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Abstract: We study nonlinear propagation of light in diffraction-
managed photonic lattices created by periodically-curved arrays of optical
waveguides. We identify different regimes of the nonlinear propagation of
light in such structures depending on the input power. We start from the
regime of self-collimation at low powers and demonstrate that, as the beam
power increases, nonlinearity destroys the beam self-imaging and leads
to nonlinear diffusion. At higher powers, we observe a sharp transition to
the self-trapping and the formation of discrete diffraction-managed solitons.
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1. Introduction

Propagation of light in dielectric media with a periodically-varying refractive index is known to
demonstrate many novel features in both linear and nonlinear regimes [1]. Over the recent years,
different types of periodic photonic structures, including arrays of evanescently coupled optical
waveguides, optically-induced lattices in photorefractive materials, and photonic crystals, have
been employed to engineer and control many fundamental properties of light propagation. In
particular, the idea to control the light spreading through diffraction management [2] has at-
tracted a special attention. It was shown that both magnitude and sign of the beam diffraction
can be controlled in periodic photonic structures. For example, diffraction can be made nega-
tive allowing for focusing of diverging beams [3], or it can even be suppressed leading to the
self-collimation effect when the beam width does not change over hundreds of the free-space
diffraction lengths [4]. Self-collimation of light beams was also realized experimentally in pe-
riodically curved waveguide arrays [5–7]. Recently, the concept of the broadband diffraction
management of polychromatic light has been introduced for the periodically-curved waveguide
arrays with special bending profiles [8].

The combination of tailored diffraction characteristics and light self-action opens new pos-
sibilities for the power-controlled beam shaping and switching in nonlinear photonic struc-
tures. Various schemes for active beam control based on the special properties of narrow self-
localized beams in straight waveguide arrays, called discrete spatial solitons, have been sug-
gested and demonstrated [9–11]. It was shown that solitons can exist in diffraction-managed
lattices [12, 13] in the regime when beam exhibits effectively averaged diffraction. However,
the analysis of narrow beam self-action in periodically-curved waveguide arrays, beyond the
applicability of averaging procedures, remained largely unexplored. An especially intriguing
problem is the nonlinear beam self-action under the condition of linear self-collimation, where
diffraction is suppressed in all orders. In the latter case, the modulational instability is sup-
pressed [6], suggesting that discrete soliton formation may demonstrate unusual features.

In this work, we investigate nonlinear propagation of light beams in the diffraction-managed
periodically curved photonic lattices [such as sketched in Fig. 1(a)], and identify different
regimes of the light propagation depending on the input power. In particular, when linear
discrete diffraction is fully suppressed, we observe the transition from the regime of self-
collimation, for low powers, to that of the discrete self-trapping and the formation of lattice
solitons, for high powers. This occurs through the intermediate regime of the nonlinear diffu-
sion, where limited nonlinear beam broadening takes place. We also observe the similar regime
of nonlinear diffusion in other types of periodically-curved photonic lattices; this regime has no
analogies with the nonlinear beam self-focusing or self-defocusing in a bulk medium [11], or
discrete self-trapping of light in arrays of straight waveguides [1]. We also show, that the crit-
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Fig. 1. (a) Schematic of an array of periodically curved waveguides. (b) Effective coupling
Ceff in the curved waveguide array normalized to the coupling C0 in the straight array, as
a function of the bending amplitude A normalized to the amplitude Asc which corresponds
to the self-collimation condition. Point ’a’ corresponds to the self-collimation, when the
bending amplitude is A = Asc, while for the point ’b’ we take A = 1/2Asc.

ical power required for the formation of lattice solitons in curved waveguide arrays is higher
than that in the straight waveguide arrays, and it can be effectively controlled by changing the
amplitude of the waveguide bending.

