{9}\right) F(s, w(s)) d s \tag{A.7}
\end{equation*}
$$

for $t \in \mathcal{R}$, where the path of integration is the segment joining 0 to $t$. The solution of (A.7) satisfies equation (A.3).
A.2. Logarithmic polynomials. Let $\mathfrak{L}$ be the set of polynomials in $(t, \log t)$ written in the form

$$
P(t, \log t)=\sum_{h=0}^{m} p_{h}(\log t) t^{h}
$$

with

$$
p_{h}(L) \in \boldsymbol{A}_{x_{0}, c}[L], \quad 2 \operatorname{deg}_{L} p_{h}+2 \leq h \quad(0 \leq h \leq m) .
$$

It is easy to see that, for any $h, l \in N \cup\{0\}$,

$$
\int_{0}^{t} s^{h}(\log s)^{l} d s=t^{h+1} \varpi_{h l}(\log t), \quad \varpi_{h l}(L) \in Q[L], \quad \operatorname{deg}_{L} \varpi_{h l}=l,
$$

which implies the following:
Lemma A.2. If $P(t, \log t) \in \mathfrak{L}$, then

$$
\begin{gathered}
P_{\text {int }}(t, \log t):=\int_{0}^{t} P(s, \log s) d s \in \mathfrak{L}, \\
\operatorname{deg}_{t} P_{\text {int }}(t, L)=\operatorname{deg}_{t} P(t, L)+1, \quad \operatorname{deg}_{L} P_{\text {int }}(t, L)=\operatorname{deg}_{L} P(t, L) .
\end{gathered}
$$

A.3. Iterative sequence. Define the sequence $\left\{w_{n}(t)\right\}_{n=0}^{\infty}$ by the recursive relation

$$
w_{0}(t) \equiv 0,
$$

$$
\begin{equation*}
w_{n+1}(t)=\frac{1}{8} \int_{0}^{t}\left(s-t^{-8} s^{9}\right) F\left(s, w_{n}(s)\right) d s \tag{A.8}
\end{equation*}
$$

for $n \geq 0$. By (A.4), (A.5) and Lemma A.2, we can inductively verify $w_{n}(t) \in \mathfrak{L}$ and $w_{n+1}(t)-w_{n}(t) \in \mathfrak{L}$ for $n \geq 0$.

For given $R>0$, choose $r<1$ so small that $|t \log t|<|t|^{1 / 2}$ holds for $\left|\arg \left(t^{2}\right)\right|<R$, $\left|t^{2}\right|<r$. By (A.4), (A.5) and (A.6),

$$
\begin{equation*}
|F(t, 0)| \leq M_{0} \tag{A.9}
\end{equation*}
$$

$$
\begin{equation*}
|F(t, w)-F(t, u)| \leq M_{0}|t||w-u|, \tag{A.10}
\end{equation*}
$$

for

$$
\begin{equation*}
\left|\arg \left(t^{2}\right)\right|<R, \quad\left|t^{2}\right|<r, \quad|w|<1, \quad|u|<1, \tag{A.11}
\end{equation*}
$$

where $M_{0}=M_{0}\left(|c|,\left|x_{0}\right|\right)$ is some positive number independent of $R$ and $r$. Hence by (A.8),

$$
\begin{equation*}
\left|w_{n+2}(t)-w_{n+1}(t)\right| \leq \frac{M_{0}}{4} \int_{0}^{t}|s|^{2}\left|w_{n+1}(s)-w_{n}(s)\right||d s| \tag{A.12}
\end{equation*}
$$

provided that $(t, u, w)=\left(t, w_{n}, w_{n+1}\right)$ satisfies (A.10). Then, if necessary, retaking $r$ smaller in such a way that

$$
\begin{equation*}
\exp \left(M_{0} r^{2} / 8\right)-1<1 / 2 \tag{A.13}
\end{equation*}
$$

we have the following:

$$
\begin{equation*}
\left|w_{n}(t)\right|<1 \tag{A.14}
\end{equation*}
$$

(A.15)

$$
\left|w_{n+1}(t)-w_{n}(t)\right| \leq \frac{M_{0}^{n+1}|t|^{2(n+1)}}{8^{n+1}(n+1)!}
$$

$(n \geq 0)$ for $\left|\arg \left(t^{2}\right)\right|<R,\left|t^{2}\right|<r$. These are verified by induction on $n$. Since

$$
\left|w_{1}(t)-w_{0}(t)\right| \leq \frac{1}{4} \int_{0}^{t}|s||F(s, 0)||d s| \leq \frac{M_{0}}{8}|t|^{2}
$$

inequalities (A.14) and (A.15) are valid for $n=0$. Moreover, supposing that (A.14) and (A.15) are valid for $n \leq N$, we deduce that

$$
\begin{aligned}
\left|w_{N+1}(t)\right| & \leq\left|w_{0}(t)\right|+\sum_{n=0}^{N}\left|w_{n+1}(t)-w_{n}(t)\right| \\
& \leq \sum_{n=0}^{N} \frac{M_{0}^{n+1}|t|^{2(n+1)}}{8^{n+1}(n+1)!} \leq \exp \left(M_{0}|t|^{2} / 8\right)-1 \leq \frac{1}{2},
\end{aligned}
$$

and that, by (A.12),

$$
\left|w_{N+2}(t)-w_{N+1}(t)\right| \leq \frac{M_{0}}{4} \int_{0}^{t} \frac{M_{0}^{N+1}|s|^{2(N+1)+2}}{8^{N+1}(N+1)!}|d s| \leq \frac{M_{0}^{N+2}|t|^{2(N+2)}}{8^{N+2}(N+2)!}
$$

