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Abstract. We consider a system of interacting diffusions. The variables are to
be thought of as charges at sites indexed by a periodic one-dimensional lattice.
The diffusion preserves the total charge and the interaction is of nearest neigh-
bor type. With the appropriate scaling of lattice spacing and time, 2 nonlinear
diffusion equation is derived for the time evolution of the macroscopic charge
density.

1. Notation and Summary

We will study the problem of passage to hydrodynamic limit under diffusion type
scaling for a system of charges that are located at various sites of a periodic one-
dimensional lattice. The charges migrate between adjacent sites randomly according
to a well defined diffusion law. The algebraic sum of the charges is always conserved.
The charges themselves are of indeterminate sign. Under diffusion type scaling of
lattice width and time, a deterministic limit is obtained for the macroscopic charge
density and the limit is characterized as the solution of a nonlinear heat equation.
We will now develop the notation and end this section with a precise statement
of the results as well as a sketch of the proof.

S is the unit circle represented as the interval 0 < 0 < 1 with end points identified.
The scaling parameter is N and the scaled lattice consists of sites j/N in § for
j=1,2,...,N. The sites adjacent to j/N are j+ 1/N with addition being modulo
N.The charge at site j/N is represented by the variable x;. The charge configuration
(xy,...,xy) is represented as a vector X in RY. The configuration X changes with
time and as a function of time X(t) undergoes a diffusion in R™. The infinitesimal
generator of the diffusion is given by

N? 0 0 \* N? ) a ¢
[T ) A R S| SR, JTRY
2 0x,  0X;4q 2 OX; OXjyy
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Here ¢ 1s a continuously differentiable function from R — R satisfying the properties
to be listed below and ¢'(x} = d¢p(x)/dx. The factor N? in (1.1) with lattice spacing
of 1/N represents the effect of diffusion scaling,

j‘e 4;(\]dx: 1’ (12)
fe MNdx=MQ)< o VieR, {1.3)

or equivalently there exists w(x) which is symmetric and convex on R satisfying

lim 5&520, w(x)z x| forall ¥ (1.4)
and
fe "Ndx < oo, (1.5)
In addition )
[e?™=dx < on Yg>0. (1.6)

Given such a ¢ we can define a density @y(x) =exp[— Z¢(x;)] on R", and this
will be the density relative to Lebesgue measure of a probability measure on R”.
The generator Ly is formally symmetric relative to the density @y and defines a
diffusion process with invariant density @, with respect to which the process is
reversible. The Dirichlet form for the diffusion is given by

2 ol Iy 2
NZﬁA,(u):NTj{.z(f“ - Jil) }@Nd} (1.7)

0x;  OXiyy

The diffusion is not ergodic for the invariant measure @y. The sum x; + -+ + xp
is conserved by the diffusion and the hyperplanes x, + --- + xy = Ny of average
charge y are invariant sets. For every y the diffusion restricted to such a hyperplane
is elliptic and ergodic. The invariant measure on the hyperplane is the conditional
distribution of @y given x, + --- + xy/N =y.

We start with an initial distribution for ¥(0) given by some density
fo(xy,...,xy) relative to @y. Then the evolution will give us a deasity

fy(xq,...,xy) for £ 2 0. To obtain f% we have to solve the heat equation
ot =Lyfy for >0, fil.o=/\. (1.8)

Associated with the charge configuration ¥ we have the measure,
1 .
Hy = 7\7 ijaj/N’

viewed as a random signed measure on S. If for every smooth function J(0) on S,
[

N

N—-w N—-o

1
lim {J,uy> = lim NZJ< >x,- = [J(O)ym(6)do

exists, then we say that m is the asymptotic macroscopic charge density. Of our
initial density [§ we assume that for some nice my(f), every smooth J{-) and
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each 6 >0,
lim | f®ydx =0, (1.9)
N=oo gy
where
Ey= [Y: }]\72‘](\;/>Xi — j‘mo((?)J(f))dHi > 5}.
In addition we assume that the entropy
H(fS) =1 /Ylog fL®ydX (1.10)
satisfies a bound
Hy(f3) < CN, (1.11)

for some constant C.

Under these conditions the randomly changing charge configurations at time
t =0 are shown to have an asymptotic deterministic charge density m(z, /) which
is characterized as the unique solution of a certain nonlinear heat equation with
initial condition my(0). But to describe this equation we have to develop some
more notation. We look at the function M(4) defined in (1.3) and define

p(7) =log M(Z),  h(y)=sup[ly — p(4)]. (1.12)

Then k(") and p(-) are a pair of conjugate convex functions and
A=k(y) ifand only if y=p(2). {1.13)

ie. h'and p’ are inverses of each other. By elementary calculation one can check that
e [T Mxdx = p'(J), {1.14)

so that the value of / that makes (1.14) equal to y is /= h'(y). One knows also
that p’ and &’ are smooth strictly increasing functions. We can now state our main
result,

Theorem 1.1. If the initial distribution of charges satisfies (1.9) and (1.11), then for
every t > 0, arbitrary smooth J(*} and each 6 > 0,

lim | fydyd¥ =0 (1.15)
N-—roo gt
with B
, 1
ES=<(x,....xx): NZJ N x;— fm(6, )J(0)d01 = 6 ¢,

where m(0,t) is the unique weak solution of the nonlinear diffusion equation

om

;}7

=3[ (m(0,0)]ge,  mlt,0)],—o = my(0). (1.16)

We will now give a sketch of the proof
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Let us fix a smooth J and consider the stochastic process

£l =§,2J<§)xi(z>.

It is easy to write down a stochastic differential equation satisfied by ¢y{f) in the
form

déy(1) = ay(D)dp + by(D)dt. (1.17)

The way the problem is scaled implies that ay(f)—0 as N-> oo, An explicit
calculation of by(f) can be made and we obtain

by(ty= %—ZJ< )[d)(L (1) =200 (0) + &'(x 1 1 () ] (1.18)

Using summation by parts and the smoothness of J(0) we can pass to

v(t)—éfJ”< >¢(X (©). (1.19)

At this point one has to justify the ansatz that the density [§(x,,...,xy) looks
like a slowly varying family of local Gibbs states. This means that averages of
¢'(x;) can be replaced by their mean values (1/M(4))[e” ~*"Y¢'(x)dx, where /. = ' (m)
and m is the local macroscopic density. One calculates easily that

~—~/je“ M (x)dx = 2 = h(m), (1.20)

and therefore

lim by(t) = 3 {J"(0)' (m(6, 1))d8. (121
N—ow
The crucial step in the whole proof is the replacement of (1.19) by (1.21). Since the
ansatz is too vague to be fmmulated rigorously we obtain certain elementary

bounds on the average I/Tff (xy,...,xy)dt as a consequence of (1.11). These

are then shown to imply certaln inequalities, which in turn justify the passage
from (1.19) to (1.21).

