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NONLINEAR DIFFERENTIAL EQUATIONS OF SECOND PAINLEVÉ
TYPE WITH THE QUASI-PAINLEVÉ PROPERTY ALONG
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Abstract. We present a class of nonlinear differential equations of second Painlevé
type. These equations, with a single exception, admit the quasi-Painlevé property along a rec-
tifiable curve, that is, for general solutions, every movable singularity defined by a rectifiable
curve is at most an algebraic branch point. Moreover we discuss the global many-valuedness
of their solutions. For the exceptional equation, by the method of successive approximation,
we construct a general solution having a movable logarithmic branch point.

1. Introduction. For a general solution of the first order nonlinear differential equa-
tion

(1.1) y ′ = R1(x, y)

( ′ = d/dx) with R1(x, y) ∈ C(x, y), every movable singularity (singularity depending on
initial data) is at most an algebraic branch point ([6, §§3.2, 3.3], [7, §12.5]). In particular,
equation (1.1) admits the Painlevé property, that is, every movable singularity of a general
solution is a pole, if and only if (1.1) is of Riccati type.

Consider a second order nonlinear differential equation of the form

(1.2) y ′′ = R2(x, y, y
′)

with R2(x, y, y
′) ∈ C(x, y, y ′). For a general solution of (1.2), a movable singularity is not

always an algebraic branch point. For example,

y ′′ = −(1 + 2y2)(y ′)2/y (resp. y ′′ = (1 + i)(y ′)2/y)

has the general solution y = √
C1 + log(x − C2) with a logarithmic branch point at x = C2

and an algebraic branch point at x = C2 + e−C1 (resp. y = C1(x − C2)
i with an essential

singularity at x = C2). Let y(x) be a general solution of (1.2) analytic at a base point x = x0.

For rectifiable curves Γ and Γ ′ issuing from x0 and terminating in a0, suppose that y(x) is
analytic along Γ and Γ ′ except at a0. These curves are said to be equivalent, if, for every
neighbourhood U of a0, there exists an open set ∆U such that a0 ∈ ∆U ⊂ U and that the
function elements of y(x) at any points on Γ ∩∆U \ {a0} and on Γ ′ ∩∆U \ {a0} are analytic
continuations of each other along a suitable curve in U . An equivalence class containing Γ
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defines a singularity of y(x) at a0, if y(x) is not analytic at a0. Let us say that equation (1.2)
admits the quasi-Painlevé property along a rectifiable curve, if every movable singularity
(defined by a rectifiable curve as above) of y(x) is at most an algebraic branch point (cf.
[12]). It is natural to regard the Painlevé equations (admitting the Painlevé property) as special
cases belonging to some family of second order differential equations with the quasi-Painlevé
property along a rectifiable curve, like Riccati equations in the category of the first order
differential equations. In [12] we presented a class of differential equations of the form

(1.3) y ′′ = 2(2k + 1)

(2k − 1)2
y2k + x (k ∈ N) ,

and proved that each of them admits the quasi-Painlevé property along a rectifiable curve.
If k = 1, this coincides with the first Painlevé equation. We stress that, for solutions of
(1.2), a movable singularity treated here is defined by a rectifiable curve. As pointed out
in [2] (see also [13]), in the case of a higher order equation, for solutions admitting movable
branch points, a movable singularity defined by a curve of infinite length should be considered
separately. For (1.3) or (Ek), which will be studied in this paper, it is not known whether a
non-algebraic singularity of such type exists or not. For this reason, in this paper, we use the
term ‘quasi-Painlevé property along a rectifiable curve’ instead of ‘quasi-Painlevé property’
in [12].

Let us consider differential equations of the form

(Ek) y ′′ = k + 1

k2
y2k+1 + xy + α (k ∈ N)

with α ∈ C. In this paper, we examine the quasi-Painlevé property along a rectifiable curve
for them, and the global many-valuedness of their solutions. Equation (E1) is nothing less
than the second Painlevé equation. Equation (Ek) with α = 0 is equivalent to a special case of

y ′′ = 2y2τ+1 + xy (τ > 0) .

This equation was given by de Boer and Ludford ([1]) in connection with a problem in plasma
physics, and Hastings and McLeod ([4]) discussed a boundary value problem on the real axis.

Our main results are stated as follows:

THEOREM 1.1. For each k ∈ N \ {2}, equation (Ek) admits the quasi-Painlevé prop-
erty along a rectifiable curve, that is, every movable singularity defined by a rectifiable curve
of a general solution is at most an algebraic branch point. None of the solutions of (E2) have
a movable algebraic branch point.

If k ≥ 3, a general solution can be represented by a Puiseux series around its movable
singularity.

THEOREM 1.2. Let y(x) be a general solution of (Ek) with k ∈ N \ {2}, and suppose
that x0 is a movable algebraic branch point (or a movable pole) of y(x). Then, around x = x0,
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y(x) = ωkξ
−1/k − ωkkx0

6
ξ2−1/k − k2α

3k + 1
ξ2 + cξ2+1/k

+ ωkk

4(k − 2)
ξ3−1/k +

∑
j≥3k

cj ξ
j/k , ξ := x − x0 , ωk = 1 or eπi/k ,

(1.4)

where c is an integration constant, cj (j ≥ 3k) are polynomials in c and x0, and ξ1/k denotes
an arbitrary branch of σ such that σk = ξ.

