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Abstract: The oscillation of a class of fourth-order nonlinear damped delay differential equations
with distributed deviating arguments is the subject of this research. We propose a new explanation of
the fourth-order equation oscillation in terms of the oscillation of a similar well-studied second-order
linear differential equation without damping. The extended Riccati transformation, integral averaging
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example demonstrates the efficacy of the acquired criteria.
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1. Introduction

In our current study, we take into consideration the following fourth-order nonlinear
damped delay differential equations with distributed deviating arguments:

(
x2(t)

(
x1(t)

(
u′′(t)

)α)′)′
+ p(t)

(
u′′(δ(t))

)α
+
∫ d

c
q(t, $) f (t, u(g(t, $)))d$ = 0, (1)

where α ≥ 1 is a ratio of odd non-negative natural numbers and c < d. We consider the
below assertions all through this article:

x1, x2, p, δ ∈ C
(

I, [0, ∞)) and x1, x2 > 0, where I = [t0,+∞);
q, g ∈ C[I × [c, d], [0, ∞)), δ(t) ≤ t, limt→+∞ δ(t) = ∞, g(t, $) is a non-decreasing
function for $ ∈ [c, d] satisfying g(t, $) ≤ t and limt→+∞ g(t, $) = ∞;
f ∈ C(R,R), there is a constant k1 > 0 such that f (t, u(t))/uβ ≥ k1.

We define the operators,

L[0]u = u, L[1]u = u′, L[2]u = x1
((

L[0]u
)′′)α, L[3]u = x2

(
L[2]u

)′ as well as

L[4]u = (L[3]u)′.
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The meaning of having a solution to Equation (1) is the function u(t) in C2[Tu, ∞), for
which L[2]u, L[4]u is in C1[Tu, ∞), and Equation (1) holds on [Tu, ∞), such that Tu ≥ t0. We
only take into consideration the solutions u(t) when sup{|u(t)| : t ≥ T} > 0 for every
T ≥ Tu. On one hand, such a solution to Equation (1) is termed oscillatory when this
solution is not eventually negative and, at the same time, not eventually positive on the
interval [Tu, ∞). On the other hand, the same solution is termed non-oscillatory if it is
eventually negative or eventually positive. Finally, when every solution is oscillating, the
equation is said to be oscillatory.

We define

A1(t1, t) =
∫ t

t1

x−1/α
1 (s)ds,

A2(t1, t) =
∫ t

t1

x−1
2 (s)ds,

A3(t1, t) =
∫ t

t1

((
x1(s)

)−1 A2(t1, s)
)1/α

ds,

A4(t1, t) =
∫ t

t1

∫ u

t1

((
x1(s)

)−1 A2(t1, s)
)1/α

ds du,

for t0 ≤ t1 ≤ t < ∞ and assume that

A1(t1, t)→ ∞, A2(t1, t)→ ∞ as t→ ∞. (2)

Fourth-order differential equations are often used in mathematical models of a wide
range of physical, chemical, and biological processes [1–4]. Problems with elasticity, struc-
tural deformation, and soil settling are examples of applications of this type of equation. In
addition, in mechanical and engineering fields, questions about the presence of oscillatory
and non-oscillatory solutions are mostly arising, and the solutions require the presence of
the same mentioned equation [5]. Many researchers have intensively studied the topic of
oscillation of fourth or higher order differential equations in depth, and many strategies
for establishing oscillatory criteria for fourth or higher order differential equations have
been developed. Several works, see [6–18], contain extremely interesting results linked
to oscillatory features of solutions of neutral differential equations and damped delay
differential equations with or without distributed deviating arguments.

In fact, for the following equation, Bazighifan et al. [19] have developed some oscilla-
tion criteria (

r(t)
(

N′′′x (t)
)β)′

+
∫ b

a
q(t, $)xβ(g(t, $))d$ = 0.

Moreover, Dzurina et al. [20] introduced some oscillation findings of the below fourth-
order equation (

r3(t)
(
r2(t)(r1(t)y′(t))

)′)′
+ p(t)y′(t) + q(t)y(τ(t)) = 0.

More specifically, there are no requirements for the oscillation of Equation (1) in the
previous studies.