2. Entropy and its Rate of Change

Since we will have to consider probability measures on RY as well as many of its
projections we now introduce some uniform notation. A probability measure »
on RY, il it is absolutely continuous will be represented by its density f with
respect to the density @y so that its actual Lebesgue density is f @y If F < {1,2,..., N}
is a subset of cardinality k we can project o from R" to R* by looking at the
distribution of {x;} for jeF. We will denote the projection by o and the
corresponding density on R, relative to @, by /. We have the obvious formula

g = j]’(k) Dpe(xpe)dxpe.
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We have used the obvious notation

D, (x)=exp[— ) dx)], x,={xpjed}, dx,=]]dx;.

jeA jed

We consider the following diffusion generators on RY defined for a pair (i, j)e

[1925“‘7N]7
N VA
L= ———) —
. 2<6xi &x)

J

o

0 ]
o= s -5 ) 2

L; ; can be viewed as an operator acting on functions degending on the variables
xp = {x;;jeF}, provided i,jeF. One should think of L, as representing the
exchange of charge between sites i and j along a “direct bond” linking them. Our
generator

N-1
Ly= N? 'Zo Liiiq (2.2)

is a sum over nearest neighbor bonds. But we can consider sums that involve
other bonds as well. Each I:i,j is reversible relative to the weight @y,

There are two functionals on probability measures on R that are relevant for
our purpose. The first one is the entropy. If « is a probability distribution with
density f then

Hy(@)= [ flog [ @yd¥.

It is known that entropy is a lower semicontinuous convex functional of « and
can be defined equivalently by the basic entropy inequality as the smallest constant
H for which

JUf@ydx <logfePydx + H 2.3)

for all bounded measurable functions U on R¥,
If we let the initial distribution evolve according to the forward equation or
equivalently the density f evolve according to (1.8), then the function

Hy(t) = H(oy) = jff\'lOg v @ydx

is nonincreasing in ¢ and one can compute

dHy(n  N? (5201 fof afy
Ul LS (U 2 g 24
dt 2 S0 SN\ 0x; 0Xp4y
Corresponding to each operator L, ; we can define the Dirichlet form
. 1 ou  ou\?
D- X — . (I) ydw 25
i) 2Rj\v<0xi ('ij> A >

and the corresponding fil,-(f) by

~ ~ - 1. 1/78f ¢f\?
I ()= D;J(\/f) = 8ff<80\f — ;{) Dydx. (2.6)
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We can rewrite (2.4) in the form

dH . (t NZ1
S UNRPINER S WNE ) @)
dr i=0 7

The variational characterization (2.3) of entropy defines Hy(x) as a natural
lower semicontinuous convex functional of « which is finite only when « has a
density f for which | flog f @ydx is finite. Similarly there is also a variational

characterization of I{x),
I(o) = sup [ . j(%f)(x)a(dx)]. (2.8)
u>0

If o should have a nice density f then

=D( /), (2.9)

where L is any self adjoint operator with respect to @, and D is the Dirichlet form
of L. Typically L= Ly or L, ;. Since L is not elliptic I(#) can be finite without «
having a density f. However the restriction of « to any invariant hyperplane will
have a density relative to the restriction of @y to the hyperplane and the Dirichlet
form is only computed from tangential derivatives on the hyperplane.

We want to establish some simple inequalities relating to the behavior of I(f)
under projections. Let « be a probability measure on RY and «* its projection
onto R* corresponding to {x;:jeF}, where k is the cardinality of F. We then have

Lemma 2.1. For any pair i,jeF,
L; (o) = 1 (@), (2.10)
Proof.

fi.j(aF) = SUP[ - j(Lu )(W) (dxb)] 211

u>0

over all functions u of x;. Since «f is the projection of «,

7, ) < sup| —J(L u”)( S (dx)} e (2.12)

u>0|

The supremum in (2.11} is only over functions of x,, and one gets the inequality
int (2.12) because the supremum there is over a larger class, namely all functions
of x.
Let f be a probability density on R¥ Let [ =1 be given. We consider the set
Foo=1{5 |]—1r<11 and f“!'=f" the projection of f onto R?*! We define

fH=(1/N) Z ! as a measure on R

Lemma 2.2. For any | =1 and 2,
-1

~ 21 NZ
> Lo (S =y :Z Liis () (2.13)
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Remark. We have abused the notation somewhat here. On the left f*is a measure
on R**! with coordinates indexed by variables {x;:|j| <!} and I,,,, are for
nearest neighbor bonds between them. But the sites | j| £ [ are arranged in a chain
with two ends. On the right however the N sites are arranged cyclically.

Proof. By convexity
P A N
Ii,i+1(f):Ii,i+1< Zf > Zlu+1 f”

N -~

N ILeiviiri(f7h)  [by abuse of notation]

N
1 X . ,
éﬁ Z Livivrina(f) [by Lemma 2.1]
1
N

This proves the lemma.
Similarly let f on R¥ be given along with [>1 and m such that 2/ + 1 <m <
— (21 + 1). Consider the set F,, ;= {j:|j—i|<lor|j—m—il<I}. We project
f onto the coordinates in F,,;; and the resulting density on R* ! x RZ’H is

denoted by f™". We average this over location i and denote f™'=(1/N) Z b

For clarity we think of the variables in R**' x R***as {y:|j] <} and fzj.m <l
We define three forms

.1 1/ef of \?
Ir Y Ve
;,z+1(f) 8§f(oy, 0y1+1> 2141 (V) @y 1y (2)dydz,

N . 4 0
Foosth =g {( L 520) 00 1

(/Zt+1
1
P’7(f) = 8§f<£z€- ;y{)) Dy 4 1 () Dy 4 ((2)dydz.

We then have the analog of Lemma 2.2.
Lemma 2.3. For any m such that 21+ 1<m SN —(21+ 1),

-1 | N-1

2 ‘
L iaUmsy X, (2.14)
Z 7 (fmh s ZZEII (f) (2.15)
ey i+l e i,i+1\J © .
Pz pm <ﬁNZ‘1 ) (2.16)
—_ i+l .

