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NONLINEAR DIFFERENTIAL EQUATIONS OF SECOND PAINLEVE
TYPE WITH THE QUASI-PAINLEVE PROPERTY ALONG
A RECTIFIABLE CURVE
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Abstract. We present a class of nonlinear differential equations of second Painlevé
type. These equations, with a single exception, admit the quasi-Painlevé property along a rec-
tifiable curve, that is, for general solutions, every movable singularity defined by a rectifiable
curve is at most an algebraic branch point. Moreover we discuss the global many-valuedness
of their solutions. For the exceptional equation, by the method of successive approximation,
we construct a general solution having a movable logarithmic branch point.

1. Introduction. For a general solution of the first order nonlinear differential equa-
tion

(1.1) y'=Ri(x,y)

(" = d/dx) with R|(x,y) € C(x,y), every movable singularity (singularity depending on
initial data) is at most an algebraic branch point ([6, §§3.2, 3.3], [7, §12.5]). In particular,
equation (1.1) admits the Painlevé property, that is, every movable singularity of a general
solution is a pole, if and only if (1.1) is of Riccati type.

Consider a second order nonlinear differential equation of the form

(1.2) y'=Ra(x,y,y)

with Ry(x, y,y’) € C(x,y,y"). For a general solution of (1.2), a movable singularity is not
always an algebraic branch point. For example,

= =142y (esp. y'=1+i)()?/y)

has the general solution y = \/ C1 + log(x — C7) with a logarithmic branch point at x = C»
and an algebraic branch point at x = C5 + ¢~ €1 (resp. y = C1(x — C3)" with an essential
singularity at x = C3). Let y(x) be a general solution of (1.2) analytic at a base point x = xy.
For rectifiable curves I' and '’ issuing from x¢ and terminating in ag, suppose that y(x) is
analytic along I" and I"’ except at ag. These curves are said to be equivalent, if, for every
neighbourhood U of ay, there exists an open set Ay such that ap € Ay C U and that the
function elements of y(x) at any points on I" N Ay \ {ap} and on I"' N Ay \ {ap} are analytic
continuations of each other along a suitable curve in U. An equivalence class containing I”
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defines a singularity of y(x) at ag, if y(x) is not analytic at ag. Let us say that equation (1.2)
admits the quasi-Painlevé property along a rectifiable curve, if every movable singularity
(defined by a rectifiable curve as above) of y(x) is at most an algebraic branch point (cf.
[12]). Itis natural to regard the Painlevé equations (admitting the Painlevé property) as special
cases belonging to some family of second order differential equations with the quasi-Painlevé
property along a rectifiable curve, like Riccati equations in the category of the first order
differential equations. In [12] we presented a class of differential equations of the form

y 2C2k+1) o

(1.3) T (2k—1)2

+x (ke N),

and proved that each of them admits the quasi-Painlevé property along a rectifiable curve.
If kK = 1, this coincides with the first Painlevé equation. We stress that, for solutions of
(1.2), a movable singularity treated here is defined by a rectifiable curve. As pointed out
in [2] (see also [13]), in the case of a higher order equation, for solutions admitting movable
branch points, a movable singularity defined by a curve of infinite length should be considered
separately. For (1.3) or (Ex), which will be studied in this paper, it is not known whether a
non-algebraic singularity of such type exists or not. For this reason, in this paper, we use the
term ‘quasi-Painlevé property along a rectifiable curve’ instead of ‘quasi-Painlevé property’
in [12].

Let us consider differential equations of the form

k1

2 y2k+1+xy+a (ke N)

(Ex)
with & € C. In this paper, we examine the quasi-Painlevé property along a rectifiable curve
for them, and the global many-valuedness of their solutions. Equation (E1) is nothing less
than the second Painlevé equation. Equation (E) with o = 0 is equivalent to a special case of

2t+1

y' =2y +xy (t >0).

This equation was given by de Boer and Ludford ([1]) in connection with a problem in plasma
physics, and Hastings and McLeod ([4]) discussed a boundary value problem on the real axis.
Our main results are stated as follows:

THEOREM 1.1. Foreachk € N \ {2}, equation (Ey) admits the quasi-Painlevé prop-
erty along a rectifiable curve, that is, every movable singularity defined by a rectifiable curve
of a general solution is at most an algebraic branch point. None of the solutions of (E2) have
a movable algebraic branch point.

If £ > 3, a general solution can be represented by a Puiseux series around its movable
singularity.

