

Zurich Lectures in Advanced Mathematics

Edited by

Erwin Bolthausen (Managing Editor), Freddy Delbaen, Thomas Kappeler (Managing Editor), Christoph Schwab,
Michael Struwe, Gisbert Wüstholz

Mathematics in Zurich has a long and distinguished tradition, in which the writing of lecture notes volumes
and research monographs plays a prominent part. The Zurich Lectures in Advanced Mathematics series
aims to make some of these publications better known to a wider audience. The series has three main con-
stituents: lecture notes on advanced topics given by internationally renowned experts, graduate text books
designed for the joint graduate program in Mathematics of the ETH and the University of Zurich, as well
as contributions from researchers in residence at the mathematics research institute, FIM-ETH. Moderately
priced, concise and lively in style, the volumes of this series will appeal to researchers and students alike,
who seek an informed introduction to important areas of current research.

Previously published in this series:

Yakov B. Pesin, Lectures on partial hyperbolicity and stable ergodicity

Sun-Yung Alice Chang, Non-linear Elliptic Equations in Conformal Geometry

Sergei B. Kuksin, Randomly forced nonlinear PDEs and statistical hydrodynamics in 2 space dimensions

Pavel Etingof, Calogero-Moser systems and representation theory

Guus Balkema and Paul Embrechts, High Risk Scenarios and Extremes – A geometric approach

Demetrios Christodoulou, Mathematical Problems of General Relativity I

Camillo De Lellis, Rectifiable Sets, Densities and Tangent Measures

Paul Seidel, Fukaya Categories and Picard–Lefschetz Theory

Alexander H.W. Schmitt, Geometric Invariant Theory and Decorated Principal Bundles

Michael Farber, Invitation to Topological Robotics

Alexander Barvinok, Integer Points in Polyhedra

Christian Lubich, From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis

Published with the support of the Huber-Kudlich-Stiftung, Zürich

Shmuel Onn

Nonlinear Discrete
Optimization

An Algorithmic Theory

Author:

Prof. Shmuel Onn
Davidson Faculty of IE & M
Technion – Israel Institute of Technology
Technion City, Haifa 32000
Israel

E-mail: onn@ie.technion.ac.il

2010 Mathematics Subject Classification: 05Axx, 05Cxx, 05Dxx, 05Exx, 11Dxx, 11Hxx, 11Pxx, 13Pxx, 14Qxx,

15Axx, 15Bxx, 51Mxx, 52Axx, 52Bxx, 52Cxx, 62Hxx, 62Kxx, 62Qxx, 65Cxx, 68Qxx, 68Rxx, 68Wxx, 90Bxx,

90Cxx

Key words: integer programming, combinatorial optimization, optimization, linear programming, stochastic
programming, randomized algorithm, approximation algorithm, polynomial time, transportation problem,
multi index transportation problem, transshipment problem, multicommodity flow, congestion game,
spanning tree, matroid, submodular function, matching, partitioning, clustering, polytope, zonotope, edge
direction, totally unimodular matrix, test set, Graver base, contingency table, statistical table, multiway table,
disclosure control, data security, privacy, algebraic statistics, experimental design, Frobenius number, Grobner
base, Hilbert scheme, zero-dimensional ideal

ISBN 978-3-03719-093-7

The Swiss National Library lists this publication in The Swiss Book, the Swiss national bibliography,

and the detailed bibliographic data are available on the Internet at http://www.helveticat.ch.

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is

concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,

reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission

of the copyright owner must be obtained.

©2010 European Mathematical Society

Contact address:

European Mathematical Society Publishing House

Seminar for Applied Mathematics

ETH-Zentrum FLI C4

CH-8092 Zürich

Switzerland

Phone: +41 (0)44 632 34 36

Email: info@ems-ph.org

Homepage: www.ems-ph.org

Printing and binding: Druckhaus Thomas Müntzer GmbH, Bad Langensalza, Germany

∞ Printed on acid free paper

9 8 7 6 5 4 3 2 1

To Ruth, Amos and Naomi

Preface

This monograph develops an algorithmic theory of nonlinear discrete optimization. It in-
troduces a simple and useful setup which enables the polynomial time solution of broad
fundamental classes of nonlinear combinatorial optimization and integer programming
problems in variable dimension. An important part of this theory is enhanced by recent
developments in the algebra of Graver bases. The power of the theory is demonstrated by
deriving the first polynomial time algorithms in a variety of application areas within oper-
ations research and statistics, including vector partitioning, matroid optimization, experi-
mental design, multicommodity flows, multiindex transportation and privacy in statistical
databases.

The monograph is based on twelve lectures which I gave within the Nachdiplom Lec-

tures series at ETH Zürich in Spring 2009, broadly extending and updating five lectures
on convex discrete optimization which I gave within the Séminaire de Mathématiques

Supérieures series at Université de Montréal in June 2006. I thank the support of the
Israel Science Foundation and the support and hospitality of ETH Zürich, Université de
Montréal, and Mathematisches Forschungsinstitut Oberwolfach, where parts of the re-
search underlying the monograph took place.

I am indebted to Jesus De Loera, Raymond Hemmecke, Jon Lee, Uriel G. Rothblum
and Robert Weismantel for their collaboration in developing the theory described herein.
I am also indebted to Komei Fukuda for his interest and very helpful suggestions, and to
many other colleagues including my co-authors on articles cited herein and my audience
at the Nachdiplom Lectures at ETH.

Finally, I am especially grateful to my wife Ruth, our son Amos, and our daughter
Naomi, for their support throughout the writing of this monograph.

Haifa, May 2010 Shmuel Onn

Contents

Preface vii

1 Introduction 1

1.1 Outline of the monograph . 2

1.2 Two prototypical classes of examples . 4

1.2.1 Nonlinear matroid problems . 4

1.2.2 Nonlinear multicommodity flows 7

1.3 Notation, complexity, and finiteness . 11

1.3.1 Notation . 11

1.3.2 Complexity . 11

1.3.3 Finiteness . 12

2 Convex Discrete Maximization 14

2.1 Image and fibers . 15

2.2 Small radius and weight . 18

2.3 Convex maximization with edge directions 23

2.3.1 Edge directions and zonotopes 23

2.3.2 Efficient convex maximization 26

2.3.3 Small radius and weight revisited 28

2.3.4 Totally unimodular systems . 29

2.4 Convex combinatorial maximization . 31

2.5 Some applications . 33

2.5.1 Quadratic binary programming 33

2.5.2 Matroids and matroid intersections 34

2.5.3 Vector partitioning and clustering 36

3 Nonlinear Integer Programming 40

3.1 Graver bases . 40

3.2 Efficient separable convex minimization 43

3.3 Specializations and extensions . 48

3.3.1 Linear integer programming . 48

3.3.2 Distance minimization . 48

3.3.3 Convex integer maximization 49

3.3.4 Weighted separable convex minimization 50

3.3.5 Totally unimodular systems revisited 51

3.4 Bounds on Graver bases . 52

x Contents

4 n-Fold Integer Programming 54
4.1 Graver bases of n-fold products . 55
4.2 Efficient n-fold integer programming . 58
4.3 Some applications . 62

4.3.1 Nonlinear many-commodity transshipment 62
4.3.2 Nonlinear multicommodity transportation 63

4.4 Stochastic integer programming . 65
4.5 Graver approximation scheme . 71

5 Multiway Tables and Universality 74
5.1 The universality theorem . 76
5.2 Some applications . 80

5.2.1 Multiindex transportation problems 80
5.2.2 Privacy in statistical databases 83
5.2.3 Extensions to hierarchical margins 86

5.3 Universality of n-fold integer programming 88
5.4 Graver complexity of graphs and digraphs 90

6 Nonlinear Combinatorial Optimization 97
6.1 Nonlinear matroid optimization . 98

6.1.1 Preparation . 98
6.1.2 Matroids . 100
6.1.3 Matroid intersections . 103

6.2 Optimization over independence systems 108
6.2.1 Approximative nonlinear optimization 109
6.2.2 Exponential time to exact optimization 117

6.3 Some applications . 119
6.3.1 Nonlinear bipartite matching . 119
6.3.2 Experimental design . 120
6.3.3 Universal Gröbner bases . 122

Bibliography 129

Index 135

1 Introduction

Discrete optimization problems are fundamental to every area of science and engineering.
The mathematical modeling of a real-life problem as a discrete optimization problem
consists of representing the feasible scenarios by integer points in some high dimensional
space and the cost or utility associated with these scenarios by a real-valued function on
this space. The problem is then to efficiently compute an optimal point which enables to
identify an optimal scenario. The general mathematical nonlinear discrete optimization
problem can be setup as follows.

Nonlinear discrete optimization problem. Given a set S ⊆ Zn of integer points, an
integer d × n matrix W , and a real-valued function f : Zd → R, find x ∈ S which
minimizes or maximizes the objective function f(Wx), that is, solve the following:

min
{

f(Wx) : x ∈ S
}

or max
{

f(Wx) : x ∈ S
}

.

Several explanatory notes are in order here. The problem is discrete since the feasible
points are integer. The dimension n is always a variable part of the input. The compos-
ite form f(Wx) of the objective function results in no loss of generality: taking d := n
and W := In the identity matrix, the objective becomes an arbitrary function f(x) on S.
While discrete optimization problems are typically computationally very hard and often
intractable, this composite form enables a finer classification of efficiently solvable prob-
lems. We determine broad classes of triples S,W, f for which the problem can be solved
in polynomial time (usually deterministically but sometimes randomly or approximately).
The composite form is also natural and useful in modeling: the problem can be interpreted
as multicriterion or multiplayer optimization, where row Wi of the matrix gives a linear
function Wix representing the value of feasible point x ∈ S under criterion i or its utility
to player i, and the objective value f(Wx) = f(W1x, . . . , Wdx) is the “centralized” or
“social” balancing of the d criteria or d player utilities.

The function f is sometimes the restriction to Zd ⊂ Rd of a function f : Rd → R
defined on the entire space. We assume most of the time that f is presented by a compar-

ison oracle that, queried on x, y ∈ Zd, asserts whether or not f(x) ≤ f(y). Therefore,
we do not have a problem with the fact that the actual values of f may be real (possibly
nonrational) numbers. This is a very broad presentation that reveals little information on
the function and makes the problem harder to solve, but is very expressive and allows for
flexibility in using the algorithms that we develop. Often, we assume that the function
possesses some additional structure such as being convex or separable on the variables.

The weight matrix W is typically assumed to have a fixed number d of rows. In par-
ticular, with d := 1, W := w ∈ Zn and f the identity on R, the objective function
f(Wx) = wx =

∑n
i=1 wixi is linear, which is the case considered in most literature

on discrete optimization and is already hard and often intractable. The matrix W is given
explicitly, and the computational complexity of the problem depends on the encoding of
its entries (binary versus unary).

2 1 Introduction

The computational complexity of the nonlinear discrete optimization problem most
heavily depends on the presentation of the set S of feasible points. Accordingly, the algo-
rithmic theory splits into two major branches as follows.

The first branch of the theory is nonlinear integer programming, where the feasible
set S consists of the integer points which satisfy a system of linear inequalities given
explicitly by an integer matrix A and a right-hand side vector b:

S := {x ∈ Zn : Ax ≤ b}.

The second branch of the theory is nonlinear combinatorial optimization, where the
feasible set S ⊆ {0, 1}n consists of {0, 1}-valued vectors and is often interpreted as the
set S = {1F : F ∈ F} of indicators of a family F ⊆ 2N of subsets of a ground set
N := {1, . . . , n} with 1F :=

∑

j∈F 1j , where 1j is the jth standard unit vector in Rn.
The set S is presented implicitly through some given compact structure or by a suitable
oracle. A typical compact structure is a graph, where S is defined to be the set of indicators
of subsets of edges that satisfy a given combinatorial property, such as being a matching
or a forest. Typical oracles include a membership oracle, that queried on x ∈ {0, 1}n,
asserts whether or not x ∈ S, and a linear-optimization oracle, that queried on w ∈ Zn

solves the linear optimization problem max{wx : x ∈ S} over the feasible set S.

We are interested, throughout, in the situation where the feasible set S is finite. This
holds by definition in combinatorial optimization, where S ⊆ {0, 1}n. It also holds in
most natural integer programming applications; moreover, typically the feasible set can
be made finite by more careful modeling. As demonstrated in Section 1.3.3, nonlinear
discrete optimization over infinite sets is quite hopeless even in one variable. Nonetheless,
we do allow the input set to be infinite, and our algorithms are required to identify this
situation in polynomial time as well.

Therefore, throughout this monograph, and in all formal statements, an algorithm is
said to solve a nonlinear discrete optimization problem if, for any given S, it either finds
an optimal solution x ∈ S or asserts that S is infinite or empty.

There is a massive body of knowledge and literature on linear discrete optimization
including linear combinatorial optimization and linear integer programming. But lately,
there has been tremendous progress on nonlinear discrete optimization as well. The pur-
pose of this monograph is to provide a comprehensive, unified treatment of nonlinear dis-
crete optimization that incorporates these new developments. Our goal is twofold: first,
to enable users of discrete optimization to benefit from these new developments and the
recently attained polynomial time solvability of broad fundamental classes of nonlinear
discrete optimization problems; second, to stimulate further research on these fascinating
important classes of problems, their mathematical structure, computational complexity,
and numerous applications.

1.1 Outline of the monograph

The main body of the monograph can be divided into three parts: Chapter 2 on convex

discrete maximization, Chapters 3–5 on nonlinear integer programming, and Chapter 6 on
nonlinear combinatorial optimization. The three parts, and in fact the individual chapters

1.1 Outline of the monograph 3

as well, can be quite easily read independently of each other, just browsing now and then
for relevant definitions and results as needed.

The monograph can also be divided into theory versus applications. The applications
are discussed in Sections 1.2, 2.5, 4.3, 5.2, and 6.3, which can be read independently of
the theoretical development. All other sections of Chapters 2–6 develop the theory and
can be read independently of the applications sections.

The next introductory, Section 1.2, describes two prototypical examples of classes of
combinatorial optimization and integer programming problems. These and other appli-
cations motivate the theory developed herein and are discussed in more detail and solved
under various assumptions in the later applications sections. We conclude the introduction
in Section 1.3 with some preliminary technical issues.

In Chapter 2, we consider convex discrete maximization, that is, the problem
max{f(Wx) : x ∈ S} with f : Zd → R convex. The methods used in this chapter
are mostly geometric. We provide several polynomial time algorithms for convex maxi-
mization in various situations. These results apply to both combinatorial optimization and
integer programming branches of our theory. The main result of this chapter is Theorem
2.16 which enables convex maximization in polynomial time using the edge directions of
the polytope conv(S). We also discuss various direct applications including matroids and
vector partitioning problems.

In Chapters 3–5, we study nonlinear integer programming, that is, optimizing a
(non)linear function over a set S given by inequalities, mostly of the form:

S :=
{

x ∈ Zn : Ax = b, l ≤ x ≤ u
}

(1.1)

for some integer matrix A, right-hand side b, and l, u ∈ Zn
∞ with Z∞ := Z⊎{±∞}. The

methods used here are mostly algebraic. These chapters proceed as follows.

In Chapter 3, we introduce the Graver basis of an integer matrix and show that it can
be used to optimize in polynomial time linear and various nonlinear objective functions
over sets of the form (1.1). The main result of this chapter is Theorem 3.12 which enables
the polynomial time minimization of separable convex functions over sets of form (1.1).
This in particular implies that the Graver basis enables linear integer programming in
variable dimension in polynomial time. Combining this with the results of Chapter 2, we
further show that the Graver basis also enables convex maximization over sets of form
(1.1) in polynomial time.

In Chapter 4, we introduce the theory of n-fold integer programming. This theory,
which incorporates the results of Chapter 3, enables the first polynomial time solution of
very broad fundamental classes of linear and nonlinear integer programming problems
in variable dimension. In particular, Theorems 4.10 and 4.12 enable, respectively, maxi-
mization and minimization of broad classes of convex functions over n-fold programs in
polynomial time. In fact, as shown in Chapter 5, every integer program is an n-fold integer
program. We discuss some of the numerous applications of this powerful theory including
linear and nonlinear multicommodity transportation and transshipment problems. Discus-
sion of further applications to multiway tables is postponed to Chapter 5. We also show
that similar methods enable the first polynomial time solution, in Theorem 4.19, of the
important and extensively studied stochastic integer programming problem.

4 1 Introduction

In Chapter 6, we discuss multiway tables. Such tables occur naturally in any context
involving multiply-indexed variables and are used extensively in operations research and
statistics. We prove the universality Theorem 5.1 which shows that every integer program
is a program over l × m × 3 tables and conclude the universality Theorem 5.12 of n-fold
integer programming. These results provide powerful tools for establishing the presum-
able limits of polynomial time solvability of table problems. We discuss applications of
the n-fold integer programming theory of Chapter 4 and the universality theorems to mul-
tiindex transportation problems and privacy in statistical databases. We also introduce
and discuss the Graver complexity of graphs and digraphs, new important and fascinating
invariants.

Finally, in Chapter 6, we discuss nonlinear combinatorial optimization, that is, the
problem min{f(Wx) : x ∈ S} with f arbitrary and S ⊆ {0, 1}n presented compactly or
by an oracle. We solve the problem in polynomial time for several combinatorial struc-
tures S using various methods. In particular, we provide, in Theorems 6.8, 6.12, and
6.23, respectively, a deterministic algorithm for matroids, a randomized algorithm for
two matroid intersections, and an approximative algorithm for independence systems.
This approximation is of an unusual flavor and the quality of the approximative solution
is bounded in terms of certain Frobenius numbers derived from the entries of the weight
matrix W . We also establish an exponential lower bound on the running time needed to
solve the problem to optimality. We conclude with some concrete applications including
experimental design in statistics and universal Gröbner bases in computational algebra.

1.2 Two prototypical classes of examples

We now describe one prototypical class of examples of combinatorial optimization prob-
lems and one prototypical class of examples of integer programming problems, discussed
in Sections 1.2.1 and 1.2.2, respectively. The special cases of these problems with lin-
ear objective functions are classical and had been studied extensively in the literature.
The nonlinear optimization extensions are solved under various assumptions later in the
monograph as applications of the theory which we develop.

1.2.1 Nonlinear matroid problems

Matroids and spanning trees

A matroid is a pair M = (N, B), where N is a finite ground set, typically taken to
be N := {1, . . . , n}, and B is a nonempty family of subsets of N , called bases of the
matroid, such that for every B,B′ ∈ B, and j ∈ B \ B′, there is a j′ ∈ B′ such that
B \ {j} ∪ {j′} ∈ B. All bases turn out to have the same cardinality, called the rank of
M . A subset I ⊆ N is called independent in the matroid if I ⊆ B for some B ∈ B. The
family of independent sets of M is denoted by I and determines M .

A basic model is the graphic matroid of a graph G = (V,N): its ground set is the set
N of edges of G; its independent sets are subsets of edges forming forests; its bases are
inclusion-maximal forests. In particular, if G is connected then its bases are the spanning
trees. A broader model is the vectorial matroid of a matrix A over a field F: its ground

1.2 Two prototypical classes of examples 5

set is the set N of indices of columns of A; its independent sets are subsets of indices of
columns of A which are linearly independent over F; its bases are the subsets of indices of
columns of A forming bases of the column space of A. Graphic matroids are very special
vectorial matroids over R: given a graph G = (V,N) with set of edges N , orient its edges
arbitrarily and let D be the V × N incidence matrix of the resulting digraph, which is
defined by Dv,e := −1 if edge e ∈ N leaves vertex v ∈ V , Dv,e := 1 if e enters v, and
Dv,e := 0 otherwise. Then the graphic matroid of G is precisely the vectorial matroid
of D.

A matroid can be presented either through a compact given structure, such as graph or
matrix for graphic or vectorial matroid, or by a suitable oracle. Two natural oracles are a
basis oracle that, queried on B ⊆ N , asserts whether or not B ∈ B, and an independence

oracle, that queried on I ⊆ N , asserts whether or not I ∈ I. Both oracles are easily
realizable from a graph or matrix presentation.

The classical linear optimization problem over a matroid is the following: given ma-
troid M = (N, B) and weight vector w ∈ Zn, find a basis B ∈ B of maximum weight
w(B) :=

∑

j∈B wj . Letting S := {1B : B ∈ B} ⊆ {0, 1}n be the set of indicators of
bases, the problem can be written in the form max{wx : x ∈ S}.

This classical problem can be easily solved even when the matroid is presented by
an independence oracle, by the following well-known greedy algorithm that goes back to
[32]: initialize I := ∅; while possible, pick an element j ∈ N \ I of largest weight wj

such that I := I ⊎ {j} ∈ I, set I := I ⊎ {j}, and repeat; output B := I . Further details
on classical matroid theory can be found in [98].

This is a good point to illustrate the sensitivity of the complexity of a problem to the
presentation of the feasible set. A basis oracle presentation of a matroid does not admit a
polynomial time solution even with linear objective w := 0. Indeed, for each B ⊆ N let
MB := (N, {B}) be the matroid with single basis B. Any algorithm that makes less than
2n − 1 oracle queries leaves at least two subsets B,B′ ⊂ N unqueried, in which case, if
the oracle presents either MB or MB′ then it replies “no” to all queries, and the algorithm
cannot tell whether the oracle presents MB or MB′ and hence cannot tell whether the
optimal basis is B or B′.

We proceed to define the general, nonlinear, optimization problem over a matroid. The
data for the problem consist of a matroid M = (N, B), an integer d×n weight matrix W ,
and a function f : Zd → R. Each column W j of W can be interpreted as vectorial utility
of element j ∈ N in the ground set, and each row Wi can be interpreted as a linear form
representing the values of the ground set elements under criterion i. So Wi,j is the value
of element j under criterion i. The objective value of independent set or basis F ⊆ N is
the balancing f(W (F)) := f(W1F) by f of the utility of F under the d given criteria.
So the problem is as follows.

Nonlinear matroid optimization. Given a matroid M = (N, B) on ground set N :=
{1, . . . , n}, an integer d × n matrix W , and a function f : Zd → R, solve

max{f(Wx) : x ∈ S}
with S ⊆ {0, 1}n the set of (indicators of) bases or independent sets of M :

S := {1B : B ∈ B} or S := {1I : I ∈ I}.

6 1 Introduction

Here is a concrete example of a nonlinear matroid optimization application.

Example 1.1 (maximum norm spanning tree, see Figure 1.1). Let d be a positive integer
and 1 ≤ p ≤ ∞. Let f : Rd → R be the lp norm f := ‖ · ‖p on Rd given by ‖y‖p

p =
∑d

i=1 |yi|p for 1 ≤ p < ∞ and ‖y‖∞ = maxd
i=1 |yi|. Let G be a connected graph with set

of edges N := {1, . . . , n}. Let W be an integer d×n weight matrix with Wi,j the value of
edge j under criterion i. The problem is to find a spanning tree T of G with utility vector
of maximum lp norm ‖∑j∈T W j‖p and is the nonlinear matroid optimization problem
over the graphic matroid of G.

optimal tree is x = (0 0 0 1 1 1)

with Wx = (-3 6) and f(Wx) = 45

321-10-2

-2-10213 Criterion/player 1

Criterion/player 2

(3 -2)

(-1 2)

(1 0)(2 -1)

(0 1)

e1

e2e3

e4
e5

e6

(-2 3)

S in {0,1}6 consists of spanning trees in graph K4

W =

f is given by f(y) = |y |2 = y1
2 + y2

2 balancing criteria

The nonlinear problem is

max {f(Wx) : x in {0,1}6 spanning tree}

Data:

Solution and Value:

Figure 1.1: Maximum norm spanning tree example

The nonlinear matroid optimization problem is solved in Section 2.5.2 for convex f
and under suitable assumptions in Section 6.1.2 for arbitrary f . This in particular applies
to nonlinear spanning tree problems as in Example 1.1. One concrete application area is
in model fitting in experimental design [10] and is discussed in Section 6.3.2. Another
useful application is a polynomial time algorithm for computing the universal Gröbner

basis of any system of polynomials with a finite set of common zeros in fixed number of
variables [6], [85] and is discussed in Section 6.3.3.

Matroid intersections and independence systems

We proceed to introduce two broad extensions of nonlinear matroid optimization.

1.2 Two prototypical classes of examples 7

Nonlinear matroid intersection. Given k matroids Mi = (N, Bi) on common n ele-
ment ground set N , integer d × n matrix W , and function f : Zd → R, solve

max
{

f(Wx) : x ∈ S
}

with S ⊆ {0, 1}n the set of common bases or common independent sets:

S :=
{

1B : B ∈ B1 ∩ · · · ∩ Bk

}

or S :=
{

1I : I ∈ I1 ∩ · · · ∩ Ik

}

.

For k ≥ 3, even the linear problem is hard: the NP-hard traveling salesman problem

is reducible to linear three-matroid intersection, see Section 2.5.2.
For k = 2, the nonlinear (two) matroid intersection problem is solved under suitable

assumptions in Section 2.5.2 for convex f and in Section 6.1.3 for arbitrary f .
The set of common independent sets of several matroids is a special case of the follow-

ing generic monotonically closed down structure. An independence system (sometimes
termed simplicial complex) is a nonempty set S ⊆ {0, 1}n such that z ∈ {0, 1}n and
z ≤ x ∈ S imply z ∈ S. We also consider the following problem.

Nonlinear independence system optimization. Given independence system S⊆{0,1}n,
integer d × n matrix W , and f : Zd → R, solve max{f(Wx) : x ∈ S}.

This is a very broad problem – any reasonable set of {0, 1}-vectors can be closed
down to become an independence system – and so is very hard to solve. In Section 6.2,
we provide, under suitable restrictions, an approximative solution to this problem whose
quality is bounded by certain Frobenius numbers derived from the entries of W and show
that finding a true optimal solution requires exponential time.

1.2.2 Nonlinear multicommodity flows

Multiindex transportation problems

The classical transportation problem concerns the minimum cost routing of a discrete
commodity subject to supply, demand, and channel capacity constraints. The data for the
problem is as follows. There are m suppliers and n consumers. Supplier i supplies si

units, and consumer j consumes cj units. For each supplier i and consumer j, there is a
capacity (upper bound) ui,j on the number of units that can be routed from i to j and a cost
wi,j per unit routed from i to j. A transportation is a nonnegative integer m×n matrix x,
with xi,j the number of units to be routed from i to j, that satisfies the capacity constraints
xi,j ≤ ui,j and the supply and consumption constraints

∑n
j=1 xi,j = si,

∑m
i=1 xi,j = cj

for all i, j. So the set of feasible transportations is the set of nonnegative integer matrices
with row sums si, column sums cj , and entry upper bounds ui,j , given by

S :=
{

x ∈ Zm×n
+ :

∑n
j=1 xi,j = si,

∑m
i=1 xi,j = cj , xi,j ≤ ui,j

}

. (1.2)

The transportation problem is to find a transportation x of minimum total cost wx :=
∑m

i=1

∑n
j=1 wi,jxi,j , that is, the linear integer programming problem:

min
{

wx : x ∈ Zm×n
+ ,

∑

j xi,j = si,
∑

i xi,j = cj , xi,j ≤ ui,j

}

. (1.3)

8 1 Introduction

It is well known [54] that the matrix defining the system of inequalities in (1.3) is totally

unimodular, implying that the underlying polytope is integer, that is,

conv(S) = conv
{

x ∈ Zm×n
+ :

∑

j xi,j = si,
∑

i xi,j = cj , xi,j ≤ ui,j

}

=
{

x ∈ Rm×n
+ :

∑

j xi,j = si,
∑

i xi,j = cj , xi,j ≤ ui,j

}

.
(1.4)

Since the minimum of a linear function over a polytope is attained at a vertex, (1.4) implies
that problem (1.3) can be solved in polynomial time by linear programming [59], [87] (see
Section 2.3.4 for a more detailed discussion of totally unimodular systems).

We proceed to discuss a fundamental and much more difficult extension of the prob-
lem. The multiindex transportation problem, introduced by Motzkin in [75], is the problem
of finding a minimum cost multiindexed nonnegative integer array x = (xi1,...,id

) with
specified sums over some of its lower dimensional subarrays (termed margins in statis-
tics). For simplicity, we discuss now only the case of triple-index problems with line-sum
constraints and postpone discussion of the general case to Section 5.2.1. The data for the
triple-index, line-sum problem of format l ×m× n consists of mn + ln + lm line sums,
that is, nonnegative integer numbers:

v∗,j,k, vi,∗,k, vi,j,∗, 1 ≤ i ≤ l, 1 ≤ j ≤ m, 1 ≤ k ≤ n,

replacing the supplies and consumptions of the classical problem, and an integer l×m×n
cost array w. The problem is the linear integer programming problem:

min
{

wx : x ∈ Zl×m×n
+ ,

∑

i xi,j,k = v∗,j,k,
∑

j xi,j,k = vi,∗,k,
∑

k xi,j,k = vi,j,∗

}

.

The matrix which defines the system of inequalities of the triple-index transportation
problem is not totally unimodular. Therefore, the underlying polytope is typically not
integer, and, as the next example shows, we have strict containment:

conv
{

x ∈ Zl×m×n
+ ,

∑

i xi,j,k = v∗,j,k,
∑

j xi,j,k = vi,∗,k,
∑

k xi,j,k = vi,j,∗

}

�
{

x ∈ Rl×m×n
+ ,

∑

i xi,j,k = v∗,j,k,
∑

j xi,j,k = vi,∗,k,
∑

k xi,j,k = vi,j,∗

}

.

Example 1.2 (real-feasible integer-infeasible tri-index transportation). Consider the 6 ×
4 × 3 transportation problem with the following line sums:

(

vi,j,∗

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 1
0 1 1 0
1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
(

vi,∗,k

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 0
1 1 0
1 0 1
1 0 1
0 1 1
0 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
(

v∗,j,k

)

=

⎛

⎜

⎜

⎝

1 1 1
1 1 1
1 1 1
1 1 1

⎞

⎟

⎟

⎠

.

1.2 Two prototypical classes of examples 9

It can be shown that the following fractional point is the unique feasible one:

(

xi,j,1

)

=
1

2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 1
0 1 1 0
1 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
(

xi,j,2

)

=
1

2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 1
0 1 1 0
0 0 0 0
0 0 0 0
1 0 1 0
0 1 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(

xi,j,3

)

=
1

2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0
0 0 0 0
1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

As suggested by Example 1.2 and the preceding discussion, the linear multiindex
problem is NP-hard and hence presumably computationally intractable. In fact, in
Section 5.1 we show that the problem already over l × m × 3 arrays is universal: ev-
ery integer programming problem is an l × m × 3 transportation problem.

More generally, we consider the nonlinear multiindex problem stated as follows (with
the precise definition of a list of hierarchical margins postponed to Section 5.2.3).

Nonlinear multiindex transportation problem. Given list v of hierarchical integer mar-
gins for m1 × · · · × md arrays and a function f : Zm1×···×md → R, solve

min
{

f(x) : x ∈ Zm1×···×md

+ , x has the given margins v
}

.

In spite of the hardness of even the linear problem indicated above, we solve the
(non)linear multiindex problem under suitable assumptions in Sections 5.2.1 and 5.2.3.

Multicommodity transshipment problems

Another broad extension of the transportation problem is the multicommodity transship-

ment problem. This is a very general flow problem which seeks minimum cost routing of
several discrete commodities over a digraph subject to vertex demand and edge capacity
constraints. The problem data is as follows (see Figure 1.2 for a trivial example). There
is a digraph G with s vertices and t edges. There are l types of commodities. Each com-
modity has a demand vector dk ∈ Zs with dk

v , the demand for commodity k at vertex v
(interpreted as supply when positive and consumption when negative). Each edge e has a
capacity ue (upper bound on the combined flow of all commodities on it). A multicom-

modity transshipment is a vector x = (x1, . . . , xl) with xk ∈ Zt
+ for all k and xk

e the flow

of commodity k on edge e, satisfying the capacity constraint
∑l

k=1 xk
e ≤ ue for each

edge e and demand constraint
∑

e∈δ+(v) xk
e −∑

e∈δ−(v) xk
e = dk

v for each vertex v and

commodity k (with δ+(v), δ−(v) the sets of edges entering and leaving vertex v).
The cost of transshipment x is defined as follows. There are cost functions fe, g

k
e :

Z → Z for each edge and each edge-commodity pair. The transshipment cost on edge e is

10 1 Introduction

Edgecosts fe(x1
e+x2

e):=(x1
e+x2

e)2 and g1
e(x1

e):=g2
e(x2

e):=0

d1 := (3 -1 -2)

d2 := (-3 2 1)

Vertex demands:

Solution:

X1 = (3 2 0)

X2 = (0 2 3)

Data:

Cost:

(3+0)2+(2+2)2+(0+3)2 = 34

Digraph G

(2 2)

-2 1

3 -3 -1 2
(3 0)

(0 3)
G

Edge capacities ue ulimited

Two commodities:red and green

Figure 1.2: Multicommodity transshipment example

fe(
∑l

k=1 xk
e) +

∑l
k=1 gk

e (xk
e) with the first term being the value of fe on the combined

flow of all commodities on e, and the second term being the sum of costs that depends on
both the edge and the commodity. The total cost is

t
∑

e=1

(

fe

(

l
∑

k=1

xk
e

)

+
l

∑

k=1

gk
e

(

xk
e

)

)

.