Proof. Inequalities (2.12) and (2.15) are analogs of inequality of (2.13). We therefore
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only have to prove (2.16). By convexity and (2.10),

IYmelé _ifYmellél i :z+m

By Schwartz’s inequality,

R itl=1
L NEL S Ty ()
j=i
Summing with respect to i from i =0 to N — 1 we get (2.16).
Let us start our evolution with an initial distribution satisfying (1.1). Then
according to formula (2.4) we obtain the following estimates:

[ filog [\ @ydx < CN forall 20, (2.17)
and
Loy oy Y c
5 ) at — s Dydx < — all T 1
jd j{lzoft<axi 0X; 11 Ndk_N for all T (2.13)

Now if we use the fact that both the expressions { f log f @ydx and
L 6 f of \?
i=0 Xi+1

T
are convex functionals of f, we obtain for the density (1/T)[ f%dt or taking
0

T=1 and setting

1
fu= (j;ffvdl-
Theorem 2.4. B B
[ fylog fy@ydx < CN, (2.19)
Lfastdfafy  afy C
= = — () <—. 2.20
2j{i=zlfN<6xi 6xi+1) Ndx—N ( )
In addition
supf{wZa) }fN(DNdx <C. (2.21)

Proof. Only (2.21) needs an explanation. By estimate (2.3) and (2.19),
F{Y o(x)} fydpndx <log e dydx + CN < C;N 4+ CN.

3. Limit Theorems for Densities

The aim of this section is to prove two theorems concerning the probability
densities of sums of independent random variables. Although the results are
essentially well known we need special forms of these results for our use. We will
give a quick sketch of the proofs as we go along.

Lemma 3.1. Let f(x) be a probability density on R such that {xf(x)dx=0,
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[x*f(x)dx=c?, [x*f(x)dx <M and [|f'(x){dx <M. Then there is a number
0 = 8(M) depending only on M such that

(fe= f()dx| S(L+1EP)77 forall EeR. (3.1)
Proof. 1f ¢(&) = ['** f(x)dx, then [$(¢)] £ 1 and moreover
o282
1¢(<§)"1+ 6 1= Cylél, (3.2)
Cu
Ol =, (3.3)
1<l
and for every ¢ >0,
sup| (&)} = Oy (e) < 1, (3.4)

Klze

where C,; and 6,,(¢) are constants depending only on M and ¢ > 0 as indicated.
Moreover ¢ is bounded above as well as below away from zero in terms of M.
To establish (3.1) for all & we use (3.2) for small ||, (3.3) for large |¢] and (3.4) for
intermediate |&].

Lemma 3.2. Let f,(x) be the density of x, + - +xn/v/;z, where x,,...,x, are
independent and identically distributed with a common density f(x) satisfying the
assumptions of Lemma 3.1. Then

lim f,(x) = —~—e ¥/29, (3.5)
n= J2no
uniformly on R and in fact the derivatives of f,(x) of all orders converge uniformly
to the corresponding derivatives.

Proof. We use the formula

Julx)= je"xf[qb(jn)}ndﬁ. (3.6)

For sufficiently large n, the above formula is well defined because of inequality
(3.1). Clearly [¢(&//n)]" > e~ &7 as n— co. It is then a question of verifying that
we can apply the dominated convergence theorem. From the monotonicity of the
function (1 + 4/t) in ¢ for t 2 0 we can estimate

4 n 2 2\ -1
k¢<§;> <sn>gx51k<1+'é') gm(wg'—) ,

which is integrable for [ large enough. We can now differentiate (3.6) with respect
to x as often as we want and pass to the limit.

Let ¢ ™ be our basic probability density and M(4) = [¢"*““dx. We denote
p(2)=log M( A) and

nzl

7 *v ] o
M'(2) _ S0 RN (3.7)
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Let us define

f(x,4)= Ml(/l) X PR B+ (3.8)
Then
J(x,A)dx =1, (3.9)
J
x f(x, A)dx =0, (3.10)
|
§x2 [ (%, Adx = 0%(4) = AL((//)) - [AA%A))T (3.11)
and
§ g(x,i) dx£C; (3.12)

is bounded if % is bounded.

Lemma 3.3. Let f,(x,A) be the probability density of xy + -+ +x,//n, where
X1,...,X, are independent and identically distributed having a common density f(x, A).
Then

1 1
Hm f,(x,A) = —— e X2 3.13
ninfof(x & V2ra(2) eXp[ 26%0) } G4

uniformly in x and bounded 2 intervals. In addition the first partial derivative of f,
with respect to 4 converges to the corresponding partial derivative on the right
uniformly on bounded 4 sets and uniformly in x.

Proof. Let
W& A) = [ f(x, Adx.

X 1 L 4 . n i}

Let us compute ¢ f,/04. Computing the derivative inside we note first

% = feies Afx Adx = (e — 1 —ifx) ﬁf(x A)dx,

Then

because f(ﬁf/c'?/l)(x, Adx = jx(éf/@)t)(x, +)dx = 0. Therefore

'\ '\f , 3
<& dx < C,
a/ 117 [x? 7 (e A)jdx = e

o & ) IE] )
"o <%’”>l§” CA<%> <GP O

We are now ready to prove our first main theorem of the section:

Therefore

Theorem 3.4. Let ¢,(x) be the density of x, + -+ x,/n, where x,,...,x, are
independent and identically distributed with a common density e ", Then
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im L log ¢, (x) = — h(x). (3.14)
ERTACI.
nh”m x) W) (3.15)

uniformly on compact x-intervals.

Proof. We use Cramer’s trick. Let yeR, 2= HK(y) and y = p'(A). Consider

g 1 A1) gl + )
Jen =gioe '

We want to apply Lemma 3.3 to the above density treating y as a parameter.
Then density f,(x,y) of x;+ -+ x,,/\/;z at x =0 is related to the density f,(x, y)
of x; + - + x,,/\/@ at x =0 by a simple factor of \/n and a calculation yields

Gy} = [M()T"e ™ /nf,(0, ). (3.16)

We also know that log M(4) - 1y = p(A} — Ay = — h(y). Equations (3.14) and (3.15)
are now easy consequences of Lemma 3.3.

We are now interested in studying the conditional distribution of x,,...,x, on
the hyperplane x; + --- + x,/n = y, where x,, ..., x, are independent and identically
distributed random variables with a common density ¢ “*. We have clearly a
smooth density ¢,(x) for x; + --- + x,/n, and therefore the conditional density is
well defined on each hyperplane Let us denote by v0'(dx,,...,dx,) the measure
on R" concentrated on the hyperplane x, + -+ + x,,/n =y. We want to establish
the following main theorem.

Theorem 3.5. Let F be a bounded continuous function on R* for some k = 1. Let for

each yeR, 2,(dx) denote the probability measure on R with density (1/M(2))e”™ ™,
where 4= h(y). Then for every ¢ >0,
. —k+
311,11‘/;72){:()(:1),,_,)(”) n_7</+] i:zl Xisee s Xjpyp— 1)
- jF(ZI, s zgaldzy o ldz,) - (dz)dy| 2 8} =0 (3.17)

locally uniformly in yeR.