THEOREM 1.2. Let y(x) be a general solution of (Ex) with k € N \ {2}, and suppose
that xo is a movable algebraic branch point (or a movable pole) of y(x). Then, around x = xy,
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2
ik okkxo o K 241/k
y yx) = wié 6 ° 3k+1§ e
(1.4) wik 31/k+ZC§]/k £:=x—xp wk:loreni/k
T ’ ’

j>3k

where c is an integration constant, c; (j > 3k) are polynomials in ¢ and x, and & 1k denotes
an arbitrary branch of o such that o = &.

REMARK 1.1. For (Ep) we can construct a general solution having a movable loga-
rithmic branch point (see Theorem A.1 in Appendix).

Equation (Ey) admits the trivial solution y = 0 if and only if « = 0. For entire, mero-
morphic or algebraic nontrivial solutions we have the following:

THEOREM 1.3. (i) Equation (Ex) admits no nontrivial entire solution. Moreover, if
k > 2, then equation (Ey) admits no nontrivial meromorphic solution.

(1) Ifk =2 orifkis an odd integer such that k > 3, then (Ey) admits no nontrivial
algebraic solution, that is, every nontrivial solution is transcendental.

As mentioned above, if k > 2, each nontrivial solution of (Ey) is a many-valued function.
In general, for a solution with movable branch points, it is not easy to know about global
many-valuedness, for example, whether it is algebroid or not, because such a property depends
on their global behaviour. For this question, we have the following:

THEOREM 1.4. Suppose that k > 2. For every v € N, equation (Ey) admits a two-
parameter family of solutions which are at least v-valued.

In Section 2 we first prove Theorem 1.2 by computing the coefficients of a Puiseux series
expansion around an algebraic branch point. In Section 3, by using a system of equations de-
rived from (1.4), Theorem 1.1 is established. In showing the quasi-Painlevé property along a
rectifiable curve, we regard a solution of (Ex) as a function on its Riemann surface, and mod-
ify the classical method of proving Painlevé property in such a way that it is applicable to this
case. Sections 4 and 5 are devoted to the proofs of Theorems 1.3 and 1.4, respectively. In the
proof of Theorem 1.4, letting a solution of (E;) degenerate to the inverse function of a hyper-
elliptic integral, we apply the o-method due to Painlevé to show its many-valuedness, while
he introduced the method to exclude equations admitting many-valued solutions ([10], [7]).
In Appendix, we give a general solution of (E;) expressed by a series containing logarithmic
terms. To construct such a solution, we employ the method of successive approximation, by
which the existence and the convergence are simultaneously shown.

Recently, for a more general class of second order equations containing (1.3) and (Ey)
with k € N \ {2}, under the resonance condition, Filipuk and Halburd ([2]) proved the quasi-
Painlevé property along a rectifiable curve and discussed a singularity corresponding to a
curve of infinite length. The author is grateful to them for bringing their paper [2] to his
attention.
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2. Proof of Theorem 1.2. 2.1. Preparatory lemma. Consider the system of differ-
ential equations

(2.1) dvi/dt = Fi(t,v1,v2), dvy/dt = Fo(t, v1, 1),

where Fj(t, v1, v2) (I = 1, 2) are analytic in a neighbourhood of (fy, v1,0, v2,0) € C3. Then
we have the following lemma (cf. [3, Corollary A.4], [6, §3.2], [7, §12.3]), which will be used
in the proofs of Theorems 1.1 and 1.2.

LEMMA 2.1. Let C (C C) be a rectifiable curve terminating in t = ty. Suppose that a
solution (v1, v2) = (1), ¥ (1)) of (2.1) satisfies the following:
(1) (1) and (t) are analytic along C except at to;
(i) there exists a sequence {ty}nen C C \ {to}, t, — to (n — 00) such that
(@(tn), ¥ (12)) — (v1,0, v2,0)-
Then, ¢(t) and  (t) are analytic at t = ty.

2.2. Proof of Theorem 1.2. If k = 1, then (1.4) coincides with a general solution of the
second Painlevé equation around a movable pole (cf. [3, §2], [11, §6]). In what follows we
suppose that k > 2. Let x = x( be a movable algebraic branch point (or a movable pole) of
y(x). If |y(x)| is bounded along a segment [x(’)‘, xo], then
X

V@) =y + / |

"
Xo

k+1
(lcizy(t)z’”rl +1y(1) + ot)dt

is also bounded, and by Lemma 2.1, y(x) is analytic at x = xo, which is a contradiction.
Hence |y(x¢)| = 0o, and we may write

y(x) =Aot" (1 +o(1), &=x-x0, y <0, Ag#0.