The cost can in particular be convex such as αe|
∑l

k=1 xk
e |βe +

∑l
k=1 γk

e |xk
e |δ

k
e for

some nonnegative integers αe, βe, γ
k
e , δk

e , which takes into account the increase in cost due
to channel congestion when subject to heavy traffic or communication load [88] (with the
standard linear special case obtained by βe = δk

e = 1).
So we have the following very general nonlinear multicommodity flow problem.

Nonlinear multicommodity transshipment problem. Given a digraph G with s vertices
and t edges, l commodity types, demand dk

v ∈ Z for each commodity k and vertex v, edge
capacities ue ∈ Z+, and cost functions fe, g

k
e : Z → Z, solve

min
∑

e

(

fe

(

l
∑

k=1

xk
e

)

+
l

∑

k=1

gk
e

(

xk
e

)

)

subject to xk
e ∈ Z+,

∑

e∈δ+(v)

xk
e −

∑

e∈δ−(v)

xk
e = dk

v ,
l

∑

k=1

xk
e ≤ ue.

1.3 Notation, complexity, and finiteness 11

This problem, already with linear costs, is very difficult. It is NP-hard for two com-
modities over the bipartite digraphs Km,n (oriented from one side to the other) and for
variable number l of commodities over K3,n. Nonetheless, we do solve the (non)linear
problem in polynomial time in two broad situations in Sections 4.3.1 and 4.3.2. In partic-
ular, our theory provides the first solution for the linear problem with two commodities
over K3,n and with l commodities over the tiny graph K3,3.

1.3 Notation, complexity, and finiteness

We conclude our introduction with some notation and preliminary technical issues.

1.3.1 Notation

We use R, R+, Z, Z+, for the reals, nonnegative reals, integers, and nonnegative integers,
respectively. We use R∞ := R ⊎ {±∞} and Z∞ := Z ⊎ {±∞} for the extended reals
and integers. The absolute value of a real number r is denoted by |r| and its sign by
sign(r) ∈ {−1, 0, 1}. The ith standard unit vector in Rn is denoted by 1i. We use 1 :=
∑n

i=1 1i for the vector with all entries equal to 1. The support of x ∈ Rn is the index
set supp(x) := {i : xi �= 0} of nonzero entries of x. The indicator of subset I ⊆ N :=
{1, . . . , n} is the vector 1I :=

∑

i∈I 1i, so supp(1I) = I . Vectors are typically regarded
as columns unless they are rows of a matrix or otherwise specified. When vectors in a
list are indexed by subscripts wi ∈ Rn, their entries are indicated by pairs of subscripts,
as wi = (wi,1, . . . , wi,n). When vectors in a list are indexed by superscripts xj ∈ Rn,

their entries are indicated by subscripts, as xj = (xj
1, . . . , x

j
n). The integer lattice Zn

is naturally embedded in Rn. The space Rn is endowed with the standard inner product
which, for w, x ∈ Rn, is given by wx :=

∑n
i=1 wixi. Vectors w in Rn will also be

regarded as linear functions on Rn via the inner product wx. Thus, we refer to elements of
Rn as points, vectors, or linear functions, as is appropriate from the context. The lp norm
on Rn is defined by ‖x‖p

p :=
∑n

i=1 |xi|p for 1 ≤ p < ∞ and ‖x‖∞ := maxn
i=1 |xi|. The

rows of a matrix W are denoted by Wi, the columns by W j , and the entries by Wi,j . The
inner product of matrices lying in the same matrix space is W · X :=

∑

i

∑

j Wi,jXi,j .
For matrix W , we use ‖W‖∞ := maxi,j |Wi,j |. Additional, more specific notation is
introduced wherever needed, recalled in later occurrences and appropriately indexed.

1.3.2 Complexity

Explicit numerical data processed by our algorithms is assumed to be rational, and hence
algorithmic time complexity is as in the standard Turing machine model, see, for example
[55], [64]. When numerical data is used implicitly, such as in the case of a function f
presented by a comparison oracle, whose precise values are irrelevant, we can and are
being sloppy about whether these values are rationals or reals.

The input to our algorithms typically consists of integer numbers, vectors, matrices,
and finite sets of such objects. The binary length of an integer z ∈ Z is the number of
bits in its binary encoding, which is 〈z〉 := 1 + ⌈log2(|z| + 1)⌉ with the extra bit for
the sign. The length of a rational number presented as a fraction r = p

q with p, q ∈ Z is

12 1 Introduction

〈r〉 := 〈p〉 + 〈q〉. The length of an m × n matrix A, and in particular of a vector, is the
sum 〈A〉 :=

∑

i,j〈ai,j〉 of the lengths of its entries. Note that the length of A is no smaller
than the number of its entries, that is, 〈A〉 ≥ mn. Thus, 〈A〉 already accounts for mn and
hence we usually do not account for m,n separately. Yet, sometimes, especially in results
related to n-fold integer programming, we do emphasize n as part of the input. Similarly,
the length of a finite set E of numbers, vectors or matrices, is the sum of lengths of its
elements, and hence, since 〈E〉 ≥ |E|, accounts for its cardinality as well.

Sometimes we assume part of the input is encoded in unary. The unary length of an
integer z ∈ Z is the number |z| + 1 of bits in its unary encoding, again, with an extra
bit for the sign. The unary length of rational number, vector, matrix, or finite sets of such
objects is defined again as the sums of lengths of their numerical constituents and is again
no smaller than the number of such constituents.

Both binary and unary lengths of any ±∞ entry of any lower or upper bound vector
l, u over the set Z∞ = Z ⊎ {±∞} of extended integers are constant.

An algorithm is polynomial time if its running time is polynomial in the length of
the input. In every formal algorithmic statement, we indicate the length of the input by
explicitly listing every input object and indicating if it affects the running time through
its unary length or binary length. For example, saying that “an algorithm runs in time
polynomial in W and 〈A, b〉”, where W is a weight matrix and A, b define the feasible set
S through an inequality system, means that the time is polynomial in the unary length of
W and the binary length of A, b.

Often, as in [44], [72], parts of the input, such as the feasible set S or the objective
function f , are presented by oracles. The running time then counts also the number of
oracle queries. An oracle algorithm is polynomial time if its running time, including the
number of oracle queries and the length of manipulated numbers including answers to
oracle queries, is polynomial in the input length.

1.3.3 Finiteness

We typically assume that the objective function f in a nonlinear discrete optimization
problem is presented by a mere comparison oracle. Under such broad presentation, if the
feasible set S is infinite then the problem is quite hopeless even in dimension n = 1. To
see this, consider the following family of simple univariate nonlinear integer programs
with convex functions fu parameterized by 0 ≤ u ≤ ∞ as follows:

max
{

fu(x) : x ∈ Z+

}

, fu(x) :=

{

−x if x < u,

x − 2u if x ≥ u.

Consider any algorithm attempting to solve the problem and let u be the maximum value
of x in all queries made by the algorithm to the oracle of f . Then the algorithm can-
not distinguish between the problem with fu having unbounded objective values and the
problem with f∞ having optimal objective value 0.

So as already noted, we are interested in the situation where the set S is finite. We
define the radius ρ(S) of a set S ⊆ Zn to be its l∞ radius, which is given by

ρ(S) := sup
{

‖x‖∞ : x ∈ S
}

with ‖x‖∞ := max
{∣

∣xi

∣

∣ : i = 1, . . . , n
}

.

1.3 Notation, complexity, and finiteness 13

So ρ(S) is the smallest ρ ∈ Z∞ for which the box [−ρ, ρ]n contains S. When dealing
with arbitrary, oracle presented, sets S ⊆ Zn, mostly in Chapter 2, the radius may affect
the running time of some algorithms, but we do not require that it is an explicit part of the
input, and get along without knowing it in advance.

In combinatorial optimization, with S ⊆ {0, 1}n, we always have ρ(S) ≤ 1. In integer
programming, with S = {x ∈ Zn : Ax ≤ b} given by inequalities, mostly in standard
form S = {x ∈ Zn : Ax = b, l ≤ x ≤ u}, the binary length of ρ(S) is polynomially
bounded in the binary length 〈A, b, l, u〉 of the data by Cramer’s rule, see, for example
[90]. Therefore, in these contexts, the radius is already polynomial in the data and does
not play a significant role in Chapters 3–5 on integer programming and in Chapter 6 on
combinatorial optimization.

Finally, we note again that, throughout, and in all formal statements, an algorithm is
said to solve a nonlinear discrete optimization problem if, for any given S, it either finds
an optimal solution x ∈ S, or asserts that S is infinite or empty.

Notes

Background on the classical theory of linear integer programming can be found in the
book [90] by Schrijver. More recent sources on integer programming containing also ma-
terial on nonlinear optimization and on mixed integer programming, where some of the
variables are integer and some are real, are the book [14] by Bertsimas and Weismantel
and survey [49] by Hemmecke, Köppe, Lee, and Weismantel. Development of an algo-
rithmic theory of integer programming in fixed dimension using generating functions can
be found in the book [9] by Barvinok. The algorithmic theory of integer programming
in variable dimension developed here has some of its origins in the work of Sturmfels
described in his book [95]. Among the numerous sources on cutting methods for integer
programming, let us mention the classical paper [18] by Chvátal on Gomory cuts, the
paper [73] by Lovász and Schrijver and survey [65] by Laurent and Rendl on more recent
semidefinite cutting methods, and the survey [21] by Cornuéjols on cutting methods for
mixed integer programming. Background on the classical theory of linear combinatorial
optimization can be found in the trilogy [91] by Schrijver. Geometric development of
the algorithmic equivalence of separation and optimization via the ellipsoid method and
its many applications in combinatorial optimization can be found in the books [44] by
Grötschel, Lovász and Schrijver, and [72] by Lovász.

Let us note that many of the polynomial time algorithms that result from the theory
developed in this monograph have running times which are polynomials of very large
degree. Therefore, an important role of our theory is to enable to identify that a (non)linear
discrete optimization problem can be at all solved in polynomial time. Then there is hope
that a more efficient, ad-hoc algorithm can be designed for such a problem. In particular,
there is much room for improvements in the polynomial running times for some of the
many applications discussed herein.

2 Convex Discrete Maximization

In this chapter, we study the convex discrete maximization problem, namely,

max
{

f(Wx) : x ∈ S
}

(2.1)

with convex function f : Zd → R, integer d × n matrix W , and set S ⊆ Zn.

While the dimension n is variable as always, the number d of rows of W , which may
represent d criteria or player utilities, is fixed. Note that even for fixed d = 1 the problem
includes linear integer programming which is generally NP-hard.

In most of this chapter, we assume that we can do linear optimization over S to begin
with. So we assume that S ⊆ Zn is presented by a linear-optimization oracle that, queried
on w ∈ Zn, solves the linear optimization problem max{wx : x ∈ S} over S, that is,
either finds an optimal solution or asserts that S is infinite or empty.

The geometry of the set S in Rn and its image WS := {Wx : x ∈ S} under the
projection by W in Rd plays a central role here. In Section 2.1, we discuss this image
and the fibers of points under the projection by W , outline a general strategy for convex
maximization, and demonstrate the difficulties involved. In Section 2.2, we consider the
simpler situation, where the radius ρ(S) of the feasible set and the weight matrix W are
unary encoded, and solve the problem using the ellipsoid method. In Section 2.3, we con-
sider the more involved situation, where ρ(S) and W are binary encoded. In Section 2.3.1,
we discuss necessary preliminaries on edge directions and zonotopes. We proceed in Sec-
tion 2.3.2 to prove Theorem 2.16 which is the main result of this chapter and uses edge di-
rections of conv(S) to solve the convex maximization problem over S in polynomial time.
In Section 2.3.3, we reconsider the case of unary-encoded data and provide an alternative
solution, using the algorithm of Theorem 2.16 based on zonotopes, which avoids the el-
lipsoid method. In Section 2.3.4, we apply the algorithm of Theorem 2.16 for efficient
convex maximization over totally unimodular systems using the circuits of the underlying
matrix. In Section 2.4, we focus on combinatorial optimization and use Theorem 2.16
to show that convex maximization over a set S ⊆ {0, 1}n can be done in polynomial
time even when S is presented by a mere membership oracle. We conclude in Section 2.5
with some direct applications to vector partitioning and nonlinear matroid and matroid
intersection problems. The results of this chapter are incorporated in Chapters 3–5 and
enable efficient convex integer programming with many more applications discussed in
Sections 4.3 and 5.2.

The following table enables quick navigation among some of the theorems in this
chapter that provide polynomial time solution of the convex maximization problem (2.1).
Additional results are in the applications, Section 2.5. The first row indicates assumptions
on the data (S ⊆ Zn or S ⊆ {0, 1}n, linear-optimization oracle or membership oracle,
edge-directions given or not), and the second row indicates the dependency of the running
time on the radius ρ(S) and matrix W .

2.1 Image and fibers 15

S ⊆ Zn S ⊆ Zn S ⊆ {0, 1}n

Linear-optimization oracle Linear-optimization oracle Membership oracle
Edge directions given Edge directions given

Theorem 2.10 Theorem 2.16 Theorem 2.22
Polynomial in ρ(S),W Polynomial in 〈ρ(S),W 〉 Polynomial in 〈W 〉

2.1 Image and fibers

Consider the general nonlinear discrete optimization problem with S ⊂ Zn finite, W
integer d × n matrix and f : Zd → Z function presented by comparison oracle:

max
{

f(Wx) : x ∈ S
}

. (2.2)

We can regard W as the linear projection W : Rn → Rd that maps x to y := Wx. Define
the image of S under the projection W to be the finite set as follows:

WS := {Wx : x ∈ S} ⊂ Zd.

Define the fiber of y ∈ Rd to be its preimage under the projection W , given by

W−1(y) :=
{

x ∈ Rn : Wx = y
}

.

These definitions suggest the following naı̈ve strategy for solving our problem (2.2).

Procedure 2.1 (naı̈ve strategy for nonlinear discrete optimization).

1. Compute the image WS = {Wx : x ∈ S}.

2. Determine a point y ∈ WS maximizing f over WS.

3. Find and output a feasible point x ∈ W−1(y) ∩ S in the fiber of y.

Obviously, any point x obtained that way is an optimal solution to problem (2.2).
Unfortunately, steps 1 and 3 are very hard. In particular, the number of image points

may be exponential in the input length, in which case the image cannot be even written
down, let alone computed, efficiently. The problems in steps 1 and 3 are closely related to
the following problem which is of interest in its own right.

Fiber problem. Given set S ⊆ Zn, integer d × n matrix W , and point y ∈ Zd, find
x ∈ W−1(y) ∩ S, that is, x ∈ S satisfying Wx = y, or assert that none exists.

The fiber problem is generally very difficult. Even deciding if W−1(y) ∩ S �= ∅ is
often NP-complete for S presented by inequalities and often requires exponentially many
queries when S is presented by an oracle. The fiber problem for arbitrary f is studied
further and solved in several situations by various ways in Chapter 6.

We now restrict attention to the case of convex f , which is the subject of the present
chapter. Consider the convex hull of S and that of the image WS:

P := conv(S) ⊂ Rn, Q := conv(WS) = WP ⊂ Rd.

16 2 Convex Discrete Maximization

Since S and WS are finite, both P and Q are convex polytopes. Let vert(P) ⊆ S and
vert(Q) ⊆ WS be their vertex sets. The next lemma shows that problem (2.2) with convex
f always has an optimal solution in the fiber of some vertex of Q.

Lemma 2.2. Suppose v is a vertex of conv(WS) maximizing a convex function f . Then

F := W−1(v) ∩ S �= ∅ and any x ∈ F is optimal for max{f(Wx) : x ∈ S}.

Proof. Let P := conv(S) and Q := conv(WS) = WP . Since the function f(y) is
convex on Rd and the composite function f(Wx) is convex on Rn, we have

max
{

f(Wx) : x ∈ S
}

= max
{

f(Wx) : x ∈ P
}

= max
{

f(y) : y ∈ Q
}

= max
{

f(v) : v ∈ vert(Q)
}

.

Let v ∈ vert(Q) be any vertex attaining the maximum on the right-hand side. Since
v ∈ WS, we have F := W−1(v)∩S �= ∅. Moreover, any point x ∈ F satisfies f(Wx) =
f(v) and hence attains the maximum value and is an optimal solution. ✷

Lemma 2.2 suggests the following strategy for convex discrete maximization.

Procedure 2.3 (strategy for convex discrete maximization).

1. Compute the set V := vert(conv(WS)) of vertices of the image.

2. Determine a point v ∈ V maximizing f over V .

3. Find and output a feasible point x ∈ W−1(v) ∩ S in the fiber of v.

In general, steps 1 and 3 of this variant of the naı̈ve strategy remain difficult. In partic-
ular, the number of vertices of conv(WS) may be exponential in the input length even in
dimension d = 2. So again, writing all vertices down, let alone computing them, cannot
usually be done in polynomial time. We remark that for polyhedra it is generally impossi-
ble to compute the vertices even in time polynomial in the output, that is, in the number of
vertices [60]. However, in this chapter we do overcome these difficulties and, following
the general outline of this strategy, solve the problem in polynomial time in two different
broad situations.

We note that for the nonlinear discrete optimization problem with arbitrary, not nec-
essarily convex, function f , the set of vertices of conv(WS) is not enough and the entire
image WS is needed. While the vertex set, which is easier to compute, does give some
information on the image, this information is generally not enough to determine the entire
image, since in general we have a strict containment as follows:

WS � conv(WS) ∩ Zd.

Indeed, there may be holes in conv(WS), that is, integer points whose fibers do not con-
tain any feasible point. So when solving in later chapters nonlinear optimization problems
other than convex maximization, we have to use other methods.

We conclude this section with an example illustrating the notions discussed above.

2.1 Image and fibers 17

Example 2.4. Let S be the set of m × m permutation matrices, which are the feasible
points in the classical assignment problem. It has the inequality description:

S =
{

x ∈ Zm×m
+ :

∑m
j=1 xi,j = 1,

∑m
i=1 xi,j = 1

}

. (2.3)

The linear optimization problem over S is a special case of the classical transportation
problem (1.2). As explained in Section 1.2.2, it is polynomial time solvable by linear
programming and so a linear-optimization oracle for S is readily available.

We note that even for this simple set S whose convex hull is just the set of bistochastic
matrices, the fiber problem for d = 2 and {0, 1}-valued W includes the so-called exact

bipartite matching problem whose complexity is long open [12], [76].
Consider a specific small example (see Figure 2.1) with m = 3, d = 2, weight

W =
(

W k
i,j

)

∈ Z2×9, where W 1 :=

⎛

⎝

0 1 0
1 0 1
1 1 0

⎞

⎠ , W 2 :=

⎛

⎝

1 1 0
1 0 1
0 1 0

⎞

⎠

and separable convex function f : R2 → R given by f(y) := (3y1 − 4)2 + (3y2 − 4)2.
We write W 1,W 2 and points x ∈ S as 3 × 3 matrices but regard them as vectors in R9.
So the image of x ∈ S is Wx := (W 1 · x,W 2 · x) with W k · x :=

∑

i,j W k
i,jxi,j . The

f(y) = (3y1-4)2 + (3y2-4)2

y1

y2

29

29

2

17

17

5

5 8

Maximizer

Minimizer

Figure 2.1: Example of the naı̈ve strategy for nonlinear discrete optimization

18 2 Convex Discrete Maximization

feasible set S consists of 6 matrices (in general |S| = m! is exponential):

S =

⎧

⎨

⎩

⎛

⎝

1 0 0
0 1 0
0 0 1

⎞

⎠,

⎛

⎝

1 0 0
0 0 1
0 1 0

⎞

⎠,

⎛

⎝

0 1 0
1 0 0
0 0 1

⎞

⎠,

⎛

⎝

0 1 0
0 0 1
1 0 0

⎞

⎠,

⎛

⎝

0 0 1
1 0 0
0 1 0

⎞

⎠,

⎛

⎝

0 0 1
0 1 0
1 0 0

⎞

⎠

⎫

⎬

⎭

.

The image consists of 5 points (designated by colored points in Figure 2.1),

WS =
{(

W 1 · x,W 2 · x
)

: x ∈ S
}

=
{

(1, 0), (0, 1), (2, 2), (3, 2), (2, 3)
}

. (2.4)

The convex hull conv(WS) of the image is indicated in Figure 2.1 by a dashed blue
line. It contains 8 integer points - the 5 image points and 3 holes (1, 1), (2, 1), (1, 2). The
objective function value f(y) = (3y1 − 4)2 + (3y2 − 4)2 is indicated for each of these
8 integer points. The maximum objective value 29 is attained at the two green vertices
(3, 2), (2, 3) of conv(WS). Therefore, for instance, the point:

x =

⎛

⎝

1 0 0
0 0 1
0 1 0

⎞

⎠

in the fiber W−1(2, 3) of vertex (2, 3) is optimal for max{f(Wx) : x ∈ S}. The mini-
mum objective value 2 over the integer points in conv(WS) is attained at the point (1, 1)
which lies in the interior of the polytope. However, this point is a hole, whose fiber
W−1(1, 1) contains no feasible point, as are the points (2, 1), (1, 2) attaining the next
smallest value 5. So the minimum value of a point in the image is only 8 and is attained
by the red point (2, 2). Therefore, for instance, the point:

x =

⎛

⎝

0 1 0
1 0 0
0 0 1

⎞

⎠ ,

which is in the fiber W−1(2, 2) an optimal solution for min{f(Wx) : x ∈ S}.

2.2 Small radius and weight

In this section, we consider the simpler situation where the radius ρ(S) of the set S ⊆ Zn

and the integer d × n weight matrix W are assumed to be unary encoded.
The main result here is Theorem 2.10: for every fixed d, we can maximize any convex

composite function f(Wx) over S in time polynomial in ρ(S) and W .
Here, we solve the problem using the ellipsoid method. In Section 2.3.3, we give an

alternative solution which uses the results of Section 2.3 based on zonotopes instead.
We begin with the following simple useful lemma which shows that a linear-

optimization oracle for S allows to compute the radius ρ(S). Therefore, in the algorithms
to follow, we do not need ρ(S) to be an explicit part of the input.

Lemma 2.5. Using 2n queries of a linear-optimization oracle presenting S ⊆ Zn, it is

possible to either conclude that S is infinite or empty or find its radius ρ(S).

2.2 Small radius and weight 19

Proof. By querying the oracle on w := ±1i for i = 1, . . . , n, solve the 2n problems:

min / max
{

xi : x ∈ S
}

, i = 1, . . . , n.

If the oracle returns an optimal solution for each of these problems then the maximum
absolute value among the optimal objective function values of these 2n problems is the
radius ρ(S) of S. Otherwise, the set S is infinite or empty. ✷

Let r := nρ(S)‖W‖∞ with ‖W‖∞ = maxi,j |Wi,j |. Define l, u ∈ Zd by li := −r,
ui := r for all i. Then l ≤ Wx ≤ y for all x ∈ S so the image WS is contained in

Y :=
{

y ∈ Zd : l ≤ y ≤ u
}

.

With d fixed and ρ(S) and W unary encoded, the cardinality of Y is polynomial:

|Y | = (2r + 1)d =
(

2nρ(S)‖W‖∞ + 1
)d

.

So computing the image WS reduces to solving polynomially many fiber problems,

WS =
{

y ∈ Y : W−1(y) ∩ S �= ∅
}

.

But the fiber problem remains hard: its complexity is open even for d = 2, S the set of
permutation matrices (so ρ(S) = 1), and {0, 1}-valued W ; see Example 2.4.

We proceed next to find a way around the integer fiber problem, which makes it pos-
sible to efficiently realize our convex maximization Strategy 2.3.

We begin with the rational fiber problem, of finding a rational point in the intersection
W−1(y) ∩ conv(S) of the fiber of a given point y with conv(S). If S is finite then this
intersection is a polytope, and we want to determine a vertex of it.

Suppose first that we have an explicit description conv(S) = {x ∈ Rn : Ax ≤ b} of
conv(S) by inequalities, we can then solve the rational fiber problem as follows.

Lemma 2.6. There is an algorithm that, given integer m × n matrix A, integer d × n
matrix W , b ∈ Zm, and y ∈ Zd, with P := {x ∈ Rn : Ax ≤ b} bounded, either obtains

a vertex x of the intersection W−1(y) ∩ P of the fiber of y and P or asserts that this

intersection is empty, in time which is polynomial in 〈A, b,W, y〉.

Proof. The intersection is a polytope having the following inequality description:

W−1(y) ∩ P =
{

x ∈ Rn : Ax ≤ b, Wx = y
}

.

Linear programming [59], [87] enables to either find a vertex or detect that it is empty. ✷

We proceed to the more general situation where the set S ⊆ Zn is presented by a
linear-optimization oracle. To solve the rational fiber problem in this broader situation,
we use the algorithmic equivalence of separation and linear-optimization from [44], [72]
which extends [59] and builds on the ellipsoid method of [101]. This is the only place in
the monograph where we use it; moreover, the main result of this section, Theorem 2.10, is
proved in Section 2.3.3 in an alternative, self-contained way, without the ellipsoid method.

20 2 Convex Discrete Maximization

So we do not go into details of this theory, which can be found in the above references;
see also [79] and references therein. Let us just illustrate the main geometric idea by
giving a brief outline of the method for approximative minimization of a convex function
f over a convex set P . A (strong) separation oracle for closed convex set P ⊂ Rn is
one that, queried on z ∈ Rn, either asserts that z ∈ P or returns a separator of z from
P , that is, a vector h ∈ Rn which satisfies h(x − z) < 0 for all x ∈ P . A subgradient

oracle for convex function f : Rn → R is one that, queried on z ∈ Rn, returns a
subgradient of f at z, that is, a vector f ′(z) ∈ Rn such that f ′(z)(x − z) ≤ f(x) − f(z)
for all x ∈ Rn; in particular, f ′(z)(x − z) ≤ 0 whenever f(x) ≤ f(z). Note that if
f(x) = wx is linear then f ′(x) = w for all x ∈ Rn. An ellipsoid in Rn is a set of the
form E = {x ∈ Rn : ‖A(x − c)‖2 ≤ 1}, where A is a nonsingular n × n matrix and
c ∈ Rn is the ellipsoid center. The method proceeds as follows. Given convex compact
set P ⊂ Rn contained in the ball E0 := {x ∈ Rn : ‖x‖2 ≤ ρ} centered at c0 := 0,
it produces, starting from E0, a sequence of ellipsoids Ek with centers ck which contain
a minimizer of f over P , as follows. At iteration k, both oracles are queried on center
ck. If ck ∈ P and f ′(ck) = 0 then ck is a minimizer of f over P and the method
terminates. Otherwise, a new ellipsoid Ek+1 is generated as the one of smallest volume
containing the half ellipsoid {x ∈ Ek : hk(x − ck) ≤ 0}, with hk either the separator
of ck from P if ck /∈ P or hk := f ′(ck) the subgradient of f at ck if ck ∈ P . It can be
shown that the volumes of the ellipsoids in this sequence decrease by a constant factor, so
after polynomially many iterations, an ellipsoid of sufficiently small volume containing a
minimizer of f over P is obtained.

If P has substantial interior and is presented by an oracle (weakly) separating over its
interior then it can be shown that some center in the sequence is feasible and has function
value which approximates the minimum value of f over P . If P is a rational polytope
and f is linear then it can be shown that the method can be used to provide an exact
optimal vertex or detect that P is empty. So a separation oracle can be converted to a
linear-optimization oracle in polynomial time. Moreover, the method can be reversed to
convert a linear-optimization oracle to a separation oracle for P as well. Further details
are in the above references.

Using this equivalence of separation and linear optimization, we can solve the rational
fiber problem over a set presented by a linear-optimization oracle as well.

Lemma 2.7. There is an algorithm that, given finite set S ⊂ Zn presented by a linear-

optimization oracle, integer d × n matrix W , and y ∈ Zd, either obtains a vertex x of

the intersection W−1(y) ∩ conv(S) of the fiber of y and conv(S) or asserts that this

intersection is empty, in time which is polynomial in 〈ρ(S),W, y〉.

Proof. Use the linear-optimization oracle of S to realize, via the ellipsoid method, in
time which is polynomial in the binary length 〈ρ(S)〉 of the radius, a separation oracle for
P := conv(S). Now, using it, realize a separation oracle for

F := W−1(y) ∩ P =
{

x ∈ Rn : Wx = y
}

∩ P

as follows. Let x ∈ Rn be any query. First check if Wx = y and either conclude x ∈
W−1(y) or identify an inequality Wix �= yi in which case h := Wi or h := −Wi

2.2 Small radius and weight 21

separates x from W−1(y) and hence from F . If x ∈ W−1(y) then check if x ∈ P using
the separation oracle of P and either conclude x ∈ P and hence x ∈ F or obtain from
the oracle a vector h separating x from P and hence from F .

Using this separation oracle for F , realize, via the ellipsoid method again, in time
which is polynomial in 〈ρ(S),W, y〉, a linear-optimization oracle for F , which enables
(see [44], [72]) to either obtain a vertex of F or detect that F is empty. ✷

We can now realize step 1 of our Strategy 2.3 and compute vert(conv(WS)).

Lemma 2.8. For every fixed d there is an algorithm that, given a finite nonempty set S ⊂
Zn presented by a linear-optimization oracle and an integer d × n matrix W , computes

the set vert(conv(WS)) in time which is polynomial in ρ(S) and W .

Proof. First apply the algorithm of Lemma 2.5 and determine the radius ρ(S). Next define
P := conv(S), Q := conv(WS), r := nρ(S)‖W‖∞, and

Y :=
{

y ∈ Zd : −r ≤ yi ≤ r, i = 1, . . . , d
}

.

Since d is fixed, the number of points |Y | = (2r + 1)d of Y is polynomial in ρ(S) and
W . Distill the set U := Y ∩ Q out of Y as follows. For each y ∈ Y , apply the algorithm
of Lemma 2.7; if W−1(y)∩ P is nonempty then y ∈ Q and hence y ∈ U , whereas if it is
empty, y /∈ U . Since WS ⊆ U and U ⊆ Q, we have

Q = conv(WS) ⊆ conv(U) ⊆ Q,

so Q = conv(U). Now the vertex set of conv(U) and hence of Q can be computed in
polynomial time, either by computing the convex hull of Z in fixed dimension d or by
solving a linear program for each u ∈ U that checks if u /∈ conv(U \ {u}). ✷

We proceed with step 3 of our convex maximization Strategy 2.3, that of finding a
feasible points in the fiber of an optimal vertex of conv(WS).

Let P := conv(S) and Q := conv(WS). Consider any point y ∈ Q ∩ Zd and the
intersection F := W−1(y) ∩ P of the fiber of y with P . The vertices of the polytope F
need not all lie in S and need not even all be integer. Even worse, y may be a hole, so that
W−1(y) ∩ S = ∅, or F may have only fractional vertices.

Fortunately, fibers of vertices of conv(WS) are better behaved. We now show that we
can efficiently find a feasible point in the fiber of any vertex of the image.

Lemma 2.9. Let S ⊂ Zn be a finite nonempty set presented by a linear-optimization

oracle and let W be an integer d × n matrix. Then W−1(v) ∩ conv(S) is a nonempty

integer polytope whose vertices lie in S for every vertex v of conv(WS). Hence, the

algorithm of Lemma 2.7, applied to S, W , and v, returns a feasible x ∈ W−1(v) ∩ S.

Proof. It is well known that if Q is the image of a polytope P under an affine map ω then
the preimage ω−1(G) ∩ P = {x ∈ P : ω(x) ∈ G} of any face G of Q is a face of P .
In particular, if v is a vertex of Q := WP , where P := conv(S), then its preimage F :=
W−1(v)∩P under the projection W is a face of P , and hence vert(F) = F∩vert(P) ⊆ S.
Therefore, any vertex of F , and in particular that vertex x returned by the algorithm of
Lemma 2.7, is a feasible point x ∈ S. ✷

22 2 Convex Discrete Maximization

We are now in position to describe our first convex maximization algorithm, which
provides an efficient realization of our convex maximization Strategy 2.3. The following
result is from [11], extending an earlier result from [12].

Theorem 2.10. For every fixed d there is an algorithm that, given set S ⊆ Zn presented

by a linear-optimization oracle, integer d×n matrix W , and convex function f : Zd → R
presented by a comparison oracle, solves in time which is polynomial in the radius ρ(S)
and the weight W , the convex maximization problem:

max
{

f(Wx) : x ∈ S
}

.