Proof. Let us remark that v"(dx,,...,dx,) is symmetric with respect to the
permutation group acting on the variables x,,..., x,. Therefore by Hewitt—Savage
0-1 law and its implication we need to check the theorem only when k=1 and
F(x) is a bounded continuous function on R with a uniformly bounded first
derivative. This will follow from the following lemma.

Lemma 3.6. For every HeR

lim — logj"e"(”x” TR dyi(dxy, .., dx,) = G0, y) (3.18)

n— o 1
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exists and the limit G(0) is differentiable ar 0 =0 with

dG(8,y)
— == jF(x)ozy(dx). (3.19)
4=0
Proof. Let us denote by H,(y) the function
H (y 0) — j‘ eﬁ(]-‘(\l]w’»- A F(x)) = @) - dlxy) - 7d)(\’,‘)d_x1 dx
n\Js I DA "
(bn(y) = ‘[ e Z(P(Xj)dxl o dxn'

Xyt ot xy =0y
Proving (3.18) reduces to showing that
1 1
lim —log H,(y,0) — lim ~log ¢,(y) = G(6, y)
i Bl o] n n—+w
exists locally uniformly in y. Let us denote
! 4 OFR) - G
I G Ay \'d )
20) fe X
Then essentially by replacing ¢(x) with ¢(x) — 0F(x) we can apply Theorem 3.4
and obtain

a(f) = "™ "dx, M(2,0) =

1
lim ~log H,(y,0) = loga(f) - h(®, y),

where
h(0, yy = sup [1y —log M(4, 0)].

Equation (3.18) now follows with
G(0, y) = loga(0) — h(0, y) + h(y).
It is now elementary to conclude that

dG(6, y) _d "(0) 1 oM
40 oo a0) T MUF0) 00 |y (320

where /A% =n (y) The right-hand side of (3.20) is easily computed to be
(1/M(2) [ F(x)e’ >~ *dx. This proves (3.19).
Theorem 3 5 follows from Lemma 3.6 by exponential Tchebychev bounds.

4. Local Gibbs States

A local Gibbs state is a vague term which refers to a probability distribution on
RY with a density relative to @y which looks somewhat like cexp [ 4;x;]. Here
A;are constants that are slowly varying so that 4; = (/N for some smooth function
Z on §. If we define m(0) = p'(4(0)), then the above local Gibbs state corresponds
to a macroscopic charge density of m(6) on S. This refers to the fact that if J(6)
is a smooth function on § then (1/N)XJ(i/N)x; as a random variable on R" is
almost a constant for large N, being nearly equal to [J(6)#(6)d® under our local
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Gibbs density. For such a density f = cexp[X4;x;] one can calculate

& - _ af of
=Z i,i+1 f) 8 f;zx<("x >(DNdX

OX;1y

[ [oi\? C
—Z(/ Ais1) :ﬁf<%> d9§ﬁ- (4.1)

On the other hand if f=cexpX4ix; one can then calculate explicitly and
show that for any function F(x_,,...,x,) depending on (2k + 1) coordinates
(/NYZJG/NYF(X_y 41, Xes;) 18 also almost a constant relative to our Gibbs
state and compute the constant explicitly in terms of (). The aim of this section
is to show that the above consequence for local averages follows from entropy
bounds of the type (4.1). This will be the key step of our main theorem.

We will be dealing with sets of probability measures or densities Ay ¢, ¢, defined
in terms of two constants C,, C, but in dimensions N, that vary. The purpose will
be to obtain for these classes certain results that are valid uniformly in N so long
as C,; and C, are held fixed.

Let Ay ¢,.c, be the class of densities f on RY satisfying the following bounds:

i

—I[Zw( )1/ Pydx < Cy, (4.2)
N C,
2 L) = (4.3)

Here (-) is the function defined in (1.4).

Let F be a function depending on the 2k + 1 variables {x;:|jl <k} on R*"!
which is bounded and continuous on R%**?. Given such a function let us define
F(y) for yeR by

1
F(y)= [M(A)]Zkﬂjexp[/&x AF(x_ps. . X))@y 4 dx, {4.4)

with 4 =H#'(y). Let us define for any integer i€[1,2,...,N] and [ the quantities
E=F(x; gy s X 4p) and &, = F((1/21 4+ 1){x; ., + - + x;4)). Finally let J(-) be a
smooth function of §eS. The main result of this section is the following theorem.

Theorem 4.1. For any given constant C, and C,, integer k and choices of F(-) and

J(),

f Dydx =0. (4.5)

1 i =
limlimsup sup [— . 2[J<l )(éi — &iver)
e=0 N=w©  fedy e, N N
We will first prove some auxiliary lemmas and theorems before finally returning

to the proof of Theorem 4.1. The first step is Theorem 4.2 which we now state
and prove.

Theorem 4.2. For any C,,C, and F(-),

N

lim limsup sup I_Z

1= N-owx ng’v(l( 1 1

21+1 Z g Z | f@pdx=0. (4.6)

i= _]"
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Proof. At first glance the above theorem looks hard because N is becoming large
and things can get out of control. We will show however that the hard work has
all been done already and we can obtain (4.6) from our earlier results in Sects. 2
and 3.

First Step. Since F is a bounded function and [ is becoming large while k remains
j+1 jti-k
fixed we can replace (1/21+1) Y &by (1/21-2k+1) Y ¢, and the error will
i=j-1 i=jTI+k
be uniformly small.

Second Step. If we denote by ¥,(y_,,...,y,) the function

1 )

L T ) R Z F(yivks“'»yiﬂc)_—F(

Yot +yz>
20—k +1;=F-n ’

20+ 1
then

f@Ndx~_f]lﬁ Vepsoo s VI @y dy

2l+1 Z 5 S

[see Lemma 2.2 for the definition of f']. If we denote by B ¢, ¢, the range of f'as f
varies over AN c..c, then

f@ydx = sup j'lﬂz\g@zszJ’-

UFBN,Cx,Cz

i1 5
2[+1 Z fi*éi,z

=j+l

Jedn e,

Now By ¢, ¢, are all distributions on R*'*'. We will verify that By ¢, ¢, is a tight
family on R¥*! as N - oc and obtain information about its limit points B, ¢,.
From (4.2) we obtain

1 !
El’:aj[_z:lw(yz')}g@zw (dy=C, forall gEBllv,Cl.Cz‘ (4.7)

This implies tightness immediately. If § is any element of B¢, ., by lower
semicontinuity and (4.7) we obtain

sup
ﬂEEél C2

21+1f2‘“ Jaf = C..