REMARK 1.1. For (E2) we can construct a general solution having a movable loga-
rithmic branch point (see Theorem A.1 in Appendix).

Equation (Ek) admits the trivial solution y ≡ 0 if and only if α = 0. For entire, mero-
morphic or algebraic nontrivial solutions we have the following:

THEOREM 1.3. (i) Equation (Ek) admits no nontrivial entire solution. Moreover, if
k ≥ 2, then equation (Ek) admits no nontrivial meromorphic solution.

(ii) If k = 2 or if k is an odd integer such that k ≥ 3, then (Ek) admits no nontrivial
algebraic solution, that is, every nontrivial solution is transcendental.

As mentioned above, if k ≥ 2, each nontrivial solution of (Ek) is a many-valued function.
In general, for a solution with movable branch points, it is not easy to know about global
many-valuedness, for example, whether it is algebroid or not, because such a property depends
on their global behaviour. For this question, we have the following:

THEOREM 1.4. Suppose that k ≥ 2. For every ν ∈ N , equation (Ek) admits a two-
parameter family of solutions which are at least ν-valued.

In Section 2 we first prove Theorem 1.2 by computing the coefficients of a Puiseux series
expansion around an algebraic branch point. In Section 3, by using a system of equations de-
rived from (1.4), Theorem 1.1 is established. In showing the quasi-Painlevé property along a
rectifiable curve, we regard a solution of (Ek) as a function on its Riemann surface, and mod-
ify the classical method of proving Painlevé property in such a way that it is applicable to this
case. Sections 4 and 5 are devoted to the proofs of Theorems 1.3 and 1.4, respectively. In the
proof of Theorem 1.4, letting a solution of (Ek) degenerate to the inverse function of a hyper-
elliptic integral, we apply the α-method due to Painlevé to show its many-valuedness, while
he introduced the method to exclude equations admitting many-valued solutions ([10], [7]).
In Appendix, we give a general solution of (E2) expressed by a series containing logarithmic
terms. To construct such a solution, we employ the method of successive approximation, by
which the existence and the convergence are simultaneously shown.

Recently, for a more general class of second order equations containing (1.3) and (Ek)
with k ∈ N \ {2}, under the resonance condition, Filipuk and Halburd ([2]) proved the quasi-
Painlevé property along a rectifiable curve and discussed a singularity corresponding to a
curve of infinite length. The author is grateful to them for bringing their paper [2] to his
attention.
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2. Proof of Theorem 1.2. 2.1. Preparatory lemma. Consider the system of differ-
ential equations

(2.1) dv1/dt = F1(t, v1, v2) , dv2/dt = F2(t, v1, v2) ,

where Fl(t, v1, v2) (l = 1, 2) are analytic in a neighbourhood of (t0, v1,0, v2,0) ∈ C3. Then
we have the following lemma (cf. [3, Corollary A.4], [6, §3.2], [7, §12.3]), which will be used
in the proofs of Theorems 1.1 and 1.2.

LEMMA 2.1. Let C (⊂ C) be a rectifiable curve terminating in t = t0. Suppose that a
solution (v1, v2) = (ϕ(t), ψ(t)) of (2.1) satisfies the following:

(i) ϕ(t) and ψ(t) are analytic along C except at t0;
(ii) there exists a sequence {tn}n∈N ⊂ C \ {t0}, tn → t0 (n → ∞) such that

(ϕ(tn), ψ(tn)) → (v1,0, v2,0).

Then, ϕ(t) and ψ(t) are analytic at t = t0.

2.2. Proof of Theorem 1.2. If k = 1, then (1.4) coincides with a general solution of the
second Painlevé equation around a movable pole (cf. [3, §2], [11, §6]). In what follows we
suppose that k ≥ 2. Let x = x0 be a movable algebraic branch point (or a movable pole) of
y(x). If |y(x)| is bounded along a segment [x∗

0 , x0], then

y ′(x) = y ′(x∗
0 )+

∫ x

x∗
0

(
k + 1

k2 y(t)2k+1 + ty(t)+ α

)
dt

is also bounded, and by Lemma 2.1, y(x) is analytic at x = x0, which is a contradiction.
Hence |y(x0)| = ∞, and we may write

y(x) = A0ξ
γ (1 + o(1)) , ξ = x − x0 , γ < 0 , A0 
= 0 .

Substitution of this into (Ek) yields γ = −1/k, A2k
0 = 1.

Consider the case where A0 = ωk = 1 or eπi/k. Then

y(x) = ωkξ
−1/k +

∞∑
j=m

cj ξ
j/(kµ)

for some integersm and µ satisfying m ≥ −µ+ 1 and µ ≥ 1, where ξ1/(kµ) denotes an arbi-
trary branch. Substituting this series into (Ek), and comparing the coefficients of ξ−2+j/(kµ),
we have (

j

µ
+ k + 1

)(
j

µ
− (2k + 1)

)
cj = Ξj (x0, ci ; i ≤ j − 1) , c−µ = ωk ,

where Ξj are polynomials in x0 and ci . Suppose that J = {j ∈ Z; cj 
= 0, j/µ 
∈ Z} 
= ∅.
Then j0 = min J satisfies Ξj0 = 0, and hence we have j0 = (2k + 1)µ or cj0 = 0, which
contradicts the supposition. Therefore µ = 1. Using the relation above, we have

c2k−1 = −ωkkx0

6
, c2k = − k2α

3k + 1
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and cj = 0 for 0 ≤ j ≤ 2k − 2. For j = 2k + 1, we have

(2.2) Ξ2k+1 =


±4 if k = 2 ,

0 if k ≥ 3 .