Substitution of this into (E) yields y = —1/k, AZF = 1.
Consider the case where Ag = w; = 1 or e™ i/k Then

[e¢)
yx) = o E 4y e/

j=m

for some integers m and  satisfying m > —u + 1 and ;o > 1, where £!/*#) denotes an arbi-
trary branch. Substituting this series into (Ey), and comparing the coefficients of & =24/,
we have

(ﬁjtk—l—l)(ﬁ—@k—l—l))c./ = Ej(xo.ciii<j—1), o=,

where & are polynomials in xo and ¢;. Suppose that J = {j € Z;¢c; #0, j/u & Z} # 0.
Then jo = min J satisfies &, = 0, and hence we have jo = (2k + 1) or ¢j, = 0, which
contradicts the supposition. Therefore i = 1. Using the relation above, we have

wrkxg Ko
5 ok = —
6 3k+1

C2k—1 = —
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andc; =0for0 < j <2k —2.For j =2k + 1, we have

+4 if k=2,

2.2 E =
(2.2) 2Ue+1 0 —_—

If k > 3, then c2x4+1 = ¢, where ¢ is an arbitrary constant. If k = 2, (2.2) yields 0 - c5 = £4,
which implies that (E») does not admit a solution with a movable algebraic branch point.

In addition, for each & € Z, we get a solution expanded into a series in (62” ih& )1/ k=
e2mih/ ké 17k with the same coefficients as above, which corresponds to the case where Ag =
Tk (if g = 1) or Ag = ™ HHD/K (if gy = ¢™/k). This fact means that, for every
[ € Z, the solution with Ag = ™!/ is an analytic continuation of the solution with w; = 1
or ¢™'/* In this way we obtain the theorem.

3. Proof of Theorem 1.1. If k = 1, then (E;) admits the Painlevé property. In what
follows we suppose that k > 3.

3.1. System of equations. Let us find a system of equations corresponding to the in-
tegration constants xo, ¢ of (1.4) and equivalent to (Ex), which is a key to proving Theorem
1.1. Series expansion (1.4) is written in the form

kx , o 'Ka 2k — 1)k
3.1 —n g VR[22 g2 Tk T T e kg = e 242/k 3,
G yx) =k ( ¢ 3k+1€ +o ' cE +12(k—2)§ +

near x = xo, since xo = x — &. Putting u(x) = 1/y(x) around x = x¢, we have

kx P 2k — Dk
1/k _ 1= g2 % 241/k —1 _£242/k 3,
§ wkM(X)( 6 3 ETwE 3 + oy + 7120(—2)5 + )

k k2
= wru(x) (1 — —xu(x)Zk — —O{u(x)Zk'H + a)kcu()c)Zk"'2

6 3k+1
Qk - Dk %
12(k—2)wku(x) + .

Substituting this into

wE . __ 2k—1)3Bk—1) _ wrkx 1 _
_75 1=tk g R DORT ) g2 1/k__<2 >§1 1/k

Y= nk-2 % 5 27k

wik 2-1/k 2% 1 1+1/k
- = - 24 - e
5 § 3k+1.§+ + c& +

and observing that a)’g = =+1, we have

k2 —k—1 k2
V(x) = mu(x)%fl - %(1 n Txu(x)zk o)

— Bk + 2wpcu(x)*t2 + .. ) .
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Viewing these identities, we define new unknowns u and v by

(3.2) y=u"",
u k-1 kZx
(3.3) Yy = Bu¥ ¢ T(l + 5o R u2k+2v)
with B = k2/(2(k — 2)). Then, equation (Ey) is written in the form
d d
T= ooy, = F ),
where
1 kx 2k 2 2k+1 2k+2 4k—1
qﬁi(x,u,v):% 1+Tu + k“au +u v F Bku ,
1k, ) .
Vi(x,u,v) = % T+k au +u“v F Bku
k2 (k — 1
X (% + Kou + (k + Du*v F Bk(2k — l)uk) )

For the solution (4, v) = (u(x), v(x)) corresponding to y(x), we regard (x, v) as a function
of u; which is a solution of the system
dx uk—1 dv u2k*3'1/i(x,u, v)

(3.4) —_—t—  — =
du DL(x,u,v) du DL(x,u,v)

Equation (Ey) is equivalent to (3.4), whose right-hand members are analytic at (x, u, v) =
(x0, 0, v0), vo € C.
3.2. Auxiliary function. By (3.3) and (3.2)

sk-ne _ YET? KX op 2 ap Y
, ok _ Y Y
(y — By~ ¢ )):k—2<1+7y + k“ay +y v),

which is written in the form

k2x?
V= _BZy—4k+2 + 1 y—2k+2 + k2axy—2k+l + k2a2y—2k

3.5
G- 2 —2k —2k—1 y #2

+ a2 +xy " 4 2ay v+ k—2v
with

e (N2 —2k+1_1 y2k+2 2

(3.6) V:=(0")"—-2By y—k—z—xy —2ay.