Proof. First, apply the algorithm of Lemma 2.5 and either conclude that S is infinite
or empty and stop or conclude that it is finite and nonempty and continue. Now, use
the algorithm of Lemma 2.8 to compute the set V := vert(conv(WS)). Next, use the
comparison oracle of f to find a vertex v ∈ V maximizing f over V . Finally, use the
algorithm of Lemma 2.9 to find a feasible point x ∈ W−1(v) ∩ S in the fiber of the
vertex v. By Lemma 2.2, this point x is an optimal solution. ✷

The algorithm of Theorem 2.10 incorporates the computation of the vertices of the
image by the algorithm of Lemma 2.8. This in turn requires repeated use of the algorithm
of Lemma 2.7 which converts linear optimization to separation using the ellipsoid method,
for each point y in the box Y . This is a very time-consuming process. We now describe
a simple faster variant of this procedure which typically inspects only some of the points
of Y . It assumes that S is integer convex, that is, S = conv(S) ∩ Zn. This always holds
in combinatorial optimization, with S ⊆ {0, 1}n, and in integer programming, with S =
{x ∈ Zn : Ax ≤ b}.

Procedure 2.11 (convex maximization over integer-convex sets).

1. Check by the algorithm of Lemma 2.5 if S is infinite or empty. Suppose not.

2. Let r := nρ(S)‖W‖∞ and Y := {y ∈ Zd : −r ≤ yi ≤ r, i = 1, . . . , d}.

3. Use the oracle of f to label Y = {y1, . . . , yk} with f(yi) ≥ f(yi+1) for all i.

4. Test the fibers of the yi in order using the algorithm of Lemma 2.7. Output the first
integer vertex xj of W−1(yj) ∩ conv(S) returned by the algorithm.

To see that this procedure works as well, let yk be a vertex of conv(WS) which max-
imizes f . By Lemma 2.9, the vertex xk of W−1(yk)∩ conv(S) returned by the algorithm
of Lemma 2.7 when testing yk lies in S and is therefore integer. Furthermore, xk is an
optimal solution of the convex maximization problem by Lemma 2.2. Since xj is the first
integer vertex returned, we have j ≤ k and, hence, since the yi are ordered by nonin-
creasing value of f , we have f(yj) ≥ (yk). Since yj = Wxj and yk = Wxk, we obtain
f(Wxj) ≥ f(Wxk). Since S is integer convex, we have xj ∈ conv(S) ∩ Zn = S and
hence xj is feasible. Therefore, xj is optimal.

2.3 Convex maximization with edge directions 23

2.3 Convex maximization with edge directions

We proceed to consider the more involved situation where the radius ρ(S) and matrix W
are binary encoded. In this situation, the number of points in a minimal box Y = {y ∈
Zd : l ≤ y ≤ u} containing the image WS may be exponential in the input length. So
methods more sophisticated than those of Section 2.2 are needed.

The main result here is Theorem 2.16: for every fixed d, we can maximize any convex
composite function f(Wx) over S endowed with a set E of edge directions of conv(S),
in time polynomial in the binary encoding 〈ρ(S),W,E〉 of the data.

This section is organized as follows. In Section 2.3.1, we provide the necessary pre-
liminaries on edge directions and zonotopes. These are used in Section 2.3.2 to establish
Theorem 2.16 providing our main polynomial time convex maximization algorithm. This
algorithm is also used in Section 2.3.3 to provide an alternative procedure, avoiding the
ellipsoid method, for solving the problem in the easier situation of Section 2.2.

2.3.1 Edge directions and zonotopes

A direction of an edge (1-dimensional face) e of a polyhedron P is any nonzero scalar
multiple of u−v, where u, v are any two distinct points in e. A set of all edge directions of

P is a set which contains some direction of each edge of P , see Figure 2.2. We later show
how to exploit a set of all edge directions of the convex hull of a set of integer points S for
efficient convex maximization over S. The normal cone of a polyhedron P ⊆ Rn at its
face F is the relatively open cone CF

P of those linear functions h ∈ Rn maximized over P
precisely at points of F . A polytope Z is a refinement of a polytope P if the normal cone
of every vertex of Z is contained in the normal cone of some vertex of P . If Z refines P
then, moreover, the closure of each normal cone of P is the union of closures of normal
cones of Z. The zonotope generated by a set of vectors E = {e1, . . . , em} in Rd is the
following polytope, which is the projection by E of the cube [−1, 1]m into Rd as follows:

Z := zone(E) := conv
{
∑m

i=1 λiei : λi = ±1
}

⊂ Rd.

The following fact, illustrated in Figure 2.3, goes back to Minkowski, see [45], [103].

Lemma 2.12. Let P be a polytope and let E be a finite set of all edge directions of P .

Then the zonotope Z := zone(E) generated by E is a refinement of P .

Proof. Consider any vertex u of Z. Then u =
∑

e∈E λee for suitable λe = ±1. Thus, the
normal cone Cu

Z consists of those h satisfying hλee > 0 for all e. Pick any h ∈ Cu
Z and

let v be a vertex of P at which h is maximized over P . Consider any edge [v, w] of P .
Then v − w = αee for some scalar αe �= 0 and some e ∈ E, and 0 ≤ h(v − w) = hαee.
This implies that αe and λe have the same sign and hence hαee > 0. Therefore, every
h ∈ Cu

Z satisfies h(v −w) > 0 for every edge of P containing v. So h is maximized over
P uniquely at v and hence is in the cone Cv

P of P at v. This shows that Cu
Z ⊆ Cv

P . Since
u was arbitrary, it follows that the normal cone of every vertex of Z is contained in the
normal cone of some vertex of P . ✷

24 2 Convex Discrete Maximization

Figure 2.2: Edge directions of a convex polytope

The next lemma provides a bound on the number of vertices of any zonotope and
on the complexity of constructing its vertices, each vertex along with a linear function
maximized over the zonotope uniquely at that vertex. The bound on the number of vertices
has been rediscovered many times over the years. An early reference is [47], stated in the
dual form of 2 partitions. Extensions to p-partitions for any p are in [2], [57]. Further
extensions and information on zonotopes and Minkowski sums can be found in [38],
[42], [102]. The algorithmic complexity of the problem is settled in [30], [31]. We state
the precise bounds on the number of vertices, but outline only a proof that, for every fixed
d, the bounds are polynomial, which is all we need in the sequel. Complete details are in
the above references.

Lemma 2.13. The number of vertices of any zonotope Z := zone(E) generated by a set

E of m vectors in Rd is at most 2
∑d−1

k=0

(

m−1
k

)

. For every fixed d, there is an algorithm

that, given E ⊂ Zd, outputs every vertex v of Z := zone(E) along with some hv ∈ Zd

maximized over Z uniquely at v, in time polynomial in 〈E〉.

Proof. We only outline a proof that, for every fixed d, the number of vertices is O(md−1)
and hence polynomially bounded, and the vertices can be constructed in polynomial time.
We assume that E linearly spans Rd (else the dimension can be reduced) and is generic,
that is, no d points of E lie on a linear hyperplane (one containing the origin). In particular,

2.3 Convex maximization with edge directions 25

E

e1 e2

e3

h5

h4

h6

h2

h3

h1

Z

h1

h5

h4

h3

P
h2

h6

Figure 2.3: A zonotope refining a polytope

0 /∈ E. The same bound for arbitrary E then follows by using a perturbation argument.
More details can be found in [57].

Each oriented linear hyperplane H = {x ∈ Rd : hx = 0} with h ∈ Rd nonzero
induces a partition of E by E = H−

⊎

H0
⊎

H+ with H− := {e ∈ E : he < 0},
E0 := E ∩ H , and H+ := {e ∈ E : he > 0}. The vertices of Z = zone(E) are
in bijection with ordered 2 partitions of E induced by such hyperplanes that avoid E.
Indeed, if E = H−

⊎

H+ then the linear function hv := h defining H is maximized over
Z uniquely at the vertex v :=

∑{e : e ∈ H+} −∑{e : e ∈ H−} of Z.

We now show how to enumerate all such 2 partitions and hence vertices of Z. Let M
be any of the

(

m
d−1

)

subsets of E of cardinality d − 1. Since E is generic, M is linearly

independent and spans a unique linear hyperplane lin(M). Let Ĥ = {x ∈ Rd : ĥx = 0}
be one of the two orientations of the hyperplane lin(M). Note that Ĥ0 = M . Finally, let
L be any of the 2d−1 subsets of M . Since M is linearly independent, there is a g ∈ Rd

which linearly separates L from M \ L, namely, satisfies gx < 0 for all x ∈ L and
gx > 0 for all x ∈ M \ L. Furthermore, there is a sufficiently small ǫ > 0 such that the

oriented hyperplane H := {x ∈ Rd : hx = 0} defined by h := ĥ + ǫg avoids E and
the 2-partition induced by H satisfies H− = Ĥ−

⊎

L and H+ = Ĥ+
⊎

(M \ L). The
corresponding vertex of the zonotope Z is v :=

∑{e : e ∈ H+} −∑{e : e ∈ H−} and
the corresponding linear function which is maximized over Z uniquely at v is hv := h =
ĥ + ǫg.

26 2 Convex Discrete Maximization

We claim that any ordered 2-partition arises that way from some such subset M , some
orientation Ĥ of lin(M), and some subset L. Indeed, consider any oriented linear hyper-
plane H̃ avoiding E. It can be perturbed to a suitable oriented Ĥ that touches precisely
d−1 points of E. Put M := Ĥ0 so that Ĥ coincides with one of the two orientations of the
hyperplane lin(M) spanned by M , and put L := H̃− ∩ M . Let H be an oriented hyper-
plane obtained from M , Ĥ and L by the above procedure. Then the ordered 2-partition
E = H−

⊎

H+ induced by H coincides with the ordered 2-partition E = H̃−
⊎

H̃+

induced by H̃ .
Since there are

(

m
d−1

)

many (d − 1)-subsets M ⊆ E, two orientations Ĥ of lin(M),

and 2d−1 subsets L ⊆ M , and d is fixed, the total number of 2 partitions and hence of
vertices of Z is bounded by 2d

(

m
d−1

)

= O(md−1). Furthermore, for each choice of M ,

Ĥ , and L, the linear function ĥ defining Ĥ , as well as g, ǫ, hv = h = ĥ + ǫg, and the
vertex v =

∑{e : e ∈ H+} −∑{e : e ∈ H−} of Z at which hv is uniquely maximized
over Z, can all be computed in time polynomial in 〈E〉. ✷

We also need the following simple fact about edge directions of projections.

Lemma 2.14. If E is a set of all edge directions of polytope P and ω : Rn → Rd is a

linear map then ω(E) is a set of all the edge directions of the polytope Q := ω(P).

Proof. Let f be a direction of an edge [x, y] of Q. Consider the face F := ω−1([x, y])
of P . Let V be the set of vertices of F and let U = {u ∈ V : ω(u) = x}. Then for
some u ∈ U and v ∈ V \ U , there must be an edge [u, v] of F , and hence of P . Then
ω(v) ∈ (x, y] hence ω(v) = x + αf for some α �= 0. Therefore, with e := 1

α (v − u), a
direction of the edge [u, v] of P , we find that f = 1

α (ω(v) − ω(u)) = ω(e) ∈ ω(E). ✷

2.3.2 Efficient convex maximization

We proceed to solve the convex maximization problem when W is binary encoded. As in
Section 2.2, we follow the general outline of our convex maximization Strategy 2.3. How-
ever, the hard steps 1 and 3 are now done simultaneously, since feasible points in fibers
of vertices are constructed on the fly as part of the construction of the image polytope,
avoiding the use of the time-consuming ellipsoid method. More precisely, we compute a
subset T ⊆ S of the feasible set, whose image contains the vertex set of the image of S,
that is, vert(conv(WS)) ⊆ WT = {Wx : x ∈ T}.

Lemma 2.15. For every fixed d there is an algorithm that, given a finite nonempty set

S ⊂ Zn presented by a linear-optimization oracle, integer d × n weight matrix W , and

set E ⊂ Zn of all edge directions of conv(S), computes a subset T ⊆ S such that

vert(conv(WS)) ⊆ WT , in time which is polynomial in 〈ρ(S),W,E〉.

Proof. Let P := conv(S) ⊂ Rn and Q := conv(WS) = WP ⊂ Rd. Since Q is a
projection of P , by Lemma 2.14 the projection D := WE = {We : e ∈ E} of E is a
set of all edge directions of Q. Let Z := zone(D) ⊆ Rd be the zonotope generated by
D. Since d is fixed, by Lemma 2.13 we can produce in polynomial time all vertices of Z,
every vertex u along with hu ∈ Zd maximized over Z uniquely at u. For each of these

2.3 Convex maximization with edge directions 27

polynomially many hu, define gu ∈ Zn by gu := WT hu, query the linear-optimization
oracle of S on gu, and let xu ∈ S be the optimal solution obtained from the oracle. Let
zu := Wxu ∈ Q be the image of xu. Since P = conv(S), we have that xu is also a
maximizer of gu over P . Since for every x ∈ P and its image z := Wx ∈ Q we have
huz = gux, we find that zu is a maximizer of hu over Q. Now we claim that each vertex
v of Q equals some zu. Indeed, since Z is a refinement of Q by Lemma 2.12, there is
some vertex u of Z such that hu is maximized over Q uniquely at v and hence v = zu. So
the set T := {xu : u ∈ vert(Z)} ⊆ S of points obtained that way is the desired set. ✷

We are now in position to prove the main result of this chapter. It extends and unifies
earlier results of [83] and [23]. An illustration of the algorithm of Theorem 2.16 below
incorporating the algorithm of Lemma 2.15 is provided in Figure 2.4.

Rn

Rd

W

- Set S in Zn by linear-optimization oracle

- Find all maximizers h over zone(WE) in Rd

- Set E of all edge directions of conv(S)

- Binary-encoded d x n matrix W

INPUT:

DO:

WTh

zone(WE)

h

- Project x and obtain Wx in WS

- Repeat for all maximizers h and get all

vertices of conv(WS) and preimages in S

any preimage x in S maximizing f(Wx)

- Convex f on Rd by comparison oracle

R

f

conv(WS)
Wx

S

- Pick h and obtain x in S maximizing WTh

OUTPUT:

x

Wx

x

Figure 2.4: Convex discrete maximization algorithm

Theorem 2.16. For every fixed d there is an algorithm that, given set S ⊆ Zn presented

by a linear-optimization oracle, integer d×n matrix W , set E ⊂ Zn of all edge directions

of conv(S), and convex function f : Zd → R presented by a comparison oracle, solves in

time polynomial in 〈ρ(S),W,E〉, the convex problem:

max
{

f(Wx) : x ∈ S
}

.

28 2 Convex Discrete Maximization

Proof. First, apply the algorithm of Lemma 2.5 and either conclude that S is infinite or
empty and stop, or conclude that it is finite and nonempty and continue. Now, use the
algorithm of Lemma 2.15 to compute a subset T ⊆ S such that vert(conv(WS)) ⊆ WT .
Now, inspecting T and using the comparison oracle of f , find point x∗ ∈ T whose image
Wx∗ maximizes f over WT . Then, by Lemma 2.2,

f
(

Wx∗
)

= max
{

f(y) : y ∈ WT
}

= max
{

f(y) : y ∈ vert
(

conv(WS)
)}

= max
{

f(Wx) : x ∈ S
}

.

Therefore, x∗ is an optimal solution of the given convex maximization problem. ✷

2.3.3 Small radius and weight revisited

Returning to the situation of Section 2.2, we observe that for unary-encoded data, we can
always produce a set of edge directions of polynomial size. This gives a convex maximiza-
tion algorithm which is different from that given in Section 2.2 and uses the algorithm of
Theorem 2.16 instead of the ellipsoid method. It is not clear offhand which of the two is
more efficient – this may depend on the specific application of interest. We now describe
this variant, providing a second proof of Theorem 2.10.

Theorem 2.10 (revisited). For every fixed d there is an algorithm that, given set S ⊆ Zn

presented by a linear-optimization oracle, integer weight d × n matrix W , and convex

function f : Zd → R presented by a comparison oracle, solves in time polynomial in the

radius ρ(S) and weight W , the convex maximization problem:

max
{

f(Wx) : x ∈ S
}

.

Proof. First, apply the algorithm of Lemma 2.5 and either conclude that S is infinite or
empty and stop, or conclude that it is finite and nonempty and obtain its radius ρ(S). Next,
define P := conv(S), Q := conv(WS), r := nρ(S)‖W‖∞ as follows:

Y :=
{

y ∈ Zd : −r ≤ yi ≤ r, i = 1, . . . , d
}

,

and

D := {u − v : u, v ∈ Y } =
{

z ∈ Zd : −2r ≤ zi ≤ 2r
}

. (2.5)

Then D is the set of differences of pairs of point of Y and hence a set of all edge directions
of Q since vert(Q) ⊆ WS ⊆ Y . Moreover, with d fixed and ρ(S) and W unary encoded,
|D| = (4r + 1)d is polynomially bounded in the input.

Now, invoke the algorithm of Theorem 2.16 incorporating that of Lemma 2.15, using
the set D of all edge directions of the image Q, which here is computed directly via (2.5),
without going through a set E of all edge directions of P . ✷

2.3 Convex maximization with edge directions 29

2.3.4 Totally unimodular systems

A matrix A is totally unimodular if it is integer and the determinant of every square sub-
matrix of A is −1, 0, or 1. Important examples of totally unimodular matrices are vertex-
edge incidence matrices of digraphs and bipartite graphs. The (non)linear optimization
problem over a set S given by inequalities of the following form, with totally unimodular
matrix A, right-hand side b, and bounds l, u ∈ Zn

∞:

S :=
{

x ∈ Zn : Ax = b, l ≤ x ≤ u
}

(2.6)

is quite useful and includes the classical transportation problem (with A the incidence ma-
trix of a bipartite graph) and the classical single-commodity transshipment problem (with
A the incidence matrix of a digraph) discussed in Section 1.2.2. Note, however, that the
multiindex transportation problems and the multicommodity transshipment problems dis-
cussed in Section 1.2.2 are not totally unimodular and therefore much harder and treated
by more sophisticated methods in Chapter 4.

It is possible to minimize over totally unimodular systems of the form (2.6) linear
functions [54] and separable convex functions [53] in polynomial time. The algorithms
exploit the fundamental result of [54] that any polyhedron defined by a totally unimodular
matrix A is integer, that is, it satisfies the following equality:

conv(S) = conv
{

x ∈ Zn : Ax = b, l ≤ x ≤ u
}

=
{

x ∈ Rn : Ax = b, l ≤ x ≤ u
}

.

We proceed to describe a certain situation where convex maximization over totally uni-
modular systems of the form (2.6) can also be done in polynomial time.

We need some terminology, and preparatory lemmas also used in later chapters. The
lattice of an integer m × n matrix A is the set L(A) := {x ∈ Zn : Ax = 0} of integer
vectors in its kernel. We denote the set of nonzero elements in L(A) by L∗(A) := {x ∈
Zn : Ax = 0, x �= 0}. We use a partial order ⊑ on Rn which extends the coordinate wise
partial order ≤ on the nonnegative orthant Rn

+ and is defined as follows. For x, y ∈ Rn, we
write x ⊑ y and say that x is conformal to y if xiyi ≥ 0 and |xi| ≤ |yi| for i = 1, . . . , n,
that is, x and y lie in the same orthant of Rn, and each component of x is bounded by
the corresponding component of y in absolute value. We use x ❁ y to indicate that x is
strictly smaller than y under ❁, that is, x ⊑ y and x �= y. A finite sum u :=

∑

i vi of
vectors in Rn is called conformal if vi ⊑ u for all i and hence all summands lie in the
same orthant.

A circuit of A is an element c ∈ L∗(A) whose support supp(c) is minimal under
inclusion and whose entries are relatively prime. We denote the set of circuits of A by
C(A). The set of circuits is centrally symmetric, that is, c ∈ C(A) if and only if −c ∈
C(A). For instance, the set of circuits of the 1 × 3 matrix A := (1 2 1) is

C(A) = ±
{

(2,−1, 0), (0,−1, 2), (1, 0,−1)
}

.

The following property of circuits is well known in one form or another.

Lemma 2.17. Let A be an m× n integer matrix of rank r. Any nonzero rational x ∈ Rn

with Ax = 0 is a conformal sum x =
∑t

i=1 λici involving t ≤ n−r linearly independent

circuits ci ∈ C(A) with λi ≥ 0 and supp(ci) �
⋃

j>i supp(cj) for all i.

30 2 Convex Discrete Maximization

Proof. First, we show that for any such x, there are c ∈ C(A) and nonnegative λ with
λc ⊑ x. Suppose indirectly that this is false and let x be a counterexample with minimal
support. Then there is an h ∈ C(A) with supp(h) � supp(x) and hence there exists a µ
with y := x − µh ❁ x and supp(y) � supp(x). Since y �= 0 and Ay = 0, there are
c ∈ C(A) and nonnegative λ with λc ⊑ y ⊑ x, a contradiction.

We proceed to prove that every such x is a conformal sum involving circuits with
supp(ci) �

⋃

j>i supp(cj) for each i. This in particular implies that the ci are linearly
independent, and, since all circuits lie in the orthogonal complement of the row space of
A, that at most n − r circuits are involved. Suppose indirectly that this is false and let x
be a counterexample with minimal support. By what we just proved, there are c0 ∈ C(A)
and λ0 ∈ R+ with λ0c0 ⊑ x and hence y := x − λ0c0 ⊑ x. Clearly, we can choose
λ0 so that y satisfies supp(y) � supp(x). Then y is a conformal sum y =

∑s
i=1 λici

involving circuits ci with supp(ci) �
⋃

j>i supp(cj) for each i. But then x = λ0c0 +
∑s

i=1 λici is a conformal sum involving circuits with supp(ci) �
⋃

j>i supp(cj) for each
i, a contradiction. This completes the proof. ✷

The circuits of a matrix provide edge directions of the polyhedron it defines.

Lemma 2.18. For every integer m × n matrix A, l, u ∈ Zn
∞, and b ∈ Zm, the set of

circuits C(A) is a set of all edge-directions of P = {x ∈ Rn : Ax = b, l ≤ x ≤ u}.

Proof. Consider any edge e of P . Pick two distinct rational points x, y ∈ e and set g :=
y − x. Then a suitable multiple of g is in L∗(A) and hence it follows from Lemma 2.17
that g =

∑

i λici is a conformal sum for suitable circuits ci ∈ C(A) and λi ∈ R+. We
claim that x+λici ∈ P for all i. Indeed, ci being a circuit implies A(x+λici) = Ax = b,
and l ≤ x, x + g ≤ u and λici ⊑ g imply l ≤ x + λici ≤ u.

Now ,let w ∈ Rn be uniquely maximized over P at the edge e. Then wλici =
w(x + λici) − wx ≤ 0 for all i. But

∑

wλici = wg = wy − wx = 0, implying
that in fact wλici = 0 and hence x + λici ∈ e for all i. This implies that each ci is a
direction of e (in fact, all ci are the same and g is a multiple of some circuit). ✷

We now show that Theorem 2.16 enables to maximize convex functions over totally
unimodular systems of the form (2.6) in polynomial time when the set of circuits of the
matrix defining the system is available. The proof given here incorporates linear program-
ming [59]. In Section 3.3.5, we give an alternative proof which uses results of Chapter 3
on Graver bases and avoids the use of linear programming.

Theorem 2.19. For every fixed d there is an algorithm that, given totally unimodular

m × n matrix A, its set of circuits C(A), l, u ∈ Zn
∞, b ∈ Zm, integer d × n matrix W ,

and convex f : Zd → R presented by comparison oracle, solves in time polynomial in

〈A,W,C(A), l, u, b〉 the convex integer maximization problem:

max
{

f(Wx) : x ∈ Zn, Ax = b, l ≤ x ≤ u
}

.

Proof. Let S := {x ∈ Zn : Ax = b, l ≤ x ≤ u}. Since A is totally unimodular, we have
conv(S) = {x ∈ Rn : Ax = b, l ≤ x ≤ u}. Therefore, linear programming enables

2.4 Convex combinatorial maximization 31

to realize in polynomial time a linear-optimization oracle for S. In particular, it allows
to either conclude that S is infinite and stop or that it is finite, in which case the binary
length 〈ρ(S)〉 of its radius is polynomial in 〈A, l, u, b〉, and continue. By Lemma 2.18,
the given set C(A) is a set of all edge directions of conv(S). Hence, the algorithm of
Theorem 2.16 can be applied and provides the polynomial time solution of the convex
integer maximization problem. ✷

We note that an m×n matrix A has at most 2
∑m

k=0

(

n
k+1

)

circuits, a bound depending
only on m and n and independent of the entries of A. So, if m grows slowly in terms of n,
say m = O(log n), then C(A) can be computed in subexponential time. In particular, if m
is fixed then C(A) can be computed in polynomial time by checking all 2

∑m
k=0

(

n
k+1

)

=

O(nm+1) potential supports of circuits. This has applications to vector partitioning and
clustering discussed in Section 2.5.3.

2.4 Convex combinatorial maximization

A membership oracle for a set S ⊆ Zn is one that, queried on x ∈ Zn, asserts whether
or not x ∈ S. A membership oracle for S is available in all reasonable applications, but
reveals little information on S, making it very hard to use. Yet, we now show that convex

combinatorial maximization, that is, convex maximization over S ⊆ {0, 1}n, can be done
in polynomial time using but a membership oracle.

The main result here is Theorem 2.22: for every fixed d, we can maximize any convex
composite function f(Wx) over S ⊆ {0, 1}n presented by a membership oracle, given a
set of edge directions of conv(S), in time polynomial in 〈W 〉.

We need to make use of an additional oracle presentation of S, defined as follows. An
augmentation oracle for a set S ⊆ Zn is one that, queried on x ∈ S and w ∈ Zn, either
asserts that x is optimal for the linear optimization problem max{wx : x ∈ S} or returns
a better point x̂ ∈ S, that is, one satisfying wx̂ > wx.

An augmentation oracle for S allows to solve the linear optimization problem
max{wx : x ∈ S} by starting from any feasible x ∈ S and repeatedly augmenting it
until an optimal solution x∗ ∈ S is reached. The following lemma, which is an adaptation
of a result of [43], [92] making use of bit-scaling ideas going back to [34], shows that this
can be done in time which is polynomial in the binary length of w and the initial point x
and in the unary length of the radius ρ(S) of the set S. We need it only for S ⊆ {0, 1}n,
but provide the proof for any finite S ⊂ Zn.

Lemma 2.20. There is an algorithm that, given a finite set S ⊂ Zn presented by an

augmentation oracle, x ∈ S, and w ∈ Zn, finds an optimal solution x∗ ∈ S to the

optimization problem max{wz : z ∈ S}, in time polynomial in ρ(S) and 〈x,w〉.

Proof. Let k := maxn
j=1⌈log2(|wj | + 1)⌉ and note that k ≤ 〈w〉. For i = 0, . . . , k define

a vector ui = (ui,1, . . . , ui,n) ∈ Zn by ui,j := sign(wj)⌊2i−k|wj |⌋ for j = 1, . . . , n.
Then u0 = 0, uk = w, and ui − 2ui−1 ∈ {−1, 0, 1}n for all i = 1, . . . , k.

We now describe how to construct a sequence of points y0, y1, . . . , yk ∈ S such that
yi is an optimal solution to max{uiy : y ∈ S} for all i. First, note that all points of S are

32 2 Convex Discrete Maximization

optimal for u0 = 0 and hence we can take y0 := x to be the point of S given as part of
the input. We now explain how to determine yi from yi−1 for i = 1, . . . , k. Suppose that
yi−1 has been determined. Set ỹ := yi−1. Query the augmentation oracle on ỹ ∈ S and
ui; if the oracle returns a better point ŷ then set ỹ := ŷ and repeat, whereas if it asserts
that there is no better point then the optimal solution for ui is read off to be yi := ỹ. We
now bound the number of calls to the oracle. Each time the oracle is queried on ỹ and ui

and returns a better point ŷ, the improvement is by at least one, namely, ui(ŷ − ỹ) ≥ 1,
since ui, ỹ, ŷ are integers. So the number of augmentations from yi−1 to yi is at most the
total improvement, which we claim satisfies the following inequality, where ρ := ρ(S):

ui

(

yi − yi−1

)

=
(

ui − 2ui−1

)(

yi − yi−1

)

+ 2ui−1

(

yi − yi−1

)

≤ 2nρ + 0 = 2nρ.

Indeed, yi−1 optimal for ui−1 gives ui−1(yi − yi−1) ≤ 0; ui − 2ui−1 ∈ {−1, 0, 1}n and
yi, yi−1 ∈ S ⊆ [−ρ, ρ]n imply (ui − 2ui−1)(yi − yi−1) ≤ 2nρ.

Thus, after a total number of at most 2nρk calls to the oracle, we obtain yk which is
optimal for uk. Since w = uk, we can output x∗ := yk as the desired optimal solution
to the linear optimization problem. Clearly, the number 2nρk of calls to the oracle, the
number of arithmetic operations, and the binary length of the numbers occurring during
the algorithm are polynomial in ρ(S), 〈x,w〉. ✷

In combinatorial optimization, with S ⊆ {0, 1}n, each edge of conv(S) is the differ-
ence of two {0, 1}-vectors, and hence each edge direction of conv(S) is, up to a scalar
multiple, a {−1, 0, 1}-vector. Moreover, any set E ⊂ Zn of all edge directions of conv(S)
with S ⊆ {0, 1}n can be easily converted, by scaling some elements and dropping redun-
dant ones, to one consisting of {−1, 0, 1}-vectors only. So, henceforth, when assuming
that a set S ⊆ {0, 1}n is endowed with a set E of all edge directions of conv(S), we may
and do assume that E ⊆ {−1, 0, 1}n.

We proceed to show that an augmentation oracle can be efficiently realized for a set
S ⊆ {0, 1}n presented by a membership oracle and endowed with a set of all edge direc-
tions of conv(S). We also need one initial feasible point x ∈ S to start with. Without such
a point, exponential time cannot be generally avoided, as demonstrated in Section 1.2.1
for the set S of bases of an almost trivial matroid.

Lemma 2.21. There is an algorithm that, given set S ⊆ {0, 1}n presented by membership

oracle, point x ∈ S, w ∈ Zn, and set E ⊆ {−1, 0, 1}n of all edge directions of conv(S),
either returns a better point x̂ ∈ S, that is, one satisfying wx̂ > wx or asserts that none

exists, in time which is polynomial in 〈w〉 and |E|.

Proof. Setting e := −e if necessary, we may assume that we ≥ 0 for all e ∈ E. Now,
using the membership oracle, check if there is an e ∈ E such that x + e ∈ S and we > 0.
If there is such an e then output the better point x̂ := x + e, whereas if there is no such e
then terminate asserting that no better point exists.

If the algorithm outputs an x̂ then it is indeed a better point. Conversely, suppose x is
not a maximizer of w over S. Since S ⊆ {0, 1}n, x is a vertex of conv(S). Since x is not
a maximizer of w, there is an edge [x, x̂] of conv(S) with x̂ a vertex satisfying wx̂ > wx.
Then e := x̂ − x is a {−1, 0, 1} edge direction of [x, x̂] with we > 0 and hence e ∈ E.
So the algorithm will find a better point x̂ = x + e. ✷

2.5 Some applications 33

We can now prove a result of [83] that a convex function of the form f(Wx) can be
maximized over a set S ⊆ {0, 1}n presented by a mere membership oracle in polynomial
time when a set of all edge directions of conv(S) is available.

Theorem 2.22. For every fixed d there is an algorithm that, given S ⊆ {0, 1}n presented

by membership oracle, x ∈ S, integer d × n matrix W , set E ⊆ {−1, 0, 1}n of all edge

directions of conv(S), and convex function f : Zd → R presented by comparison oracle,

solves in time polynomial in 〈W 〉 and |E|, the convex problem:

max
{

f(Wz) : z ∈ S
}

.

Proof. First, using the membership oracle of S, an augmentation oracle for S can be
realized by the algorithm of Lemma 2.21. Next, using the realized augmentation oracle
of S and noting that ρ(S) ≤ 1, a linear-optimization oracle for S can be realized by
the algorithm of Lemma 2.20. Finally, using the realized linear-optimization oracle of S,
we can apply the algorithm of Theorem 2.16 and solve the given convex maximization
problem in polynomial time as claimed. ✷

2.5 Some applications

We now describe some direct applications which use Theorems 2.10, 2.19, and 2.22. The
algorithm of Theorem 2.16 is incorporated in Chapters 3–5 and enables convex integer
programming with many more applications discussed in Sections 4.3 and 5.2.

2.5.1 Quadratic binary programming

Here, we discuss the following simple immediate application. The quadratic binary pro-

gramming problem asks for x ∈ {0, 1}n maximizing the quadratic form xT Mx with M
a given n × n matrix. Consider the case of positive semidefinite M = WT W of rank d,
with W a given integer d × n matrix. If d is variable then already this restricted version
of the problem is NP-hard [46]. Theorem 2.22 implies the following result of [1] that for
fixed d the problem is polynomial time solvable.