2. Propagation of light beams in arrays of curved waveguides

We study the propagation of light beams in a one-dimensional array of coupled nonlinear op-
tical waveguides with the transverse period d in the x direction, where the waveguide axes
are periodically curved in the propagation direction z with the period L � d [see Fig. 1(a)].
When the tilt of beams and waveguides at the input facet is less than the Bragg angle, the beam
propagation is primarily characterized by coupling between the fundamental modes of the in-
dividual waveguides, and it can be described by the tight-binding equations taking into account
the periodic waveguide bending [5,6], idΨ n/dz+C0 (Ψn+1 + Ψn−1) = ω ẍ0(z)nΨn−γ|Ψn|2Ψn,
where Ψn(z) is the amplitude of the n-th waveguide, ω = 2πn0d/λ is the dimensionless fre-
quency, λ is the vacuum wavelength, n0 is the average refractive index of the medium, γ is
an effective nonlinear coefficient which accounts for the Kerr-type nonlinear response of the
waveguide material, and the dots stand for the derivatives. Transverse shift x 0(z) ≡ x0(z + L)
defines the periodic longitudinal bending profile of the waveguide axis. Coefficient C 0 de-
fines the coupling strength between the neighboring waveguides, and it characterizes diffrac-
tion in a straight waveguide array with x0 ≡ 0 [14]. Then, the total electric field envelope
E(x,z) is represented as a superposition of the modes E0(x) of the individual waveguides,
E(x,z) = ∑n Ψn E0 [x−nd− x0(z)] .

The distinctive features of discrete beam dynamics become most evident when only one
waveguide is excited at the input. Then the light evolution for both positive and negative nonlin-
earities is fully equivalent in the framework of the tight-binding model [5,6], and we take γ ≥ 0.
In our simulations presented below, we use the following values which are typical for the ex-
periments with optical waveguide arrays: d = 9 μm, n0 = 2.35, λ = 532 nm, C0 = 0.13 mm−1,
γ = 1.9. Normalization chosen is such that x is measured in μm and z is measured in mm. We
use the discrete model for the calculations presented in this paper, however we have confirmed
the validity of our results by simulating the full parabolic equations for the continuous electric
field envelopes. We note that in case of the strong coupling between the waveguides, the long
range coupling between non-nearest neighbours becomes important. In this case, exact dynam-
ical localization can also be ralized in arrays of curved waveguides [7], and effects similar to
the presented in this paper may be expected to take place in the nonlinear regime.
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Fig. 2. Linear propagation of light in a curved waveguide array. Shown are the absolute
values of the amplitudes of the modes of individual waveguides (left) and corresponding
optical field distribution (center). Right: beam width w [normalized to the input width]
as a function of the propagation distance. (a) Bending amplitude corresponds to the self-
collimation condition [point ’a’ in Fig. 1(b)]. (b) Bending amplitude is half of that in (a)
[point ’b’ in Fig. 1(b)]. Bending period is L = 15 mm. Waveguide array length is 150 mm.

3. Discrete diffraction and self-collimation

In order to specifically distinguish the effects due to diffraction management, we consider the
light propagation in the waveguide arrays with symmetric bending profiles, i.e. x 0(z− za) =
x0(za − z) for a given coordinate shift za, since asymmetry may introduce other effects due
to the modification of refraction [15–19]. Then, after the full bending period (z → z + L) the
beam diffraction remains the same as in a straight waveguide array with the effective coupling
coefficient [5, 6] Ceff = C0L−1 ∫ L

0 cos [ω ẋ0(ζ )]dζ . As a specific example, we consider a curved
waveguide array with the sinusoidal bending of the form x 0(z) = A{cos [2πz/L]−1}, for which
the effective coupling coefficient is Ceff =C0J0 (2πωA/L), where J0 is the Bessel function of the
first kind of zero order. The effective diffraction can be made either normal, zero, or anomalous
depending on the value of the bending amplitude [see Fig. 1(b)].

Cancellation of the effective coupling and periodic beam self-collimation takes place at low
powers when A = Asc = ξ L[2πω ]−1, where ξ � 2.405 is the first root of the function J0. For
example, for the bending period L = 15 mm self-collimation occurs when A sc = 23.0 μm [see
Fig. 2(a), where we use the modal representation described above in order to reconstruct the
optical field distribution]. The beam width is determined as the width of the transverse cross-
section function centered at the current center of mass of the beam where 75% of the beam
power is concentrated. When the bending amplitude differs from the self-collimation value, the
beam experiences discrete diffraction at low powers, similar to the effect observed in straight
waveguide arrays [1] [see Fig. 2(b)].