Substituting the solution y(x) of (Ey) into (3.6), we get the auxiliary function V (x) associated
with y(x).

PROPOSITION 3.1. Ify()c)_1 is bounded along a rectifiable curve I', then V (x) is
also bounded along I'.
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PROOF. Differentiate V (x) (cf. (3.6)) and eliminate y”(x) by using (Ey) (with y =
y(x)). Then we have

V/(x) — 22k — DBy (x) "V (x) = 42k — 1)B?y(x) " **1y/(x)
+4(k — 1)Bxy(x) 22 4 2(4k — 3)Bay(x) 21,

This is written in the form

a4 [(V(x) + 2B2y(x)4k+2> exp < —22k—1)B f y(t)zkdt)i|
dx I'(x)

= —2By(x) 2k+! (2(2k — DB%y(x) % _ 2k — Dxy(x) — 4k — 3)a>

x exp<—2(2k— 1)B/F( )y(t)zkdt>,

where I"(x) denotes the part of I from its starting point to x. The boundedness of V (x)
immediately follows from this equality. a

3.3.  Completion of the proof of Theorem 1.1. Let ag be a singularity of y(x) defined
by arectifiable curve I” terminating in ag such that y(x) is analytic along I" \ {a¢}. According
to the value A := liminf,_, 4, rer |y(x)|, we divide the proof into three cases:

1)0<A<oo, (i)A=o00, (ii)A=0.

Case (i). 0 < A < oo. Since the auxiliary function V (x) is bounded as x — ag
along I" (cf. Proposition 3.1), there exists a sequence {a,},eny C I such thata, — ap and
that y(a,) — yo (# 0,00). Then, by (3.6) with y = y(x), the sequence {y'(a,)}nen is
also bounded, and we may choose a subsequence {a, ) }men C I satisfying a, ) — ao,
Y(@nm)) = yo and y'(anm)) — y; (3 00). By Lemma 2.1, y(x) is analytic at x = ao.

Case (ii). A = oo. Since y(x) — oo as x — qag along I', the function V(x) is
bounded along I" near x = ag. Substitution of (y, V) = (y(x), V(x)) into (3.5) yields a
quadratic equation with respect to v. This equation admits a solution v = v_(x) which is
analytic and bounded along I" \ {ap}. Note that one of the signs F in (3.3) (resp. £ in (3.4))
corresponds to the branch v_(x). Let u(x) be the branch corresponding to v_(x). Denote by
x = x(u) the inverse function of u = u(x), whose existence is guaranteed by the fact that
' (x)] = Y (x)/yx)?| ~ |y(x)1/k # 0,00 along I' \ {ag} (cf. (3.6)). Consider the
functions x = x(u) and v = v_(x(«)) which are analytic in u along u(I") \ {0} = {u =
u(x); x € I \ {ao}}. Then

(ii.a) x(u) — apasu — u(ap) = 0along u(I');

(ii.b) v—_(x(u)) is bounded along u(1");

(ii.c) (x,v) = (x(u), v—(x(n))) satisfies (3.4).

Choosing a sequence {b,},ey C u(I") satistying b, — u(ap) = 0, x(b,) — ap and
v_(x(bp)) = vo (# 00), and using Lemma 2.1, we deduce that x () is analytic at u = 0,
which implies that x = ap is at most an algebraic branch point of y(x).

Case (iii). A = 0. Inthiscase, we regard y(x) as an analytic function on the Riemann

surface R, with the projection y : Ry — C. Then I" \ {ap} lies on Ry, and 7y (ap) =
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limy 4 xer my(x) is the end point of 7y (1" \ {ag}). For any curve C C Ry, denote by
IC] the length of 7, (C) C C. Fora € Ry and for pg > 0, denote by U (a; po) (C Ry)
the connected component of ny’l({{ € C; |t —my(a)l < po}) C MRy containing a. The
projection 7y, : U(a; po) — {¢ € C; |¢ — my(a)| < po} is a homeomorphism, provided that
po is sufficiently small.

The following fact is obtained from [11, Lemma 2.2] with Ry = A =1/2, K =1+
Iy (@o)| + lel.

LEMMA 3.2. Set 0y := (1 + |my(ao)| + la|)~1/42. Let ¢ € Ry be a point such that
|y (c)—my(ao)| < 1/4.If the inequalities |y(c)| < 0p/6 and |y'(c)| = 2 hold, then y(x) is an-
alytic in U (c; |y’(c)|_190) and satisfies |y(x)| > 6o/4 on the boundary dU (c; |y’(c)|_190/2).