Corollary 2.23. For every fixed d there is an algorithm that, given integer d × n matrix

W , solves in time polynomial in 〈W 〉 the quadratic binary program:

max
{

‖Wx‖2
2 : x ∈ {0, 1}n

}

. (2.7)

Proof. Let S := {0, 1}n. Then the set E := {11, . . . ,1n}, of unit vectors in Rn is a
set of all edge directions of conv(S) which is simply the n-cube [0, 1]n. The set E is
easily constructible in time polynomial in n, a membership oracle for S is trivially and
efficiently realizable, and 0 ∈ S is a trivial initial feasible point.

Let f : Rd → R be the l2 norm squared given by f(y) = ‖y‖2
2 =

∑d
i=1 y2

i . Then
the comparison between f(y) and f(z) can be done for y, z ∈ Zd in time polynomial in
〈y, z〉, providing an efficient realization of a comparison oracle for f .

This models (2.7) as a convex maximization problem max{f(Wx) : x ∈ S} which
can be solved in polynomial time by the algorithm of Theorem 2.22. ✷

34 2 Convex Discrete Maximization

2.5.2 Matroids and matroid intersections

We now revisit the matroid and matroid intersection problems from Section 1.2.1. We
consider convex maximization over bases or independent sets of matroids and two matroid
intersections. The matroids can be presented either by independence oracles or by basis
oracles. We show the following results on maximizing f(Wx) for convex f , with the
dependency of the running time on W indicated. These results are extended in Section 6.1
to matroid optimization with arbitrary nonlinear functions.

Single matroid Two matroid intersections
Corollary 2.25 Corollary 2.26

Polynomial in 〈W 〉 Polynomial in W

As demonstrated in Section 1.2.1, under a basis oracle presentation, exponentially
many queries may be needed even for linear optimization. So we assume that a basis or-
acle presentation is always endowed with some initial basis to start with. We will use the
following simple lemma which establishes the polynomial time equivalence of indepen-
dence oracle and basis oracle endowed with initial basis.

Lemma 2.24. A basis oracle can be realized and some basis obtained for a matroid on

n elements presented by an independence oracle in time polynomial in n. Conversely, an

independence oracle can be realized for a matroid on n elements presented by a basis

oracle and endowed with some basis in time polynomial in n.

Proof. Let M = (N, B) be a matroid and let I be its family of independent sets.
Suppose M is presented by an independence oracle. A basis oracle is realized as

follows: B ⊆ N is a basis if and only if B ∈ I and B ⊎ {i} /∈ I for all i ∈ N \ B
which can be checked using the independence oracle. Some basis B can be obtained by
the greedy algorithm: initialize I := ∅; while possible, pick an element i ∈ N \ I such
that I := I ⊎ {i} ∈ I, set I := I ⊎ {i}, and repeat; output B := I .

Suppose M is presented by a basis oracle and endowed with basis B. An indepen-
dence oracle is realized as follows: given nonempty I = {i1, . . . , ir} ⊆ N , form a se-
quence of bases B = B0, B1, . . . as follows: having produced Bj−1, check if there is
k ∈ Bj−1 \ I such that Bj−1 ∪ {ij} \ {k} ∈ B; if there is, set Bj := Bj−1 ∪ {ij} \ {k}
and continue; else stop. It is not hard to show that I is independent in M if and only if the
sequence has been constructed successfully all the way up to Br. ✷

Matroids and forests

Theorem 2.22 implies the following result of [48], [81] that maximizing f(Wx) over a
matroid with f convex and W binary encoded can be done in polynomial time.

Corollary 2.25. For every fixed d there is an algorithm that, given n element matroid M
presented by either independence oracle or basis oracle endowed with some basis, integer

d × n matrix W , and convex function f : Zd → R presented by a comparison oracle,

solves in time polynomial in 〈W 〉, the convex matroid problem:

max
{

f(Wx) : x ∈ S
}

, (2.8)

over the bases S := {1B : B ∈ B} or independent sets S := {1I : I ∈ I} of M .

2.5 Some applications 35

Proof. Consider first problem (2.8) with S := {1B : B ∈ B} the set of matroid bases.
We claim that E := {1i − 1j : 1 ≤ i < j ≤ n} is a set of all edge directions of the
matroid polytope P := conv(S). Consider any edge e = [y, y′] of P , with y, y′ ∈ S, and
let B := supp(y) and B′ := supp(y′) be the corresponding bases. If B \ B′ = {i} is a
singleton then B′ \ B = {j} is a singleton as well in which case y − y′ = 1i − 1j and
we are done. Suppose then, indirectly, that this is not the case. Let h ∈ Rn be uniquely
maximized over P at e, and pick an element i in the symmetric difference B∆B′ :=
(B \B′)∪ (B′ \B) of minimum value hi. Without loss of generality assume i ∈ B \B′.
Then there is a j ∈ B′\B such that B′′ := B \{i}∪{j} is also a basis. Let y′′ ∈ S be the
indicator of B′′. Now, |B∆B′| > 2 implies that B′′ is neither B nor B′. By the choice of
i, we have hy′′ = hy − hi + hj ≥ hy. So y′′ is also a maximizer of h over P and hence
y′′ ∈ e. But no {0, 1}-vector is a convex combination of others, which is a contradiction.

Clearly, E can be constructed in time polynomial in n. By Lemma 2.24, we may
assume that M is presented by a basis oracle and endowed with some basis B. So we
have a membership oracle for S and initial point 1B ∈ S. Therefore, the algorithm of
Theorem 2.22 can be used to solve the matroid problem in polynomial time.

Consider next problem (2.8) with S := {1I : I ∈ I} the set of independent sets.
Similar arguments show that a set of all edge directions of conv(S) is provided by the
following:

E :=
{

1i − 1j : 1 ≤ i < j ≤ n
}

⊎
{

1i : 1 ≤ i ≤ n
}

.

Clearly, E can be constructed in time polynomial in n. By Lemma 2.24, we may
assume that M is presented by an independence oracle. So we have a membership oracle
for S and initial point 0 ∈ S. Therefore, the algorithm of Theorem 2.22 can be used to
solve the matroid problem in polynomial time in this case as well. ✷

A concrete application of Corollary 2.25 is for maximum norm forest problems.

Example 1.1 (revisited; maximum norm forest, see Figure 1.1). Let G be graph with n
edges and M its graphic matroid, W integer d × n matrix, and f the lp norm on Rd.
The problem is max{f(Wx) : x ∈ S} with S the set of either all forests (independent
sets of M) or inclusion-maximal forests (bases of M). An independence oracle for M
is easily efficiently realizable. The norm f is convex and the comparison of f(y), f(z)
for y, z ∈ WS can be done in time polynomial in 〈y, z, p〉, by comparing ‖y‖∞, ‖z‖∞
for p = ∞ and ‖y‖p

p and ‖z‖p
p for positive integer p. By Corollary 2.25, this problem is

solvable in time polynomial in 〈W,p〉.

Matroid intersections and bipartite matchings

A classical result in combinatorial optimization is that linear optimization over two ma-
troid intersections can be done in polynomial time [33]. Theorem 2.10 implies the follow-
ing result of [11] that maximizing f(Wx) over two matroid intersections with f convex
and W unary encoded can be done in polynomial time as well.

Corollary 2.26. For every fixed d there is an algorithm that, given two n element ma-

troids, each presented by either independence oracle or basis oracle endowed with some

36 2 Convex Discrete Maximization

basis, integer d × n matrix W , and convex f : Zd → R presented by comparison oracle,

solves in time polynomial in W the following convex matroid intersection problem over

the set S of common bases or common independent sets:

max
{

f(Wx) : x ∈ S
}

, S :=
{

1B : B ∈ B1 ∩ B2

}

or S :=
{

1I : I ∈ I1 ∩ I2

}

.

Proof. By Lemma 2.24, we may assume that both matroids are presented by indepen-
dence oracles. As is well known (see [33]), such presentation enables linear optimization
over the set S of either common bases or common independent sets of two matroids in
polynomial time, providing a realization of a linear-optimization oracle for S. The result
now follows by applying the algorithm of Theorem 2.10. ✷

A concrete application of Corollary 2.26 is for convex assignment problems [12].

Example 2.27 (convex assignment). Consider again the assignment problem of Exam-
ple 2.4, where the feasible set S consists of the m × m permutation matrices (also inter-
preted as the perfect matchings in the complete bipartite graph Km,m). Let S1 be the set
of {0, 1}-valued m×m matrices with one 1 per row and let S2 be the set of {0, 1}-valued
m×m matrices with one 1 per column. Then S1, S2 are the sets of indicators of bases of
matroids M1, M2 on N := {(i, j) : 1 ≤ i, j ≤ m} and S = S1∩S2 is the set of common
bases. Independence oracles for M1, M2 are easily efficiently realizable. Corollary 2.26
then implies that the convex assignment problem max{f(Wx) : x ∈ S} can be solved
for any given integer d × n matrix W and convex f : Zd → R presented by comparison
oracle in time polynomial in W .

Under the hypothesis P �= NP, Corollary 2.26 cannot be extended to k ≥ 3 matroids,
since already the linear matroid intersection problem for k = 3 includes the traveling

salesman problem as a special case. To see this, consider the related NP-complete problem
of deciding if a given digraph G = (V,N) with two vertices s, t has a Hamiltonian dipath
from s to t. Define three matroids on N as follows: let M1 be the graphic matroid of
the undirected graph underlying G; let M2 be the matroid with B ⊆ N a basis if, in the
subdigraph (V,B), the indegree of s is 0 and the indegree of any v �= s is 1; let M3 be
the matroid with B ⊆ N a basis if, in (V,B), the outdegree of t is 0 and the outdegree
of any v �= t is 1. Then G has a Hamiltonian path if and only if the three matroids have a
common basis.

2.5.3 Vector partitioning and clustering

The vector partitioning problem seeks to partition n items among p players so as to max-
imize social utility (see Figure 2.5 for a small example in the special case of identical
players). Each player i has an integer q×n utility matrix iU whose kth column iUk is the
utility of item k to player i under q criteria, with entry iUj,k the utility of item k to player
i under criterion j. The utility matrix of an ordered partition π = (π1, . . . , πp) of the set
{1, . . . , n} of items is the q × p matrix:

Uπ :=
(

1
∑

k∈π1

Uk, . . . ,

p
∑

k∈πp

Uk
)

,

2.5 Some applications 37

whose ith column is the sum
∑i

k∈πi
Uk of utility vectors of items assigned to player i

under π, which is the total utility to player i under π. The social utility of π is the balancing
of the player utilities by a convex function f : Zq×p ∼= Zpq → R:

f(Uπ) := f
(

1
∑

k∈π1

U1,k, . . . ,

1
∑

k∈π1

Uq,k, . . . ,

p
∑

k∈πp

U1,k, . . . ,

p
∑

k∈πp

Uq,k

)

.

In the constrained version, the partition must be of a given shape, that is, the number |πi|
of items that player i gets has to be a given positive integer λi (with

∑

λi = n). In the
unconstrained version, the number of items per player is unrestricted. If the number p of

Convex functionon q x p matrices f(X) = Xij
3

p=3 identical players with the same utility matrix

Optimal social utility is f(U) = 244432

Optimal partition is = (34, 56, 12) with utility matrix

Each player should receive 2 items

players

CriteriaU

items

CriteriaU

Data: n=6 items evaluated by q=2 criteria

Solution and utility:

Figure 2.5: Vector partitioning example

players or the number q of criteria is variable then the problem is NP-hard [57]. We now
use Theorem 2.19 to show that when both p and q are fixed, both constrained and uncon-
strained versions of the partitioning problem are polynomial time solvable. The following
corollary extends results of [39], [57], [83], [84] on identical players to nonidentical play-
ers as well.

Corollary 2.28. For every fixed numbers p of players and q of criteria, there is an algo-

rithm that, given utility matrices 1U, . . . , pU ∈ Zq×n, 1 ≤ λ1, . . . , λp ≤ n, and convex

function f : Zpq → R presented by a comparison oracle, solves the constrained or un-

constrained partitioning problem in time polynomial in 〈1U, . . . ,p U〉.

38 2 Convex Discrete Maximization

Proof. We demonstrate only the constrained problem, the unconstrained version being
similar and simpler. There is an obvious one-to-one correspondence between partitions
and matrices x ∈ {0, 1}n×p satisfying

∑p
i=1 xk,i = 1 for all k, where partition π corre-

sponds to matrix x with xk,i = 1 if k ∈ πi and xk,i = 0 otherwise. Then the feasible
partitions become the integer points of a transportation problem,

S :=
{

x ∈ Zn×p
+ :

∑n
k=1 xk,i = λi,

∑p
i=1 xk,i = 1

}

. (2.9)

Identify Zn×p ∼= Znp by the coordinate order x = (x1,1, . . . , x1,p, . . . , xn,1, . . . , xn,p).
Let A denote the (p + n) × np matrix defining the system of equations in (2.9). Then A
is the adjacency matrix of the complete bipartite graph Kp,n and is totally unimodular.
Moreover, c ∈ Znp is a circuit of A if and only if it is supported on the set of edges of a
circuit of Kp,n with values ±1 alternating along the circuit. Since p is fixed, the number
of circuits of Kp,n satisfies

∑p
i=2

(

p
i

)(

n
i

)

i!(i − 1)! = O(np), and therefore the set C(A)
of circuits of A can be constructed in polynomial time.

Define an integer pq × np matrix W by setting W(i,j),(k,i) :=i Uj,k for all i, j, k,
and setting all other entries to zero. Then for any partition π and its corresponding vector
x ∈ {0, 1}np, we have

∑i
k∈πi

Uj,k = (Wx)(i,j) for all i, j. This models the problems as
a convex program, with W having a fixed number d := pq of rows:

max
{

f(Wx) : x ∈ S
}

.

Now, apply the algorithm of Theorem 2.19 to data consisting of the matrix A, its set
of circuits C(A) computed as explained above, b := (λ1, . . . , λp, 1, . . . , 1), l := 0, and
u := 1, and solve the vector partitioning problem in polynomial time. ✷

A concrete important application of vector partitioning is for clustering.

Example 2.29 (minimal variance clustering). This problem has numerous applications in
the analysis of statistical data: group n observed points u1, . . . , un in Rq into p clusters
π1, . . . , πp so as to minimize the sum of cluster variances as follows:

p
∑

i=1

1

|πi|
∑

k∈πi

∥

∥

∥

∥

uk −
(

1

|πi|
∑

k∈πi

uk

)∥

∥

∥

∥

2

.

Consider instances where there are n = pc points and the desired clustering is balanced,
that is, the clusters should have equal size c. Assume that the observation points are ratio-
nal, and then suitably scale them to become integer. Suitable manipulation of the sum of
variances expression above shows that the problem is equivalent to a constrained vector
partitioning problem, with p identical players (the clusters) having a common q×n utility
matrix U := (u1, . . . , un) with λi = c for all i and with f : Zpq → R (to be maximized)
being the l2 norm squared as follows:

f(z) := ‖z‖2 :=

q
∑

j=1

p
∑

i=1

|zj,i|2.

By Corollary 2.28, we can cluster optimally in polynomial time for all fixed p, q.

2.5 Some applications 39

Notes

The ellipsoid method of Yudin and Nemirovskii [101] is a powerful tool which, as is well
known, led to the first polynomial time algorithm for linear programming by Khachiyan
[59] and to the oracle equivalence of separation and linear optimization of Grötschel,
Lovász, and Schrijver on their many applications in combinatorial optimization in [44],
[72]. As recently shown in [79], without significant increase of computational effort, the
ellipsoid method can also be augmented with the computation of proximity certificates for
a variety of problems with convex structure including convex minimization, variational in-
equalities with monotone operators, and computation of Nash equilibria in convex games.
But in this monograph, we use it only in deriving Theorem 2.10 in Section 2.2, which has
an alternative derivation without the ellipsoid method given in Section 2.3.3. The main
result of this chapter, which is Theorem 2.16 on convex maximization using edge direc-
tions, is from [83]. It extends earlier results of [81], [84] and is further extended in [23].
It exploits efficient vertex enumeration using the nonstandard information coming from
the edge directions. The problem of vertex enumeration of a polyhedron presented by
linear inequalities, which is of different flavor, has been studied extensively in the liter-
ature. An output-sensitive algorithm for vertex enumeration is given in [5] by Avis and
Fukuda, and the hardness of the problem for possibly unbounded polyhedra is shown in
[60]. Theorem 2.19 on convex integer maximization over a system defined by a totally
unimodular matrix given the circuits of the matrix can be extended to other classes of
matrices which define integer polyhedra. Let us mention the important class of balanced

matrices which strictly contains totally unimodular matrices, studied extensively by Con-
forti and Cornuéjols, see [19] and the references therein. The results on efficient convex
maximization over matroids and matroid intersections are from [48], [81], and [11], re-
spectively. The fruitful interplay between convexity and matroids extends more generally
to submodular functions, polymatroids, and beyond; see the books [37] by Fujishige, and
[77] by Murota for further details on this line of research. The applications for vector
partitioning and clustering come from and extend the series of the papers [39], [57], [83],
[84].

3 Nonlinear Integer Programming

In this chapter, we consider nonlinear integer programming, that is, nonlinear optimization
over a set of integer points given by linear inequalities, of the form:

S :=
{

x ∈ Zn : Ax = b, l ≤ x ≤ u
}

, (3.1)

where A is an integer m × n matrix, b ∈ Zm, and l, u ∈ Zn
∞ with Z∞ = Z ⊎ {±∞}.

A fundamental object in the theory of integer programming is the Graver basis intro-
duced by Graver already back in 1975 [41]. However, only very recently, in the series of
papers [23], [24], [50], [51], it was established that the Graver basis can be used to solve
linear and nonlinear integer programming problems in polynomial time. In this chapter,
we describe these important new developments. In Section 3.1, we define the Graver ba-
sis and describe some of its basic properties. In Section 3.2, we prove the main result
of this chapter, Theorem 3.12, showing that the Graver basis enables to minimize sep-
arable convex functions over sets of the form (3.1) in polynomial time. In Section 3.3,
we discuss several specializations and extensions of this result to other types of objective
functions. We conclude with a short description in Section 3.4 of a simple finite procedure
for computing the Graver basis.

The following table enables quick navigation among some of the theorems in this
chapter providing polynomial time optimization over sets of the form (3.1).

min wx min f(x) max f(Wx) min f(Wx) + g(x)
(linear objective) f separable convex f convex f ,g separable convex

Theorem 3.13 Theorem 3.12 Theorem 3.16 Theorem 3.17

3.1 Graver bases

We begin with the definition of the Graver basis and some of its basic properties. Through-
out this section A is an integer m×n matrix. Recall the following terminology from Sec-
tion 2.3.4. The lattice of A is L(A) := {x ∈ Zn : Ax = 0}. The set of nonzero elements
in L(A) is denoted by L∗(A) := {x ∈ Zn : Ax = 0, x �= 0}. We use the partial order
⊑ on Rn defined as follows: for x, y ∈ Rn, we write x ⊑ y and say that x is conformal

to y if xiyi ≥ 0 (that is, x and y lie in the same orthant) and |xi| ≤ |yi| for i = 1, . . . , n.
A finite sum u :=

∑

i vi of vectors in Rn is conformal if vi ⊑ u for all i and hence all
summands lie in the same orthant.

A simple extension of a classical lemma of Gordan [40] implies that every subset of
Zn has finitely many ⊑-minimal elements. The following definition is from [41].

Definition 3.1. The Graver basis of an integer matrix A is defined to be the finite set
G(A) ⊂ Zn of ⊑-minimal elements in L∗(A) = {x ∈ Zn : Ax = 0, x �= 0}.

3.1 Graver bases 41

Recall also from Section 2.3.4 that a circuit of A is an element c ∈ L∗(A) whose
support supp(c) is minimal under inclusion and whose entries are relatively prime. Like
the set C(A) of circuits, the Graver basis G(A) is centrally symmetric, that is, g ∈ G(A)
if and only if −g ∈ G(A). It follows directly from the definitions that for every matrix A,
the set of circuits is contained in the Graver basis, that is, C(A) ⊆ G(A). The converse is
typically false. For instance, already for the tiny 1 × 3 matrix A := (1 2 1), the Graver
basis strictly contains the set of circuits:

G(A) = ±
{

(2,−1, 0), (0,−1, 2), (1, 0,−1), (1,−1, 1)
}

= C(A) ⊎ ±
{

(1,−1, 1)
}

.

We have the following fundamental property of the Graver basis.

Lemma 3.2. Every vector x ∈ L∗(A) is a conformal sum x =
∑

i gi of Graver basis

elements gi ∈ G(A), with some elements possibly appearing with repetitions.

Proof. By induction on the well partial order ⊑. Consider any x ∈ L∗(A). If it is ⊑-
minimal in L∗(A) then x ∈ G(A) by definition of the Graver basis and we are done.
Otherwise, there is an element g ∈ G(A) such that g ❁ x. Set y := x−g. Then y ∈ L∗(A)
and y ❁ x, so by induction there is a conformal sum y =

∑

i gi with gi ∈ G(A) for all i.
Now, x = g +

∑

i gi is a conformal sum of x. ✷

Recall from Section 2.4 that an augmentation oracle for S ⊆ Zn is one that, queried
on x ∈ S and w ∈ Zn, either asserts that x is optimal for the optimization problem
max{wx : x ∈ S} or returns x̂ ∈ S satisfying wx̂ > wx. Definition 3.1, made by Graver
already back in 1975 [41], is motivated by the following lemma that shows that G(A)
enables to realize an augmentation oracle for a set S of the form (3.1).

Lemma 3.3. There is an algorithm that, given the Graver basis G(A) of an integer

m × n matrix A, l, u ∈ Zn
∞, and x,w ∈ Zn with l ≤ x ≤ u, in time polynomial

in 〈G(A), l, u, x, w〉, either asserts that x is optimal for the linear optimization problem

max{wz : z∈Zn, Az=b, l≤z≤u} with b := Ax or returns a better point x̂.

Proof. Suppose that x is not optimal. Let x∗ be any better feasible point and put h :=
x∗ − x. Then Ah = b − b = 0 so h ∈ L∗(A) and hence, by Lemma 3.2, there is a
conformal sum h =

∑

i gi with gi ∈ G(A) for all i. Now, l ≤ x, x + h = x∗ ≤ u and
gi ⊑ h imply that l ≤ x+ gi ≤ u for all i. Also, A(x+ gi) = Ax = b for all i. Therefore,
x + gi is feasible for all i. Now, 0 < wx∗ − wx = wh =

∑

i wgi implies that wgi > 0
for some gi in this sum. Therefore, x + gi is feasible and better.

So the algorithm is very simple: if wg > 0 for some g ∈ G with l ≤ x + g ≤ u then
x̂ := x + g is an easily computable better point; otherwise, x is optimal. ✷

Combining Lemmas 3.3 and 2.20, it is possible to use the Graver basis to solve the
linear optimization problem over S = {x ∈ Zn : Ax = b, l ≤ x ≤ u}. However, the
running time of this procedure is polynomial only in the unary length of the radius ρ(S)
of S. In integer programming, this is unsatisfactory since ρ(S) is typically exponential
in the natural binary length of the data 〈A, l, u, b〉 defining S, and the resulting linear
optimization algorithm is not naturally polynomial.

42 3 Nonlinear Integer Programming

However, in Section 3.2 we describe the recent important developments from [23],
[24], [50], [51], that establish much stronger results, showing that, in fact, the Graver
basis does enable to solve linear and nonlinear optimization problems over sets of the
from (3.1) in time which is genuinely polynomial, in the natural binary length of the data
〈A, l, u, b〉 which defines the feasible set (along with the binary length of the given Graver
basis).

We need the following stronger form of Lemma 3.2 which basically follows from the
integer analogs of Carathéodory’s theorem established in [20] and [94].

Lemma 3.4. Every x ∈ L∗(A) is a conformal sum x =
∑t

i=1 λigi which involves

t ≤ 2n − 2 nonnegative integer coefficients λi and Graver basis elements gi ∈ G(A).

Proof. We prove the slightly weaker bound t ≤ 2n−1 from [20]. A proof of the stronger
bound can be found in [94]. Consider any x ∈ L∗(A) and let g1, . . . , gs be all elements
of G(A) lying in the same orthant as x. Consider the linear program:

max
{
∑s

i=1 λi : x =
∑s

i=1 λigi, λi ∈ R+

}

. (3.2)

By Lemma 3.2, the point x is a nonnegative linear combination of the gi and hence the
program (3.2) is feasible. Since all gi are nonzero and in the same orthant as x, program
(3.2) is also bounded. As is well known, it then has a basic optimal solution, that is, an
optimal solution λ1, . . . , λs with at most n of the λi nonzero. Let

y :=
∑

(

λi −
⌊

λi

⌋)

gi = x −
∑

⌊

λi

⌋

gi.

If y = 0 then x =
∑⌊λi⌋gi is a conformal sum of at most n of the gi and we are done.

Otherwise, y ∈ L∗(A) and y lies in the same orthant as x, and hence, by Lemma 3.2
again, y =

∑s
i=1 µigi with all µi ∈ Z+. Then x =

∑

(µi + ⌊λi⌋)gi and hence, since the
λi form an optimal solution to (3.2), we have

∑

(µi + ⌊λi⌋) ≤
∑

λi. Therefore,
∑

µi ≤
∑

(λi − ⌊λi⌋) < n with the last inequality holding since at most n of the λi are nonzero.
Since the µi are integers, at most n − 1 of them are nonzero. So x =

∑

(µi + ⌊λi⌋)gi is
a conformal sum of x involving at most 2n − 1 of the gi. ✷

We remark that the smallest possible bound t(n) that could possibly replace 2n− 2 in
the statement of Lemma 3.4, sometimes called the integer Carathéodory number, is yet
unknown. While it has been conjectured in [20] that t(n) = n, it was eventually shown in
[17] that in fact t(n) ≥ ⌊ 7

6n⌋ > n for any dimension n ≥ 6.
The Graver basis also enables to check finiteness of feasible integer programs.

Lemma 3.5. Let G(A) be the Graver basis of matrix A and let l, u ∈ Zn
∞. If there is some

g ∈ G(A) satisfying gi ≤ 0 whenever ui < ∞ and gi ≥ 0 whenever li > −∞ then every

set of the form S := {x ∈ Zn : Ax = b, l ≤ x ≤ u} is either empty or infinite, whereas

if there is no such g, then every set S of this form is finite. Clearly, the existence of such g
can be checked in time polynomial in 〈G(A), l, u〉.

Proof. First suppose there exists such g. Consider any such S. Suppose S contains some
point x. Then for all λ ∈ Z+, we have l ≤ x + λg ≤ u and A(x + λg) = Ax = b

3.2 Efficient separable convex minimization 43

and hence x + λg ∈ S, so S is infinite. Next, suppose S is infinite. Then the polyhedron
P := {x ∈ Rn : Ax = b, l ≤ x ≤ u} is unbounded and hence, as is well known, has
a recession vector, that is, a nonzero h, which we may assume to be integer, such that
x + αh ∈ P for all x ∈ P and α ≥ 0. This implies that h ∈ L∗(A) and that hi ≤ 0
whenever ui < ∞ and hi ≥ 0 whenever li > −∞. So h is a conformal sum h =

∑

gi

of vectors gi ∈ G(A), each of which also satisfies gi ≤ 0 whenever ui < ∞ and gi ≥ 0
whenever li > −∞, providing such g. ✷

3.2 Efficient separable convex minimization

In this section, we consider the following nonlinear integer minimization problem:

min
{

f(x) : x ∈ Zn, Ax = b, l ≤ x ≤ u
}

(3.3)

with A integer m × n matrix, b ∈ Zm, l, u ∈ Zn
∞, and f : Zn → Z separable convex

function, that is, f(x) =
∑n

j=1 fj(xj) with each fj : Z → Z univariate convex.
The main result here is Theorem 3.12: given the Graver basis G(A) of A, we can solve

problem (3.3) for any separable convex function in polynomial time.
We prove a sequence of six lemmas and then combine them to prove Theorem 3.12.

We start with two simple lemmas about univariate convex functions. The first lemma
establishes a certain supermodularity property of such functions.

Lemma 3.6. Let f : R → R be a univariate convex function, let r be a real number,

and let s1, . . . , sm be real numbers satisfying sisj ≥ 0 for all i, j. Then we have the

following:

f
(

r +
m
∑

i=1

si

)

− f(r) ≥
m
∑

i=1

(

f
(

r + si

)

− f(r)
)

.

Proof. Define a new function g : R → R by g(x) := f(r +x)−f(r) for all x ∈ R. Then
g is also convex and g(0) = 0. Therefore, for all x ∈ R and 0 ≤ µ ≤ 1:

g(µx) = g
(

(1 − µ)0 + µx
)

≤ (1 − µ)g(0) + µg(x) = µg(x).

Now assume that not all si are zero else the claim of the lemma is trivial. Define

λi :=
si

∑m
j=1 sj

, i = 1, . . . , m.

Then
∑m

i=1 λi = 1 and 0 ≤ λi ≤ 1 for all i since all si have the same sign. Therefore,

m
∑

i=1

g
(

si

)

=
m
∑

i=1

g
(

λi

m
∑

j=1

sj

)

≤
m
∑

i=1

λig
(

m
∑

j=1

sj

)

= g
(

m
∑

j=1

sj

)

,

and hence, as claimed

m
∑

i=1

(

f
(

r + si

)

− f(r)
)

=
m
∑

i=1

g
(

si

)

≤ g
(

m
∑

j=1

sj

)

= f
(

r +
m
∑

j=1

sj

)

− f(r).
✷

44 3 Nonlinear Integer Programming

The second lemma shows that univariate convex functions can be minimized effi-
ciently over an interval of integers using repeated bisections.

Lemma 3.7. There is an algorithm that, given any two integer numbers r ≤ s and any

univariate convex function f : Z → R given by a comparison oracle, solves in time

polynomial in 〈r, s〉 the following univariate integer minimization problem:

min
{

f(λ) : λ ∈ Z, r ≤ λ ≤ s
}

.

Proof. If r = s then λ := r is optimal. So assume that r ≤ s − 1. Consider the integers:

r ≤
⌊r + s

2

⌋

<
⌊r + s

2

⌋

+ 1 ≤ s.

Use the oracle of f to compare f(⌊ r+s
2 ⌋) and f(⌊ r+s

2 ⌋ + 1). By convexity of f :

f
(⌊r+s

2

⌋)

= f
(⌊r+s

2

⌋

+1
)

=⇒ λ :=
⌊r + s

2

⌋

is a minimum of f ;

f
(⌊r+s

2

⌋)

< f
(⌊r+s

2

⌋

+1
)

=⇒ the minimum of f is in the interval
[

r,
⌊r + s

2

⌋]

;

f
(⌊r+s

2

⌋)

> f
(⌊r+s

2

⌋

+1
)

=⇒ the minimum of f is in the interval
[⌊r + s

2

⌋

+1, s
]

.

Thus, we either obtain the optimal point or bisect the interval [r, s] and repeat. So in
O(log(s − r)) = O(〈r, s〉) bisections, we find an optimal solution λ ∈ Z ∩ [r, s]. ✷

The next two lemmas extend Lemmas 3.6 and 3.7. The first lemma shows the super-
modularity of separable convex functions with respect to conformal sums, see also [78].

Lemma 3.8. Let f : Rn → R be any separable convex function, x ∈ Rn any point, and
∑

gi any conformal sum in Rn. Then we have the following inequality:

f
(

x +
∑

gi

)

− f(x) ≥
∑

(

f
(

x + gi

)

− f(x)
)

.

Proof. Let fj be univariate convex functions such that f(x) =
∑n

j=1 fj(xj). Consider
any 1 ≤ j ≤ n. Since

∑

gi is a conformal sum, we have gi,jgk,j ≥ 0 for all i, k and so,
setting r := xj and si := gi,j for all i, Lemma 3.6 applied to fj implies the following:

fj

(

xj +
∑

i

gi,j

)

− fj

(

xj

)

≥
∑

i

(

fj

(

xj + gi,j

)

− fj

(

xj

))

. (3.4)

Summing the equations (3.4) for j = 1, . . . , n, we obtain the claimed inequality. ✷

The second lemma enables to find a best improvement step in a given direction.

Lemma 3.9. There is an algorithm that, given bounds l, u ∈ Zn
∞, direction g ∈ Zn, point

x ∈ Zn with l ≤ x ≤ u, and convex function f : Zn → R presented by comparison

oracle, solves in time polynomial in 〈l, u, g, x〉, the univariate problem:

min
{

f(x + λg) : λ ∈ Z+, l ≤ x + λg ≤ u
}

. (3.5)

3.2 Efficient separable convex minimization 45

Proof. Let S := {λ ∈ Z+ : l ≤ x+λg ≤ u} be the feasible set and let s := supS, which
is easy to determine. If s = ∞ then conclude that S is infinite and stop. Otherwise, S =
{0, 1, . . . , s} and the problem can be solved by the algorithm of Lemma 3.7 minimizing
the univariate convex function h(λ) := h(x + λg) over S. ✷

We can now show that the Graver basis of A allows to solve problem (3.3) in poly-
nomial time, provided we are given an initial feasible point to start with. We later show
how to find such an initial point as well. Below, and throughout this chapter, f̂ denotes
the maximum value of |f(x)| over the feasible set and need not be part of the input. An
outline of the algorithm is provided in Figure 3.1.