Further the function

Z JJ+1

is lower semicontinuous. From (4.3), Lemma 2.2 and lower semicontinuity we find
that 1,(8) =0 for feBl, ¢,

Third Step. We can now replace the limsup sup in (4.6) by sup . Moreover if

; N=o fedy ccs BeBe, s
ﬂEBC1,C25

S RLIe UL (e 1]
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1t is therefore sufficient to prove that

lim sup {|y|df =0, (4.8

1= ger

where el
{ﬂ ﬁ”lj[z\ylﬂdﬂ<cl,f (B = 0} (4.9)

Final Step. 1f we define the generator

(R N A i
L[']:z;l(?(“« >~rz<¢> </w,+1))<0 —>

Yy OVivy 25 Oy OV

then I,(8) = 0 implies that f8 is an invariant measure for the diffusion on R*'*1
with generator LI, We know that these are convex combinations of the ergodic

ones concentrated on the various hyperplanes (1/21+ 1) Y’ y;=y. Therefore
sl

p=Dzap,

where f is the distribution of y under . From (4.9) it follows that j1y|dﬁ§
(12l + l)j(ELyil)dﬁ§ C,. One can now obtain (4.8) from Theorem 3.5 and the
above bound.

If we take a look at what has been achieved in Theorem 4.2 for a “Local Gibbs
state,” i.e. a state satisfying (4.2) and (4.3) for some constants C, and C,, then
relative to such a probability distribution one can always replace (1/N)XJ(i/N)¢,

i+l
by (1/N)EJ(i/N)<(l/21+ Y fl->, and according to Theorem 4.2 this can be
j=i—1 N
replaced asymptotically by (I/N)ZJ(i/N)&, ,, provided [ is large and fixed. However
Theorem 4.1 demands that [ be chosen as [ N¢] for arbitrarily small but fixed ¢ > 0.

The next two theorems are to make the replacement possible.
Theorem 4.3. For any 0 >0 and C, and C, finite

limlimsuplimsup  sup sup

e=0 I-w N=0 2+ igim|SeNfedy e, s

f[

Proof. The proof is very much like the proof of Theorem 4.2. We first rewrite the
integral through the projections o™ introduced before Lemma 2.3. Let us note
that the measure o and the density f will be used interchangeably. The integral
then is

Xi— l+xl+l YH—m l+x1+m+l

2[+1 A+1

>an<1> dx =0 (4.10)

1
Sy Xz,

1
oc’”"[(yj,zj)l ﬁ_ﬁ Vi ST ; 25:| 4.11)

First Step. Let us denote by BY'¢., ¢, the range of /™! as o or f varies over Ay ¢, ¢,
These are probability measures on R*'* ! x R*' ™! with coordinates {y;:| j| </} and
{z;:1jI < 1}. We denote by By (-, the set of limit points of Y BWt,.c, The

20+ 1£|m € Ne
basic estimate (4.2) yields for any _qele;ChCz,
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——~—j[2w )+ Zo(z)]19Pyy 4 ,dydz £ C, (4.12)

and thereby tightness. The lower bound on the gap {m|= 2l + 1 is to make sure
that the two sets of blocks of size 2]+ 1 with their centers separated by m have
no common sites. If £ is any limit point in B¢¢ ., we obtain the following estimates:

4,+25[2w(y + Ta(z)]df £ Cy, (4.13)
Z Itl+1 ﬁ (414)
i I7...(B)=0, (4.15)
74Py < Cye? (4.16)

These are obtained from lower semicontinuity and Lemma 2.3.

Second Step. (4.14) and (4.15) imply that the measure f# on R?'*! x R¥*! jg
invariant with respect to the diffusions

11-1 2 b 2 -1 0 J >
U= — ) e &
2L—Z:<l<0yl 0y1+1> l;l y+1))<6yl ayi+1

and a similar one involving the second set of coordinates. This implies that
B(dy, dz) = [yZ D(dyni D(dz)Blda, db), (4.17)

where [ is the distribution of a = (1/214 1)Zy, and b = (1/2] + )2z, on R?. Here
v is as defined in Theorem 3.5.

Third Step. From (4.3) for f one can clearly obtain

(Tlal+ b11B(da, db) £ 2C,. (4.18)
According to Lemma 4.4 the inequality (4.16) provides an estimate
TOB) < CLe2 21+ 1)2, (4.19)
where
s G .
IO(B)=sup | [ - —u*}iﬁ(a, b), (4.20)
u>0

and G is the generator of the diffusion

1/8 &)\ ou Cu
c<'>u=2(ﬁ—;> i3y (@) h'zz+1(b>)( ~> (421)

da b da 0b
on R2 Here hy;, (@)= —logy,,,(a) and ¥, (a) is the density of x; + - + x,/k,
where x,,...,x, are independent with common density e ™

Let us con51der the range I'g‘ o, of B on R? as § varies over B¢ ¢, Then
f satisfies (4.18) and (4. 19) We now consider the set of limit points of I'}* as
[— o0 and denote it by '}, ¢,.
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We have tightness from (4.18) and Lemma 4.5 gives us the estimate
fIH(a)— R (b)12dp(a, b) < 8C,e? (4.22)
for every /?e]“gl,cz. We also have the companion estimate: for every BEF?I,(‘Z,
llal+1b1df@b) < C,. (423)

Finally if we let ¢—0 and again look at the limit points, denoting the set by
"2 ¢, then

[ [ (a) — W(b)]*dPla, b) = 0 (4.24)

for every /?e]“ghCZ. From the strict convexity of A A" is a strictly monotone map
and B is then concentrated on the diagonal of R2. But this is precisely the content
of the theorem because of (4.11).

We now have two lemmas to prove in order to complete the proof of
Theorem 4.3

Lemma 4.4. Let § be a probability measure on R**1 x R of the form
Bldy, dz) = [yZ' DAy D (dz)pida, db),
where v * 1) is the restriction of ©,,, ; to the hyperplane of average charge a. Then
[PHDf) < 2+ D7),
where T is defined in (4.20) and 17% in Lemma 2.3.

Proof. We recall that ¢ "1 is the density at a of the mean (x; + -+ + X, 1)/
(21 + 1), where x,, ..., X5, , arc independent, all having e~ *™ as density. We notice
first that

Talaye =1 ¢/ (yo)viZ' ) (dy)da

1 v
= é1<21+7 2 y,f) ¢'(yo)e “"dyda

1 ,
7‘\:‘ - 2l d ,d - ’ ) hZHlW’j
21+15’<21+1 y) vda =5 Jg'a) da

a ZT;TjQ(a Ry s i(a)e” 209 da,

Since g is arbitrary and v, and 5, . (g} are continuous in a, we obtain

O anE ) = 5 o
Gu
Y4By = su;o)li—j( b >ﬁ(du dh)} {4.25)

where
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If B = v D(dy)P* V(dz) f(da, db), we can take u to be a function of a and b
of the form u{(1/21 + 1)Zyj,(1/2 +1)Xz;). Then

vz 1/ 1 Vo ay
rpzsew| =5 9\ a77) e o)

1
3005 1) (@' (vo) — ¢'(zo))u, — up) 1p(dy dz) ].