Put I'p := {x € I'; |[y(x)| < 6p/6} C R,. The supposition A = 0 implies IH N {x €
I'; | (x,a0)| < e} # @ forevery e > 0, where I"(x, ap) denotes the part of I" from x to
ap. We may suppose that |y’(x)| > 2 for x € I}. Indeed, if this is not the case, then y(x)
is analytic at x = ag (cf. Lemma 2.1). Let a, € R, be a point such that || I"(a, ag)|| <
1/4. Let us start from a, and proceed along I" toward x = ap. Let c; be the point in I
that we meet for the first time. By Lemma 3.2, there exists Dy := U(cy; 1y/(c1)|~160/2)
such that |y(x)| > 6p/4 on dD;. Then ay ¢ D1, and dD; N Iy = @. Restart from ¢y and
proceed along I" toward ag until we meet ¢y € I\ Dp. Then, |y(x)| > 6p/4 on d D>, where
Dy := Ul(co; |y/(cz)|’190/2), which satisfies agp ¢ D, and D> N Iy = . Repeating this
procedure, we get the sequences { D, },en and {c,}nen C Ip of discs and their centres with
the properties:

(iii.0) Dy = U(cn; ra)s ra = 1y ()| 00/2;

(iiib) |y(x)] = 6o/4 on dDy;

(ii.c) ao € Dy, and 0D, NIy = 0;

@ii.d) || (cn, cng1)|l > 1y and Zn>l rn < |II'||, where I"(c,, cp+1) is the part of I”
from ¢, to cp+1. -
If ¢, approaches some point ¢, € I" \ {ao}, then r, = |y’(cn)|_190/2 — Qasn — o©
(cf. (iii.a) and (iii.d)), that is, |y'(ca0)| = 00, Which contradicts the analyticity of y(x) along
I" \ {ap}. This implies that ¢;, — ag as n — oo, and hence Iy C Uzil D,,. For each n, there
exist only a finite number of D; (j # n) such that D; N D, # @. By (iii.d), we may choose
a rectifiable curve Iy with the properties:

(iie) I Cc oUW, Dy) C Ry

(iii.f) I terminates in ag;

(ii.g) [y(n)l = 60/6on I\ {aok;

(iii.h)  y(x) is analytic along Iy \ {ao}.
Hence this case is reduced to either (i) or (ii). Consequently x = ag is at most an algebraic
branch point of y(x), which completes the proof of Theorem 1.1.

4. Proof of Theorem 1.3. Let us review some facts of value distribution theory.
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For a meromorphic function f(z) in C, the proximity function, the counting function
and the characteristic function are given by

1 2 .
mr, f) =5~ /0 log™|f(re'®)ldp.,  log"s := max{logs, 0},

r d
NG f) = /O (1o £) =m0, /)L 10, /) logr
T f) = m(r. )+ NG ).

respectively, where n(r, f) denotes the number of poles of f(z) in the disc |z|] < r, each
counted according to its multiplicity. The characteristic function T (r, f) is monotone in-
creasing with respect to r. Furthermore 7' (r, f) = O(logr) if and only if f(z) is a rational
function (cf. [5], [9]). The following lemma is useful in the study of nonlinear differential
equations (cf. [3, Lemma B.11], [9, Lemma 2.4.2]).

LEMMA 4.1. Suppose that a meromorphic function w = f(z) satisfies the differential
equation whtl = P(z,w), p € N, where P(z,w) is a polynomial in z, w, w', ..., w@.
If the total degree of P(z, w) with respect to w and its derivatives does not exceed p, then
m(r, f) = O(ogT(r, f)+logr)asr — oo, r & E, where E C (0, 00) is an exceptional
set of finite linear measure.

To prove the first assertion of Theorem 1.3, suppose that y.(x) is a nontrivial entire
solution of (Eg). If y4(x) is a polynomial such that y,(x) = Cx" 4+ Ox»~1), y € N,
C # 0 near x = oo, then we have (2k + 1)yp = yo + 1, which is a contradiction. Hence
v«(x) is transcendental and entire, so that m(r, y,) = T(r, yx). By Lemma 4.1, for some
Ko > 0, we have T (r, y+) < Kologr outside an exceptional set E of total length ;o < oo.
For each r, we may choose a number r'(r) > r satisfying r'(r) — r < 2uo and r'(r) ¢ Ej.
Then

T(r,ys) < T(r'(r), y«) < Kolog(r'(r)) < Kolog(r + 2u0) = O(logr)
for » > 0, which contradicts the transcendence of y.(x). This implies that (Ex) admits no
nontrivial entire solution. Theorems 1.1 and 1.2 imply that each solution of (Ex) with k > 2
admits no pole. In this way we obtain the first assertion.