Rn

R

f

- Graver basis G(A)

- Initial point x in S

- Set S = { x in Zn : Ax = b, l x u }INPUT:

- Separable convex f on Rn

given by comparison oracle

The final point x obtained, which is

guaranteed to minimize f over S

DO: While there are g in G(A) and integer >0 such

that f(x+ g)<f(x) and l x+ g u, replace x by

x+ g that minimizes f(x+ g), and repeat

OUTPUT:

x

S

x

Figure 3.1: Separable convex minimization using Graver bases

Lemma 3.10. There is an algorithm that, given integer m×n matrix A, its Graver basis

G(A), vectors l, u ∈ Zn
∞ and x ∈ Zn with l ≤ x ≤ u, and separable convex function

f : Zn → Z presented by a comparison oracle, solves the integer program:

min
{

f(z) : z ∈ Zn, Az = b, l ≤ z ≤ u
}

, b := Ax, (3.6)

in time which is polynomial in the binary length 〈G(A), l, u, x, f̂〉 of the data.

Proof. First, apply the algorithm of Lemma 3.5 to G(A) and l, u and either detect that
the feasible set is infinite and stop, or conclude it is finite and continue. Next, produce a

46 3 Nonlinear Integer Programming

sequence of feasible points x0, x1, . . . , xs with x0 := x the given input point, as follows.
Having obtained xk, solve the univariate minimization problem:

min
{

f
(

xk + λg
)

: λ ∈ Z+, g ∈ G(A), l ≤ xk + λg ≤ u
}

(3.7)

by applying the algorithm of Lemma 3.9 for each g ∈ G(A). If the minimal value in (3.7)
satisfies f(xk + λg) < f(xk) then set xk+1 := xk + λg and repeat, else stop and output
the last point xs in the sequence. Now, Axk+1 = A(xk + λg) = Axk = b by induction
on k, so each xk is feasible. Since the feasible set is finite and the xk have decreasing
objective values and hence distinct, the algorithm terminates.

We now show that the point xs output by the algorithm is optimal. Let x∗ be any
optimal solution to (3.6). Consider any point xk in the sequence and suppose that it is not
optimal. We claim that a new point xk+1 will be produced and will satisfy the following:

f
(

xk+1

)

− f
(

x∗
)

≤ 2n − 3

2n − 2

(

f
(

xk

)

− f
(

x∗
))

. (3.8)

By Lemma 3.4, we can write the difference x∗ − xk =
∑t

i=1 λigi as conformal sum
involving 1 ≤ t ≤ 2n − 2 elements gi ∈ G(A) with all λi ∈ Z+. By Lemma 3.8:

f
(

x∗
)

− f
(

xk

)

= f
(

xk +

t
∑

i=1

λigi

)

− f
(

xk

)

≥
t

∑

i=1

(

f
(

xk + λigi

)

− f
(

xk

))

.

Adding t(f(xk) − f(x∗)) on both sides and rearranging terms, we obtain the following:

t
∑

i=1

(

f
(

xk + λigi

)

− f
(

x∗
))

≤ (t − 1)
(

f
(

xk

)

− f
(

x∗
))

.

Therefore, there is some summand on the left-hand side satisfying the following:

f
(

xk + λigi

)

− f
(

x∗
)

≤ t − 1

t

(

f
(

xk

)

− f
(

x∗
))

≤ 2n − 3

2n − 2

(

f
(

xk

)

− f
(

x∗
))

.

So the point xk + λg attaining minimum in (3.7) satisfies the following:

f
(

xk + λg
)

− f
(

x∗
)

≤ f
(

xk + λigi

)

− f
(

x∗
)

≤ 2n − 3

2n − 2

(

f
(

xk

)

− f
(

x∗
))

,

and so indeed xk+1 := xk + λg will be produced and will satisfy (3.8). This shows that
the last point xs produced and output by the algorithm is indeed optimal.

We proceed to bound the number s of points. Consider any i < s and the intermediate
nonoptimal point xi in the sequence produced by the algorithm. Then f(xi) > f(x∗)
with both values integer, and so repeated use of (3.8) gives the following:

1 ≤ f
(

xi

)

− f
(

x∗
)

=

i−1
∏

k=0

f
(

xk+1

)

− f
(

x∗
)

f
(

xk

)

− f
(

x∗
)

(

f(x) − f
(

x∗
))

≤
(2n − 3

2n − 2

)i
(

f(x) − f
(

x∗
))

,

3.2 Efficient separable convex minimization 47

and therefore

i ≤
(

log
2n − 2

2n − 3

)−1

log
(

f(x) − f
(

x∗
))

.

Therefore, the number s of points produced by the algorithm is at most one unit larger
than this bound, and using a simple bound on the logarithm, we obtain the following:

s = O
(

n log
(

f(x) − f
(

x∗
)))

.

Thus, the number of points produced and the total running time are polynomial. ✷

Next, we show that we can also find an initial feasible point for a given integer pro-
gram or assert that the given set is empty or infinite, in polynomial time.

Lemma 3.11. There is an algorithm that, given integer m×n matrix A, its Graver basis

G(A), l, u ∈ Zn
∞, and b ∈ Zm, in time which is polynomial in 〈A,G(A), l, u, b〉, either

finds a feasible point x ∈ S or asserts that S is empty or infinite, where

S :=
{

z ∈ Zn : Az = b, l ≤ z ≤ u
}

.

Proof. Assume that l ≤ u and that li < ∞ and uj > −∞ for all j, since otherwise there
is no feasible point. Also assume that there is no g ∈ G(A) satisfying gi ≤ 0 whenever
ui < ∞ and gi ≥ 0 whenever li > −∞, since otherwise S is empty or infinite by
Lemma 3.5. Now, either detect there is no integer solution to the system of equations
Ax = b (without the lower and upper bound constraints) and stop or determine some
such solution x̂ ∈ Zn and continue; it is well known that this can be done in polynomial
time, say, using the Hermite normal form of A, see [90]. Next, define a separable convex
function on Zn by f(x) :=

∑n
j=1 fj(xj) with

fj(xj) :=

⎧

⎪

⎨

⎪

⎩

lj − xj if xj < lj ,

0 if lj ≤ xj ≤ uj ,

xj − uj if xj > uj ,

j = 1, . . . , n,

and extended lower and upper bounds:

l̂j := min
{

lj , x̂j

}

, ûj := max
{

uj , x̂j

}

, j = 1, . . . , n.

Consider the auxiliary separable convex integer program:

min
{

f(z) : z ∈ Zn, Az = b, l̂ ≤ z ≤ û
}

. (3.9)

First, note that x̂ is feasible in (3.9). Next, note that l̂j > −∞ if and only if lj > −∞
and ûj < ∞ if and only if uj < ∞. So there is no g ∈ G(A) satisfying gi ≤ 0 whenever

ûi < ∞ and gi ≥ 0 whenever l̂i > −∞ and hence the feasible set of (3.9) is finite
by Lemma 3.5. Now, apply the algorithm of Lemma 3.10 to (3.9) and obtain an optimal
solution x. This can be done in polynomial time since the binary length of x̂ and therefore

48 3 Nonlinear Integer Programming

also of l̂, û and of the maximum value f̂ of |f(x)| over the feasible set of (3.9) are
polynomial in the length of the data.

Now, note that every point z ∈ S is feasible in (3.9), and every point z feasible in (3.9)
satisfies f(z) ≥ 0 with equality if and only if z ∈ S. So, if f(x) > 0 then the original set
S is empty, whereas if f(x) = 0 then x ∈ S is a feasible point. ✷

We are finally in position to prove the important result of [50] that the Graver basis
allows to solve the nonlinear integer program (3.3) in polynomial time. As before, the
bound f̂ on |f(x)| over the feasible set need not be part of the input.

Theorem 3.12. There is an algorithm that, given integer m×n matrix A, its Graver basis

G(A), l, u ∈ Zn
∞, b ∈ Zm, and separable convex f : Zn → Z presented by comparison

oracle, solves in time polynomial in 〈A,G(A), l, u, b, f̂〉 the problem:

min
{

f(x) : x ∈ Zn, Ax = b, l ≤ x ≤ u
}

.

Proof. First, apply the algorithm of Lemma 3.11 and either conclude that the given integer
program is infeasible or the feasible set is infinite and stop or obtain an initial feasible
point and continue. Next, apply the algorithm of Lemma 3.10 and either conclude that the
feasible set is infinite or obtain an optimal solution. ✷

3.3 Specializations and extensions

3.3.1 Linear integer programming

Any linear function wx =
∑n

i=1 wixi is separable convex. Moreover, an upper bound
on |wx| over the feasible set (when finite), which is polynomial in the binary length of
the data, readily follows from Cramer’s rule. So we have, as an immediate special case
of Theorem 3.12, the following important result of [24], that Graver bases enable the
polynomial time solution of linear integer programming.

Theorem 3.13. There is an algorithm that, given an integer m × n matrix A, its Graver

basis G(A), l, u ∈ Zn
∞, b ∈ Zm, and w ∈ Zn, solves in time which is polynomial in

〈A,G(A), l, u, b, w〉 the following linear integer programming problem:

min
{

wx : x ∈ Zn, Ax = b, l ≤ x ≤ u
}

.

3.3.2 Distance minimization

Another useful special case of Theorem 3.12 which is natural in various applications
such as image processing, tomography, communication, and error correcting codes is the
following result of [50], asserting that Graver bases enable to determine a feasible point
which is lp-closest to a given desired goal point in polynomial time.

3.3 Specializations and extensions 49

Theorem 3.14. There is an algorithm that, given integer m × n matrix A, its Graver

basis G(A), positive integer p, vectors l, u ∈ Zn
∞, b ∈ Zm, and x̂ ∈ Zn, solves in time

polynomial in p and 〈A,G(A), l, u, b, x̂〉, the closest-point problem:

min
{

‖x − x̂‖p : x ∈ Zn, Ax = b, l ≤ x ≤ u
}

. (3.10)

For p = ∞, the problem (3.10) can be solved in time polynomial in 〈A,G(A), l, u, b, x̂〉.

Proof. For finite p, apply the algorithm of Theorem 3.12 taking f to be the pth power
‖x − x̂‖p

p of the lp distance. If the feasible set is nonempty and finite (else the algorithm

stops) then the maximum value f̂ of |f(x)| over it is polynomial in p and 〈A, l, u, b, x̂〉,
and hence an optimal solution can be found in polynomial time.

Consider p = ∞. Using Cramer’s rule, it is easy to compute an integer ρ with 〈ρ〉
polynomially bounded in 〈A, l, u, b〉 that, if the feasible set is finite, provides an upper
bound on ‖x‖∞ for any feasible x. Let q be a positive integer satisfying the following:

q >
log n

log
(

1 + (2ρ)−1
) .

Now, apply the algorithm described above for the lq distance. Assuming that the feasible
set is nonempty and finite (else the algorithm stops), let x∗ be the feasible point minimiz-
ing the lq distance to x̂ obtained by the algorithm. We claim that it also minimizes the l∞
distance to x̂ and hence is the desired optimal solution. Consider any feasible point x. By
standard inequalities between the l∞ and lq norms:

∥

∥x∗ − x̂
∥

∥

∞
≤

∥

∥x∗ − x̂
∥

∥

q
≤ ‖x − x̂‖q ≤ n

1
q ‖x − x̂‖∞.

Therefore,
∥

∥x∗ − x̂
∥

∥

∞
− ‖x − x̂‖∞ ≤

(

n
1
q − 1

)

‖x − x̂‖∞ ≤
(

n
1
q − 1

)

2ρ < 1,

where the last inequality holds by the choice of q. Since ‖x∗ − x̂‖∞ and ‖x − x̂‖∞ are
integers, we find that ‖x∗ − x̂‖∞ ≤ ‖x − x̂‖∞. This establishes the claim. ✷

In particular, for each p the Graver basis enables to solve the integer program:

min
{

‖x‖p : x ∈ Zn, Ax = b, l ≤ x ≤ u
}

,

which for p = ∞ is equivalent to the min-max integer program:

min
{

max
{∣

∣xi

∣

∣ : i = 1, . . . , n
}

: x ∈ Zn, Ax = b, l ≤ x ≤ u
}

.

3.3.3 Convex integer maximization

We proceed to discuss the maximization of a convex function of the composite form
f(Wx), with f : Zd → Z any convex function and W any integer d × n matrix.

Consider the following pair of polyhedra (with the containment typically strict):

conv
{

x ∈ Zn : Ax = b, l ≤ x ≤ u
}

⊆
{

x ∈ Rn : Ax = b, l ≤ x ≤ u
}

.

50 3 Nonlinear Integer Programming

We have shown in Lemma 2.18 that the set of circuits C(A) is a set of all edge directions
of the right-hand side. We now show the analog statement asserting that the Graver basis
G(A) is a set of all edge directions of the left-hand side.

Lemma 3.15. For any integer m× n matrix A, l, u ∈ Zn
∞ and b ∈ Zm, the Graver basis

G(A) is a set of all edge directions of P = conv{x ∈ Zn : Ax = b, l ≤ x ≤ u}.

Proof. Consider any edge e of P and pick distinct integer points x, y ∈ e. Then g :=
y − x is in L∗(A) and hence Lemma 3.2 implies that g =

∑

i hi is a conformal sum
for suitable hi ∈ G(A). We claim that x + hi ∈ P for all i. Indeed, hi ∈ G(A) implies
A(x + hi) = Ax = b, and l ≤ x, x + g ≤ u and hi ⊑ g imply l ≤ x + hi ≤ u.

Now, let w ∈ Zn be uniquely maximized over P at the edge e. Then whi = w(x +
hi)−wx ≤ 0 for all i. But

∑

whi = wg = wy−wx = 0, implying that in fact whi = 0
and hence x + hi ∈ e for all i. This implies that hi is a direction of e (in fact, all hi are
the same and g is a multiple of some Graver basis element). ✷

Theorems 3.13 and 2.16 with Lemma 3.15 imply the following result of [23].

Theorem 3.16. For every fixed d, there is an algorithm that, given integer m×n matrix A,

its Graver basis G(A), l, u ∈ Zn
∞, b ∈ Zm, integer d × n matrix W , and convex function

f : Zd → R presented by a comparison oracle, solves in time which is polynomial in

〈A,W,G(A), l, u, b〉, the convex integer maximization problem:

max
{

f(Wx) : x ∈ Zn, Ax = b, l ≤ x ≤ u
}

.

Proof. Let S := {x ∈ Zn : Ax = b, l ≤ x ≤ u}. The algorithm of Theorem 3.13 allows
to realize in polynomial time a linear-optimization oracle for S. In particular, it allows to
either conclude that S is infinite and stop or that it is finite, in which case the binary length
〈ρ(S)〉 of its radius is polynomial in 〈A, l, u, b〉, and continue. By Lemma 3.15, the given
Graver basis is a set of all edge directions of conv(S). Hence, the algorithm of Theorem
2.16 can be applied and provides the polynomial time solution of the given convex integer
maximization program. ✷

3.3.4 Weighted separable convex minimization

We next establish a broad extension of Theorem 3.12, where the objective function is a
sum f(Wx) + g(x) involving two separable convex functions f : Zd → Z, g : Zn → Z,
which includes a composite term f(Wx). Moreover, the number d of rows of W is al-
lowed to be variable. As usual, it suffices to be given a comparison oracle for the objective
function. However, since it is more natural here to have each of f, g given by its own pre-
sentation, we assume that each of f, g is given by an evaluation oracle that, queried on
a vector, returns the value of the function on that vector. As usual, f̂ , ĝ denote the max-
imum values of |f(Wx)|, |g(x)| over the feasible set and need not be part of the input.
We also allow to incorporate inequalities on Wx in addition to the lower and upper bound
inequalities on x.

To solve this problem, we need the Graver basis of an extended, (m + d) × (n + d)
matrix, composed of A,W , the d × d identity matrix I and the zero m × d matrix.

3.3 Specializations and extensions 51

Theorem 3.17. There is an algorithm that, given an integer m × n matrix A, an integer

d × n matrix W , l, u ∈ Zn
∞, l̂, û ∈ Zd

∞, b ∈ Zm, the Graver basis G(B) of

B :=

(

A 0
W I

)

,

and separable convex functions f : Zd → Z, g : Zn → Z presented by evaluation

oracles, solves in time polynomial in 〈A,W,G(B), l, u, l̂, û, b, f̂ , ĝ〉, the problem:

min
{

f(Wx) + g(x) : x ∈ Zn, Ax = b, l̂ ≤ Wx ≤ û, l ≤ x ≤ u
}

. (3.11)

Proof. Define h : Zn+d → Z by h(x, y) := f(−y) + g(x) for all x ∈ Zn and y ∈ Zd.
Clearly, h is separable convex since f, g are. Now, problem (3.11) becomes as follows:

min
{

h(x, y) : (x, y) ∈ Zn+d,
(

A 0
W I

)(x
y

)

=
(

b
0

)

, l ≤ x ≤ u, −û ≤ y ≤ −l̂
}

,

and the statement follows at once by applying Theorem 3.12 to this problem. ✷

3.3.5 Totally unimodular systems revisited

Here, we deduce Theorem 2.19 on convex maximization over totally unimodular systems
as a very special case of Theorem 3.16, giving an alternative algorithmic proof incorpo-
rating the algorithm of Theorem 3.12 instead of linear programming.

For a matrix A, let ∆(A) denote the maximum absolute value of a determinant of a
square submatrix of A. The following bounds are well known; see, for example, [95].

Lemma 3.18. For any circuit c ∈ C(A) with A integer matrix of rank r, we have the

following:

‖c‖∞ ≤ ∆(A) and ‖c‖1 ≤ (r + 1)∆(A).

Proof. Consider any circuit c of A and let s := | supp(c)| − 1 ≤ r. Let x ∈ Zs+1 be the
restriction of c to its nonzero coordinates. Then there is an s × (s + 1) submatrix B of A
of rank s with columns corresponding to the nonzero coordinates of c such that Bx = 0.
Write x := (x0, . . . , xs) and B := (B0, . . . , Bs) and for each j let

bj := det
(

B0, . . . , Bj−1, Bj+1, . . . , Bs
)

.

By Cramer’s rule
∑s

j=0(−1)jbjB
j = 0 and hence |xj | divides |bj | ≤ ∆(A) for all j.

Therefore, ‖c‖∞ = ‖x‖∞ ≤ ∆(A) and ‖c‖1 ≤ (s + 1)‖c‖∞ ≤ (r + 1)∆(A). ✷

As noted before, C(A) ⊆ G(A) for every matrix A. The next lemma shows that for
totally unimodular matrices equality holds, allowing to specialize results on general ma-
trices and Graver bases to totally unimodular matrices and circuits.

Lemma 3.19. The Graver basis and set of circuits of totally unimodular A satisfy the

following:

G(A) = C(A).

52 3 Nonlinear Integer Programming

Proof. By Lemma 3.18, any component of any circuit of A satisfies |ci| ≤ ∆(A). For
totally unimodular A, this implies ci ∈ {−1, 0, 1} for each c ∈ C(A). Now, consider any
g ∈ G(A). Since g ∈ L∗(A), Lemma 2.17 implies that g =

∑t
i=1 λici is a conformal

sum involving circuits ci ∈ C(A) that satisfy supp(ci) �
⋃

j>i supp(cj) and λi ∈ R+ for
each i. Pick any k ∈ supp(c1) \

⋃

j>1 supp(cj). Then gk = λ1c1,k and c1,k = ±1 and
hence λ1 ≥ 1, which implies that c1 ⊑ g. Since g is a Graver basis element, it must be
that g = c1 and hence g is a circuit. So G(A) = C(A). ✷

Theorem 3.16 and Lemma 3.19 imply at once the following theorem from
Section 2.3.4.

Theorem 2.19 (revisited). For every fixed d there is an algorithm that, given totally uni-

modular m×n matrix A, its set of circuits C(A), l, u ∈ Zn
∞, b ∈ Zm, integer d×n matrix

W , and convex f : Zd → R presented by comparison oracle, solves in time polynomial

in 〈A,W,C(A), l, u, b〉 the convex maximization problem:

max
{

f(Wx) : x ∈ Zn, Ax = b, l ≤ x ≤ u
}

.

3.4 Bounds on Graver bases

The Graver basis of an m × n matrix A is typically very large and cannot be written
down, let alone computed, in polynomial time. Moreover, unlike the set of circuits C(A)
whose cardinality satisfies the bound 2

∑m
k=0

(

n
k+1

)

which depends only on m and n, the
cardinality of the Graver basis cannot be bounded in terms of m and n, and generally
depends on the entries of A as well. Yet, as we next show, the binary length of each
element in the Graver basis is polynomially bounded in that of A, implying a simple
finite (though exponential) procedure for computing it. Note, though, that in Chapter 4 we
introduce a very broad fundamental class of integer programs for which we can compute
the Graver basis in polynomial time.

Let again ∆(A) denote the maximum absolute value of the determinant of a square
submatrix of matrix A. The Hadamard bound gives ∆(A)≤(

√
m‖A‖∞)m with ‖A‖∞ =

maxi,j |Ai,j |, and therefore 〈∆(A)〉=O(m(log m+log ‖A‖∞)) is polynomially bounded
in 〈A〉. We have the following bounds on Graver basis elements in analogy to the bounds
of Lemma 3.18 on circuits, see also [95].

Lemma 3.20. For any g ∈ G(A) with A integer matrix of rank r and n columns:

‖g‖∞ ≤ (n − r)∆(A) and ‖g‖1 ≤ (n − r)(r + 1)∆(A).

Proof. Consider any g ∈ G(A). By Lemma 2.17, g =
∑t

i=1 λici is a conformal sum
involving t ≤ n − r circuits ci ∈ C(A) with λi ∈ R+. Now, each λi ≤ 1 else ci ❁ g,

3.4 Bounds on Graver bases 53

contradicting g ∈ G(A). By the triangle inequality for any 1 ≤ p ≤ ∞:

‖g‖p =
∥

∥

∥

t
∑

i=1

λici

∥

∥

∥

p
≤

t
∑

i=1

λi

∥

∥ci

∥

∥

p
≤ (n − r) max

{

‖c‖p : c ∈ C(A)
}

.

The bounds now follow from the analog bounds of Lemma 3.18 for circuits. ✷

Lemma 3.20 implies the following simple finite, though exponential, generic algo-
rithm for computing the Graver basis of any matrix A.

Procedure 3.21 (generic algorithm for computing the Graver basis).

1. Construct the following finite subset of L(A):

L :=
{

x ∈ Zn : ‖x‖∞ ≤ (n − r)∆(A), ‖x‖1 ≤ (n − r)(r + 1)∆(A), Ax = 0
}

.

2. Distill out the Graver basis G(A) as the set of ⊑-minimal elements in L \ {0}.

The Graver basis can also be constructed by Gröbner bases methods [95]. However,
the computational complexity of these methods is exponential as well.

We now proceed to Chapter 4, where we introduce the class of n-fold integer programs

for which we can compute the Graver basis in polynomial time.

Notes

Primal methods for integer programming, which iteratively generate a sequence of better
and better feasible points, have been studied in the literature for decades, see, for instance,
the survey [49] and the references therein. In particular, such methods which make use
of the Graver basis introduced in [41] or smaller subsets of the lattice of an integer ma-
trix, which are equivalent to the Gröbner bases of the binomial ideal associated with the
matrix, are discussed in the book [95] by Sturmfels. However, the polynomial time solv-
ability of integer programming by such methods, in particular in Theorems 3.12, 3.13,
and 3.16, was established only recently in the series of papers [23], [24], [50]. Very recent
extensions in [66] further show that Graver-based methods also enable the polynomial
time solution of integer minimization problems in variable dimension for broad classes of
nonconvex quadratic functions and higher degree multivariate polynomial functions.

4 n-Fold Integer Programming

In this chapter, we continue our investigation of nonlinear integer programming, that is,
nonlinear optimization over sets of integer points given by inequalities:

S :=
{

x ∈ Zn : Ax = b, l ≤ x ≤ u
}

.

It is well known that even linear optimization over such sets is generally NP-hard. Two
fundamental exceptional situations in which linear optimization over such sets can be
solved in polynomial time are the following: first, when the dimension n is fixed [69];
second, when the matrix A is totally unimodular [54], [59].

In this chapter, we describe a new important fundamental situation, discovered and
developed in the recent series of papers [23], [24], [50], [51], where the optimization of
linear and several broad classes of nonlinear objectives can be solved in polynomial time.
We now define this class of the so-termed n-fold integer programs.

An (r, s)× t bimatrix is a matrix A consisting of two blocks A1, A2 with A1 its r × t
submatrix consisting of the first r rows and A2 its s× t submatrix consisting of the last s
rows. The n-fold product of A is the following (r + ns) × nt matrix:

A(n) :=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

A1 A1 · · · A1

A2 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · A2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

The (nonlinear) n-fold integer programming problem is the optimization problem over a
set presented by inequalities defined by an n-fold product, of the form:

S :=
{

x ∈ Znt : A(n)x = b, l ≤ x ≤ u
}

(4.1)

with A an integer (r, s) × t bimatrix, n positive integer, b ∈ Zr+ns, and l, u ∈ Znt
∞.

Some explanatory notes are in order. First, the dimension of an n-fold integer program
is nt and is variable. Second, n-fold products A(n) are highly nontotally unimodular: the
n-fold product of the simple (0, 1) × 1 bimatrix with A1 empty and A2 := 2 satisfies
A(n) = 2In and has exponential determinant 2n. So this is indeed a class of programs
which cannot be solved by methods of fixed dimension or totally unimodular matrices.
Third, this class of programs turns out to be very natural and extremely important, with
numerous applications, including to integer optimization over multidimensional tables,
discussed in this and the next chapter. In fact, it is universal: the results of [27], described
in Chapter 5, imply that every integer program is an n-fold integer program over some
simple bimatrix A.

In Section 4.1, we study Graver bases of n-fold products of integer bimatrices and
show that they can be computed in polynomial time. In Section 4.2, incorporating the re-
sults of Chapters 2 and 3, we show that linear optimization, (weighted) separable convex

4.1 Graver bases of n-fold products 55

minimization, distance minimization, and convex maximization over n-fold integer pro-
grams can be done in polynomial time. In Section 4.3, we discuss some of the numerous
applications of this powerful theory including to (non)linear multicommodity transporta-
tion and transshipment problems. Discussion of further applications to multiway tables
and proof of the universality of n-fold integer programming are postponed to Chapter 5.
In Section 4.4, we discuss stochastic integer programming, which turns out to be a cer-
tain dual of n-fold integer programming, and use our theory to solve, in Theorem 4.19,
stochastic integer programming in polynomial time as well. Finally, in Section 4.5, we
discuss a heuristical scheme for approximative optimization over n-fold systems using
approximations of the relevant Graver bases.

The following table enables quick navigation among some of the theorems in this
chapter providing polynomial time optimization over sets of the form (4.1). Other results
include the applications in Section 4.3 and stochastic programming in Section 4.4.

min wx min f(x) max f(Wx) min f(Wx) + g(x)

(Linear objective) f separable convex f convex f ,g separable convex

Theorem 4.7 Theorem 4.8 Theorem 4.10 Theorem 4.12

4.1 Graver bases of n-fold products

In this section, we study properties of Graver bases of n-fold products. The main result
here is Theorem 4.4: the Graver basis of A(n) is polynomial time computable.

Let A be a fixed integer (r, s) × t bimatrix with blocks A1, A2. For each positive
integer n, we index vectors in Znt as x = (x1, . . . , xn) with each brick xk in Zt. The type

of vector x is the number type(x) := |{k : xk �= 0}| of its nonzero bricks.
The following definition from [89] plays an important role in the sequel.

Definition 4.1. The Graver complexity of an integer bimatrix A is defined as follows:

g(A) := inf
{

g ∈ Z+ : type(x) ≤ g for all x ∈ G(A(n)) and all n
}

.

We proceed to establish a result of [89] and its extension in [56] which show that, in
fact, the Graver complexity of every integer bimatrix A is finite.

Consider n-fold products A(n) of A. By definition of the n-fold product, A(n)x = 0 if
and only if A1

∑n
k=1 xk = 0 and A2x

k = 0 for all k. In particular, a necessary condition
for x to lie in L(A(n)), and in particular in G(A(n)), is that xk ∈ L(A2) for all k. Call a
vector x = (x1, . . . , xn) full if, in fact, xk ∈ L∗(A2) for all k, in which case type(x) = n,
and pure if, moreover, xk ∈ G(A2) for all k. Full vectors, and in particular pure vectors,
are natural candidates for lying in the Graver basis G(A(n)) of A(n) and indeed play an
important role in its construction.

Consider any full vector y = (y1, . . . , ym). By definition, each brick of y satisfies

yi ∈ L∗(A2) and is therefore a conformal sum yi =
∑ki

j=1 xi,j of some elements xi,j ∈
G(A2) for all i, j. Let n := k1 + · · · + km ≥ m and let x be the pure vector:

x =
(

x1, . . . , xn
)

:=
(

x1,1, . . . , x1,k1 , . . . , xm,1, . . . , xm,km
)

.

56 4 n-Fold Integer Programming

We call the pure vector x an expansion of the full vector y, and the full vector y a com-

pression of the pure vector x. Note that A1

∑

yi = A1

∑

xi,j and therefore y ∈ L(A(m))
if and only if x ∈ L(A(n)). Note also that each full y may have many different expansions
and each pure x may have many different compressions.

Lemma 4.2. Consider any expansion x = (x1, . . . , xn) of any full y = (y1, . . . , ym). If

y is in the Graver basis G(A(m)) then x is in the Graver basis G(A(n)).

Proof. Let x = (x1,1, . . . , xm,km) = (x1, . . . , xn) be any expansion of any full y =

(y1, . . . , ym) with yi =
∑ki

j=1 xi,j for each i. Suppose indirectly that y ∈ G(A(m)) but

x /∈ G(A(n)). Since y ∈ L∗(A(m)), we have x ∈ L∗(A(n)). Since x /∈ G(A(n)), there
is a g = (g1,1, . . . , gm,km) in G(A(n)) satisfying g ❁ x. Let h = (h1, . . . , hm) be the

compression of g defined by hi :=
∑ki

j=1 gi,j for each i. Since g ∈ L∗(A(n)), we have

that h ∈ L∗(A(m)). But h ❁ y, which contradicts y ∈ G(A(m)). ✷

Lemma 4.3. The Graver complexity g(A) of every integer bimatrix A is finite.

Proof. We need to bound the type of any element in the Graver basis of the l-fold product
of A for any l. Suppose that there is an element z of type m in some G(A(l)). Then its
restriction y = (y1, . . . , ym) to its m nonzero bricks is a full vector and is in the Graver
basis G(A(m)). Let x = (x1, . . . , xn) be any expansion of y. Then type(z) = m ≤ n =
type(x), and by Lemma 4.2, the pure vector x is in G(A(n)).

Therefore, it suffices to bound the type of any pure element in the Graver basis of
the n-fold product of A for any n. Suppose that x = (x1, . . . , xn) is a pure element in
G(A(n)) for some n. Let G(A2) = {g1, . . . , gp} be the Graver basis of A2 and let G2 be
the t × p matrix whose columns are the gi. Let v ∈ Zp

+ be the vector with vi := |{k :
xk = gi}| counting the number of bricks of x which are equal to gi for each i. Then
∑p

i=1 vi = type(x) = n. Now, A1G2v = A1

∑n
k=1 xk = 0, and hence v ∈ L∗(A1G2).

We claim that, moreover, v is in G(A1G2). Suppose indirectly that it is not. Then there is
a v̂ ∈ G(A1G2) with v̂ ❁ v, and it is easy to obtain a nonzero x̂ ❁ x from x by zeroing
out some bricks so that v̂i = |{k : x̂k = gi}| for all i. Then A1

∑n
k=1 x̂k = A1G2v̂ = 0

and hence x̂ ∈ L∗(A(n)), contradicting x ∈ G(A(n)).
So the type of any pure vector, and hence the Graver complexity of A, is at most the

largest value
∑p

i=1 vi of any nonnegative vector v ∈ G(A1G2). ✷

We proceed to establish the following result of [24] asserting that Graver bases of
n-fold products can be computed in polynomial time. An n-lifting of a vector y =
(y1, . . . , ym) consisting of m bricks is any vector z = (z1, . . . , zn) consisting of n bricks
such that for some 1 ≤ k1 < · · · < km ≤ n, we have zki = yi for i = 1, . . . , m, and all
other bricks of z are zero, in particular, n ≥ m and type(z) = type(y).