If we now use (4.25),

e e [k
I+ 1)2 2ul \da 0b

= {hgye (a) = hops 1 (D)), — “b)]ﬁdudb
1 — 5
(21+ l .

Lemma 4.5. If{ﬁl} is a sequence of probability measures on R? satisfying

{Tlal+1b{1f(da, db) < 2C, (4.26)
and
ID(B) < C,20+ 1)22, (4.27)

and if § is any limit point of B, then
{[h(ay— h(b) 1> B(da, db) < 8C 2.
Proof. (4.27) implies for every u

tf A /¢ o\ , , 5
5 j; K% - 51; u— {1y 1(“) — My (D)) 1, — uy) | pi(da, db)
’ _I
> — Ce22l+ 1)
Taking u = exp [(21 4+ 1)v(a, b)] for some ¢,

A (22
[j{(zlﬁ)(aa ﬁb) v+ {21+ 1) <(7a, ab>

7 ov

— Q21+ DIy 4(@) — h/zzﬂ(b))(a‘a*q]")ﬁz(da’db)}]z ~ 205721+ 1%

If v is a constant outside a compact set one can divide (4.27) by (2] + 1) and let [ -
to obtain

f[(fwA?)Z—(h’(a)~h’(b))<f£—w)}/)’(da db)= 202 (4.28)

We are done if we let

vla, b) =3[ (ha) + h(b}]
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except, then v is not constant outside a compact set. But we can take
ve(a,b) = min [3[h(a) + h(b)], 7],

and let 17— co. v, is not quite smooth enough. But one can mollify v, somewhat.
We now prove a slightly strengthened version of Theorem 4.3.

Theorem 4.6. For any given finite constants C, C,,

hmlimsuplimsup sup sup
>0 - N—-x A+ 1g|mSeN fedy oy 0o

T

Proof. Given Theorem 4.5 all we need to derive Theorem 4.6 is some uniform
integrability of (1/21+ 1) ) | y;| relative to all the distributions o' with « varying over

Xipr T+ Xy Xt g
20+ 1 20+1

} fDydx=0. (4.29)

ey
Ay.c,.c,- Butthisis precis/ely the role of condition (4.2) especially with w(x) satisfying
(1.4).
Finally we prove

Theorem 4.7. For any C,, C,,

limlim sup limsup sup
£20 Im@ N2© ety e,

LoolXio i+ ot x4 Xi—veag T X ey |
IN T Ty vy B D AL

Proof. Theorem 4.7 follows immediately from Theorem 4.6. An average over a

long block of length 2[ Nel + 1 is just an average of averages over short blocks of

length (21 +1). According to Theorem 4.6 they do not differ by much among

themselves so the average is close to any one of them,

Theorem 4.7 allows us to deduce Theorem 4.1 from Theorem 4.2. One uses
the continuity of the function F(y). Any trouble arising from large values of
(X, + -+ x,.,/D[F(y) need not be uniformly continuous] is taken care of by
(4.2) which telis us that there cannot be too many such blocks.

5. Hydrodynamic Limit

Let us start our evolution with an initial distribution f$ satisfying (1.9) and
(1.11). We will study the evolution in a fixed interval [0, 7). In fact without loss
of generality we will assume that 7= 1. With f% as initial distribution we have
a measure Py on the space C{[0,1]:R"} of trajectories {x,(1):0<t<1,1 <j< N},
Let us denote by M, the compact metric space (under weak convergence) of all
signed measures on S of total variation at most /. The space M = U, M, is viewed
mainly as a measurable space. We denote by £, the space C{[0, 1], M,} of all
weakly continuous maps of [0, 1] into M,. £} is a complete separable metric space
with uniform convergence in weak topology. The space Q= U,{2, is again viewed
only as a measurable space. Given a collection of trajectories {x,(t}} we can
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associate a point in Q2 by

1 ‘
= XX (08 (5.1)

t)=-
(1) N

This introduces a measure Q on £2 as the distribution of uy(-), where {x;(-)} have
Py for their distribution. According to Lemmas 6.1 and 6.2, from any subsequence
of Qy we can choose a further subsequence that converges weakly on . What
this means is that for any bounded function F whose restriction to £2, is continuous
for every [, we have convergence of expectations. Let Q be any limit point along
any subsequence. The main theorem of the section is the following:

Theorem 5.1. Let Q be any limit point. Then

a) Q[u():u(t)=m(t,0)d0 ae. 1= 1,
b) Q[u(')'u(())* ol0)df] =1,

¢} Ofu() Hhmt@)d@dl< w]=1,

-

d) Ofu(") ”{[h’ (t,0) o) 2 dOdt < 0] =1,
e)  QLul):[J(O)ulr, dB) — [ J(O) (0, dO) = “J” ‘(m(s, 0))d0ds] = 1.
5 § 205

Proof. From the monotonicity of the entropy (see Eq. 2.4) and Lemma 6.3 we
conclude that for each t>0, Q[u:u(t,d0)=m(t.0)d0] =1 and [h(m(t,0))d0 < C
S

for all t = 0. Now Fubini’s theorem will yield a) as well as c). b) is just a restatement
of condition (1.9). To prove d) we use Fubini’s theorem and Lemma 6.6. We note that

Eg[jj{[hl(m(()a t))]e}szdf} = EQ|:} 1[}1 m(0 }Zdoji

- 1
where Q :jQ,dt and @, is the marginal at time ¢t of Q. Lemma 6.6 of course
[}

applies to 0.