By Theorem 1.1 again, equation (E») admits no nontrivial algebraic solution. It is suffi-
cient to show the second assertion for each odd integer k > 3. To prove by contradiction, we
suppose the existence of a nontrivial algebraic solution. It is expanded into a Puiseux series
of the form (—k*/(k + 1)//@Ox/CG0 1 5792, b;x~//@8) around the point x = oo, for
which the degree of ramification is eooc — 1 = 2k — 1. By Theorem 1.2, for each branch point
X, # 0o, the degree of ramification is ¢, — 1 = k — 1, which is even. These facts contradict
the Riemann-Hurwitz formula

20—g)=2d— ) (e,—1) = (ecc — 1),
17#00
where d is the degree and ¢ is the genus (see, for example [8]). Therefore (E;) admits no
nontrivial algebraic solution.
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5. Proof of Theorem 1.4. 5.1. Inverse function of a hyperelliptic integral. The
hyperelliptic integral

w(r) ds
5.1 t—to=/w0 W C#0
defines the function Y = w(t) satisfying the differential equations
(5.2) Y2=v**24Cc (Y =dY/dr)
and
(5.3) Y = (k+ DY+,

By (5.1), every movable singularity of w(#) is an algebraic branch point (see also [7, Chap.
13]).

Suppose that k > 3. We construct the Riemann surface of +/s2¢+2 + C in the standard
manner. Set ¢, 1= (—C)V/@k+2)2mih/Ck+2) (p = 0,1, ..., 2k + 1), and denote by X¢ (¢ =
1,2) two copies of P1(C) \ (UI;:() 2]-) cut along the segments X := [{25, &2j41] (j =
0,1,...,k), where P1(C) = C U {00}. Let 2/7 and E;.r be the edges of the cut X';. Gluing
T} (resp. 2;.“) of X! to E;.r (resp. X7) of X 2, we get the Riemann surface of +/s2¥+2 4 C
admitting 2k cycles. Let y; (resp. y2) be the cycle lying in X! and surrounding only Xy =
[¢o, ¢1] (resp. X1 = [&2, ¢3]) in the positive sense. In addition, choose another cycle yy =
S1 U Sy, where S7 (resp. S») is the segment in X! (resp. in X2) from ¢ to o (resp. &2 to &p).
Now consider periods of w(#) written as

ds
wj = ——— (j=0,1,2),
/ /y,- [sZK+2 { C
where the branches of the integrands are taken in such a way that they coincide at the point
s = (¢1+82)/2 € X' Itis easy to check that w; = wpe "/**+D and that wy = wpe™/*k+D,

LEMMA 5.1. Set A := (w1 + w2)/wo = 2cos(w/(k + 1)). If k > 3, then there exist
infinitely many pairs (p, q) € N? such that |gx — p| < 1/q.

PROOEF. It is sufficient to show that A is an irrational number. We write 2(k + 1) =
292l +1),d € N,1 € NU{0}.If = 0, then d > 3, and hence . = 2cos(/297 1) is
an irrational number. Next suppose that / = 1. Since k > 3, we have d > 2, and hence
A = 2cos(01/2%), 6; = 2m/3 is an irrational number. Finally suppose that [ > 2. Set
0 := e?/CHD Since (o' + 07 +---+(@0+0 ")+ 1=0, thenumber p =0+ 0~ ' =
2cos(2m /(21 + 1)) satisfies

W) 4 0=0, «;€Z,

which implies pw is irrational. Indeed, if © € Q, then u € Z, so that u = 0, &1, which
contradicts / > 2. Consequently A = 2 cos(6;/ 24y with 6, = 27 /(21 + 1) is also an irrational
number. O

PROPOSITION 5.2. Ifk > 3 andif C # 0, then w(t) is infinitely many-valued.
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PROOF. Suppose that w(#) is finitely many-valued. Consider the Riemann surface of
w(t) denoted by Ry, with the projection m,, : R, — C. Choose a point by € C with the
property: there exists an open set Uy > bg such that, for every connected component W of
T 1(Uo) C Ry, the restriction of my, to W is a homeomorphism between W and Up. Take
a point By € m,, ! (bo). By Lemma 5.1, there exists a sequence {0, },en C Ry, together with
(Pn. qn) € N* such that w(oy) = w(Bo) and that 77, (0) = 7 (Bo) + Gn (@1 +@2) — ppeo —
by asn — oo. Since 7, 1 (bo) is a finite set, there exist a subsequence {0y, (;n) }men and a point
Boo € nu_)l(bo) such that w(o,(n) = w(Bo) and that 0,,(y) — Poo as m — oo. Hence
w(t) = w(Bo) on Ry, which is a contradiction. This completes the proof. O

REMARK 5.1. If k = 2, then (5.2) admits the general solution w(t) = /g(t — o),
where ¢(t) is an elliptic function of Jacobi type satisfying §(¢)> = 4¢(t)* + 4Cg(t). In this
case w(t) is a 2-valued algebroid function.