If k ≥ 3, then c2k+1 = c, where c is an arbitrary constant. If k = 2, (2.2) yields 0 · c5 = ±4,
which implies that (E2) does not admit a solution with a movable algebraic branch point.

In addition, for each h ∈ Z, we get a solution expanded into a series in (e2πihξ)1/k =
e2πih/kξ1/k with the same coefficients as above, which corresponds to the case where A0 =
eπi(−2h)/k (if ωk = 1) or A0 = eπi(−2h+1)/k (if ωk = eπi/k). This fact means that, for every
l ∈ Z, the solution with A0 = eπil/k is an analytic continuation of the solution with ωk = 1
or eπi/k. In this way we obtain the theorem.

3. Proof of Theorem 1.1. If k = 1, then (E1) admits the Painlevé property. In what
follows we suppose that k ≥ 3.

3.1. System of equations. Let us find a system of equations corresponding to the in-
tegration constants x0, c of (1.4) and equivalent to (Ek), which is a key to proving Theorem
1.1. Series expansion (1.4) is written in the form

(3.1) y(x) = ωkξ
−1/k

(
1− kx

6
ξ2 − ω−1

k k2α

3k + 1
ξ2+1/k+ω−1

k cξ2+2/k+ (2k − 1)k

12(k − 2)
ξ3 +· · ·

)

near x = x0, since x0 = x − ξ. Putting u(x) = 1/y(x) around x = x0, we have

ξ1/k = ωku(x)

(
1 − kx

6
ξ2 − ω−1

k k2α

3k + 1
ξ2+1/k + ω−1

k cξ2+2/k + (2k − 1)k

12(k − 2)
ξ3 + · · ·

)

= ωku(x)

(
1 − kx

6
u(x)2k − k2α

3k + 1
u(x)2k+1 + ωkcu(x)

2k+2

+ (2k − 1)k

12(k − 2)
ωkku(x)

3k + · · ·
)
.

Substituting this into

y ′(x) = −ωk
k
ξ−1−1/k + (2k − 1)(3k − 1)

12(k − 2)
ωkξ

2−1/k − ωkkx

6

(
2 − 1

k

)
ξ1−1/k

− ωkk

6
ξ2−1/k − 2k2α

3k + 1
ξ +

(
2 + 1

k

)
cξ1+1/k + · · · ,

and observing that ωkk = ±1, we have

y ′(x) = k2

2(k − 2)
u(x)2k−1 ∓ u(x)−k−1

k

(
1 + k2x

2
u(x)2k + k2αu(x)2k+1

− (3k + 2)ωkcu(x)2k+2 + · · ·
)
.
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Viewing these identities, we define new unknowns u and v by

y = u−1 ,(3.2)

y ′ = Bu2k−1 ∓ u−k−1

k

(
1 + k2x

2
u2k + k2αu2k+1 + u2k+2v

)
(3.3)

with B = k2/(2(k − 2)). Then, equation (Ek) is written in the form

du

dx
= ±u1−kΦ±(x, u, v) ,

dv

dx
= ∓uk−2Ψ±(x, u, v) ,

where

Φ±(x, u, v) = 1

k

(
1 + k2x

2
u2k + k2αu2k+1 + u2k+2v ∓ Bku4k−1

)
,

Ψ±(x, u, v) = 1

k

(
k2x

2
+ k2αu + u2v ∓ Bkuk

)

×
(
k2(k − 1)x

2
+ k3αu+ (k + 1)u2v ∓ Bk(2k − 1)uk

)
.

For the solution (u, v) = (u(x), v(x)) corresponding to y(x), we regard (x, v) as a function
of u; which is a solution of the system

(3.4)
dx

du
= ± uk−1

Φ±(x, u, v)
,

dv

du
= −u

2k−3Ψ±(x, u, v)
Φ±(x, u, v)

.

Equation (Ek) is equivalent to (3.4), whose right-hand members are analytic at (x, u, v) =
(x0, 0, v0), v0 ∈ C.

3.2. Auxiliary function. By (3.3) and (3.2)

(y ′ − By−(2k−1))2 = y2k+2

k2

(
1 + k2x

2
y−2k + k2αy−2k−1 + y−2k−2v

)2

,

which is written in the form

V = −B2y−4k+2 + k2x2

4
y−2k+2 + k2αxy−2k+1 + k2α2y−2k

+
(

2

k2 + xy−2k + 2αy−2k−1
)
v + y−2k−2

k2 v2
(3.5)

with

(3.6) V := (y ′)2 − 2By−2k+1y ′ − y2k+2

k2 − xy2 − 2αy .

Substituting the solution y(x) of (Ek) into (3.6), we get the auxiliary function V (x) associated
with y(x).