Theorem 4.4. For every fixed integer bimatrix A, there is an algorithm that, given positive

integer n, computes the Graver basis G(A(n)) of the n-fold product of A, in time which is

polynomial in n. In particular, the cardinality |G(A(n))| and the binary length 〈G(A(n))〉
of the Graver basis of A(n) are polynomial in n.

4.1 Graver bases of n-fold products 57

Proof. Let g := g(A) be the Graver complexity of A. Since A is fixed, so is g. Therefore,
for every n ≤ g, the Graver basis G(A(n)), and in particular, the Graver basis G(A(g)) of
the g-fold product of A, can be computed in constant time.

Now, consider any n > g. We claim that G(A(n)) satisfies the following:

G(A(n)) =
{

z : z is an n-lifting of some y ∈ G
(

A(g)
)}

.

Consider any n-lifting z of any y ∈ G(A(g)). Suppose indirectly that z /∈ G(A(n)). Then
there is a z′ ∈ G(A(n)) with z′ ❁ z. But then z′ is the n-lifting of some y′ ∈ L∗(A(g))
with y′

❁ y, contradicting y ∈ G(A(g)). So z ∈ G(A(n)).

Conversely, consider any z ∈ G(A(n)). Then type(z) ≤ g and hence z is the n-
lifting of some y ∈ L∗(A(g)). Suppose indirectly that y /∈ G(A(g)). Then there exists
y′ ∈ G(A(g)) with y′

❁ y. But then a suitable n-lifting z′ of y′ satisfies z′ ∈ L∗(A(n))
with z′ ❁ z, contradicting z ∈ G(A(n)). So y ∈ G(A(g)).

Now, the number of n-liftings of each y ∈ G(A(g)) is at most
(

n
g

)

, and hence

∣

∣G(A(n))
∣

∣ ≤
(

n

g

)

∣

∣G
(

A(g)
)∣

∣ = O
(

ng
)

.

So the set of all n-liftings of vectors in G(A(g)) and hence the Graver basis G(A(n)) of
the n-fold product can be computed in time polynomial in n as claimed. ✷

Here, is an example of computing G(A(n)) by the algorithm of Theorem 4.4.

Example 4.5. Consider the (2, 1) × 2 bimatrix A with A1 := I2 the identity matrix and
A2 := (1 1). Then G(A2) = ±{(1,−1)} and g := g(A) = 2. The g-fold product of A
and its Graver basis, which consists of two antipodal pure vectors only, are as follows:

A(g) = A(2) =

⎛

⎜

⎜

⎝

1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1

⎞

⎟

⎟

⎠

, G
(

A(g)
)

= G
(

A(2)
)

= ±
{

(1,−1,−1, 1)
}

.

We demonstrate how to compute the Graver basis of A(4), which is the 6 × 8 matrix:

A(4) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Applying the algorithm of Theorem 4.4, the Graver basis of A(4) is obtained by taking the
6 =

(

4
2

)

many 4 liftings of each of the two elements of G(A(2)) and consists of 12 vectors

58 4 n-Fold Integer Programming

given by the rows of the following matrix and their antipodals:

G
(

A(4)
)

= ±

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 −1 −1 1 0 0 0 0
1 −1 0 0 −1 1 0 0
1 −1 0 0 0 0 −1 1
0 0 1 −1 −1 1 0 0
0 0 1 −1 0 0 −1 1
0 0 0 0 1 −1 −1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The algorithm of Theorem 4.4 relies on the mere existence of a finite Graver com-
plexity g(A) for every bimatrix A, since g(A) and the constant Graver bases G(A(k)) for
all k ≤ g(A) can be built into the algorithm. Nonetheless, the Graver complexity can
be computed by a simple finite procedure as we now show. For an integer r × p matrix
B, let H(B) := G(B) ∩ Zp

+ denote its so-called Hilbert basis, which is often easier to
compute than the entire Graver basis (say by a suitable restriction of the simple generic
Algorithm 3.21 to the nonnegative orthant).

Procedure 4.6 (computing the Graver complexity of a bimatrix).

1. Compute the Graver basis G(A2) (say using Algorithm 3.21).

2. If G(A2) = ∅ then output g(A) := 0. Otherwise form the matrix G2 having as
columns the elements of G(A2), compute H(A1G2) or G(A1G2), and output the
following:

g(A) := max
{

1v : v ∈ H
(

A1G2

)}

= max
{

‖v‖1 : v ∈ G
(

A1G2

)}

.

To justify this procedure, first note that if G(A2) is empty, which holds if and only
if A2 has linearly independent columns, then G(A(n)) is also empty for all n and hence
indeed g(A) = 0. Next, note that if G(A2) = {g1, . . . , gp} is nonempty then the proof
of Lemma 4.3 shows that if x = (x1, . . . , xn) is a pure vector in G(A(n)) then the vector
v ∈ Zp

+ with vi = |{k : xk = gi}| is an element of H(A1G2) = G(A1G2) ∩ Zp
+ with

1v =
∑p

i=1 vi = n = type(x); but it is also easy to see that, conversely, each vector
v ∈ H(A1G2) with 1v = n gives rise to a pure element x ∈ G(A(n)) and therefore
indeed g(A) = max{1v : v ∈ H(A1G2)}. Finally, note that a vector g is a column
of G2 if and only if −g is, and so the same property holds for A1G2, implying that
g(A) = max{‖v‖1 : v ∈ G(A1G2)} as well.

4.2 Efficient n-fold integer programming

Combining Theorem 4.4 with the results of Chapter 3, we now obtain five theorems from
[23], [24], [50], [51] on (non)linear n-fold integer programming polynomial time.

As in Chapter 3, when functions f, g are present, f̂ , ĝ denote the maximum values of
|f(Wx)|, |g(x)| over the feasible set and need not be part of the input.

4.2 Efficient n-fold integer programming 59

Theorem 4.7. For each fixed integer (r, s) × t bimatrix A, there is an algorithm that,

given positive integer n, l, u ∈ Znt
∞, b ∈ Zr+ns, and w ∈ Znt, solves in time which is

polynomial in n and 〈l, u, b, w〉 the following linear n-fold integer program:

min
{

wx : x ∈ Znt, A(n)x = b, l ≤ x ≤ u
}

.

Proof. First compute the Graver basis G(A(n)) by the algorithm of Theorem 4.4. Next,
apply the algorithm of Theorem 3.13 and solve the given program. ✷

Theorem 4.8. For each fixed integer (r, s) × t bimatrix A, there is an algorithm that,

given n, l, u ∈ Znt
∞, b ∈ Zr+ns, and separable convex f : Znt → Z presented by a

comparison oracle, solves in time polynomial in n and 〈l, u, b, f̂〉 the following problem:

min
{

f(x) : x ∈ Znt, A(n)x = b, l ≤ x ≤ u
}

.

Proof. First compute the Graver basis G(A(n)) by the algorithm of Theorem 4.4. Next,
apply the algorithm of Theorem 3.12 and solve the given program. ✷

Theorem 4.9. For each fixed integer (r, s) × t bimatrix A, there is an algorithm that,

given positive integers n and p, l, u ∈ Znt
∞, b ∈ Zr+ns, and x̂ ∈ Znt, solves in time which

is polynomial in n, p, and 〈l, u, b, x̂〉 the closest-point problem:

min
{

‖x − x̂‖p : x ∈ Znt, A(n)x = b, l ≤ x ≤ u
}

. (4.2)

For p = ∞, the problem (4.2) can be solved in time polynomial in n and 〈l, u, b, x̂〉.

Proof. First compute the Graver basis G(A(n)) by the algorithm of Theorem 4.4. Next,
apply the algorithm of Theorem 3.14 and solve the given problem. ✷

In particular, for each p we can solve the minimum norm n-fold integer program:

min
{

‖x‖p : x ∈ Znt, A(n)x = b, l ≤ x ≤ u
}

,

which for p = ∞ is equivalent to the min-max n-fold integer program:

min
{

max
{∣

∣xi

∣

∣ : i = 1, . . . , nt
}

: x ∈ Znt, A(n)x = b, l ≤ x ≤ u
}

.

Theorem 4.10. For each fixed d and (r, s) × t integer bimatrix A, there is an algorithm

that, given n, bounds l, u ∈ Znt
∞, integer d × nt matrix W , b ∈ Zr+ns, and convex

function f : Zd → R presented by a comparison oracle, solves in time polynomial in n
and 〈W, l, u, b〉 the convex n-fold integer maximization problem:

max
{

f(Wx) : x ∈ Znt, A(n)x = b, l ≤ x ≤ u
}

.

Proof. First compute the Graver basis G(A(n)) by the algorithm of Theorem 4.4. Next,
apply the algorithm of Theorem 3.16 and solve the given program. ✷

60 4 n-Fold Integer Programming

We proceed to establish a broad extension of Theorem 3.12, where the objective func-
tion is a sum f(Wx)+g(x) involving two separable convex functions f, g, which includes
a composite term f(Wx). Moreover, the number d of rows of W is allowed to be variable.
We also allow to incorporate inequalities on Wx in addition to the lower and upper bound
inequalities on x. We need the following lemma.

Lemma 4.11. For every fixed integer (r, s) × t bimatrix A and (p, q) × t bimatrix W ,

there is an algorithm that, given n, computes in time polynomial in n the Graver basis

G(B) of the following (r + ns + p + nq) × (nt + p + nq) matrix:

B :=

(

A(n) 0
W (n) I

)

.

Proof. Let D be the (r + p, s + q) × (t + p + q) bimatrix with blocks defined by the
following:

D1 :=

(

A1 0 0
W1 Ip 0

)

, D2 :=

(

A2 0 0
W2 0 Iq

)

.

Apply the algorithm of Theorem 4.4 and compute in polynomial time the Graver basis
G(D(n)) of the n-fold product of D, which is the following matrix:

D(n) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

A1 0 0 A1 0 0 · · · A1 0 0
W1 Ip 0 W1 Ip 0 · · · W1 Ip 0
A2 0 0 0 0 0 · · · 0 0 0
W2 0 Iq 0 0 0 · · · 0 0 0
0 0 0 A2 0 0 · · · 0 0 0
0 0 0 W2 0 Iq · · · 0 0 0
...

...
...

...
...

...
. . .

...
...

...
0 0 0 0 0 0 · · · A2 0 0
0 0 0 0 0 0 · · · W2 0 Iq

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Suitable row and column permutations applied to D(n) give the following matrix:

C :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

A1 A1 · · · A1 0 0 · · · 0 0 0 · · · 0
A2 0 · · · 0 0 0 · · · 0 0 0 · · · 0
0 A2 · · · 0 0 0 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
0 0 · · · A2 0 0 · · · 0 0 0 · · · 0

W1 W1 · · · W1 Ip Ip · · · Ip 0 0 · · · 0
W2 0 · · · 0 0 0 · · · 0 Iq 0 · · · 0
0 W2 · · · 0 0 0 · · · 0 0 Iq · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
0 0 · · · W2 0 0 · · · 0 0 0 · · · Iq

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

4.2 Efficient n-fold integer programming 61

Obtain the Graver basis G(C) in polynomial time from G(D(n)) by permuting the entries
of each element of the latter by the permutation of the columns of G(D(n)) that is used to
get C (row permutations do not affect the Graver basis).

Now, note that the matrix B can be obtained from C by dropping all but the first p
columns in the second block. Consider any element in the Graver basis of C, indexed,
according to the block structure, in the following way:

(

x1, x2, . . . , xn, y1, y2, . . . , yn, z1, z2, . . . , zn
)

.

Clearly, if yk = 0 for k = 2, . . . , n then the following restriction of this element:

(

x1, x2, . . . , xn, y1, z1, z2, . . . , zn
)

is in the Graver basis of B. On the other hand, if

(

x1, x2, . . . , xn, y1, z1, z2, . . . , zn
)

is any element in G(B) then its extension:

(

x1, x2, . . . , xn, y1, 0, . . . , 0, z1, z2, . . . , zn
)

is in G(C). So the Graver basis of B can be obtained in polynomial time by the following:

G(B) :=
{(

x1, . . . , xn, y1, z1, . . . , zn
)

:
(

x1, . . . , xn, y1, 0, . . . , 0, z1, . . . , zn
)

∈G(C)
}

.

Therefore, the Graver basis of B can indeed be computed in polynomial time. ✷

We can now prove our next theorem. As usual, it suffices to be given a comparison
oracle for the objective function. However, as with Theorem 3.17, it is more natural here to
have each of the functions f, g involved given by its own presentation, and so we assume
that each of f, g is given by an evaluation oracle.

Theorem 4.12. For every fixed integer (r, s)×t bimatrix A and integer (p, q)×t bimatrix

W , there is an algorithm that, given n, l, u ∈ Znt
∞, l̂, û ∈ Zp+nq

∞ , b ∈ Zr+ns, and sepa-

rable convex functions f : Zp+nq → Z, g : Znt → Z presented by evaluation oracles,

solves in time which is polynomial in n and 〈l, u, l̂, û, b, f̂ , ĝ〉 the following problem:

min
{

f
(

W (n)x
)

+ g(x) : x ∈ Znt, A(n)x = b, l̂ ≤ W (n)x ≤ û, l ≤ x ≤ u
}

.

Proof. First, use the algorithm of Lemma 4.11 to compute the Graver basis of the follow-
ing:

B :=

(

A(n) 0
W (n) I

)

.

Next, apply the algorithm of Theorem 3.17 and solve the given problem. ✷

62 4 n-Fold Integer Programming

4.3 Some applications

The theory of n-fold integer programming has numerous applications in a variety of areas.
Here, we discuss applications to (non)linear multicommodity flow problems. In Chapter 5,
we discuss applications to multiway tables and privacy in databases.

Recall from Section 1.2.2 the following very general nonlinear multicommodity flow
problem (also see Figure 1.2). There is a digraph G with s vertices and t edges. There are
l commodities. Each commodity has a demand vector dk ∈ Zs with dk

v the demand for
commodity k at vertex v (interpreted as supply when positive and consumption when neg-
ative). Each edge e has a capacity ue (upper bound on the combined flow of all commodi-
ties on it). A multicommodity transshipment is a vector x = (x1, . . . , xl) with xk ∈ Zt

+

for all k and xk
e the flow of commodity k on edge e, satisfying the capacity constraint

∑l
k=1 xk

e ≤ ue for each edge e and demand constraint
∑

e∈δ+(v) xk
e −

∑

e∈δ−(v) xk
e = dk

v

for each vertex v and commodity k with δ+(v), δ−(v) the sets of edges entering and
leaving vertex v. There are cost functions fe, g

k
e : Z → Z for each edge and each edge-

commodity pair. The cost of transshipment x on edge e is fe(
∑l

k=1 xk
e) +

∑l
k=1 gk

e (xk
e),

where the first term is the value of fe on the combined flow of all commodities on e and
the second term the sum of costs for each edge-commodity pair. The cost can in partic-

ular be convex such as αe|
∑l

k=1 xk
e |βe +

∑l
k=1 γk

e |xk
e |δ

k
e for some nonnegative integers

αe, βe, γ
k
e , δk

e , accounting for increase in cost due to channel congestion when subject
to heavy traffic or communication load [88]. The linear problem is the special case with
βe = δk

e =1. The total cost is the sum of costs over all edges.

The theory of n-fold integer programming provides the first polynomial time algo-
rithms for the problem in two broad situations discussed in Sections 4.3.1 and 4.3.2.

4.3.1 Nonlinear many-commodity transshipment

Here, we consider the problem with variable number l of commodities over a fixed (but
arbitrary) digraph – the so-termed many-commodity transshipment problem. This problem
may seem at first very restricted; however, even deciding if a feasible many-transshipment
exists (regardless of its cost) is NP-complete already over the complete bipartite digraphs
K3,n (oriented from one side to the other) with only 3 vertices on one side [51]; moreover,
even over the single tiny digraph K3,3, the only solution available to date is the one given
below via n-fold integer programming.

As usual, f̂ , ĝ denote the maximum values of |f |, |g| over the feasible set and need not
be part of the input. It is usually easy to determine an upper bound on these values from
the problem data. For instance, in the special case of linear cost functions f, g, bounds
which are polynomial in the binary length of the costs αe, γk

e , capacities u, and demands
dk

v , follow easily from Cramer’s rule.

We now obtain a result of [51] on (non)linear many-commodity transshipment.

Corollary 4.13. For every fixed digraph G, there is an algorithm that, given l commodi-

ties, demand dk
v ∈ Z for each commodity k and vertex v, edge capacities ue ∈ Z+, and

convex costs fe, g
k
e : Z → Z presented by evaluation oracles, solves in time polynomial

4.3 Some applications 63

in l and 〈dk
v , ue, f̂ , ĝ〉 the many-commodity transshipment problem:

min
∑

e

(

fe

(

l
∑

k=1

xk
e

)

+
l

∑

k=1

gk
e

(

xk
e

)

)

s.t. xk
e ∈ Z,

∑

e∈δ+(v)

xk
e −

∑

e∈δ−(v)

xk
e = dk

v ,

l
∑

k=1

xk
e ≤ ue, xk

e ≥ 0.

Proof. Assume that G has s vertices and t edges and let D be its s × t vertex-edge
incidence matrix. Let f : Zt → Z and g : Zlt → Z be the separable convex functions

defined by f(y) :=
∑t

e=1 fe(ye) with ye :=
∑l

k=1 xk
e and g(x) :=

∑t
e=1

∑l
k=1 gk

e (xk
e).

Let x = (x1, . . . , xl) be the vector of variables with xk ∈ Zt the flow of commodity k for
each k. Then the problem can be rewritten as follows:

min
{

f
(
∑l

k=1 xk
)

+ g(x) : x ∈ Zlt, Dxk = dk,
∑l

k=1 xk ≤ u, x ≥ 0
}

.

We can now proceed in two ways.
First way: extend the vector of variables to x = (x0, x1, . . . , xl) with x0 ∈ Zt repre-

senting an additional slack commodity. Then the capacity constraints become
∑l

k=0 xk =
u and the cost function becomes f(u − x0) + g(x1, . . . , xl) which is also separable con-
vex. Now, let A be the (t, s)× t bimatrix with first block A1 := It the t× t identity matrix

and second block A2 := D. Let d0 := Du − ∑l
k=1 dk and let b := (u, d0, d1, . . . , dl).

Then the problem becomes the (l + 1)-fold integer program:

min
{

f
(

u − x0
)

+ g
(

x1, . . . , xl
)

: x ∈ Z(l+1)t, A(l+1)x = b, x ≥ 0
}

. (4.3)

By Theorem 4.8, this program can be solved in polynomial time as claimed.
Second way: let A be the (0, s) × t bimatrix with first block A1 empty and second

block A2 := D. Let W be the (t, 0) × t bimatrix with first block W1 := It the t × t
identity matrix and second block W2 empty. Let b := (d1, . . . , dl). Then the problem is
precisely the following l-fold integer program:

min
{

f
(

W (l)x
)

+ g(x) : x ∈ Zlt, A(l)x = b, W (l)x ≤ u, x ≥ 0
}

.

By Theorem 4.12, this program can be solved in polynomial time as claimed. ✷

We also point out the following immediate consequence of Corollary 4.13.

Corollary 4.14. For fixed s, the (convex) many-commodity transshipment problem with

variable l commodities on any s-vertex digraph is polynomial time solvable.

4.3.2 Nonlinear multicommodity transportation

Here, we consider the problem with fixed (but arbitrary) number l of commodities over
any bipartite subdigraph of Km,n (oriented from one side to the other) – the so-called
multicommodity transportation problem – with fixed number m of suppliers and variable

64 4 n-Fold Integer Programming

number n of consumers. This is very natural in operations research applications, where
few facilities serve many customers. The problem is difficult even for l = 2 commodities:
deciding if a feasible 2-commodity transportation exists (regardless of its cost) is NP-
complete already over Km,n [27]; moreover, even over the bipartite digraphs K3,n with
only m = 3 suppliers, the only available solution to date is the one given below via n-fold
integer programming.

This problem seems harder than the one discussed in the previous subsection (with
no seeming analog for non-bipartite digraphs), and the formulation below is more deli-
cate. Therefore, it is convenient to change the labeling of the data a little bit as follows
(see Figure 4.1). We denote edges by pairs (i, j), where 1 ≤ i ≤ m is a supplier and

Find integer l commodity transportation x of minimum f,g cost

from m suppliers to n consumers in the bipartite digraph Km,n

Suppliers

Km,n

Consumers

s1

sm

c1

cn

Also given are supply and consumption vectors si and c j in Zl,

edge capacities u , and volume vk per unit commodity k

For suitable (ml,l) x ml bimatrix A and (0,m) x ml bimatrix W,

the problem is expressed as the n-fold integer program:

min { f(W(n)x)+g(x) : x in Znml, A(n)x =(si, cj), W(n)x u, x 0 }.

i,j

Figure 4.1: Multicommodity transportation problem

1 ≤ j ≤ n is a consumer. The demand vectors are replaced by (nonnegative) supply and
consumption vectors: each supplier i has a supply vector si ∈ Zl

+ with si
k its supply in

commodity k, and each consumer j has a consumption vector cj ∈ Zl
+ with cj

k its con-
sumption in commodity k. Each commodity k has its own volume vk ∈ Z+ per unit flow.
A multicommodity transportation is indexed as follows, with xj

i,k the flow of commodity
k from supplier i to consumer j:

x =
(

x1, . . . , xn
)

, xj =
(

xj
1,1, . . . , x

j
1,l, . . . , x

j
m,1, . . . , x

j
m,l

)

.

The capacity constraint on edge (i, j) is
∑l

k=1 vkxj
i,k ≤ ui,j and the cost is

fi,j(
∑l

k=1 vkxj
i,k) +

∑l
k=1 gj

i,k(xj
i,k) with fi,j , g

j
i,k : Z → Z convex.

4.4 Stochastic integer programming 65

We assume below that the underlying digraph is Km,n (with edges oriented from
suppliers to consumers), since the problem over any subdigraph G of Km,n reduces to
that over Km,n by forcing 0 capacity on all edges not present in G.

We now obtain a result of [51] on (non)linear multicommodity transportation.

Corollary 4.15. For fixed l commodities, m suppliers, and volumes vk, there is an algo-

rithm that, given n customers, supplies and demands si, cj ∈ Zl
+, ui,j ∈ Z+, and convex

costs fi,j , g
j
i,k : Z → Z presented by evaluation oracles, solves in time polynomial in n

and 〈si, cj , u, f̂ , ĝ〉 the multicommodity transportation problem:

min
∑

i,j

(

fi,j

(

∑

k

vkxj
i,k

)

+

l
∑

k=1

gj
i,k

(

xj
i,k

)

)

s.t. xj
i,k ∈ Z,

∑

j

xj
i,k = si

k,
∑

i

xj
i,k = cj

k,

l
∑

k=1

vkxj
i,k ≤ ui,j , xj

i,k ≥ 0.

Proof. Construct bimatrices A and W as follows. Let D be the (l, 0) × l bimatrix with
first block D1 := Il and second block D2 empty. Let V be the (0, 1)× l bimatrix with first
block V1 empty and second block V2 := (v1, . . . , vl). Let A be the (ml, l) × ml bimatrix
with first block A1 := Iml and second block A2 := D(m). Let W be the (0,m) × ml
bimatrix with first block W1 empty and second block W2 := V (m). Let b be the (ml+nl)-
vector b := (s1, . . . , sm, c1, . . . , cn).

Let f : Znm → Z and g : Znml → Z be the separable convex functions defined by

f(y) :=
∑

i,j fi,j(yi,j) with yi,j :=
∑l

k=1 vkxj
i,k and g(x) :=

∑

i,j

∑l
k=1 gj

i,k(xj
i,k).

Now, note that A(n)x is an (ml + nl)-vector, whose first ml entries are the flows
from each supplier of each commodity to all consumers, and whose last nl entries are
the flows to each consumer of each commodity from all suppliers. So the supply and
consumption equations are encoded by A(n)x = b. Next, note that the nm-vector y =
(y1,1, . . . , ym,1, . . . , y1,n, . . . , ym,n) satisfies y = W (n)x. So the capacity constraints
become W (n)x ≤ u and the cost function becomes f(W (n)x) + g(x). Therefore, the
problem is precisely the following n-fold integer program:

min
{

f
(

W (n)x
)

+ g(x) : x ∈ Znml, A(n)x = b, W (n)x ≤ u, x ≥ 0
}

.

By Theorem 4.12, this program can be solved in polynomial time as claimed. ✷

4.4 Stochastic integer programming

Stochastic integer programming arises in decision making under uncertainty and is an
important and extensively studied area with a variety of applications, see, for instance,
[70] and the references therein. We now show that suitable adjustments of the methods of
n-fold integer programming enable to solve, for the first time, stochastic integer program-
ming problems in polynomial time as well.

In a stochastic integer program, part of the data is random, and decisions are made in
two stages – before and after the realizations of the random data occur. The data for the

66 4 n-Fold Integer Programming

program is as follows. There are r first-stage decision variables arranged in a vector y0 =
(y0

1 , . . . , y0
r) and s second-stage decision variables arranged in a vector y = (y1, . . . , ys).

There are deterministic lower and upper bounds l0, u0 ∈ Zr
∞ and cost w0 ∈ Zr for the

first-stage decision vector, and random lower and upper bounds l,u ∈ Zs
∞ and cost w ∈

Zs for the second-stage decision vector. The first-stage and second-stage decision vectors
are tied together by a common system of linear equations defined by fixed r × t integer
matrix A1, fixed s × t integer matrix A2, and random right-hand side vector b ∈ Zt. The
objective is to minimize the sum of direct costs of first-stage decisions and expected costs
of second-stage decisions. So the stochastic integer programming problem is as follows:

min
{

w0y0 + E
[

c
(

y0
)]

: y0 ∈ Zr, l0 ≤ y0 ≤ u0
}

, (4.4)

where

c
(

y0
)

:= min
{

wy : y ∈ Zs, y0A1 + yA2 = b, l ≤ y ≤ u
}

.

In this section, vectors are interpreted as either rows or columns, as is clear from the
context; in particular, in the equation system above, y0, y, and b are rows.

It is a common practice to assume that the sample space is finite (possibly the result
of discretization of an originally infinite space). So we assume that there are n possible
sample points, the so-termed scenarios, where, for k = 1, . . . , n, scenario k occurs with
probability pk, with corresponding realizations lk, uk, wk, bk of the random part of the
data. Introducing, for each k = 1, . . . , n, a copy yk := (yk

1 , . . . , yk
s) of the second-stage

decision vector for scenario k, the stochastic integer program (4.4) can be replaced by its
following equivalent deterministic counterpart:

min
{

w0y0 +
∑n

k=1 pkwkyk : yk
i ∈ Z, y0A1 + ykA2 = bk, lk ≤ yk ≤ uk

}

. (4.5)

As is common, we refer to program (4.5) simply also as a stochastic integer program.
Note that the number n of scenarios, which is possibly the result of discretization of an
infinite space, is typically very large and hence is assumed to be variable.

Now, arrange the variables in an (r + ns)-vector y := (y0, y1, . . . , yn) consisting of
n + 1 bricks, and likewise, the costs as w := (w0, p1w

1, . . . , pnwn) ∈ Zr+ns, the lower
and upper bounds as l := (l0, l1, . . . , ln), u := (u0, u1, . . . , un) ∈ Zr+ns

∞ , and the right-
hand sides as b := (b1, . . . , bn) ∈ Znt. Let A be the (r, s) × t bimatrix with blocks A1

and A2. Then the program (4.5) can be rewritten in the form:

min
{

wy : y ∈ Zr+ns, yA(n) = b, l ≤ y ≤ u
}

. (4.6)

The system of equations in this program involves the n-fold product A(n) of A. However,
(4.6) is not quite an n-fold program but rather a certain dual of it, since the row vector
y of variables multiplies A(n) from the left. Therefore, in order to apply Graver bases
methods to program (4.6), the relevant Graver basis is the Graver basis G((A(n))T) of the
transpose of A(n) rather than of A(n) itself, that is, the set of ⊑-minimal elements among

4.4 Stochastic integer programming 67

the nonzero integer solutions of the system:

(

y0 y1 y2 · · · yn
)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

A1 A1 · · · A1

A2 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · A2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=
(

0 0 · · · 0
)

.

While G(A(n)) can be computed in time polynomial in n by Theorem 4.4, the Graver
basis G((A(n))T) of the transpose cannot be computed in polynomial time, since, as the
next example shows, even its cardinality can be exponential in n.

Example 4.16 (exponential Graver basis of stochastic integer program). Let A be the
(1, 2) × 1 matrix with first block A1 = 1 and second block A2 := (1 1)T . Then
A(n) is totally unimodular and G(A(n)) = C(A(n)) = ∅ is empty. But the Graver ba-
sis G((A(n))T) = C((A(n))T) of its totally unimodular transpose:

(A(n))T =

⎛

⎜

⎜

⎜

⎝

1 1 1 0 0 · · · 0 0
1 0 0 1 1 · · · 0 0
...

...
...

...
...

. . .
...

...
1 0 0 0 0 · · · 1 1

⎞

⎟

⎟

⎟

⎠

consists of 2n+1 + 2n elements, 2n with y0 = 0 and 2n+1 with y0 = ±1 of the form:

±
(

1, y1, . . . , yn
)

, yk ∈
{

(−1, 0), (0,−1)
}

, k = 1, . . . , n.

We proceed to derive the recent result of [50] building on [52], showing that, nonethe-
less, stochastic integer programming can be solved in polynomial time. We use the fol-
lowing weaker but useful property of Graver bases of n-fold products which does hold
for Graver bases of transposes of n-fold products as well. We give below only the proof
for n-fold products. The proof for their transposes can be found in [52] which builds on
an extension in [74] of the Gordan lemma [40].

Lemma 4.17. For every fixed bimatrix A, there are finite sets G and H such that:

1. for all n and g = (g1, . . . , gn) ∈ G(A(n)), we have gk ∈ G for all k;

2. for all n and h = (h0, h1, . . . , hn) ∈ G((A(n))T), we have hk ∈ H for all k.

Proof. We provide the proof of part 1 only. The proof of part 2 can be found in [52].
Let g(A) be the Graver complexity of A. By the results of Section 4.1 (see proof of
Theorem 4.4), any element g = (g1, . . . , gn) ∈ G(A(n)) is the n-lifting of some z =
(z1, . . . , zg(A)) ∈ G(A(g(A))). So each brick of g is equal to some brick of z. Therefore,
G can be taken to be the set of all bricks appearing in some element of the constant basis
G(A(g(A))). So G depends only on A and is independent of n. ✷

We need one more lemma, which replaces Lemmas 3.5 and 3.9 and provides the
engine needed for an iterative greedy augmentation process analog to that of Lemma 3.10,
without requiring the entire Graver basis to be given explicitly.

68 4 n-Fold Integer Programming

Lemma 4.18. For every fixed integer (r, s) × t bimatrix A, there is an algorithm that,

given n and vectors l, u ∈ Zr+ns
∞ and w, y ∈ Zr+ns with l ≤ y ≤ u, and letting

S :=
{

z ∈ Zr+ns : zA(n) = b, l ≤ z ≤ u
}

, b := yA(n),

either asserts that S is infinite or concludes that it is finite and finds ŷ ∈ S with

wŷ ≤ min
{

w(y + λh) : λ ∈ Z+, h ∈ G
(

(A(n))T
)

, l ≤ y + λh ≤ u
}

, (4.7)

in time which is polynomial in n and 〈l, u, w, y〉.

Proof. Let H be the fixed set of bricks for A guaranteed to exist by Lemma 4.17. Adding
0 ∈ Zr and 0 ∈ Zs to H if necessary, we assume that these bricks are in H . Define the
following:

L :=
{

h ∈ Zr+ns : h0 ∈ H ∩ Zr, hk ∈ H ∩ Zs,
(

h0, hk
)

A = 0, k = 1, . . . , n
}

.

Since H contains every brick of every element of the Graver basis of (A(n))T , and h ∈
Zr+ns satisfies hA(n) = 0 if and only if (h0, hk)A = 0 for k = 1, . . . , n, we have the
following:

G
(

(A(n))T
)

⊂ L ⊆ L
(

(A(n))T
)

. (4.8)

For each k and each brick hk ∈ H (in Zr for k = 0 and in Zs for other k), determine

λ
(

k, hk
)

:= sup
{

λ ∈ Z+ : lk ≤ yk + λhk ≤ uk
}

∈ Z+ ⊎ {∞}. (4.9)

Note that there are at most |H ∩ Zr| + n|H ∩ Zs| = O(n) such that λ(k, hk) and each
can be easily computed by inspection, so all can be computed in polynomial time.

First, we claim that S is infinite if and only if there is a nonzero element h =
(h0, . . . , hn) ∈ L such that λ(k, hk) = ∞ for k = 0, . . . , n. Indeed, if such an h ex-
ists then y + λh ∈ S for all λ ∈ Z+ so S is infinite; if S is infinite then, by Lemma 3.5,
there is such an h ∈ G((A(n))T) ⊂ L. To check this infiniteness criterion in polyno-
mial time, for each h0 ∈ H ∩ Zr with λ(0, h0) = ∞, try to extend h0 to an element
h = (h0, h1, . . . , hn) ∈ L as follows: for k = 1, . . . , n search for a brick hk ∈ H ∩ Zs,
nonzero if possible, satisfying λ(k, hk) = ∞ and (h0, hk)A = 0. Then S is infinite if and
only if this process constructs some such nonzero h.