We now turn to the proof of e). Let us consider the cutoff function v, of Lemma
6.4 and pick ¢ > 0. We then consider for some 0 <t < |,

FY) = [TO)ptt,d0) — [JO(0, d6)

LI ~ J” J 7 Xjoa($) + o+ X va(S) ds
AN AT AN 1+ [2Ne] ‘

As functionals FN”( (-)) converge as N — oc to a limit given by

)—jJ(B u(t,do) - jJ (Om, d0)

ffffw)wl(( L0 50 **])>d0ds,

2
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and the convergence is uniform on compact subsets. Therefore

EQ[{F; (u(-)1T < Tim ESTIFN(u(-))]] (5.2)

N-ow

Let us look at the right-hand side first. By 1td’s formula

1 i i ]
B AR A

_ijlz‘]< >{¢ =2 (x;(5)) + @'(x; 1 () fds + M (1)

szz( <';1> 2J<N>—|—J< Nl>>¢>’(x,-(s))ds+MN(t),

where M (t) is a Martingale and an explicit calculation yields

cxmarr- b (7)) 5 o

and tends to zero with N. Moreover because of Lemmas 6.4 and (5.3),

1 i 1 i 1 ]
EPN o e ) o o ) " ' (<
[ NEJ(N>x,(t) N2J<N> x;(0) 2N£ZJ <N>d)(x,(5))ds ]—»O.
(5.4)
Let us consider
1 ¢ i i
Pyl _~ N . (x4 (s o mf = (e — 5
5% ( N)mxl(v))d iz ( >»//,<x,(s>>ds Al (53)
According to Lemma 6.4,
lim lim sup 4, (1) = 0. (5.6
=0 N—-ox
Let us consider
127 (5 o
1 i i~ NelS )+ +X1+NL(S) . X .
3Ny < >¢,k SN L] ds| = Ay(l, ). (5.7)
According to Theorem 4.1 and then (2.4),
lim lim Ay(l, &) = 0 for every . (5.8)

EPON-x

If we combine (5.4}, {5.5) and (5.6) we obtain
lim limsuplimsup EA [ F); (u(-))|] =0,

I-x &0 N—-w
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and combined with (5.2) this yields

lim im E@|F{,(u())|]1=0.

- w0e-0
We can let ¢ -0 inside because Fj, is uniformly bounded and obtain using a)
lﬁm E°TIFiu(-))I]=0,
where \

Filu() = <, wlt)y — {J, 10)) — 3

og__‘v-.

jJ" J(mils, 0))dsdb.

Now we let [ — oc. We can use Lemmas 6.5 and 6.3 and the dominated convergence
theorem to conclude that

ECTLF (u(-)] =0,
where

Fiu(-) = (J,ut)y — (J, w(0) ) — %j)f.] Vi (m(s, 0))dsdb.

This proves the theorem.
Now to complete the proof of Theorem 1.1 all we need is to appeal to a
uniqueness theorem for weak solutions of

om

o = 2L (e 0) oo, mlt, 6)],=o = mo(0).

6. Auxiliary Lemmas

In this section we shall prove some lemmas that were used in Sect. 5 where the
hydrodynamic limit was identified. The first two lemmas show compactness of the
process uy(f) defined by (5.1), in the sense described in that section. Lemma 6.3
is essentially (a) of Theorem 5.1 stated in a general way. Lemmas 6.4 and 6.5 are
used in implementing the truncation in (c) of Theorem 5.1. Lemma 6.6 is needed
in the proof of uniqueness in the next section.

Lemma 6.1. Let P be the law of the process Ex(t) = (x,(1),...,xy(t)) with @ as
initial distribution and let Py be its law with initial density ay (relative to @y) such that

| aylogay @ydx < CN
RN
with C a constant. Then

limlirnPN{supNZ[x(t|_ }

= N—ow IESES|

Proof. By Lemma 1.12 of {[K-V] we have that for any symmetric function g on R

poed sup ey 21} <344 B,

0grgl
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where

Then there are constants C, and C, independent of N such that

AZCY and BZN2C,CY.
Therefore

1 Nt 3 .
p? {supw Z Ix;(2) |_l}§ —(CY + N?C,CY),
0=st=1t
which is equivalent to
1
P {sup— Z |x(t|>l}<C g CaN
0<t<1N

for some constants C; and C,.
We now use the basic inequality (2.3) which is

{gfy@ydx <logfe? Dydx + | fylog [y Dydx,
to obtain the inequality

log2 + Hy
log(1 + 1/P%(4))

Py(A) =

for any Borel set A in R, Here H is the entropy of the law Py, relative to P*¥ and we
know by hypothesis that Hy < CN. This inequality and the estimate above give

log2 + CN
PN{ Sup N Z (2! }_Iog( 1/C e CNy’

0=st=1

This implies that
lim P u x: (0O = l —~5
N1‘>DO N{OSQEIN Z 1 )f } l

for some constant C5 and hence the lemma is proved.

Lemma 6.2. For every test function J on S,

lim im Py<{ sup [<J. uy(0)) — {Jopuy(s)p| > p=0

510 N 0<s<1
fr—si<so

for all > 0.

Proof. By 1t6’s formula and a calculation similar to the one in Sect. 5 for the
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identification we see that we must show that

Ii—II;P { sup jZJ”( ) "(x;(0))da >8}—>0
N—x 05t s N
[s--t] <&

as 0 —0 for all ¢> 0. In fact since |J"| i1s bounded it suffices to show that

PR 4
lim lim PN{ sup j Z x;(0))do >£} 0.
40 N—ec 05t s ji=1
[s—tl<0
To prove this we use a truncation y,; of ¢’ defined by
¢ for |¢'|=l, Y,=1 for ¢'>1 1 for ¢'<—

It then suffices to show that the estimate is valid for ¢ replaced by v, which is
obvious since ¥, is bounded, and then that

1imTﬁ’PN{f/i Wi(x(0)) ¢/(xj(o))[>8}=0
0 =

1w Noac

for all ¢ > 0. Now

11 N 1t 1 N
PN{ I L, () = ¢/ (o)t > s} <. E{N Y Wilxio)) as/(xj(a))t}da,

and for the expectation on the right we can use the basic inequality (2.3). This
gives for any 0 <t <1 and any y >0,

1 X 1 ) . N
=Y Inlx;) = @' (x;)| fy Pydx £ ——log je’[‘/”""’l “Pdx +~—ffw log fyDydx
VN A Ny OB
RV =
-1 A
§£+—Iog< { e"‘¢‘”dx>.
v 161 ¢

lim lim PN{f Z W (x (o d)’(x_,(a))[da>a}§

I=o0N—=w

Thus

c
y’
where we use the hypothesis that

je”"’,]' Ydx < oo
for all y > 0. Letting y — oo gives the result.

Lemma 6.3. Let fy be the density relative to @y of a random variable &y =
(X1,%5,...,xy) on BY such that

| Sxlog fy@ydx < CN (6.1)
RZ\‘

with C independent of N. Let Qy be the law of the empirical measure
N

1
=N -21 05N X;.
J
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Then for any weak limit Q of Qy
Q{uiu«dd} =1,
and if m(0) = dp/d0 then

EQ{f h(m(@))d@} =C,

where C is the constant in (6.1} and h(x) is the conjugate convex function of
p(3) =log M(%), M(3) = [&*~"Wdy.