PROPOSITION 3.1. If y(x)−1 is bounded along a rectifiable curve Γ , then V (x) is
also bounded along Γ.
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PROOF. Differentiate V (x) (cf. (3.6)) and eliminate y ′′(x) by using (Ek) (with y =
y(x)). Then we have

V ′(x)− 2(2k − 1)By(x)−2kV (x) = 4(2k − 1)B2y(x)−4k+1y ′(x)
+ 4(k − 1)Bxy(x)−2k+2 + 2(4k − 3)Bαy(x)−2k+1 .

This is written in the form
d

dx

[(
V (x)+ 2B2y(x)−4k+2

)
exp

(
− 2(2k − 1)B

∫
Γ (x)

y(t)−2kdt

)]

= −2By(x)−2k+1
(

2(2k − 1)B2y(x)−4k+1 − 2(k − 1)xy(x)− (4k − 3)α

)

× exp

(
− 2(2k − 1)B

∫
Γ (x)

y(t)−2kdt

)
,

where Γ (x) denotes the part of Γ from its starting point to x. The boundedness of V (x)
immediately follows from this equality. �

3.3. Completion of the proof of Theorem 1.1. Let a0 be a singularity of y(x) defined
by a rectifiable curve Γ terminating in a0 such that y(x) is analytic along Γ \ {a0}. According
to the value A := lim infx→a0, x∈Γ |y(x)|, we divide the proof into three cases:

(i) 0 < A < ∞, (ii) A = ∞, (iii) A = 0.
Case (i). 0 < A < ∞. Since the auxiliary function V (x) is bounded as x → a0

along Γ (cf. Proposition 3.1), there exists a sequence {an}n∈N ⊂ Γ such that an → a0 and
that y(an) → y0 ( 
= 0,∞). Then, by (3.6) with y = y(x), the sequence {y ′(an)}n∈N is
also bounded, and we may choose a subsequence {an(m)}m∈N ⊂ Γ satisfying an(m) → a0,
y(an(m)) → y0 and y ′(an(m)) → y ′

0 ( 
= ∞). By Lemma 2.1, y(x) is analytic at x = a0.

Case (ii). A = ∞. Since y(x) → ∞ as x → a0 along Γ , the function V (x) is
bounded along Γ near x = a0. Substitution of (y, V ) = (y(x), V (x)) into (3.5) yields a
quadratic equation with respect to v. This equation admits a solution v = v−(x) which is
analytic and bounded along Γ \ {a0}. Note that one of the signs ∓ in (3.3) (resp. ± in (3.4))
corresponds to the branch v−(x). Let u(x) be the branch corresponding to v−(x). Denote by
x = x(u) the inverse function of u = u(x), whose existence is guaranteed by the fact that
|u′(x)| = |y ′(x)/y(x)2| ∼ |y(x)k−1|/k 
= 0,∞ along Γ \ {a0} (cf. (3.6)). Consider the
functions x = x(u) and v = v−(x(u)) which are analytic in u along u(Γ ) \ {0} = {u =
u(x); x ∈ Γ \ {a0}}. Then

(ii.a) x(u) → a0 as u → u(a0) = 0 along u(Γ );
(ii.b) v−(x(u)) is bounded along u(Γ );
(ii.c) (x, v) = (x(u), v−(x(u))) satisfies (3.4).

Choosing a sequence {bn}n∈N ⊂ u(Γ ) satisfying bn → u(a0) = 0, x(bn) → a0 and
v−(x(bn)) → v0 ( 
= ∞), and using Lemma 2.1, we deduce that x(u) is analytic at u = 0,
which implies that x = a0 is at most an algebraic branch point of y(x).

Case (iii). A = 0. In this case, we regard y(x) as an analytic function on the Riemann
surface Ry with the projection πy : Ry → C. Then Γ \ {a0} lies on Ry , and πy(a0) :=
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limx→a0,x∈Γ πy(x) is the end point of πy(Γ \ {a0}). For any curve C ⊂ Ry, denote by
‖C‖ the length of πy(C) ⊂ C. For a ∈ Ry and for ρ0 > 0, denote by U(a; ρ0) (⊂ Ry)

the connected component of π−1
y ({ζ ∈ C ; |ζ − πy(a)| < ρ0}) ⊂ Ry containing a. The

projection πy : U(a; ρ0) → {ζ ∈ C ; |ζ − πy(a)| < ρ0} is a homeomorphism, provided that
ρ0 is sufficiently small.

The following fact is obtained from [11, Lemma 2.2] with R0 = ∆ = 1/2, K = 1 +
|πy(a0)| + |α|.

LEMMA 3.2. Set θ0 := (1 + |πy(a0)| + |α|)−1/42. Let c ∈ Ry be a point such that
|πy(c)−πy(a0)| < 1/4. If the inequalities |y(c)| ≤ θ0/6 and |y ′(c)| ≥ 2 hold, then y(x) is an-
alytic in U(c; |y ′(c)|−1θ0) and satisfies |y(x)| ≥ θ0/4 on the boundary ∂U(c; |y ′(c)|−1θ0/2).