Second, assuming that S is finite, we show how to find ŷ ∈ S satisfying (4.7). By
(4.8), we can take ŷ := y + λh, where (λ, h) is any optimal pair for the problem:

min
{

wλh : λ ∈ Z+ ⊎ {∞}, h ∈ L, l ≤ y + λh ≤ u
}

(4.10)

with the convention λh := 0 ∈ Zr+ns for the pair λ = ∞ and h = 0. Since 0 ∈ L and S
is finite, this pair is the only feasible one with λ = ∞. Since |L| may be exponential (see
Example 4.16), we proceed to solve (4.10) indirectly as follows.

Let Λ ⊂ Z+⊎{∞} be the set of λ(k, hk) obtained in (4.9) for all k and hk. Produce a
set T ⊆ Λ×L of pairs (λ, h) by applying the following process: for each λ ∈ Λ and each
brick h0 ∈ H ∩Zr satisfying λ(0, h0) ≥ λ, try to extend h0 to h = (h0, h1, . . . , hn) ∈ L

4.4 Stochastic integer programming 69

as follows: for k = 1, . . . , n search for a brick hk ∈ H ∩ Zs satisfying λ(k, hk) ≥ λ and
(h0, hk)A = 0, and if there are any, pick one with minimum wkhk; if h was completed
successfully then add the pair (λ, h) to T . Note that |T | ≤ |Λ| · |H ∩Zr| = O(n) and can
be constructed in polynomial time.

We now claim that an optimal pair (λ, h) for (4.10) can be taken as any optimal pair
for the following problem, which can be solved immediately by inspecting T as follows:

min
{

wλh : (λ, h) ∈ T
}

. (4.11)

First, note that any (λ, h) ∈ T satisfies l ≤ y + λh ≤ u so is feasible in (4.10). Second,
consider any pair (λ̄, h̄) which is optimal for the problem (4.10). Let

λ̂ := min
{

λ
(

k, h̄k
)

: k = 0, . . . , n
}

∈ Λ.

Then, in the process which generates the set T , when considering λ̂ and h̄0, the vector
h̄ is a feasible extension; let ĥ be the optimal extension chosen in the process. Then
(λ̂, ĥ) ∈ T . Now, (λ̄, h̄), (0, 0) feasible in (4.10) imply λ̂ ≥ λ̄, wh̄ ≤ 0, and so

wλ̂ĥ = λ̂
∑

k

wkĥk ≤ λ̂
∑

k

wkh̄k = λ̂wh̄ ≤ λ̄wh̄ = wλ̄h̄.

Therefore, (λ̂, ĥ) is also optimal for (4.10) as claimed. This completes the proof. ✷

We are now in position to prove the following important result of [50] which shows
that stochastic integer programming can be solved in polynomial time.

Theorem 4.19. For each fixed integer (r, s) × t bimatrix A, there is an algorithm that,

given positive integer n, l, u ∈ Zr+ns
∞ , b ∈ Znt, and w ∈ Zr+ns, solves in time which is

polynomial in n and 〈l, u, b, w〉 the following stochastic integer program:

min
{

wy : y ∈ Zr+ns, yA(n) = b, l ≤ y ≤ u
}

. (4.12)

Proof. First, we show the following analogs of Lemmas 3.10 and 3.11 for stochastic
integer programming (restricted to optimization of linear objective functions).

Claim 1 (analog of Lemma 3.10). Given an initial feasible point y to the stochastic integer
program (4.12), we can solve the program in polynomial time.

Proof of Claim 1. First, apply the algorithm of Lemma 4.18 and either detect that the
feasible set is infinite and stop, or conclude it is finite and continue. Next, produce a
sequence of feasible points y0, y1, . . . , ys with y0 := y the given input point, as follows.
Having obtained yk, obtain a new feasible point yk+1 satisfying the following:

wyk+1 ≤ min
{

w
(

yk + λh
)

: λ ∈ Z+, h ∈ G
(

(A(n))T
)

, l ≤ yk + λh ≤ u
}

, (4.13)

by applying again the algorithm of Lemma 4.18. If wyk+1 < wyk then repeat, else stop
and output the last point ys. The proof now proceeds like that of Lemma 3.10, noting
that a linear function wy is separable convex, and that inequality (4.13) assures that the
sequence of feasible points converges to an optimal point at least as fast as in the algorithm
of Lemma 3.10 and hence in polynomial time. ✷

70 4 n-Fold Integer Programming

Claim 2 (analog of Lemma 3.11). We can either find a point feasible in (4.12) or detect
the program is infeasible or the feasible set is infinite in polynomial time.

Proof of Claim 2. Assume that l ≤ u and that lj < ∞ and uj > −∞ for all j, else
there is no feasible point. Now, either detect that there is no integer solution to the system
of equations yA(n) = b (without the lower and upper bound constraints) and stop, or
determine some such solution y ∈ Zr+ns and continue (in polynomial time, using the
Hermite normal form of (A(n))T , see [90]). Let

I :=
{

j : lj ≤ yj ≤ uj

}

⊆ {1, . . . , r + ns}

be the set of indices of entries of y which satisfy their lower and upper bounds. While
I � {1, . . . , r + ns}, repeat the following procedure. Pick any index i /∈ I . Then either
yi < li or yi > ui. We describe the procedure only in the former case, the latter being
symmetric. Update the lower and upper bounds by setting the following:

l̂j := min
{

lj , yj

}

, ûj := max
{

uj , yj

}

, j = 1, . . . , r + ns.

Solve in polynomial time the following linear integer program, in which y is feasible:

max
{

zi : z ∈ Zr+ns, zA(n) = b, l̂ ≤ z ≤ û, zi ≤ ui

}

, (4.14)

by applying the algorithm of Claim 1 above. Now, for all j, we have that l̂j > −∞ if and
only if lj > −∞ and ûj < ∞ if and only if uj < ∞. Therefore, if the algorithm asserts
that the feasible set of (4.14) is infinite, then the original program (4.12) either has an
infinite feasible set or is infeasible. So assume that the algorithm finds an optimal solution
z. If zi < li then (4.12) is infeasible. Otherwise, set y := z, I := {j : lj ≤ yj ≤ uj}, and
repeat. Note that in each iteration, the cardinality of I increases by at least one. Therefore,
after at most r + ns iterations, either the algorithm detects that the original program is
infeasible or has an infinite feasible set, or I = {1, . . . , r+ns} is obtained, in which case
the current point y is feasible. ✷

To complete the proof of the theorem: first, apply the algorithm of Claim 2 and either
conclude the program is infeasible or the feasible set is infinite and stop, or obtain some
feasible point and continue. Next, apply the algorithm of Claim 1 and either conclude the
feasible set is infinite or obtain an optimal solution. ✷

As for n-fold integer programming, a natural extension of (4.12) is the following
nonlinear stochastic integer programming problem with objective f : Zr+ns → Z:

min
{

f(y) : y ∈ Zr+ns, yA(n) = b, l ≤ y ≤ u
}

.

In [50], this more general problem is solved for splittable convex functions presented by
suitable oracles. Moreover, using an extension of the finiteness Lemma 4.17 from [4], the
polynomial time solvability of convex stochastic integer programming can be extended
to the so-called multistage stochastic integer programming problems, where a multistage
process of alternating decisions and observations takes place.

4.5 Graver approximation scheme 71

4.5 Graver approximation scheme

Consider again the linear or separable convex n-fold integer programming problem:

min
{

f(x) : x ∈ Znt, A(n)x = b, l ≤ x ≤ u
}

. (4.15)

The solution of problem (4.15) by the algorithm of Theorem 4.8 involves two major
tasks: first, the construction of the Graver basis G(A(n)) by the algorithm of Theorem 4.4;
second, the iterative greedy augmentation of an initial point to an optimal one using the
Graver basis G(A(n)) by the algorithm of Lemma 3.10.

As shown in the proof of Theorem 4.4, the cardinality of G(A(n)) is O(ng) with
g := g(A) the Graver complexity of A. So the time needed for constructing G(A(n)), as
well as for its examination in finding a greedy augmentation in each iteration, involves an
O(ng) term. While this is polynomial since g is fixed, it may be very large even for small
A. We therefore proceed to suggest a scheme, parameterized by an integer k ≤ g(A),
which constructs an approximating subset Gn

k of the Graver basis G(A(n)) and uses it for
augmentation, resulting in approximative solutions at lower complexity. We define this
approximating set by the following:

Gn
k :=

{

x ∈ G
(

A(n)
)

: type(x) ≤ k
}

. (4.16)

The next lemma bounds the size of Gn
k and suggests an efficient procedure for computing

it. It refines Theorem 4.4 which gives the special case of Gn
g = G(A(n)).

Lemma 4.20. For any integer bimatrix A and pair of integers 1 ≤ k ≤ n, we have the

following:

Gn
k :=

{

x ∈ G
(

A(n)
)

: type(x) ≤ k} =
{

x : x is an n-lifting of some y ∈ G
(

A(k)
)}

.

For fixed A,k, the cardinality of Gn
k and the time needed to compute it are O(nk).

Proof. Consider any n-lifting x of any y ∈ G(A(k)). Suppose indirectly that x /∈ Gn
k .

Since type(x) = type(y) ≤ k this implies that x /∈ G(A(n)). Therefore, there exists some
x′ ∈ G(A(n)) with x′

❁ x. But then x′ is the n-lifting of some y′ ∈ L∗(A(k)) with
y′

❁ y, which contradicts y ∈ G(A(k)). So x ∈ Gn
k .

Conversely, consider any x ∈ Gn
k . Then x is the n-lifting of some y ∈ L∗(A(k)).

Suppose indirectly that y /∈ G(A(k)). Then there exists some y′ ∈ G(A(k)) with y′
❁

y. But then a suitable n-lifting x′ of y′ satisfies x′ ∈ L∗(A(n)) with x′
❁ x, which

contradicts x ∈ G(A(n)). So y ∈ G(A(k)).
Now, the number of n-liftings of each y ∈ G(A(k)) is at most

(

n
k

)

, and hence

∣

∣Gn
k

∣

∣ ≤
(

n

k

)

∣

∣G
(

A(k)
)∣

∣.

If A and k are fixed then the Graver basis G(A(k)) is constant and hence the cardinality
of Gn

k and the time needed to compute it are O(nk) as claimed. ✷

72 4 n-Fold Integer Programming

We proceed to outline our Graver approximation scheme for the n-fold integer pro-
gramming problem (4.15), parameterized by 1 ≤ k ≤ g := g(A). For simplicity, we
assume that the input includes an initial feasible point x0 and that the feasible set is finite
(which can be checked by linear programming). We also assume that g(A) ≥ 1. The case
g(A) = 0 occurs if and only if the columns of A2 are linearly independent, in which
case the same holds for A(n) for all n, and the given initial point is the only feasible
one and hence already the optimal solution. Our scheme uses the following sequence of
increasingly better approximations of G(A(n)):

∅ = Gn
0 ⊆ Gn

1 ⊆ · · · ⊆ Gn
g = G(A(n)). (4.17)

The containment relations in this sequence follow directly from the definition of the Gn
k

in (4.16), and the equality Gn
g = G(A(n)) follows from the definition of the Graver com-

plexity. For each parameter value 1 ≤ k ≤ g, the scheme obtains recursively an initial
feasible point xk−1, computes Gn

k , and uses it for repeated greedy augmentations as long
as possible, terminating with a new, typically better, feasible point xk. Thus, the scheme
produces a sequence of points satisfying the following:

f
(

x0

)

≥ f
(

x1

)

≥ · · · ≥ f
(

xg

)

= f∗,

where the last point xg , obtained from the scheme with parameter k = g which uses the
full Graver basis Gn

g = G(A(n)), is guaranteed by Lemma 3.10 to be an optimal solution
attaining the optimal objective function value f∗.

Procedure 4.21 (Graver scheme for n-fold integer programming).

1. Obtain an initial feasible point xk−1 by applying the scheme recursively.

2. Compute the approximation Gn
k of G(A(n)) by the algorithm of Lemma 4.20.

3. Use the algorithm of Lemma 3.10 with Gn
k instead of G(A(n)) to iteratively greedily

augment xk−1 to the best attainable point xk and output this point.

The time taken by step 2 is O(nk) by Lemma 4.20 and hence polynomial in n. The
running time of the iterative step 3 is harder to estimate and depends on the quality of the
approximation of G(A(n)) by Gn

k and on the type of function f .
So the suggested Graver approximation scheme allows to tradeoff precision for com-

plexity, where increased parameter value k typically results in improved approximation
xk with better objective value f(xk) but increased running time, with the highest param-
eter value k = g = g(A) resulting in a true optimal solution xg with f(xg) = f∗ and
running time O(ng), which, nonetheless, is polynomial.

To estimate the quality of an approximating point xk and decide whether to settle for
it or to increment k and apply the scheme for the next parameter value and hence for a
longer time, it is possible to approximate in polynomial time the optimal objective value
f̃ of the continuous relaxation of the problem (4.15):

f̃ := min
{

f(x) : x ∈ Rnt, A(n)x = b, l ≤ x ≤ u
}

≤ f∗, (4.18)

by efficiently minimizing a convex function over a polytope, see, for instance, [80].

4.5 Graver approximation scheme 73

The mere existence of a finite Graver complexity g := g(A) for every A suffices to
realize Scheme 4.21, since g and the constant Graver bases G(A(k)) for k ≤ g can be
built into the algorithm. In particular, the value g allows to identify the highest parameter
k = g, for which the scheme outputs a point xk = xg which is a true optimal solution.
Note that the relaxation (4.18) cannot be used to compute f∗ and identify optimality via
f(xk) = f∗ since there is typically a gap f̃ < f∗.

In practice, preparatory preprocessing is useful, where the Graver complexity g(A)
and each of the Graver bases G(A(k)) for k ≤ g are actually computed in constant time
once and for all (say, by Algorithms 4.6 and 3.21). Then, given any n, Scheme 4.21 with
any parameter k ≤ g can be quickly applied.

Notes

The core of the theory of n-fold integer programming is developed in the series of papers
[23], [24], [50]. An important component in this theory is the notion of Graver complexity
introduced in [89] which extends [3] and is extended in [56]. The applications to multi-
commodity flows are from [51]. Multicommodity flows have been studied extensively
in the literature with different emphases. Let us mention the paper [68], which investi-
gates max-flow min-cut properties and their use in approximation algorithms for multi-
commodity flow problems, and the references therein. Stochastic integer programming
is an important and extensively studied area with a variety of applications, see [70] and
the references therein. Part 2 of the finiteness Lemma 4.17 has been established in [52].
Theorem 4.19 providing the polynomial time solution of stochastic integer programming
is from [50].

5 Multiway Tables and Universality

Multiway tables occur naturally in any context involving multiply-indexed variables. They
have been studied extensively for decades, in operations research in the context of high
dimensional transportation problems, and in statistics in the context of privacy in statis-
tical databases and disclosure control, see [3], [7], [8], [22], [29], [36], [58], [62], [63],
[75], [97], [100], and the references therein. In this chapter, we study multiway tables
in depth, completely settle the algorithmic complexity of multiway table problems, and
discuss some of their important applications in these areas.

A d-way table is an m1 × · · · × md array x = (xi1,...,id
) of nonnegative integers.

We say that multiway table x has format m1 × · · · × md and call m1, . . . , md the sides

of x. Following statistical terminology, a margin of table x is the sum of entries in some
lower dimensional subarray of x and can be a line-sum, plane-sum, hyperplane-sum, and
so on. Table problems involve the set of multiway tables with some of their margins
specified. For clarity, through most of this chapter we discuss line-sum constraints, which
are the most difficult and already illustrate the main ideas developed herein. But all of our
algorithmic results hold much more generally for any hierarchical margins, as discussed
later in Section 5.2.3.

The set of multiway tables with some of their margins specified is the set of non-
negative integer arrays satisfying a system of linear equations, and therefore is the set
of feasible points in a suitable integer program. For instance, the set of 3-way tables of
format l × m × n with all line-sums specified is as follows:

S :=
{

x ∈ Zl×m×n
+ :

∑

i xi,j,k = v∗,j,k,
∑

j xi,j,k = vi,∗,k,
∑

k xi,j,k = vi,j,∗

}

,

where the specified line-sums are mn + ln + lm given nonnegative integer numbers:

v∗,j,k, vi,∗,k, vi,j,∗, 1 ≤ i ≤ l, 1 ≤ j ≤ m, 1 ≤ k ≤ n.

The set of margin-constrained multiway tables of format m1 ×· · ·×md ×n is shown
later in this chapter to form an n-fold system (see Figure 5.1). Therefore, the theory of
n-fold integer programming developed in Chapter 4 applies and provides the first poly-
nomial time algorithms for treating such tables with m1, . . . , md fixed and n variable –
the so-termed long tables. In contrast, we show that margin-constrained multiway tables
with two variable sides, in fact, already 3-way tables of format l×m× 3 – the so-termed
short tables – are universal for integer programming. This universality theorem provides
a powerful tool in establishing the presumable limits of polynomial time solvability of
multiway table problems and is used in the applications Section 5.2 to contrast the poly-
nomial time solvability over long multiway tables which is attainable by n-fold integer
programming.

In Section 5.1, we prove the universality Theorem 5.1 showing that every integer pro-
gram is one over l×m× 3 line-sum constrained tables. In Section 5.2, we discuss impor-
tant applications of the n-fold integer programming theory from Chapter 4 and the univer-
sality theorem to multiindex transportation problems and privacy in statistical databases.

75

Consider m1 X . . . X md X n tables with given margins such as line-sums:

1

1

0

3

3

0

2
0

1
4

5

0

8

6

9

n

Such tables form an n-fold system {x : A(n)x = b, x 0, x integer } for

suitable bimatrix A determined by m1,…, m , where A1 controls equations

of margins which involve summation over layers, whereas A2 controls

equations of margins involving summation within a single layer at a time.

A(n) =

n

d

Figure 5.1: Multiway tables

In Section 5.3, we prove that n-fold integer programming is universal in Theorem 5.12
and use it to suggest a heuristical scheme for arbitrary (non)linear integer programming
that builds on the Graver approximation scheme of Section 4.5. Finally, in Section 5.4
we discuss the Graver complexity of (di)graphs, new fascinating invariants that control
the complexity of multiway table and multicommodity flow problems. We establish an
exponential lower bound in Theorem 5.19 providing unusual type of evidence supporting
the P �= NP hypothesis.

The table below enables quick navigation among most results of this chapter.

Polynomial time Universality
solvability and intractability

n-fold integer programming n-folds of bimatrices n-folds of m-folds
(Theorems of Chapter 4) Theorem 5.12

Multiindex transportation Long, m1 × · · · × md × n Short, l × m × 3
Corollaries 5.3 and 5.4 Theorem 5.1

Corollary 5.2
Privacy in databases Long, m1 × · · · × md × n Short, l × m × 3

Corollary 5.8 Corollary 5.5
Corollary 5.7

Hierarchical margins Long, m1 × · · · × md × n Short, l × m × 3
Corollaries 5.10 and 5.11 Theorem 5.1

76 5 Multiway Tables and Universality

5.1 The universality theorem

A d-way polytope is the set of m1 × · · · ×md nonnegative real arrays x = (xi1,...,id
) sat-

isfying given margin constraints. So the integer points in such a polytope are precisely the
d-way tables of the same format which satisfy the same margin constraints. For instance,
the 3-way line-sum polytope of format l × m × n is as follows:

T :=
{

x ∈ Rl×m×n
+ :

∑

i xi,j,k = v∗,j,k,
∑

j xi,j,k = vi,∗,k,
∑

k xi,j,k = vi,j,∗

}

,

and the corresponding set of line-sum constrained 3-way tables is S = T ∩ Zl×m×n.
We now establish the universality theorem of [27] which shows that, quite remarkably,

any rational polytope is a 3-way l × m × 3 line-sum polytope. A polytope P ⊂ Rp is
representable as a polytope Q ⊂ Rq if there is an injection σ : {1, . . . , p} → {1, . . . , q}
such that the coordinate-erasing projection:

πσ : Rq −→ Rp : x =
(

x1, . . . , xq

)

�−→ y =
(

y1, . . . , yp

)

:=
(

xσ(1), . . . , xσ(p)

)

provides a bijection between Q and P and between Q ∩ Zq and P ∩ Zp. If P is rep-
resentable as Q then the two are structurally isomorphic in any reasonable sense. If
moreover the injection σ and the corresponding projection πσ are polynomial time com-
putable, then P and Q are also algorithmically isomorphic in any reasonable sense. The
two are linearly equivalent and hence all (non)linear programming problems over the two
are polynomial time equivalent; they are combinatorially equivalent and hence they have
the same face numbers and facial structure; they are integrally equivalent and hence all
(non)linear integer programming and integer counting problems over the two are polyno-
mial time equivalent.

We now provide an outline of the proof of the universality theorem. Complete details
and more consequences of this theorem can be found in [26], [27], [28]. In the statement
and proof below, we use an abbreviated notation for the line-sums.

Theorem 5.1. Every rational polytope P = {y ∈ Rd
+ : Ay = b} is in polynomial time

computable integer preserving bijection with some l × m × 3 line-sum polytope:

T :=
{

x ∈ Rl×m×3
+ :

∑

i xi,j,k = zj,k,
∑

j xi,j,k = vi,k,
∑

k xi,j,k = ui,j

}

. (5.1)

More precisely, there is an algorithm that, given integer A and b with P bounded, pro-

duces l,m and integer line-sums u = (ui,j), v = (vi,k) and z = (zj,k), in time polyno-

mial in 〈A, b〉, such that the polytope P is representable as the polytope T .

Proof. The proof consists of three polynomial time constructive steps, each representing
a polytope of a given format as a polytope of another given format.

First step. We show that any P := {y ≥ 0 : Ay = b} with A, b integer can be represented
in polynomial time as Q := {x ≥ 0 : Cx = d} with C matrix all entries of which
are in {−1, 0, 1, 2}. This reduction of coefficients enables the rest of the steps to run in
polynomial time. For each variable yj , let kj be the maximum number of bits in the binary
representation of the absolute value of any coefficient of yj in the system Ay = b, that

5.1 The universality theorem 77

is, kj := maxi⌊log2 |ai,j |⌋. Now introduce variables xj,0, . . . , xj,kj
and relate them by

the equations 2xj,i − xj,i+1 = 0 for all i. The representing injection σ is defined by
σ(j) := (j, 0), embedding yj as xj,0. Consider any term ai,j yj of the original system.

Using the binary expansion |ai,j | =
∑kj

s=0 ts2
s with all ts ∈ {0, 1}, we rewrite this

term as ±∑kj

s=0 tsxj,s. It is not hard to verify that this represents P as Q with defining
{−1, 0, 1, 2}-matrix.

Second step. We show that any Q := {y ≥ 0 : Ay = b} with A, b integer can be
represented as a face F of a 3-way plane-sum polytope of the form:

{

x ∈ Rr×s×h
+ :

∑

i,j xi,j,k = zk,
∑

i,k xi,j,k = vj ,
∑

j,k xi,j,k = ui

}

.

Note that a face of such a polytope is the set of all x = (xi,j,k) with some entries forced
to zero; these entries are termed “forbidden”, and the other entries are termed “enabled”.
Since Q is a polytope and hence bounded, we can compute by Cramer’s rule an integer
upper bound U on the value of any coordinate yj of any y ∈ Q. For each j, let rj be the
maximum between the sum of positive coefficients of yj and sum of absolute values of
negative coefficients of yj in the system Ay = b:

rj := max
(

∑

k

{

ak,j : ak,j > 0
}

,
∑

k

{∣

∣ak,j

∣

∣ : ak,j < 0
}

)

.

Assume that A is a c × d matrix. Let r :=
∑d

j=1 rj , R := {1, . . . , r}, h := c + 1 and

H := {1, . . . , h}. We now describe how to construct vectors u, v ∈ Zr, z ∈ Zh, and a set
E ⊂ R × R × H of triples – the enabled, non-forbidden, entries – such that the polytope
Q is represented as the face F of the corresponding 3-way polytope of r × r × h arrays
with plane-sums u, v, z and only entries indexed by E enabled as follows:

F :=
{

x ∈ Rr×r×h
+ : xi,j,k = 0 for all (i, j, k) /∈ E,

and
∑

i,j xi,j,k = zk,
∑

i,k xi,j,k = vj ,
∑

j,k xi,j,k = ui

}

.

We also indicate the injection σ : {1, . . . , d} → R×R×H giving the desired embedding
of coordinates yj as coordinates xi,j,k and the representation of the polytope Q as F .
Roughly, each equation k = 1, . . . , c is encoded in a “horizontal plane” R × R × {k}
(the last plane R × R × {h} is included for consistency with its entries being “slacks”);
and each variable yj , j = 1, . . . , d is encoded in a “vertical box” Rj × Rj × H , where

R =
⊎d

j=1 Rj is the natural partition of R with |Rj | = rj for all j = 1, . . . , d, that is,
with Rj := {1 +

∑

l<j rl, . . . ,
∑

l≤j rl}.

Now, all “vertical” plane-sums are defined to have the same value U , that is, uj :=

vj := U for j = 1, . . . , r. All entries not in the union
⊎d

j=1 Rj × Rj × H of the variable
boxes are forbidden. We now describe the enabled entries in the boxes; for simplicity, we
discuss the box R1 × R1 × H , the others being similar. We distinguish between the two
cases r1 = 1 and r1 ≥ 2.

In the case r1 = 1, we have R1 = {1}; the box, which is just the single line {1} ×
{1} × H , has exactly two enabled entries (1, 1, k+), (1, 1, k−) for suitable k+, k− to

78 5 Multiway Tables and Universality

be defined later. We set σ(1) := (1, 1, k+), namely, embed y1 = x1,1,k+ . We define the
complement of the variable y1 to be ȳ1 := U − y1 (and likewise for other variables). The
vertical sums u, v then force ȳ1 = U − y1 = U − x1,1,k+ = x1,1,k− , so the complement
of y1 is also embedded.

Consider next the case r1 ≥ 2. For each s = 1, . . . , r1, the line {s}×{s}×H contains
one enabled entry (s, s, k+(s)), and the line {s} × {1 + (s mod r1)} ×H contains one
enabled entry (s, 1+(s mod r1), k

−(s)). All other entries of R1×R1×H are forbidden.
Again, we set σ(1) := (1, 1, k+(1)), namely, embed y1 = x1,1,k+(1); it is then not hard
to see that, again, the vertical sums u, v force the following:

xs,s,k+(s) = x1,1,k+(1) = y1 and xs,1+(s mod r1),k−(s) = U − x1,1,k+(1) = ȳ1

for each s = 1, . . . , r1. So both y1 and ȳ1 are each embedded in r1 distinct entries.
To clarify the above description, it is helpful to visualize the R × R matrix (xi,j,+)

whose entries are the vertical line-sums xi,j,+ :=
∑h

k=1 xi,j,k. For instance, if we have
three variables with r1 = 3, r2 = 1, r3 = 2 then we get R1 = {1, 2, 3}, R2 = {4},
R3 = {5, 6}, and the line-sums matrix x = (xi,j,+) is as follows:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x1,1,+ x1,2,+ 0 0 0 0
0 x2,2,+ x2,3+ 0 0 0

x3,1,+ 0 x3,3,+ 0 0 0
0 0 0 x4,4,+ 0 0
0 0 0 0 x5,5,+ x5,6,+

0 0 0 0 x6,5,+ x6,6,+

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

y1 ȳ1 0 0 0 0
0 y1 ȳ1 0 0 0
ȳ1 0 y1 0 0 0
0 0 0 U 0 0
0 0 0 0 y3 ȳ3

0 0 0 0 ȳ3 y3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

We now encode the equations by defining the horizontal plane-sums z and the indices
k+(s), k−(s) above as follows. For k = 1, . . . , c, consider the kth equation

∑

j ak,jyj =
bk. Define the index sets as follows:

J+ :=
{

j : ak,j > 0
}

, J− :=
{

j : ak,j < 0
}

,

and set zk := bk + U ·∑j∈J− |ak,j |. The last coordinate of z is set for consistency with

u, v to be zh = zc+1 := r · U −∑c
k=1 zk. Now, with ȳj := U − yj the complement of

variable yj as above, the kth equation can be rewritten as follows:

∑

j∈J+

ak,jyj +
∑

j∈J−

∣

∣ak,j

∣

∣ȳj =
d
∑

j=1

ak,jyj + U ·
∑

j∈J−

∣

∣ak,j

∣

∣ = bk + U ·
∑

j∈J−

∣

∣ak,j

∣

∣ = zk.

To encode this equation, we simply “pull down” to the corresponding kth horizontal plane
as many copies of each variable yj or ȳj by suitably setting k+(s) := k or k−(s) := k.
By the choice of rj , there are sufficiently many, possibly with a few redundant copies
which are absorbed in the last hyperplane by setting k+(s) := c + 1 or k−(s) := c + 1.

For instance, if c = 8, the first variable y1 has r1 = 3, its coefficient a4,1 = 3 in the
fourth equation is positive, its coefficient a7,1 = −2 in the seventh equation is negative,
and ak,1 = 0 for k �= 4, 7, then we set k+(1) = k+(2) = k+(3) := 4 (so σ(1) := (1, 1, 4)
embedding y1 as x1,1,4), k−(1) = k−(2) := 7, and k−(3) := h = 9. This completes the
encoding and provides the desired representation.

5.1 The universality theorem 79

Third step. We show that any 3-way plane-sum polytope, with possibly additional upper
bound inequalities on the entries, of the form:

F :=
{

y∈Rr×s×h
+ :

∑

i,j yi,j,k = ck,
∑

i,k yi,j,k = bj ,
∑

j,k yi,j,k = ai, yi,j,k≤ei,j,k

}

can be represented as a 3-way line-sum polytope (with no entry upper bounds):

T :=
{

x ∈ Rl×m×3
+ :

∑

I xI,J,K = zJ,K ,
∑

J xI,J,K = vI,K ,
∑

K xI,J,K = uI,J

}

.

In particular, this implies that any face F of a 3-way plane-sum polytope, prescribed by a
set E of enabled entries, can be represented as a 3-way line-sum polytope T , by setting an
upper-bound ei,j,k := 0 on each forbidden entry (i, j, k) /∈ E and redundant upper-bound
ei,j,k := U on each enabled entry (i, j, k) ∈ E. We describe the presentation, but omit
the proof that it is indeed valid; further details on this step can be found in [26], [27]. We
give explicit formulas for uI,J , vI,K , zJ,K in terms of ai, bj , ck, and ei,j,k as follows. Put
l := r · s and m := h + r + s. The first index I of each entry xI,J,K is a pair I = (i, j)
in the l-set:

{

(1, 1), . . . , (1, s), (2, 1), . . . , (2, s), . . . , (r, 1), . . . , (r, s)
}

.

The second index J of each entry xI,J,K is a pair J = (s, t) in the m-set:

{

(1, 1), . . . , (1, h), (2, 1), . . . , (2, r), (3, 1), . . . , (3, s)
}

.

The last index K simply ranges in the set {1, 2, 3}. We represent F as T via the in-
jection σ given explicitly by σ(i, j, k) := ((i, j), (1, k), 1), embedding each variable
yi,j,k as the entry x(i,j),(1,k),1. Let U now denote the minimal between the two values
max{a1, . . . , ar} and max{b1, . . . , bs}. The line-sums are set to be as follows:

u(i,j),(1,q) = ei,j,q, u(i,j),(2,q) =

{

U if q = i,

0 otherwise,
u(i,j),(3,q) =

{

U if q = j,

0 otherwise,

v(i,j),p =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

U if p = 1,
∑

k

ei,j,k if p = 2,

U if p = 3,

z(p,q),1 =

⎧

⎪

⎨

⎪

⎩

cq if p = 1,

s · U − aq if p = 2,

0 if p = 3,

z(p,q),2 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

∑

i,j

ei,j,q

)

− cq if p = 1,

0 if p = 2,

bq if p = 3,

z(p,q),3 =

⎧

⎪

⎨

⎪

⎩

0 if p = 1,

aq if p = 2,

r · U − bq if p = 3.

Finally, applying the first step to the given polytope P , applying the second step to the
resulting Q, and applying the third step to the resulting F , we obtain in polynomial time
the desired l × m × 3 line-sum polytope T representing P . ✷

80 5 Multiway Tables and Universality

5.2 Some applications

We now discuss some of the applications of the n-fold integer programming theory of
Chapter 4 and the universality Theorem 5.1 to multiway table problems, including multi-
index transportation, privacy in statistical databases, and extensions.