Proof. Let WY be the law of p induced by @y itself. Under W¥, 1 is the empirical
measure of N independent, identically distributed random variables with mean

m=[xe "dx,

and finite moments of all orders. The law of large numbers tells us that W»
converges weakly to the deterministic law concentrated on the measure mdo
(Lebesgue measure multiplied by m). Moreover WY has the large deviations
property [V] with [ function,

[h(g(0))d0 if < db,
S

I =
+ oo otherwise

du_
=

The large deviations property leads also to the result
1
lim N log {e™ @y =sup {u(u) - jh(g(()))dﬁ}
N->o S

for any bounded, continuous function u of u.
Let {f;},j=1,2,... be asequence of functions on § that are dense in C(S) and let

() = Supk{ff (d())-ip(f,-(f?))df}}

We can pass to the limit in the basic inequality (2.3) in the form
, 1 1
{ uefy @ydx < —-log [ ™ @ydx + - | fylog [y Pydx.
A N N
Since the entropy per variable is bounded by C we conclude that
E?{u ()= sup {uk(u) Agh(g((?))d@} +C

{wdujdi=geLy}

By convex duality

M--jh )d@—sup{jf dﬁ)vjp O)dé)} g (p0)-

feC(S
Using this we get the estimate
EC{u ()} £C.
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Since u, (1) — I(w) as k— oc, by Fatou’s lemma

EC{I()} < C.
This implies that
Qluiuxddl =1
and that

EQ{j h(m(@))d()} <
S

where du/df = m(6).

Lemma 6.4. Let ,(x) be a truncation of ¢'(x

Let

Uilx) = e ")y,

M(x)
with 4=l (x). Then for each X,
() >N (x) as -

Proof. We will use our hypotheses

jeu "h(\"dx < 7 for all /:,
fe”“""/“’)1 dx < o forall ¢
Clearly ,
ferrioidx -1 on |-,
for all 0 = 0. Now
1
b ey ==,
Hence
N , 1 o ' e/\ P(v)
W (x) — ' (x)] = M(}jjﬂe' () — ¢'()dy |- ”'(fﬁl% ¢'ldy.
By the basic inequality (2.3), for any ¢ > 0,
sy - d(y) 1 S g e;”" . N .
fﬁ(j)’ W, —¢'ldy = glogfe“‘”’ ¢ty *;:.[’M(*;*)’ [y —p(A)]e *dy
1 o h(x
e Aloggg(ﬂwlf 3 ‘—/mdy + /L)t)‘
o a

Here we use the fact that at 1= h'(x),

g
M(7):

/\ a{y)

ye dy =

Passing to the limit for x fixed we see that
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— h

lim (7,00~ i) <"

1> ag

because of our basic hypotheses on ¢ and ¢'. Letting now ¢ — o we obtain the
desired result.

Lemma 6.5. There is a constant C, such that for any ¢ >0,
[ (x)] < C, + ch(x).
Proof. We will actually show that
Bim |§,(x){ £ C, + eh(x),

=
which combined with Lemma 6.4 gives the result.
Now

T = 1)y,

and as in the proof of Lemma 6.4

n 1 o L
W/l(x)l éﬁlogfea,wzmi—wdy +,(3€l’
g o

for any ¢ > 0. With -
Cg’ — logjed\¢ i“f’dy’
we then get

Tim 15:09) = <% + L i,
g T

(Sl
fwelete=1/oand C, = SC‘J/E this is the same as the statement above.

Lemma 6.6. Let us assume that the conditions of Lemma 6.3 are fulfilled and in
addition

1.1 X [ofy  Ofwn )2 o
- — = — Dydx £ —, 6.2
j.fm;< VTN (62)

OX;  0Xpyy

f

where C' is some nonnegative constant. Then any limit point Q obtained in that
lemma satisfies in addition

EQ[j[i h’(m(()))}zdé)} <8C’ (6.3)
5 ol4]

with the same constant C' as in (6.2).

Proof. This follows immediately from Eq. (4.22).

7. Uniqueness
We will show in this section that a weak solution of the equation

ou

AW s u0.0)= 1) 7.
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is unique within the class of measures pu(z, d6) satisfying

sup [fult,)]l <oo and ult,) is weakly continuous in ¢, (7.2
0<r<T

u(t, dB) = u(t, 8) df for almost all t and

igh (t,))dd < o, (7.3)

Oty N

H[h' L2 sC<w (74)

A weak solution is of course given by

t

j (0)ult, d) — jJ(@ (0,d0) = [ [ 377 (O) A (u(s, 0))ds 0, (1.5)
0S

for ali smooth test functions J{(-).

We first take J =1 and check that [u(t,0) d0 = | f(9) d0 = a for all ¢ and all
solutions. The function u(t,8) — a is denoted by i(z,0) and has mean zero on S.
Therefore there is a function o(t, 8) of mean zero, such that

av(t,0)
o= (L, 0), (7.6)
and (7.5) can be rewritten in a suitable sense as
0 1
— a6, 0)J(0)d0 == [ J"(0)[ 1 (u(t,0))]dO (7.7)
@t S 2 S
or
»~j"J Vi(t, B)d fjJ u(t, 8))],d0. (7.8)

Because of (7.4) this means that (¢, ) is differentiable in ¢ as a map into L,(S) and

d’?
i (e, 0)],. (7.9)

Now if we denote the difference between two solutions by w, thenw=u—v =0 —
and

S = R0, 0) 1y = 30 00, 6)),. (7.10)
If we now calculate
d R
i wi® = [ wit, O) [ (uft, 0)) — I (v(t, 6)) Jod0
. s
= — [ (W' (u(t, 0)) — I (v(t, 0)(u(t, ) — v(t, 6))dO
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Since || w(0)f =0 we are done. The steps need a little bit of justification but it is
routine.

8. Concluding Remarks

There have been several examples where hydrodynamic limits have been established
for interacting systems. For example De Masi et al. [DE] and Dobrusin [D]. See
also Spohn [S] for the closely related problem of fluctuation theory. Our work is
related to and was motivated by the work of Fritz [FR]. Funaki [FU7] has some
results extending Fritz’s work. But our methods are very different from all of the
earlier methods. We use basically entropy estimates. They have the advantage of
universality and with modifications the method should be applicable to other
models that are reversible and when the scaling is of diffusion type. Moreover the
method allows us to proceed farther and do large deviation theory. See for instance
Donsker and Varadhan [DV]. Although we treat the case of dimension one it is
not an essential condition. With only a change in notation the method works in
any number of dimensions.

Replacing the circle or torus by R? poses more of a challenge. The problem in
some sense is essentially local, and it should be possible to localize. Fritz has
conveyed to us some ideas in private communication, but it still remains to be done.
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