By the motivations above, our contribution would be giving certain adequate condi-
tions that ensure that every solution to Equation (1) oscillates, utilizing proper Riccati-type
transformation, integral averaging condition, and comparison technique, when the follow-
ing second-order equation

(x2(t)z′(t))′ +
p(t)

x1(δ(t))
z(t) = 0, (3)

is oscillatory or non-oscillatory.
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2. Basic Lemmas

We state in the current section several Lemmas along with their proofs, which are
mostly needed in the rest of this study.

Lemma 1 ([8]). Assume that Equation (3) is non-oscillatory. If Equation (1) has a non-oscillatory
solution u(t) on I, t1 ≥ t0, then there is a t2 ∈ I in a way that u(t)L[2]u(t) > 0 or u(t)L[2]u(t) <
0 for t ≥ t2.

Lemma 2. If the Equation (1) has a non-oscillatory solution u(t) that satisfies u(t)L[2]u(t) > 0
in Lemma 1 for t ≥ t1 ≥ t0, then

L[2]u(t) > A2(t1, t) L[3]u(t), t ≥ t1, (4)

L[1]u(t) > A3(t1, t)
(

L[3]u(t)
)1/α, t ≥ t1, (5)

and

u(t) > A4(t1, t)
(

L[3]u(t)
)1/α, t ≥ t1. (6)

Proof. We suppose that there is a t1 ≥ t0 in a way that u(t) > 0 and u(g(t, $)) > 0 for
t ≥ t1. From Equation (1), we have

L[4]u(t) = −
( p(t)

x1(δ(t))

)
L[2]u(δ(t))− k1

∫ d

c
q(t, $)uβ(g(t, $))d$ ≤ 0,

and L[3]u(t) is non increasing on I, we obtain

L[2]u(t) ≥
∫ t

t1

(
L[2]u(s)

)′ ds =
∫ t

t1

(x2(s))−1L[3]u(s) ds ≥ A2(t1, t) L[3]u(t),

which implies that

u′′(t) ≥
(

L[3]u(t)
)1/α(

(x1(t))−1 A2(t1, t)
)1/α

.

Now, twice integrating above from t1 to t and using L[3]u(t) ≤ 0, we find

u′(t) ≥
(

L[3]u(t)
)1/α ∫ t

t1

(
(x1(s))−1 A2(t1, s)

)1/α
ds

and

u(t) ≥
(

L[3]u(t)
)1/α ∫ t

t1

∫ u

t1

(
(x1(s))−1 A2(t1, s)

)1/α
ds du for t ≤ t1.

Lemma 3 ([10]). Let ξ ∈ C1(I,R+), ξ(t) ≤ t, ξ ′(t) ≥ 0 and G(t) ∈ C(I,R+) for t ≥ t0.
Assume that y(t) is a bounded solution of a second-order delay differential equation:(

x2(t) y′(t))′ −Θ(t) y(ξ(t)) = 0. (7)

If

lim sup
t→∞

∫ t

ξ(t)
Θ(s) A2(ξ(t), ξ(s)) ds > 1 (8)
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or

lim sup
t→∞

∫ t

ξ(t)

((
x2(t)

)−1
∫ t

u
Θ(s) ds

)
du > 1, (9)

where x2(t) is as in Equation (1); thus, the solutions of Equation (7) are oscillatory.

3. Oscillation—Comparison Principle Method

In this section, we shall establish some oscillation criteria for Equation (1). For conve-
nience, we denote

Q(t) =
( p(t)

x1(δ(t))

)
A2(t1, δ(t)), ψ(t) = exp

( ∫ t

t1

Q(s)ds
)

,

q̃(t, $) =
∫ d

c
q(t, $) d$, Θ∗(t) = k1 q̃(t, $)

(
A4(t1, g(t, d))

)β
.

Theorem 1. Assume that α ≥ β and the conditions in Equation (2) hold, and Equation (3) is
non-oscillatory. Suppose there exists a ξ ∈ C1(I,R) such that

g(t, $) ≤ ξ(t) ≤ δ(t) ≤ t, ξ ′(t) ≥ 0 for t ≥ t1,

and Equations (8) or (9) holds with

Θ(t) = `∗ k1q̃(t, $)gβ(t, d)
(

A1(ξ(t), g(t, d))
)β − p(t)

x1(δ(t))
≥ 0, t ≥ t1,

for constant `∗ > 0. Moreover, suppose that every solution of the first-order delay equation

z′(t) + ψ1− β
α (g(t, d))Θ∗(t) z

β
α (g(t, d)) = 0. (10)

Then, every solution of Equation (1) is oscillatory.