5.2. Completion of the proof of Theorem 1.4. If k = 2, then Theorem A.l in Ap-
pendix implies the existence of a general solution with a movable logarithmic branch point,
from which the conclusion of Theorem 1.4 immediately follows. It is sufficient to prove the
theorem under the supposition k > 3. Let y(x) be a solution of (Ey) satisfying the initial
condition y(0) = yg, y’'(0) = y;. Let & be an arbitrary small positive number. The change of
variables y = k!'/ke=1Y, x = ¢kt takes (E) into

(5.4) Y=k + DY 4 3y 4 gV ke tl

which admits the solution Y, (r) = k=¥ ey(r) satisfying Y, (0) = xo(e) := k~1/keyo and
Ye(0) = x1(e) := k1 kgktly, Equation (5.4) with ¢ = 0 coincides with (5.3). Let Yy (7) be
the solution of (5.3) satisfying the same initial condition

(5.5) Yo(0) = xo(e),  Yo(0) = xu(e) .
Then Yq(¢) is also a solution of
(5.6) Y2 =Y*2 4+ y1(e)? — xo(e)* 2.

Consider the Riemann surface of Y((¢) denoted by Ry with the projection g : B9 — C. Let
79 € MRy be a point such that mp(rg) = 0 at which initial condition (5.5) is given. Let v be an
arbitrary natural number. By Proposition 5.2 with C = 1/2 and the continuity with respect to
initial data, we may choose § = §(v) > 0 so small that the conditions

(5.7) Ixo(e) =27V <5 x1(e) — 1] <8

guarantee the existence of v rectifiable paths I'; C Ro (1 < j < v) with the properties:
(i) I starts from 7o and terminates in 7;, where 7; (1 < j < v) satisfy mo(71)
= =mo(t);
(ii) I'j is independent of xo(¢) and x1(¢);
(iii)  Yo() continues analytically along I'; (1 < j < v);
(iv) |Yo(tj) — Yo(zj)| > & for every pair (j, j') such that j # j’.
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Then Y, () satisfying (5.4) also continues analytically along I'; (1 < j < v) to v different
branches, provided that ¢ > 0 is sufficiently small. For such ¢, as long as the initial data
yo and y; satisfy (5.7), the solution y(x) is a v-valued function. This completes the proof of
Theorem 1.4.

Appendix. General solution of (E;). There exists a general solution of (E;) with a
movable logarithmic branch point described as follows:

THEOREM A.1. For given complex numbers xo and c, equation (Ey) admits a solution
expressible in the form

_ wrX0 4o w) .
YO =g 2= == - gty (Tlogs +c>55/2 +Y_ Aj(ogé)E!?,
j=6

E=x—x9, wr=1ori

with the properties:

(1) Aj(L) € Ay c[L], Axyc :=C[x0,c], 2deg; A; +7 < j;

(i) the series on the right-hand side converges for & € R satisfying |&| < r, |arg&| <
R, where R is an arbitrary large positive number, r = r(R) is a sufficiently small positive
number depending on R, and R is the universal covering of C \ {0}.

A.1. Derivation of an integral equation. In what follows we suppose that w, = 1. The
case wp = i can be treated in a similar manner. By the same argument as in Section 2.2, we
get the first three terms £712 — (x0/3)&3/2 — (4a/T)E?. Set

4
(A1) y=§*1/2—);—°s3/2—7“52+§5/2v, £=x—x
and substitute this into (E;). Then we have
d*v dv
E2—— + 56— = 1+EgE) + 21 (E)v + & pE)n? +£0g3(E)v’

2
(A2) d& d§ X
+ &g @ + 78
with g,(§) € Ay [€Y2], Ay, == Clxo] (0 <t < 4), go(0) = x0/2. The change of variables

£V =t, v=110g$+c+w=§10gt+c+w

takes (A.2) into
d*w dw
A3 -+ = = Fq,
(A.3) 2 + R (, w)
with
5 m(t)
(A4) F(t,w) =Y P(t.loghw', P(t.L)= Y pu(L)"

=0 h=e(1)
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satisfying
(A.5) e(t) > 2,
(A.6) pin(L) € Axyc[L], 2degy pin <h., poo(L) = 2xp.