Thus we have verified (A.14) and (A.15) for all $n \geq 0$.
A.4. Completion of the proof of Theorem A.1. By (A.15), $w(t):=\lim _{n \rightarrow \infty} w_{n}(t)=$ $\sum_{n=0}^{\infty}\left(w_{n+1}(t)-w_{n}(t)\right)$ is holomorphic for $t \in \mathcal{R},\left|\arg \left(t^{2}\right)\right|<R,\left|t^{2}\right|<r$, and satisfies $\left|w(t)-w_{n}(t)\right| \leq C_{0}|t|^{2(n+1)}$ for every $n$, where $C_{0}$ is a constant independent of $n$. Write $w_{n}(t) \in \mathfrak{L}$ in the form

$$
w_{n}(t)=\sum_{h=2}^{m^{*}(n)} W_{h}^{n}(\log t) t^{h}, \quad W_{h}^{n}(L) \in \boldsymbol{A}_{x_{0}, c}[L], \quad 2 \operatorname{deg}_{L} W_{h}^{n}+2 \leq h
$$

By (A.15) again, for every pair ( $N, N^{\prime}$ ) such that $N<N^{\prime}$, we have $\left|w_{N^{\prime}}(t)-w_{N}(t)\right|=$ $O\left(|t|^{2(N+1)}\right)$ in the domain $\left|\arg \left(t^{2}\right)\right|<R,\left|t^{2}\right|<r$. This implies $W_{h}^{N}(L) \equiv W_{h}^{N^{\prime}}(L)$ for every $h \leq 2 N+1$, as far as $N<N^{\prime}$. Therefore $w(t)$ can be expressed in the form

$$
w(t)=\sum_{h=2}^{\infty} W_{h}(\log t) t^{h}, \quad W_{h}(L) \in \boldsymbol{A}_{x_{0}, c}[L], \quad 2 \operatorname{deg}_{L} W_{h}+2 \leq h
$$

whose right-hand member converges uniformly in $t^{2} \in \mathcal{R},\left|\arg \left(t^{2}\right)\right|<R,\left|t^{2}\right|<r$. Then $v(\xi)=(1 / 4) \log \xi+c+w\left(\xi^{1 / 2}\right)$ satisfies (A.2). Substituting $v=v(\xi)$ into (A.1), we obtain the required expression, which completes the proof of Theorem A.1.

## References

[1] P. C. T. De Boer and G. S. S. Ludford, Spherical electric probe in a continuum gas, Plasma Phys. 17 (1975), 29-43.
[2] G. Filipuk and R. G. Halburd, Movable algebraic singularities of second-order ordinary differential equations, Preprint (2008), arXiv 0804.2859 v 1.
[3] V. I. Gromak, I. Laine and S. Shimomura, Painlevé differential equations in the complex plane, Walter de Gruyter, Berlin, New York, 2002.
[4] S. P. Hastings and J. B. McLeod, A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation, Arch. Rational Mech. Anal. 73 (1980), 31-51.
[5] W. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.
[6] E. Hille, Ordinary differential equations in the complex domain, John Wiley, New York, 1976.
[7] E. L. Ince, Ordinary differential equations, Dover, New York, 1956.
[8] F. KIRWAN, Complex algebraic curves, Cambridge University Press, Cambridge, 1992.
[9] I. Laine, Nevanlinna theory and complex differential equations, Walter de Gruyter, Berlin, New York, 1993.
[10] P. Painlevé, Euvres de Paul Painlevé, tome 3, Centre Nat. Recherches Sci., Paris, 1972.
[11] S. Shimomura, Proofs of the Painlevé property for all Painlevé equations, Japan. J. Math. 29 (2003), 159180.
[12] S. Shimomura, A class of differential equations of PI-type with the quasi-Painlevé property, Ann. Mat. Pura Appl. 186 (2007), 267-280.
[13] N. Smith, On the singularities in the complex plane of the solutions of $y^{\prime \prime}+y^{\prime} f(y)+g(y)=P(x)$, Proc. London Math. Soc. 3 (1953), 498-512.

[^1]
[^0]:    2000 Mathematics Subject Classification. Primary 34M55; Secondary 34M35.
    Key words and phrases. Nonlinear differential equation, quasi-Painlevé property, Painlevé equation, hyperelliptic integral.

[^1]:    Department of Mathematics
    Keio University
    3-14-1, Hiyoshi, КонокU-KU
    Үоконама 223-8522
    JAPAN
    E-mail address: shimomur@math.keio.ac.jp