Proof. Let Equation (1) have a non-oscillatory solution u(t). Assume there exists a t ≥ t1
such that u(t) > 0 and u(g(t, $)) > 0 for some t ≥ t0. From Lemma 1, u(t) has the
conditions either L[2]u(t) > 0 or L[2]u(t) < 0 for t ≥ t1.

Assume that u(t) has the condition L[2]u(t) > 0 for t ≥ t1, then one can easily see that
L[3]u(t) > 0 for t ≥ t1. We can choose t2 ≥ t1 such that g(t, $) ≥ t1 for t ≥ t2, g(t, $)→ ∞
as t→ ∞, and we have Equation (6),

u(g(t, d)) > A4(t1, g(t, d))
(

L[3]u(g(t, d))
)1/α, t ≥ t2. (11)

By substituting Equations (4) and (11) into Equation (1) and when L[3]u(t) is decreasing,(
L[3]u(t)

)′
+
( p(t)

x1(δ(t))

)
L[3]u(t)A2(t1, δ(t))

+k1 q̃(t, $)
(

A4(t1, g(t, d))
)β(

L[3]u(g(t, d))
)β/α

≤ 0. (12)

Taking φ = L[3]u, we have

φ′(t) + Q(t)φ(t) + Θ∗(t)φ
β
α (g(t, d)) ≤ 0 (13)

or (
ψ(t) φ(t)

)′
+ ψ(t)Θ∗(t)φ

β
α (g(t, d)) ≤ 0, for t ≥ t2. (14)
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Next, setting z = ψ φ > 0 and ψ(g(t, d)) ≤ φ(t), we have

z′(t) + ψ1− β
α (g(t, d))Θ∗(t)z

β
α (g(t, d)) ≤ 0. (15)

This means Equation (15) is positive for this inequality. Furthermore, by ([21], Corol-
lary 2.3.5), it can be seen that Equation (1) has a positive solution, a contradiction.

Next, assume u(t) has the condition L[2]u(t) < 0, for t ≥ t1, then one can easily see
that L[1]u(t) ≥ 0 , L[3]u(t) > 0 for t ≥ t3(≥ t2). Using the monotonicity of u′(t) and mean
value property of differentiation, there exists a θ ∈ (0, 1) such that

u(t) ≥ θ t u′(t), for t ≥ t3. (16)

Set w(t) = L[1]u(t), then w′(t) = u′′(t) < 0. Using Equation (16) in Equation (1),
we obtain(

x2(t)
(

x1(t)
[
w′(t)

]α)′)′
+ p(t)(w′(δ(t)))α + k1 (tθ)β q̃(t, $)wβ(g(t, d)) ≤ 0,

and so
(

x1(t)
[
w′(t)

]α)
< 0, we have

(
x1(t)

[
w′(t)

]α)′
> 0 for t ≥ t3. Now, for v ≥ u ≥ t3,

we obtain

w(u) > w(u)− w(v) = −
∫ v

u
−x−1/α

1 (τ)(x1(τ)(w′(τ))α)1/αdτ

≥ x1/α
1 (v)(−w′(v)))

(∫ v

u
x−1/α

1 (τ)dτ

)
= x1/α

1 (v)(−w′(v))A1(u, v).

Taking u = ξ(t) and v = g(t, d), we obtain

w(g(t, d)) > A1(g(t, d), ξ(t))
(
x1/α

1 (ξ(t))(−w′(ξ(t)))
)
= A1(g(t, d), ξ(t)) y(ξ(t)),

where y(t) = x1/α
1 (ξ(t))(−w′(ξ(t))

)
> 0 for t ≥ t3. From Equation (1), we have that y(t) is

decreasing and g(t, d) ≤ ξ(t) ≤ δ(t) ≤ t; thus, we obtain

(x2(t)z′(t))′ +
p(t)

x1(δ(t))
z(δ(t)) ≥ k1 (θg(t, d))β q̃(t, $)A1(g(t, d), ξ(t))z

β
α−1(ξ(t))z(ξ(t)).