Put Γ0 := {x ∈ Γ ; |y(x)| ≤ θ0/6} ⊂ Ry. The supposition A = 0 implies Γ0 ∩ {x ∈
Γ ; ‖Γ (x, a0)‖ < ε} 
= ∅ for every ε > 0, where Γ (x, a0) denotes the part of Γ from x to
a0. We may suppose that |y ′(x)| ≥ 2 for x ∈ Γ0. Indeed, if this is not the case, then y(x)
is analytic at x = a0 (cf. Lemma 2.1). Let a∗ ∈ Ry be a point such that ‖Γ (a∗, a0)‖ <
1/4. Let us start from a∗ and proceed along Γ toward x = a0. Let c1 be the point in Γ0

that we meet for the first time. By Lemma 3.2, there exists D1 := U(c1; |y ′(c1)|−1θ0/2)
such that |y(x)| ≥ θ0/4 on ∂D1. Then a0 
∈ D1, and ∂D1 ∩ Γ0 = ∅. Restart from c1 and
proceed along Γ toward a0 until we meet c2 ∈ Γ0 \D1. Then, |y(x)| ≥ θ0/4 on ∂D2, where
D2 := U(c2; |y ′(c2)|−1θ0/2), which satisfies a0 
∈ D2 and ∂D2 ∩ Γ0 = ∅. Repeating this
procedure, we get the sequences {Dn}n∈N and {cn}n∈N ⊂ Γ0 of discs and their centres with
the properties:

(iii.a) Dn := U(cn; rn), rn := |y ′(cn)|−1θ0/2;
(iii.b) |y(x)| ≥ θ0/4 on ∂Dn;
(iii.c) a0 
∈ Dn and ∂Dn ∩ Γ0 = ∅;
(iii.d) ‖Γ (cn, cn+1)‖ > rn and

∑
n≥1 rn ≤ ‖Γ ‖, where Γ (cn, cn+1) is the part of Γ

from cn to cn+1.
If cn approaches some point c∞ ∈ Γ \ {a0}, then rn = |y ′(cn)|−1θ0/2 → 0 as n → ∞
(cf. (iii.a) and (iii.d)), that is, |y ′(c∞)| = ∞, which contradicts the analyticity of y(x) along
Γ \ {a0}. This implies that cn → a0 as n → ∞, and hence Γ0 ⊂ ⋃∞

n=1Dn. For each n, there
exist only a finite number of Dj (j 
= n) such that Dj ∩Dn 
= ∅. By (iii.d), we may choose
a rectifiable curve Γ∗ with the properties:

(iii.e) Γ∗ ⊂ ∂(Γ ∪ (⋃∞
n=1 Dn)) ⊂ Ry ;

(iii.f) Γ∗ terminates in a0;
(iii.g) |y(x)| ≥ θ0/6 on Γ∗ \ {a0};
(iii.h) y(x) is analytic along Γ∗ \ {a0}.

Hence this case is reduced to either (i) or (ii). Consequently x = a0 is at most an algebraic
branch point of y(x), which completes the proof of Theorem 1.1.

4. Proof of Theorem 1.3. Let us review some facts of value distribution theory.
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For a meromorphic function f (z) in C, the proximity function, the counting function
and the characteristic function are given by

m(r, f ) := 1

2π

∫ 2π

0
log+ |f (reiφ)|dφ , log+ s := max{log s, 0} ,

N(r, f ) :=
∫ r

0
(n(ρ, f )− n(0, f ))

dρ

ρ
+ n(0, f ) log r ,

T (r, f ) := m(r, f )+N(r, f ) ,

respectively, where n(r, f ) denotes the number of poles of f (z) in the disc |z| ≤ r, each
counted according to its multiplicity. The characteristic function T (r, f ) is monotone in-
creasing with respect to r. Furthermore T (r, f ) = O(log r) if and only if f (z) is a rational
function (cf. [5], [9]). The following lemma is useful in the study of nonlinear differential
equations (cf. [3, Lemma B.11], [9, Lemma 2.4.2]).

LEMMA 4.1. Suppose that a meromorphic function w = f (z) satisfies the differential
equation wp+1 = P(z,w), p ∈ N , where P(z,w) is a polynomial in z,w,w′, ..., w(q).
If the total degree of P(z,w) with respect to w and its derivatives does not exceed p, then
m(r, f ) = O(log T (r, f ) + log r) as r → ∞, r 
∈ E, where E ⊂ (0,∞) is an exceptional
set of finite linear measure.

To prove the first assertion of Theorem 1.3, suppose that y∗(x) is a nontrivial entire
solution of (Ek). If y∗(x) is a polynomial such that y∗(x) = Cxγ0 + O(xγ0−1), γ0 ∈ N ,

C 
= 0 near x = ∞, then we have (2k + 1)γ0 = γ0 + 1, which is a contradiction. Hence
y∗(x) is transcendental and entire, so that m(r, y∗) = T (r, y∗). By Lemma 4.1, for some
K0 > 0, we have T (r, y∗) ≤ K0 log r outside an exceptional set E0 of total length µ0 < ∞.

For each r , we may choose a number r ′(r) ≥ r satisfying r ′(r) − r ≤ 2µ0 and r ′(r) 
∈ E0.

Then
T (r, y∗) ≤ T (r ′(r), y∗) ≤ K0 log(r ′(r)) ≤ K0 log(r + 2µ0) = O(log r)

for r > 0, which contradicts the transcendence of y∗(x). This implies that (Ek) admits no
nontrivial entire solution. Theorems 1.1 and 1.2 imply that each solution of (Ek) with k ≥ 2
admits no pole. In this way we obtain the first assertion.