Observing that the equation d*w/dt> + 9t~ 'dw/dt = 0 admits the solutions w = 1 and
w = t~8, we consider the integral equation

t
(A7) w(t) = %/0 (s — 178 F (s, w(s))ds ,

for t € R, where the path of integration is the segment joining O to ¢. The solution of (A.7)
satisfies equation (A.3).

A.2. Logarithmic polynomials. Let £ be the set of polynomials in (¢, log t) written in
the form

m
P(t,logt) = Z pr(log )t"
h=0
with
pr(L) € Axyc[L], 2deg, ph+2<h (O<h<m).

It is easy to see that, for any A, € N U {0},

t
f " (logs)'ds = "y logt).  ww(L) € QIL], deg; w =1.
0

which implies the following:

LEMMA A.2. IfP(t,logt) € £, then

13
Pini(2, logt) :=/ P(s,logs)ds € £,
0
deg, Pin(t, L) =deg, P(t,L)+ 1, deg; Pn(t,L) =deg; P(z,L).
A.3. Tterative sequence. Define the sequence {w, (t)}>°, by the recursive relation
wo(t) =0,
(A.8) 1 [t 3
wa1 (1) = g / (s — 175”)F (s, wa(s))ds
0

forn > 0. By (A.4), (A.5) and Lemma A.2, we can inductively verify w, () € £ and
Wpt1(t) —wy(t) € Lforn > 0.

For given R > 0, choose r < 1 so small that |t log?| < 7|'/2 holds for |arg(t2)| < R,
12| < r. By (A.4), (A.5) and (A.6),

(A9) |F(t,0)] < Mo,
(A.10) |F(t, w) — F(¢,u)] < Molt| |lw —ul,
for

(A.11) larg(t®)| < R, |2 <r, |wl <1, |u <1,



594 S. SHIMOMURA

where Mo = Mo(|c], |xo]) is some positive number independent of R and r. Hence by (A.8),

M, 1
(A.12) lwn42(1) — wnp1 (D] < TO/O Is|*[wg1(5) = wa ()] |ds]

provided that (¢, u, w) = (¢, wy,, wy+1) satisfies (A.10). Then, if necessary, retaking » smaller
in such a way that

(A.13) exp(Mor?/8) —1 < 1/2,
we have the following:
(A.14) lw, ()] <1,
Mg+1|t|2("+l)
(A.15) [Wn41() —wa(1)] < FTEE Y

(n > 0) for |arg(t2)| < R, |?| < r. These are verified by induction on n. Since

1 [! My
|w1(t)—w0(t)|§—/ Is| [F(s,0)] |ds| < —1tI*,
4 Jo 8

inequalities (A.14) and (A.15) are valid for n = 0. Moreover, supposing that (A.14) and
(A.15) are valid for n < N, we deduce that
N
lwn1 (0] < lwo()] + Z |wn41(1) — wa(1)]
n=0
N n+1).12(n+1)
My |t 1
<y L <exp(Molt]?/8) —1 < =
_g ST Dy S SPMol/8) —1 < 7,
and that, by (A.12),
MO tMéV+1|s|2(N+1)+2
t) — B < —
lwx2(t) —wy (O] = = /o SV (N 11!

Thus we have verified (A.14) and (A.15) forall n > 0.

A.4. Completion of the proof of Theorem A.1. By (A.15), w(?) := lim,— oo wy () =
Z;io(wnJrl(t) — wy(¢)) is holomorphic for r € R, |arg(t2)| < R, |t%| < r, and satisfies
lw(t) — wp(r)] < Colt|2+D for every n, where Cy is a constant independent of n. Write
wy () € £in the form

Mév+2|t|2(N+2)

ds| < =01
1= VN T )

m*(n)
wa(t) = Y Wpdlog)t", Wj(L) € Ay c[L], 2deg, W) +2<h.
h=2
By (A.15) again, for every pair (N, N') such that N < N’, we have |wy/(t) — wy(t)| =
O(Jr*™+D) in the domain |arg(r?)| < R, [t2| < r. This implies WY (L) = W} (L) for
every h <2N + 1, as faras N < N’. Therefore w(¢) can be expressed in the form

o0
w(t) =Y Wyllogt)t" . Wy(L) € Ay c[L]. 2deg, Wy +2 <h,
h=2
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whose right-hand member converges uniformly in ? e R, |arg(t2)| < R, |t*| < r. Then
v(€) = (1/4)log € + ¢ + w(£'/?) satisfies (A.2). Substituting v = v(£) into (A.1), we obtain
the required expression, which completes the proof of Theorem A.1.
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