4. Nonlinear beam propagation and control

When the power of the input beam increases, nonlinearity destroys the self-collimation con-
dition of light by changing the refractive index of the waveguide material. Initially, we ob-
serve that the beam shape experiences irregular distortion, such that the periodicity of the self-
collimation is lost [see Fig. 3(a)]. However, the beam does not broaden significantly, and it still
experiences approximate self-restoration at some points.

When the input power increases further, the beam no longer experiences self-restoration,
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Fig. 3. (1.5MB) Nonlinear propagation of light in an array of periodically curved
waveguides. Shown are the absolute values of the amplitudes of the modes of individ-
ual waveguides (left) and corresponding optical field patterns (center). Right: beam width
w [normalized to the input width] as a function of the propagation distance. Waveguide
array is the same as in Fig. 2(a). The input power is (a) P/P0 = 0.70, (b) P/P0 = 1.7,
(c) P/P0 = 2.7, and (d) P/P0 = 3.4, where P0 is the power required for the formation of
one-site discrete soliton in the straight array. The animation shows the beam propagation
dynamics and the output beam width as the input power increases from P/P0 = 0.00029 to
P/P0 = 3.4.
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Fig. 4. (a, b) Output beam width vs. the input power. Waveguide arrays are the same as in
Figs. 2(a) and 2(b), respectively. (c) Critical power Pcr/P0 required for the formation of a
one-site lattice soliton in an array of periodically curved waveguides as a function of the
bending amplitude A. Bending period and waveguide array length is the same as in (a) and
(b). Points ’a’ and ’b’ correspond to the bending amplitudes in (a) and (b), respectively.

and the nonlinear diffusion takes place, where the beam experiences significant broadening
and self-defocusing, as shown in Fig. 3(b). This self-defocusing is intrinsically limited due to
the diffraction cancellation in the waveguide array. After propagation over some distance the
beam broadens and its intensity is reduced accordingly. Therefore, the further beam spreading
stops when the average beam width achieves a certain value. Such a peculiar nonlinear beam
dynamics has no analogies in bulk media [11] or discrete systems [1] analyzed before.

At even higher input powers, transitional self-trapping of the beam is observed. The beam
initially becomes self-trapped upon the launch into the array, but after propagation for some
distance (which somewhat depends on the input power), it broadens rapidly and experiences
again nonlinear diffusion [see Fig. 3(c)]. Finally, at some critical power we observe a sharp
transition from the nonlinear diffusion to the discrete self-trapping over the whole length of the
array, and the discrete lattice soliton is formed [see Fig. 3(d)].

From the practical point of view, the output width of the beam which exits the waveguide
array is of the main interest. In Figs. 4(a) and 4(b) the beam width w out at the output facet of the
array is shown as a function of the input power P normalized to the power P0 required for the
formation of one-site discrete lattice soliton in the straight array, where P0 � 5C0/γ [20]. Shad-
ing shows the range between the minimum and the maximum beam widths during the propaga-
tion over the last two periods of the array [note that the maximum width in Fig. 4(b) is the same
as the output width]. All the output, the minimum, and the maximum widths are normalized
to the input beam width. In Fig. 4(a), one can clearly identify all the discussed above differ-
ent nonlinear propagation regimes which happen in diffraction free waveguide arrays [compare
this figure with the animation in Fig. 3]. In Fig. 4(b), where we take the bending amplitude to
be half of that required for the self-collimation, the regime of the intermediate nonlinear beam
diffusion can also be identified, however the critical power required for the formation of the
lattice soliton is different. We find that this critical power is considerably higher in arrays of
periodically curved waveguides than in straight waveguide arrays. It grows substantially with
the magnitude of the bending amplitude, as shown in Fig. 4(c).

5. Conclusions

We have studied the nonlinear propagation of light beams in diffraction-managed photonic
lattices. We have shown that the crossover between the regimes of the discrete diffraction and
self-collimation of light, for low input powers, and nonlinear self-trapping, for high powers,
occurs through a novel regime of nonlinear light diffusion. We have shown that the critical
power required for the formation of lattice solitons can be controlled effectively by changing
the amplitude of the waveguide bending.
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