By Theorem 1.1 again, equation (E2) admits no nontrivial algebraic solution. It is suffi-
cient to show the second assertion for each odd integer k ≥ 3. To prove by contradiction, we
suppose the existence of a nontrivial algebraic solution. It is expanded into a Puiseux series
of the form (−k2/(k + 1))1/(2k)x1/(2k) + ∑∞

j=2k bjx
−j/(2k) around the point x = ∞, for

which the degree of ramification is e∞ − 1 = 2k − 1. By Theorem 1.2, for each branch point
xι 
= ∞, the degree of ramification is eι − 1 = k − 1, which is even. These facts contradict
the Riemann-Hurwitz formula

2(1 − g) = 2d −
∑
ι 
=∞

(eι − 1)− (e∞ − 1) ,

where d is the degree and g is the genus (see, for example [8]). Therefore (Ek) admits no
nontrivial algebraic solution.
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5. Proof of Theorem 1.4. 5.1. Inverse function of a hyperelliptic integral. The
hyperelliptic integral

(5.1) t − t0 =
∫ w(t)

w0

ds√
s2k+2 + C

, C 
= 0

defines the function Y = w(t) satisfying the differential equations

(5.2) Ẏ 2 = Y 2k+2 + C (Ẏ = dY/dt)

and

(5.3) Ÿ = (k + 1)Y 2k+1 .

By (5.1), every movable singularity of w(t) is an algebraic branch point (see also [7, Chap.
13]).

Suppose that k ≥ 3. We construct the Riemann surface of
√
s2k+2 + C in the standard

manner. Set ζh := (−C)1/(2k+2)e2πih/(2k+2) (h = 0, 1, ..., 2k + 1), and denote by Xε (ε =
1, 2) two copies of P 1(C) \ (⋃k

j=0Σj
)

cut along the segments Σj := [ζ2j , ζ2j+1] (j =
0, 1, ..., k), where P 1(C) = C ∪ {∞}. Let Σ−

j and Σ+
j be the edges of the cut Σj . Gluing

Σ−
j (resp. Σ+

j ) of X1 to Σ+
j (resp. Σ−

j ) of X2, we get the Riemann surface of
√
s2k+2 + C

admitting 2k cycles. Let γ1 (resp. γ2) be the cycle lying in X1 and surrounding only Σ0 =
[ζ0, ζ1] (resp. Σ1 = [ζ2, ζ3]) in the positive sense. In addition, choose another cycle γ0 =
S1 ∪ S2, where S1 (resp. S2) is the segment in X1 (resp. in X2) from ζ1 to ζ2 (resp. ζ2 to ζ1).
Now consider periods of w(t) written as

ωj :=
∫
γj

ds√
s2k+2 + C

(j = 0, 1, 2) ,

where the branches of the integrands are taken in such a way that they coincide at the point
s = (ζ1 + ζ2)/2 ∈ X1. It is easy to check that ω1 = ω0e

−πi/(k+1) and that ω2 = ω0e
πi/(k+1).

LEMMA 5.1. Set λ := (ω1 + ω2)/ω0 = 2 cos(π/(k + 1)). If k ≥ 3, then there exist
infinitely many pairs (p, q) ∈ N2 such that |qλ− p| < 1/q.

PROOF. It is sufficient to show that λ is an irrational number. We write 2(k + 1) =
2d(2l + 1), d ∈ N , l ∈ N ∪ {0}. If l = 0, then d ≥ 3, and hence λ = 2 cos(π/2d−1) is
an irrational number. Next suppose that l = 1. Since k ≥ 3, we have d ≥ 2, and hence
λ = 2 cos(θ1/2d), θ1 = 2π/3 is an irrational number. Finally suppose that l ≥ 2. Set
� := e2πi/(2l+1). Since (�l + �−l )+ · · · + (� + �−1) + 1 = 0, the number µ = � + �−1 =
2 cos(2π/(2l + 1)) satisfies

µl + κl−1µ
l−1 + · · · + κ1µ+ κ0 = 0 , κj ∈ Z ,

which implies µ is irrational. Indeed, if µ ∈ Q, then µ ∈ Z, so that µ = 0,±1, which
contradicts l ≥ 2. Consequently λ = 2 cos(θl/2d) with θl = 2π/(2l + 1) is also an irrational
number. �

PROPOSITION 5.2. If k ≥ 3 and if C 
= 0, then w(t) is infinitely many-valued.
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PROOF. Suppose that w(t) is finitely many-valued. Consider the Riemann surface of
w(t) denoted by Rw with the projection πw : Rw → C. Choose a point b0 ∈ C with the
property: there exists an open set U0 � b0 such that, for every connected component W of
π−1
w (U0) ⊂ Rw , the restriction of πw to W is a homeomorphism between W and U0. Take

a point β0 ∈ π−1
w (b0). By Lemma 5.1, there exists a sequence {σn}n∈N ⊂ Rw together with

(pn, qn) ∈ N2 such thatw(σn) = w(β0) and that πw(σn) = πw(β0)+qn(ω1 +ω2)−pnω0 →
b0 as n → ∞. Since π−1

w (b0) is a finite set, there exist a subsequence {σn(m)}m∈N and a point
β∞ ∈ π−1

w (b0) such that w(σn(m)) = w(β0) and that σn(m) → β∞ as m → ∞. Hence
w(t) ≡ w(β0) on Rw, which is a contradiction. This completes the proof. �

REMARK 5.1. If k = 2, then (5.2) admits the general solution w(t) = √
g(t − t0),

where g(t) is an elliptic function of Jacobi type satisfying ġ(t)2 = 4g(t)4 + 4Cg(t). In this
case w(t) is a 2-valued algebroid function.