Since z is decreasing and α ≥ β, there exists a constant ` such that z
β
α−1(t) ≥ ` for

t ≥ t3. Thus, we obtain

(x2(t)z′(t))′ ≥
(
` k1 (θ g(t, d))β q̃(t, $)A1(g(t, d), ξ(t))− p(t)

x1(δ(t))

)
z(ξ(t)).

Proceeding the rest of the proof in Lemma (3), we arrive at the required conclusion,
and so it is omitted.

4. Oscillation—Riccati Method

This section deals with some oscillation criteria for Equation (1) using the Ricatti Method.

Theorem 2. Assume α ≥ β and the conditions in Equation (2) hold, Equation (3) is non-oscillatory.
Suppose there exists η, ξ ∈ C1(I,R) such that g(t, $) ≤ ξ(t) ≤ δ(t) ≤ t, ξ ′(t) ≥ 0 and η > 0
for t ≥ t1 with

lim sup
t→∞

∫ t

t5

(
k1 η(s) q̃(s, $)− A2(s)

4B(s)

)
ds = ∞ for all t1 ∈ I, (17)
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where, for t ≥ t1,

A(t) =
η′(t)
η(t)

− p(t)
x1(δ(t))

A2(t1, δ(t)) (18)

and

B(t) =
β `

β−α
2 g′(t, d)

η(t)

(
A4(t1, g(t, d))

)β−1(
A3(t1, g(t, d))

)1/α
, (19)

also Equations (8) or (9) hold with Θ(t) as in Theorem 1. Then every solution of Equation (1)
is oscillatory.

Proof. Suppose that Equation (1) has a non-oscillatory solution u(t). Assume that, there
exists a t ≥ t1 such that u(t) > 0 and u(g(t, $)) > 0 for some t ≥ t0. From Lemma 1, u(t)
has the conditions either L[2]u(t) > 0 or L[2]u(t) < 0 for t ≥ t1. If condition L[2]u(t) < 0
holds, the proof follows from Theorem 1.

Next, if condition L[2]u(t) > 0 holds, define

ω(t) = η(t)
L[3]u(t)

uβ(g(t, d))
, t ∈ I, (20)

then ω(t) > 0 for t ≥ t1. From Equation (6) and L[4]u(t) < 0, we have

ω(t) = η(t)
L[3]u(t)

uβ(g(t, d))
≤ η(t)

L[3]u(g(t, d))
uβ(g(t, d))

≤ η(t)(A4(t1, g(t, d)))−αuα−β(g(t, d)), (21)

for t ≥ t1. From Equation (5) and definition L[2]u(t), we find

u′(g(t, d)) = L[1]u(g(t, d)) ≥ A3(t1, g(t, d))(L[3]u(δ(t)))1/α ≥ A3(t1, g(t, d))(L[3]u(g(t, d)))1/α.

Then,

u′(g(t, d))
u(g(t, d))

≥
(

A3(t1, g(t, d))
η(δ(t))

)1/α
η1/α(δ(t))(L[3]u(t))1/α

uβ/α(g(δ(t), d))
uβ/α−1(g(δ(t), d))

=

(
A3(t1, g(t, d))

η(t)

)1/α

ω1/α(t)uβ/α−1(g(δ(t), d)). (22)

Furthermore, since there exists a constant `1 and t2 ≥ t1 such that for L[3]u(t) ≤
L[3]u(t2) = `1. Therefore,

L[2]u(t) = L[2]u(t2) +
∫ t

t2

(L[2]u(s))′ds ≤ L[2]u(t2) + `1

∫ t

t2

ds
x2(s)

= L[2]u(t2) + `1 A2(t2, t) =

[
L[2]u(t2)

A2(t2, t)
+ `1

]
A2(t2, t)

≤
[

L[2]u(t2)

A2(t2, t3)
+ `1

]
A2(t2, t) = `∗1 A2(t2, t), (23)
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holds for all t ≥ t2, where `∗1 = `1 +
L[2]u(t1)
A2(t2,t3)

, which implies that

u′(t) = u′(t3) +
∫ t

t3

u′′(s)ds ≤ u′(t3) +
∫ t

t3

(
`∗1 A2(t2, s)

x1(s)

)1/α

ds

= u(t3) +
(
`∗1
)1/α A3(t3, t) = `2 A3(t3, t),

holds for all t ≥ t3(≥ t2), where `2 = u(t2)
A3(t3,t4)

+ (`∗1)
1/α. Then,

u(t) = u(t4) +
∫ t

t4

u′(s)ds ≤ u(t4) +
∫ t

t4

(
`2 A3(t3, s)

)
ds

= u(t4) + `2 A4(t4, t) = `∗2 A4(t4, t), (24)

holds for all t ≥ t4(≥ t3), where `∗2 = u(t4)
A4(t4,t1)

+ `2. Further,

uβ/α−1(g(t, d)) ≥
(
`∗2
)β/α−1(A4(t4, g(t, d))

)β/α−1, t ≥ t4. (25)

By using Equation (24) in Equation (21), we obtain

ω(t) ≤
(
`∗2
)α−β

η(t) (A4(t1, g(t, d)))−β, (26)

and hence

ω
1
α−1(t) ≤

(
`∗2
)(α−β)( 1

α−1)
η

1
α−1(t) (A4(t1, g(t, d)))−β( 1

α−1). (27)

Now differentiating Equation (20), we obtain

ω′(t) =
η′(t)
η(t)

ω(t) +
L[4]u(t)
L[3]u(t)

ω(t)− βg′(t, d)
u′(g(t, d))
u(g(t, d))

ω(t). (28)

Using Equations (1) and (4) in Equation (28), we have

ω′(t) ≤
[η′(t)

η(t)
− p(t)

x1(g(t, d))
A2(t4, g(t, d))

]
ω(t)− k1η(t)q̃(t, $)− βg′(t)

u′(g(t, d))
u(g(t, d))

ω(t)

≤ A(t)ω(t)− k1η(t)q̃(t, $)− βg′(t)
u′(g(t, d))
u(g(t, d))

ω(t). (29)

By using Equations (22), (25) and (28) in Equation (29), we have

ω′(t) ≤ A(t)ω(t)− k1η(t)q̃(t, $)−
β `

β−α
2 g′(t)
η(t)

(
A4(t1, g(t, d))

)β−1(
A3(t1, g(t, d))

)1/α
ω2(t)

= A(t)ω(t)− k1η(t)q̃(t, $) + B(t)ω2(t) (30)

= −k1η(t)q̃(t, $) +

[√
B(t)ω(t)− 1

2
A(t)√

B(t)

]2

+
1
4

A2(t)
B(t)

≤ −k1η(t)q̃(t, $) +
1
4

A2(t)
B(t)

. (31)

Integrating Equation (31) from t5(> t4) to t gives

∫ t

t5

(
k1 η(s) q̃(s, $)− 1

4
A2(s)
B(s)

)
ds ≤ ω(t5), (32)
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which contradicts Equation (17).

Corollary 1. Assume α ≥ β and the conditions in Equation (2) hold, Equation (3) is non-
oscillatory. Suppose there exists η, ξ ∈ C1(I,R) such that g(t, $) ≤ ξ(t) ≤ δ(t) ≤ t, ξ ′(t) ≥ 0
and η > 0 for t ≥ t1 such that the function A(t) ≤ 0,

lim sup
t→∞

∫ t

t5

(
η(s) q̃(s, $)

)
ds = ∞ for all t1 ∈ I, (33)

where A(t) is defined in Equation (18), and Equations (8) or (9) holds with Θ(t) as in Theorem 1.
Then, every solution of Equation (1) is oscillatory.

Next, we examine the oscillation results of solutions to Equation (1) by Philos-type.
Let D0 = {(t, s) : a ≤ s < t < +∞}, D = {(t, s) : a ≤ s ≤ t < +∞}, the continuous
function H(t, s), H : D→ R belongs to the class function R:

(i) H(t, t) = 0 for t ≥ t0 and H(t, s) > 0 for (t, s) ∈ D0;
(ii) H has a continuous and non-positive partial derivative on D0 with respect to the

second variable such that

−∂H(t, s)
∂s

= h(t, s)[H(t, s)]1/2,

for all (t, s) ∈ D0.