5.2. Completion of the proof of Theorem 1.4. If k = 2, then Theorem A.1 in Ap-
pendix implies the existence of a general solution with a movable logarithmic branch point,
from which the conclusion of Theorem 1.4 immediately follows. It is sufficient to prove the
theorem under the supposition k ≥ 3. Let y(x) be a solution of (Ek) satisfying the initial
condition y(0) = y0, y

′(0) = y1. Let ε be an arbitrary small positive number. The change of
variables y = k1/kε−1Y , x = εkt takes (Ek) into

(5.4) Ÿ = (k + 1)Y 2k+1 + ε3ktY + k−1/kαε2k+1 ,

which admits the solution Yε(t) = k−1/kεy(t) satisfying Yε(0) = χ0(ε) := k−1/kεy0 and
Ẏε(0) = χ1(ε) := k−1/kεk+1y1. Equation (5.4) with ε = 0 coincides with (5.3). Let Y0(t) be
the solution of (5.3) satisfying the same initial condition

(5.5) Y0(0) = χ0(ε) , Ẏ0(0) = χ1(ε) .

Then Y0(t) is also a solution of

(5.6) Ẏ 2 = Y 2k+2 + χ1(ε)
2 − χ0(ε)

2k+2 .

Consider the Riemann surface of Y0(t) denoted by R0 with the projection π0 : R0 → C. Let
τ0 ∈ R0 be a point such that π0(τ0) = 0 at which initial condition (5.5) is given. Let ν be an
arbitrary natural number. By Proposition 5.2 with C = 1/2 and the continuity with respect to
initial data, we may choose δ = δ(ν) > 0 so small that the conditions

(5.7) |χ0(ε)− 2−1/(2k+2)| < δ , |χ1(ε)− 1| < δ

guarantee the existence of ν rectifiable paths Γj ⊂ R0 (1 ≤ j ≤ ν) with the properties:
(i) Γj starts from τ0 and terminates in τj , where τj (1 ≤ j ≤ ν) satisfy π0(τ1)

= · · · = π0(τν);
(ii) Γj is independent of χ0(ε) and χ1(ε);
(iii) Y0(t) continues analytically along Γj (1 ≤ j ≤ ν);
(iv) |Y0(τj )− Y0(τj ′)| > δ for every pair (j, j ′) such that j 
= j ′.
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Then Yε(t) satisfying (5.4) also continues analytically along Γj (1 ≤ j ≤ ν) to ν different
branches, provided that ε > 0 is sufficiently small. For such ε, as long as the initial data
y0 and y1 satisfy (5.7), the solution y(x) is a ν-valued function. This completes the proof of
Theorem 1.4.

Appendix. General solution of (E2). There exists a general solution of (E2) with a
movable logarithmic branch point described as follows:

THEOREM A.1. For given complex numbers x0 and c, equation (E2) admits a solution
expressible in the form

y(x) = ω2ξ
−1/2 − ω2x0

3
ξ3/2 − 4α

7
ξ2 +

(
ω2

4
log ξ + c

)
ξ5/2 +

∑
j≥6

Λj(log ξ)ξj/2 ,

ξ = x − x0, ω2 = 1 or i

with the properties:
(i) Λj (L) ∈ Ax0,c[L], Ax0,c := C[x0, c], 2 degL Λj + 7 ≤ j ;

(ii) the series on the right-hand side converges for ξ ∈ R satisfying |ξ | < r, |arg ξ | <
R, where R is an arbitrary large positive number, r = r(R) is a sufficiently small positive
number depending on R, and R is the universal covering of C \ {0}.

A.1. Derivation of an integral equation. In what follows we suppose that ω2 = 1. The
case ω2 = i can be treated in a similar manner. By the same argument as in Section 2.2, we
get the first three terms ξ−1/2 − (x0/3)ξ3/2 − (4α/7)ξ2. Set

(A.1) y = ξ−1/2 − x0

3
ξ3/2 − 4α

7
ξ2 + ξ5/2v , ξ = x − x0

and substitute this into (E2). Then we have

ξ2 d
2v

dξ2
+ 5ξ

dv

dξ
= 1 + ξg0(ξ)+ ξ2g1(ξ)v + ξ3g2(ξ)v

2 + ξ6g3(ξ)v
3

+ ξ9g4(ξ)v
4 + 3

4
ξ12v5

(A.2)

with gι(ξ) ∈ Ax0[ξ1/2], Ax0 := C[x0] (0 ≤ ι ≤ 4), g0(0) = x0/2. The change of variables

ξ1/2 = t, v = 1

4
log ξ + c + w = 1

2
log t + c + w

takes (A.2) into

(A.3)
d2w

dt2
+ 9t−1 dw

dt
= F(t,w)

with

(A.4) F(t,w) =
5∑
ι=0

Pι(t, log t)wι , Pι(t, L) =
m(ι)∑
h=e(ι)

pιh(L)t
h
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satisfying

e(ι) ≥ 2ι ,(A.5)

pιh(L) ∈ Ax0,c[L] , 2 degL pιh ≤ h , p00(L) ≡ 2x0 .(A.6)

Observing that the equation d2w/dt2 + 9t−1dw/dt = 0 admits the solutions w = 1 and
w = t−8, we consider the integral equation

(A.7) w(t) = 1

8

∫ t

0
(s − t−8s9)F (s,w(s))ds ,

for t ∈ R, where the path of integration is the segment joining 0 to t . The solution of (A.7)
satisfies equation (A.3).