Theorem 3. Assume α ≥ 1 and the conditions in Equation (2) hold, and Equation (3) is non-
oscillatory. Suppose there exists η, ξ ∈ C1(I,R) such that g(t, $) ≤ ξ(t) ≤ δ(t) ≤ t, ξ ′(t) ≥ 0,
η > 0 and H(t, s) ∈ R for t ≥ t1 with

lim sup
t→∞

1
H(t, t5)

∫ t

t5

(
k1 η(s) q̃(s, $)H(t, s)− P2(t, s)

4B(s)

)
ds = ∞ for all t1 ∈ I, (34)

where P(t, s) = h(t, s) − A(s)
√

H(t, s) and A(t), B(t) are defined in Theorem 2, and Equa-
tions (8) or (9) holds with Θ(t) as in Theorem 1. Then, every solution of Equation (1) is oscillatory.

Proof. Suppose that Equation (1) has a non-oscillatory solution u(t). Assume that there
exists a t ≥ t1 such that u(t) > 0 and u(g(t, $)) > 0 for some t ≥ t0. Proceeding as in the
proof of Theorem 2, we obtain the inequality from Equation (30), i.e.,

ω′(t) ≤ A(t)ω(t)− k1η(t)q̃(t, $) + B(t)ω2(t),

and so, ∫ t

t5

H(t, s)η(s)q̃(s, $)ds ≤
∫ t

t5

H(t, s)[−ω′(s) + A(s)ω(s)− B(s)ω2(s)]ds

= −H(t, s)
[
ω(s)

]t

t5
+
∫ t

t5

[∂H(t, s)
∂s

ω(s)

+H(t, s)
[

A(s)ω(s)− B(s)ω2(s)
]]

ds

= H(t, t5)ω(t5)−
∫ t

t5

[
ω2(s)B(s)H(t, s)

+ω(s)
(

h(t, s)
√

H(t, s)− H(t, s)A(s)
)]

ds

≤ H(t, t5)ω(t5) +
∫ t

t5

P2(t, s)
4B(s)

ds,
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which contradicts Equation (34). The rest of the proof is similar to that of Theorem 2 and
hence is omitted.

5. Examples

Below, we present an example to show the application of the main results. This
example is given to demonstrate Theorem 2.

Example 1. For t ≥ 1, consider the fourth-order differential equation

(
1/2t

(
9e−t(t)

(
u′′(t)

))′)′
+ 36e−s/2u′′(t/2) +

∫ 2

1

t
3

u($, 36et/3)d$ = 0. (35)

Here, x1 = 9e−t, x2 = 1/2t, α = β = 1, p(t) = 36e−s/2, q(t, $) = t/3 and δ(t) = t/2,
g(t, $) = t/3. Now, pick η(t) = 36et/3, so we obtain

A1(t1, t) =
∫ t

1
(9es)−1ds = 9(et − e),

A2(t1, t) =
∫ t

1
2s ds = t2 − 1 = (t + 1)(t− 1),

A3(t1, t/3) =
∫ t/3

1
(9es)−1(s2 − 1)ds = et/3(t− 3)2,

q̃(s, $) =
s
3

∫ 2

1
d$ = s/3,

A2(s) = (3t2−5)2

9 and B(s) = (s−3)2

36 . Now,

lim sup
t→∞

∫ t

2

(
k1 η(s) q̃(s, $)− A2(s)

4B(s)

)
ds = lim sup

t→∞

∫ t

2

(
12k1 s es/3 −

(3s2 − 5
s− 3

)2)
ds→ ∞ as t→ ∞,

and all hypotheses of Theorem 2 are satisfied, so every solution of Equation (35) is oscillatory.

6. Conclusions

The form in Equation (1) is clearly more generic than all of the problems covered in
the literature. In this paper, we provided some oscillatory properties using the appropriate
Riccati-type transformation, integral averaging condition, and comparison method, en-
suring that any solution of Equation (1) oscillates under the assumption of A1(t1, t)→ ∞,
A2(t1, t)→ ∞ as t→ ∞. Furthermore, based on the condition of A1(t1, t) < ∞, A2(t1, t) <
∞ as t→ ∞, it would be desirable to expand the oscillation criteria of Equation (1).
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