A.2. Logarithmic polynomials. Let L be the set of polynomials in (t, log t) written in
the form

P(t, log t) =
m∑
h=0

ph(log t)th

with

ph(L) ∈ Ax0,c[L] , 2 degL ph + 2 ≤ h (0 ≤ h ≤ m) .

It is easy to see that, for any h, l ∈ N ∪ {0},∫ t

0
sh(log s)lds = th+1�hl(log t) , �hl(L) ∈ Q[L] , degL �hl = l ,

which implies the following:

LEMMA A.2. If P(t, log t) ∈ L, then

Pint(t, log t) :=
∫ t

0
P(s, log s)ds ∈ L ,

degt Pint(t, L) = degt P (t, L)+ 1 , degL Pint(t, L) = degL P(t, L) .

A.3. Iterative sequence. Define the sequence {wn(t)}∞n=0 by the recursive relation

w0(t) ≡ 0 ,

wn+1(t) = 1

8

∫ t

0
(s − t−8s9)F (s,wn(s))ds

(A.8)

for n ≥ 0. By (A.4), (A.5) and Lemma A.2, we can inductively verify wn(t) ∈ L and
wn+1(t)−wn(t) ∈ L for n ≥ 0.

For given R > 0, choose r < 1 so small that |t log t| < |t|1/2 holds for |arg(t2)| < R,

|t2| < r. By (A.4), (A.5) and (A.6),

|F(t, 0)| ≤ M0 ,(A.9)

|F(t,w)− F(t, u)| ≤ M0|t| |w − u| ,(A.10)

for

(A.11) | arg(t2)| < R , |t2| < r , |w| < 1 , |u| < 1 ,
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where M0 = M0(|c|, |x0|) is some positive number independent of R and r . Hence by (A.8),

(A.12) |wn+2(t)−wn+1(t)| ≤ M0

4

∫ t

0
|s|2|wn+1(s)−wn(s)| |ds| ,

provided that (t, u,w) = (t, wn,wn+1) satisfies (A.10). Then, if necessary, retaking r smaller
in such a way that

(A.13) exp(M0r
2/8)− 1 < 1/2 ,

we have the following:

|wn(t)| < 1 ,(A.14)

|wn+1(t)− wn(t)| ≤ Mn+1
0 |t|2(n+1)

8n+1(n+ 1)!(A.15)

(n ≥ 0) for |arg(t2)| < R, |t2| < r. These are verified by induction on n. Since

|w1(t)−w0(t)| ≤ 1

4

∫ t

0
|s| |F(s, 0)| |ds| ≤ M0

8
|t|2 ,

inequalities (A.14) and (A.15) are valid for n = 0. Moreover, supposing that (A.14) and
(A.15) are valid for n ≤ N , we deduce that

|wN+1(t)| ≤ |w0(t)| +
N∑
n=0

|wn+1(t)− wn(t)|

≤
N∑
n=0

Mn+1
0 |t|2(n+1)

8n+1(n+ 1)! ≤ exp(M0|t|2/8)− 1 ≤ 1

2
,

and that, by (A.12) ,

|wN+2(t)− wN+1(t)| ≤ M0

4

∫ t

0

MN+1
0 |s|2(N+1)+2

8N+1(N + 1)! |ds| ≤ MN+2
0 |t|2(N+2)

8N+2(N + 2)! .
Thus we have verified (A.14) and (A.15) for all n ≥ 0.

A.4. Completion of the proof of Theorem A.1. By (A.15),w(t) := limn→∞ wn(t) =∑∞
n=0(wn+1(t) − wn(t)) is holomorphic for t ∈ R, |arg(t2)| < R, |t2| < r, and satisfies

|w(t) − wn(t)| ≤ C0|t|2(n+1) for every n, where C0 is a constant independent of n. Write
wn(t) ∈ L in the form

wn(t) =
m∗(n)∑
h=2

Wn
h (log t)th , Wn

h (L) ∈ Ax0,c[L] , 2 degL W
n
h + 2 ≤ h .

By (A.15) again, for every pair (N,N ′) such that N < N ′, we have |wN ′(t) − wN(t)| =
O(|t|2(N+1)) in the domain |arg(t2)| < R, |t2| < r. This implies WN

h (L) ≡ WN ′
h (L) for

every h ≤ 2N + 1, as far as N < N ′. Thereforew(t) can be expressed in the form

w(t) =
∞∑
h=2

Wh(log t)th , Wh(L) ∈ Ax0,c[L] , 2 degL Wh + 2 ≤ h ,
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whose right-hand member converges uniformly in t2 ∈ R, |arg(t2)| < R, |t2| < r. Then
v(ξ) = (1/4) log ξ + c+w(ξ1/2) satisfies (A.2). Substituting v = v(ξ) into (A.1), we obtain
the required expression, which completes the proof of Theorem A.1.
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