5.2.1 Multiindex transportation problems

Recall from Section 1.2.2 that the multiindex transportation problem of [75] is the prob-
lem of finding a minimum cost multiway table with specified margins. So it is the most
fundamental linear optimization problem over multiway tables.

Here, we discuss line-sums only. The extension to the much broader setting of hierar-
chical margin constraints is postponed to Section 5.2.3. So we consider the problem

min
{

wx : x∈Zm1×···×md

+ ,
∑

i1
xi1,...,id

=v∗,i2,...,id
, . . . ,

∑

id
xi1,...,id

=vi1,...,id−1,∗

}

,

where the specified line-sums are
∑d

k=1

∏

i�=k mi given nonnegative integers:

v∗,i2,...,id
, . . . , vi1,...,id−1,∗, 1 ≤ i1 ≤ m1, . . . , 1 ≤ id ≤ md.

For d = 2, this program is totally unimodular and can be solved in polynomial time.
However, already for d = 3 it is generally not, and the problem is much harder. Consider
the problem over l × m × n tables. If l,m, n are all fixed then the problem is solvable
in polynomial time (in the natural binary length of the line-sums), but even in this very
restricted situation one needs off-hand the algorithm of [69] for integer programming in
fixed dimension lmn. If l,m, n are all variable then the problem is NP-hard [58]. The
in-between cases are much more delicate and were resolved only recently. If two sides are
variable and one is fixed then the problem is still NP-hard, even over short l×m×3 tables
with fixed n = 3 [26], [27], as is implied by the universality Theorem 5.1. If two sides are
fixed and one is variable, then the problem can be solved in polynomial time by n-fold
integer programming. We proceed to discuss in more detail these in-between cases.

We start with the case of short, l × m × 3 tables, with two variable sides.

Corollary 5.2. It is NP-complete to decide, given l,m, and binary-encoded integer line-

sums vi,j,∗, vi,∗,k, v∗,j,k, if the following set of l × m × 3 tables is nonempty:

S :=
{

x ∈ Zl×m×3
+ :

∑

i xi,j,k = v∗,j,k,
∑

j xi,j,k = vi,∗,k,
∑

k xi,j,k = vi,j,∗

}

.

Proof. The problem is obviously in NP. To illustrate the power of the universality theorem
we give two reductions. First, we reduce to it directly the integer programming feasibility

problem of deciding, given integer A, b, if Q := {y ∈ Rn
+ : Ay = b} has an integer point,

which is well known to be NP-complete. It is well known (see for instance [90]) that Q
has an integer point if and only if the following polytope:

P :=
{

(y, z) ∈ R2n
+ : Ay = b, yi + zi = U, i = 1, . . . , n

}

5.2 Some applications 81

has an integer point, where U is a suitable positive integer upper bound which can be
efficiently computed from A, b by Cramer’s rule. We can then apply the polynomial time
algorithm of Theorem 5.1 to P and produce l,m and line-sums as above such that P and
hence Q have integer points if and only if S is nonempty.

Second, we reduce to it the subset-sum problem, well known to be NP-complete, of
deciding, given positive integers a0, a1, . . . , an, if there is an I ⊆ {1, . . . , n} with a0 =
∑

i∈I ai, which holds if and only if there is an integer point in the polytope:

P :=
{

(y, z) ∈ R2n
+ :

∑n
i=1 aiyi = a0, yi + zi = 1 i = 1 . . . , n

}

.

Now apply the polynomial time algorithm of Theorem 5.1 to P and produce l,m and
line-sums as above such that P has an integer point if only if S is nonempty. ✷

The above NP-completeness statement indicates that multiway tables, already of for-
mat l×m×3, are wildly behaved. The universality Theorem 5.1 provides a powerful tool
in demonstrating such behavior, as the next example shows.

Example 1.2 (revisited; real-feasible integer-infeasible transportation). Using universal-
ity, we automatically recover the smallest known example, first discovered in [97], of
a rational-nonempty, integer-empty, triple-index transportation polytope, as follows. We
start with the polytope P = {y ≥ 0 : 2y = 1} in one variable, containing a single
rational point but no integer point. The algorithm of Theorem 5.1 then represents it as a
6 × 4 × 3 line-sum polytope T with line-sums given by the following three matrices (the
verification of this is left to the reader):

(

vi,j,∗

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 1
0 1 1 0
1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
(

vi,∗,k

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 0
1 1 0
1 0 1
1 0 1
0 1 1
0 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
(

v∗,j,k

)

=

⎛

⎜

⎜

⎝

1 1 1
1 1 1
1 1 1
1 1 1

⎞

⎟

⎟

⎠

.

By the universality Theorem 5.1, the polytope T is integer-equivalent to P and hence also
contains a single rational point (see Example 1.2) but no integer point.

We proceed to show that the important result, first discovered in [24], that the multi-
index transportation problem with two sides fixed and one side variable, can be solved in
polynomial time by n-fold integer programming. In fact, this result holds more generally
for long, m1 × · · · × md × n multiway tables, of any dimension, with m1, . . . , md fixed
and n variable. Here, we give the proof for line-sum constraints and in Section 5.2.3 ex-
tend it to any hierarchical margin constraints. We note that even over 3×3×n tables with
line-sum constraints, the only solution of the problem available to date is the one below
using n-fold integer programming.

Corollary 5.3. For every fixed d,m1, . . . , md, there is an algorithm that, given n, integer

m1 × · · · ×md × n cost w and line-sums v = ((v∗,i2,...,id+1
), . . . , (vi1,...,id,∗)), solves in

82 5 Multiway Tables and Universality

time polynomial in n and 〈w, v〉 the multiindex transportation problem:

min wx =
∑

i1,...,id+1

wi1,...,id+1
xi1,...,id+1

s.t. x∈Zm1×···×md×n
+ ,

∑

i1

xi1,...,id+1
=v∗,i2,...,id+1

, . . . ,
∑

id+1

xi1,...,id+1
=vi1,...,id,∗.

Proof. Re-index all arrays as x = (x1, . . . , xn) with each xid+1 = (xi1,...,id,id+1
) a

suitably indexed m1m2 · · ·md vector representing the id+1th layer of x. Define

t := r := m1m2 · · ·md, s :=

d
∑

k=1

∏

i�=k

mi.

Let b := (b0, b1, . . . , bn) ∈ Zr+ns, where b0 := (vi1,...,id,∗) and for id+1 = 1, . . . , n,

bid+1 :=
((

v∗,i2,...,id,id+1

)

, . . . ,
(

vi1,...,id−1,∗,id+1

))

.

Let A be the (t, s)×t bimatrix with first block A1 := It the t×t identity matrix and second
block A2 a matrix defining the line-sum equations on m1 × · · · × md arrays. Then the
equations A1(

∑

id+1
xid+1) = b0 represent the line-sum equations

∑

id+1
xi1,...,id+1

=

vi1,...,id,∗, where summations over layers occur, whereas the equations A2x
id+1 = bid+1

for id+1 = 1, . . . , n represent all other line-sum equations, where summations are within
a single layer at a time (see Figure 5.1). So the multiindex transportation problem is
encoded as the n-fold integer program:

min
{

wx : x ∈ Znt, A(n)x = b, x ≥ 0
}

.

Using the algorithm of Theorem 4.7, this n-fold integer program, and hence the given
multiindex transportation problem, can be solved in polynomial time. ✷

Corollary 5.3 extends immediately to nonlinear objective functions of the forms in
Theorems 4.8–4.10. So we have the following solution of the nonlinear multiindex trans-
portation problem of Section 1.2.2 for long tables, stated here for line-sums and extended
in Section 5.2.3 to hierarchical margins. As usual, the function f is given by a comparison
oracle and f̂ is the maximum value of |f(x)| over the feasible set.

Corollary 5.4. For any fixed d,m1, . . . , md, there are algorithms that, given n and inte-

ger line-sums v, solve the following over m1 × · · · × md × n tables satisfying v:

1. min f(x) with f given separable convex, in time polynomial in n and 〈v, f̂〉;
2. min ‖x − x̂‖p with x̂ given goal table, in time polynomial in n, p and 〈v, x̂〉;
3. max f(w1x, . . . , wkx) with fixed number k of given integer m1 × · · · × md × n

weights wi and given convex f , in time polynomial in n and 〈v, w1, . . . , wk〉.

5.2 Some applications 83

5.2.2 Privacy in statistical databases

A common practice in the disclosure of sensitive data contained in a multiway table is to
release some of the table margins rather than the entries of the table. Once the margins
are released, the security of any specific entry of the table is related to the set of possible
values that can occur in that entry in all tables having the same margins as those of the
source table in the database. In particular, if this set consists of a unique value, that of the
source table, then this entry can be exposed and privacy violated. This raises the following
fundamental problem.

Entry uniqueness problem. Given a list of margin values and entry index, is the value
which can occur in that entry in all tables with these margins unique?

The complexity of this problem turns out to behave in analogy to the complexity of
the multiindex transportation problem discussed in Section 5.2.1. Consider the problem
for d = 3 over l × m × n tables. It is polynomial time decidable when l,m, n are all
fixed, and coNP-complete when l,m, n are all variable [58]. The in-between cases are
much more delicate and were resolved only recently. If two sides are variable and one is
fixed then the problem is still coNP-complete, even over short l×m× 3 tables with fixed
n = 3 [82]. If two sides are fixed and one is variable, then the problem can be solved
in polynomial time by n-fold integer programming. We proceed to discuss in more detail
these in-between cases.

We start with the case of short, l × m × 3 tables with two variable sides. Not only is
the problem coNP-complete in this case, but also is much stronger; using Theorem 5.1,
we can now obtain a result of [28] that any set of nonnegative integers is the set of values
of an entry of some l × m × 3 tables with some specified line-sums.

Corollary 5.5. For every finite set S ⊂ Z+ of nonnegative integers, there exist l,m, and

line-sums for l×m× 3 tables, such that the set of values occurring in a given entry xr,s,t

in all l × m × 3 tables x having these line-sums, is precisely S.

Proof. Consider any finite set S = {s1, . . . , sh} ⊂ Z+. Consider the polytope:

P :=
{

y ∈ Rh+1
+ : y0 −

∑h
j=1 sjyj = 0,

∑h
j=1 yj = 1

}

.

By Theorem 5.1, there are (polynomial time computable) l,m and line-sums:

v∗,j,k, vi,∗,k, vi,j,∗, 1 ≤ i ≤ l, 1 ≤ j ≤ m, 1 ≤ k ≤ 3,

defining a 3-way polytope T which represents P . Permuting the indices of arrays if nec-
essary, we may assume that the coordinate y0 is embedded in the entry xr,s,t under this
presentation. Since P and T are integer-equivalent, the set of values attained by the entry
xr,s,t in all tables with these line-sums is, as desired, as follows:

{

xr,s,t : x ∈ T ∩ Zl×m×3
}

=
{

y0 : y ∈ P ∩ Zh+1
}

= S.
✷

84 5 Multiway Tables and Universality

Using the construction of Corollary 5.5 incorporating that of Theorem 5.1, we obtain
the following (probably smallest possible) example of line-sums for 6 × 4 × 3 tables,
where some specific entry attains the set of values {0, 2} which has a gap.

Example 5.6 (gap in the set of values of a table entry, see Figure 5.2). Applying our
construction to the polytope P = {y ≥ 0 : y0−2y1 = 0, y1 +y2 = 1} in three variables,
we obtain line-sums for 16×11×3 tables such that the set of values of a specific entry in
all tables with these line-sums is precisely {0, 2} and has a gap. These can be reduced to
line-sums for 6× 4× 3 tables, given below and in Figure 5.2, where the designated entry
also attains the values 0, 2 only:

(

vi,j,∗

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 1 2
1 0 0 1
0 0 2 2
2 2 0 0
0 2 0 2
2 0 2 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
(

vi,∗,k

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2 2 0
1 1 0
2 0 2
3 0 1
0 2 2
0 1 3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
(

v∗,j,k

)

=

⎛

⎜

⎜

⎝

2 1 2
2 1 2
2 1 2
2 3 2

⎞

⎟

⎟

⎠

.

The only values occurring in the designated entry in all

6 X 4 X 3 tables with the specified line-sums are 0, 2.

3
2

2
12

12
2

1
2

2
2

1

1
1

1

0

0
0

0
0

0

0

0

0

2
2

2

2 2
2

2

2

2

3

3

0

0

0

0

0

0

0
0

2

2
2

2
2

2

1

1

1
1

Figure 5.2: Set of entry values with a gap

The universality Theorem 5.1 also implies the following result of [82] on the com-
plexity of entry uniqueness over l × m × 3 tables with two variable sides.

5.2 Some applications 85

Corollary 5.7. It is coNP-complete to decide, given l,m, and binary-encoded integer

line-sums vi,j,∗, vi,∗,k, v∗,j,k, if x1,1,1 attains a unique value in all tables in the following

set:

S :=
{

x ∈ Zl×m×3
+ :

∑

i xi,j,k = v∗,j,k,
∑

j xi,j,k = vi,∗,k,
∑

k xi,j,k = vi,j,∗

}

.

Proof. The problem is obviously in coNP. We reduce to it the complement of the subset-
sum problem of deciding, given positive integers a0, a1, . . . , an, if there is no I ⊆
{1, . . . , n} with a0 =

∑

i∈I ai, which is coNP-complete. Consider the polytope:

P :=
{

(y, z) ∈ R2(n+1)
+ : a0y0 −

∑n
i=1 aiyi = 0, yi + zi = 1, i = 0, 1, . . . , n

}

.

First, note that it always has one integer point with y0 = 0, given by yi = 0 and zi = 1
for all i. Second, note that it has an integer point with y0 �= 0 if and only if there is an
I ⊆ {1, . . . , n} with a0 =

∑

i∈I ai, given by y0 = 1, yi = 1 for i ∈ I , yi = 0 for
i ∈ {1, . . . , n} \ I , and zi = 1 − yi for all i. Now, apply the polynomial time algorithm
of Theorem 5.1 and produce l,m and line-sums for l × m × 3 tables defining a 3-way
polytope T which represents P . Permuting the indices of arrays if necessary, we may
assume that the coordinate y0 is embedded in the entry x1,1,1 under this presentation.
Since P and T are integer-equivalent, we find that T has a table with x1,1,1 = 0, and this
value is unique among the tables in T if and only if there is no subset I ⊆ {1, . . . , n}
which satisfies a0 =

∑

i∈I ai. ✷

We proceed to show the result of [82] that entry uniqueness over tables with two
sides fixed and one side variable can be decided in polynomial time by n-fold integer
programming. In fact, this result holds more generally for long, m1×· · ·×md×n tables,
of any dimension, with m1, . . . , md fixed and n variable. Here, we give the proof for line-
sums and in Section 5.2.3 extend it to any hierarchical margin constraints. We note that
even over 3 × 3 × n tables with line-sum constraints, the only solution of the problem
available to date is the one below using n-fold integer programming.

Corollary 5.8. For every fixed d,m1, . . . , md, there is an algorithm that, given n, integer

line-sums v = ((v∗,i2,...,id+1
), . . . , (vi1,...,id,∗)), and index (k1, . . . , kd+1), solves in time

polynomial in n and 〈v〉, the entry uniqueness problem of deciding if xk1,...,kd+1
attains a

unique value in all multiway tables in the following set S:

{

x∈Zm1×···×md×n
+ :

∑

i1
xi1,...,id+1

=v∗,i2,...,id+1
, . . . ,

∑

id+1
xi1,...,id+1

=vi1,...,id,∗

}

.

Proof. By Corollary 5.3, we can solve in polynomial time both n-fold programs as fol-
lows:

l := min
{

xk1,...,kd+1
: x ∈ S

}

,

u := max
{

xk1,...,kd+1
: x ∈ S

}

.

Clearly, entry xk1,...,kd+1
attains a unique value in all tables with the given line-sums if

and only if l = u, which can therefore be tested in polynomial time. ✷

86 5 Multiway Tables and Universality

The algorithm of Corollary 5.8 and its extension to any hierarchical margins which is
described in Section 5.2.3 allow statistical agencies to efficiently check possible margins
before disclosure; if an entry value is not unique then disclosure may be assumed secure,
whereas if the value is unique then disclosure may compromise privacy and hence fewer
margins should be released.

We note that long tables, with one side much larger than the others, often arise in
practical applications. For instance, in health statistical tables, the long factor may be the
age of an individual, whereas other factors may be binary (yes-no) or ternary (subnormal,
normal, and supnormal). Moreover, it is always possible to merge categories of factors,
with the resulting coarser tables approximating the original ones, making the algorithm
of Corollary 5.8 applicable.

Finally, we describe a procedure based on a suitable adaptation of the algorithm of
Corollary 5.8, that constructs the entire set of values that can occur in a specified entry,
rather than just deciding its uniqueness. Here, S is the set of tables satisfying the given
line-sums, and the running time is output-efficient, that is, polynomial in the input length
plus the number of elements in the output set.

Procedure 5.9 (constructing the set of values in an entry).

1. Initialize l := −∞, u := ∞, and E := ∅;

2. solve in polynomial time the following linear n-fold integer programs:

l̂ := min
{

xk1,...,kd+1
: l ≤ xk1,...,kd+1

≤ u, x ∈ S
}

,

û := max
{

xk1,...,kd+1
: l ≤ xk1,...,kd+1

≤ u, x ∈ S
}

;

3. if the problems in step 2 are feasible then update l := l̂ + 1, u := û − 1, E :=
E ⊎ {l̂, û}, and repeat step 2, else stop and output the set of values E.

5.2.3 Extensions to hierarchical margins

We now extend the results of Sections 5.2.1 and 5.2.2 to sets of multiway tables satisfying
a much broader class of margin constraints. Consider any m1 × · · · × md table x. For
any tuple (i1, . . . , id) with ij ∈ {1, . . . , mj} ⊎ {∗}, the corresponding margin xi1,...,id

of x is defined to be the sum of entries of x over all coordinates j for which ij = ∗. The
support of the tuple (i1, . . . , id) and of the margin xi1,...,id

is the set supp(i1, . . . , id) :=
{j : ij �= ∗} of nonsummed coordinates. For instance, if x is a 9× 5× 7× 8 table then it
has 63 = 9 · 7 margins with support F = {1, 3} such as the following:

x6,∗,7,∗ =
5
∑

i2=1

8
∑

i4=1

x6,i2,7,i4 .

A list of margins is hierarchical if, for some family F of subsets of {1, . . . , d}, it consists
of all margins with support in F. Given a family F of subsets of {1, . . . , d} and a list
v = (vi1,...,id

) of integer values for all margins supported on F, the set of multiway tables
satisfying the corresponding hierarchical margin constraints is as follows:

SF :=
{

x ∈ Zm1×···×md

+ : xi1,...,id
= vi1,...,id

, supp
(

i1, . . . , id
)

∈ F
}

. (5.2)

5.2 Some applications 87

In particular, for any 0 ≤ k ≤ d, the margins supported on the family F of all k-subsets of
{1, . . . , d} are precisely all margins which are sums of entries over (d − k)-dimensional
subtables of x. In particular, for the family F of all (d − 1)-subsets of {1, . . . , d} (re-
spectively, all (d − 2)-subsets, or all 1-subsets), the set SF of multiway tables in (5.2) is
precisely the set of m1 × · · · × md tables with all line-sums (respectively, all plan-sums,
or all hyperplane-sums) specified.

The following important outcome of n-fold integer programming extends Corollar-
ies 5.3 and 5.4 and provides the solution of the nonlinear multiindex transportation prob-
lem of Section 1.2.2 for long tables with any hierarchical margin constraints and broad
classes of (non)linear objective functions. The function f is given by a comparison oracle
and f̂ is the maximum value of |f(x)| over the feasible set.

Corollary 5.10. For every fixed d, family F of subsets of {1, . . . , d + 1}, and sides

m1, . . . , md, there are algorithms that, given n and list v = (vi1,...,id+1
) of integer values

for all margins supported on F, solve the following (non)linear multiindex transportation

problems over the set SF of m1 × · · · × md × n tables satisfying v:

1. min wx with given m1 × · · · × md × n cost w, in time polynomial in n, 〈v, w〉;
2. min f(x) with f given separable convex, in time polynomial in n and 〈v, f̂〉;
3. min ‖x − x̂‖p with x̂ given goal table, in time polynomial in n, p, and 〈v, x̂〉;
4. max f(w1x, . . . , wkx) with fixed number k of given integer m1 × · · · × md × n

weights wi and given convex f , in time polynomial in n and 〈v, w1, . . . , wk〉.

Proof. Re-index the arrays as x = (x1, . . . , xn) with each xj = (xi1,...,id,j) a suitably
indexed m1m2 · · ·md vector representing the jth layer of x. Then each of the above
problems can be encoded as one over a suitable n-fold system:

SF =
{

x ∈ Znt
+ : A(n)x = b

}

with A an (r, s) × t bimatrix with t := m1m2 · · ·md and r, s, A1 and A2 determined
by F, and with right-hand side b := (b0, b1, . . . , bn) ∈ Zr+ns determined by the margins
v = (vi1,...,id+1

), such that the equations A1(
∑n

j=1 xj) = b0 represent the constraints
of all margins xi1,...,id,∗ (where summation over layers occurs), whereas the equations
A2x

j = bj for j = 1, . . . , n represent the constraints of all margins xi1,...,id,j with j �= ∗
(where summations are within a single layer at a time).

The algorithms of Theorems 4.7–4.10 now enable to solve these n-fold programs and
hence the given multiindex transportation problems in polynomial time. ✷

A similar extension of Corollary 5.8 allows statistical agencies to efficiently make
learned decisions about secure disclosure of hierarchical lists of margins.

Corollary 5.11. For every fixed d, family F of subsets of {1, . . . , d + 1}, and sides

m1, . . . , md, there is an algorithm that, given n, list v = (vi1,...,id+1
) of integer val-

ues for all margins supported on F, and index (k1, . . . , kd+1), solves in time polynomial

in n and 〈v〉 the entry uniqueness problem of deciding if xk1,...,kd+1
attains a unique value

over the set SF of m1 × · · · × md × n tables satisfying v.

88 5 Multiway Tables and Universality

Proof. By Corollary 5.10, we can solve in polynomial time both n-fold programs:

l := min
{

xk1,...,kd+1
: x ∈ SF

}

,

u := max
{

xk1,...,kd+1
: x ∈ SF

}

.

Clearly, entry xk1,...,kd+1
attains a unique value in all tables with the given margins if and

only if l = u, which can therefore be tested in polynomial time. ✷

Finally, as for the special case of line-sums in Section 5.2.2, we have an output-
efficient algorithm for constructing the entire set of values that can occur in a specified
entry over the set SF of tables satisfying given hierarchical margin constraints.

Procedure 5.9 (revisited; constructing the set of values in an entry).

1. Initialize l := −∞, u := ∞, and E := ∅;

2. solve in polynomial time the following linear n-fold integer programs:

l̂ := min
{

xk1,...,kd+1
: l ≤ xk1,...,kd+1

≤ u, x ∈ SF

}

,

û := max
{

xk1,...,kd+1
: l ≤ xk1,...,kd+1

≤ u, x ∈ SF

}

;

3. if the problems in step 2 are feasible then update l := l̂ + 1, u := û − 1, E :=
E ⊎ {l̂, û}, and repeat step 2, else stop and output the set of values E.

5.3 Universality of n-fold integer programming

Let us introduce the following notation. For an integer s × t matrix D, let ⊟D be the
(t, s) × t bimatrix with first block the t × t identity and second block D:

⊟D :=

(

It

D

)

.

Now, introduce a special form of the n-fold product, defined for a matrix D, by the fol-
lowing:

D[n] := (⊟D)(n) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

It It · · · It

D 0 · · · 0
0 D · · · 0
...

...
. . .

...
0 0 · · · D

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

We consider such n-fold products of such m-fold products of the tiny fixed 1 × 3 matrix
(1 1 1). Note that (1 1 1)[m] is precisely the (3+m)×3m incidence matrix of the complete
bipartite graph K3,m. For instance, for m = 2, it is the matrix:

(

1 1 1
)[2]

=

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 1 1 0 0 0
0 0 0 1 1 1

⎞

⎟

⎟

⎟

⎟

⎠

.

5.3 Universality of n-fold integer programming 89

We can now rewrite Theorem 5.1 in the following compact and elegant form.

Theorem 5.12. Every rational polytope {y ∈ Rd
+ : Ay = b} stands in polynomial time

computable integer preserving bijection with some polytope of the special form:

{

x ∈ R3mn
+ :

(

1 1 1
)[m][n]

x = a
}

. (5.3)

Proof. Identify the space Rn×m×3 of arrays with R3mn by the coordinate ordering:

x =
(

x1,1,1, x1,1,2, x1,1,3, . . . , x1,m,1, x1,m,2, x1,m,3, . . . , xn,1,1, . . . , xn,m,3

)

.

Then the line-sum equations on arrays become the equations (1 1 1)[m][n]x = a on vec-
tors. Therefore, the polytope (5.3) becomes the 3-way line-sum polytope (5.1) and the
statement follows from the universality Theorem 5.1 for 3-way tables. ✷

Theorem 5.12 shows the universality of n-fold integer programming: every
(non)linear integer program can be lifted in polynomial time to an equivalent n-fold pro-
gram over a simple {0, 1}-valued bimatrix ⊟(1 1 1)[m] completely determined by a single
parameter m. Indeed, consider any (bounded) integer program:

min
{

f(y) : y ∈ Zd
+, Ay = b

}

. (5.4)

Construct in polynomial time an injection σ : {1, . . . , d} → {1, . . . , 3mn} embedding
each coordinate yi as some coordinate xσ(i) and representing the polytope {y ∈ Rd

+ :
Ay = b} as a polytope (5.3). Then the problem (5.4) lifts to the following n-fold integer
programming problem over the bimatrix ⊟(1 1 1)[m]:

min
{

f
(

xσ(1), . . . , xσ(d)

)

: x ∈ Z3mn
+ ,

(

⊟ (1 1 1)[m]
)(n)

x = a
}

. (5.5)

Moreover, for every fixed m, the program (5.5) can be solved in polynomial time for
linear and a variety of nonlinear functions f by Theorems 4.7–4.10 and 4.12.

Let g(m) := g(⊟(1 1 1)[m]) be the Graver complexity of the bimatrix defining the
universal program (5.5). When solving this n-fold program for any fixed m, the time
needed for constructing the relevant Graver basis G((1 1 1)[m][n]) and repeatedly using
it in the iterative augmentation process involves an O(ng(m)) term. While this is polyno-
mial for each fixed m, it may be quite large even for small values of m. So we suggest
to apply to (5.5) the approximation Scheme 4.21. This scheme, combined with universal-
ity, gives the following universal approximation scheme parameterized by k for arbitrary
(non)linear integer programming.

Procedure 5.13 (universal scheme for (non)linear integer programming).

Input: Arbitrary nonlinear integer program (5.4) given by integer matrix A and vector b,
function f presented by comparison oracle, and feasible point y0:

1. check by linear programming if program (5.4) is unbounded. Suppose not;

2. use the algorithm of Theorem 5.12 to lift (5.4) to equivalent program (5.5);

90 5 Multiway Tables and Universality

3. obtain an initial feasible point xk−1 by applying the scheme recursively, with x0

the point in program (5.5) corresponding to the point y0 in program (5.4);

4. compute the Graver basis G((1 1 1)[m][k]);

5. compute the following approximation of G((1 1 1)[m][n]):

Gm,n
k :=

{

x ∈ G
(

(1 1 1)[m][n]
)

: type(x) ≤ k
}

=
{

x : x is an n-lifting of some z ∈ G
(

(1 1 1)[m][k]
)}

;

6. use the algorithm of Lemma 3.10 with Gm,n
k instead of G

(

(1 1 1)[m][n]
)

to itera-
tively augment xk−1 to the best attainable point xk and output it.

Several remarks about the complexity of this universal approximation scheme are
in order. The time taken by step 2 is polynomial in 〈A, b〉 by Theorem 5.12. It can be
shown that the Graver basis G((1 1 1)[m][k]) can be obtained by a suitable permutation
of coordinates from the Graver basis G((1 1 1)[k][m]). Therefore, by Theorem 4.4, for
fixed k and variable m, the computation of G((1 1 1)[m][k]) in step 4 and its cardinality
are O(mg(k)) with g(k) = g(⊟(1 1 1)[k]) and hence polynomial in m. In particular, for
k = 2 they are O(m3). The time for computing Gm,n

k in step 5 and its cardinality for
fixed k and variable m and n are as follows:

(

n

k

)

∣

∣G
(

(1 1 1)[m][k]
)∣

∣ = O
(

nkmg(k)
)

,

and so are polynomial in m and n; for k = 2 they are O(n2m3). The time taken by the
iterative step 6 is harder to estimate and depends on the quality of the approximation of
G((1 1 1)[m][n]) provided by Gm,n

k and the type of function f .

5.4 Graver complexity of graphs and digraphs

Recall that the incidence matrix of a graph or a digraph G = (V,E) is the V × E matrix
D defined as follows: for a graph, Dv,e = 1 if edge e contains vertex v and Dv,e = 0
if not; for a digraph, Dv,e = −1 if edge e leaves vertex v, Dv,e = 1 if e enters v, and
Dv,e = 0 otherwise. Recall also that for an integer s× t matrix D, we denote by ⊟D the
(t, s) × t bimatrix with first block It and second block D.

In this section, we study the following new graph and digraph invariant, the signifi-
cance of which in nonlinear integer programming is explained below.

Definition 5.14. The Graver complexity of a graph or a digraph G is the Graver complex-
ity g(G) := g(⊟D) of the bimatrix ⊟D with D the incidence matrix of G.

Unfortunately, our understanding of this invariant is very limited. While it can be
computed by the finite Algorithm 4.6, this computation is out of reach even for very
small graphs. For instance, already the Graver complexity g(K3,4) of the small complete

5.4 Graver complexity of graphs and digraphs 91

bipartite graph K3,4 on 7 vertices is unknown. Nonetheless, in this section we do estab-
lish some bounds on the Graver complexity of the graphs K3,m. The main result here is
Theorem 5.19: the complexity g(K3,m) is exponential.

Here is a small example where we can compute the Graver complexity precisely.

Example 5.15 (the bipartite graph K3,2). Let A := (⊟D) be the (6, 5)× 6 bimatrix with
A1 = I6 and A2 = D the incidence matrix of the graph K3,2:

D =
(

1 1 1
)[2]

=

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 1 1 0 0 0
0 0 0 1 1 1

⎞

⎟

⎟

⎟

⎟

⎠

.

We compute the Graver complexity g(K3,2) = g(⊟D) = g(A) by Algorithm 4.6. Since
A2 = D is totally unimodular, we have G(A2) = G(D) = C(D) by Lemma 3.19. Let G2

be the matrix having as columns the elements of the Graver basis G(A2):

G2 := G
(

A2

)

= G(D) = C(D) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 −1 1 −1 0 0
−1 1 0 0 1 −1
0 0 −1 1 −1 1
−1 1 −1 1 0 0
1 −1 0 0 −1 1
0 0 1 −1 1 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The Graver basis of A1G2 = I6G2 = G2 (computed, say, by Algorithm 3.21) has 22
elements which are the columns of the following matrix and their antipodals:

G
(

A1G2

)

= G
(

A2

)

= ±

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 1 1 1 1 0 0 0 0
1 0 0 0 0 0 0 −1 −1 −1 −1
0 1 0 −1 −1 0 0 −1 −1 0 0
0 1 0 0 0 1 1 0 0 1 1
0 0 1 1 0 1 0 1 0 1 0
0 0 1 0 −1 0 −1 0 −1 0 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Using Algorithm 4.6, we obtain the Graver complexity of the bipartite graph K3,2:

g
(

K3,2

)

= max
{

‖v‖1 : v ∈ G
(

A1G2

)}

= 3.

The time taken by our algorithms for (non)linear n-fold integer programming over a
bimatrix A involves an O(ng(A)) term needed for constructing the relevant Graver basis
G(A(n)) and repeatedly using it in the iterative augmentation process.

Consider the many-commodity transshipment problem over a digraph G solved in
Section 4.3.1. The bimatrix underlying the n-fold integer program (4.3) in the proof of
Corollary 4.13 is precisely ⊟D with D the incidence matrix of G. So the time needed to
solve the nonlinear many-commodity transshipment problem by the algorithm of Corol-
lary 4.13 involves an O(ng(G)) term whose exponent g(G) is the Graver complexity of
G. This explains the significance of this digraph invariant.

92 5 Multiway Tables and Universality

Likewise, it can be shown that the many-commodity b-matching problem over an undi-
rected graph G, the precise definition of which is omitted, can be solved by an n-fold
program similar to (4.3), whose solution time involves an O(ng(G)) term with g(G) the
Graver complexity of the graph G, explaining its significance.

Finally, consider the universal n-fold integer program (5.5) discussed in Section 5.3
as follows:

min
{

f(x) : x ∈ Z3mn
+ ,

(

⊟ (1 1 1)[m]
)(n)

x = a
}

.

The bimatrix defining this universal program is ⊟(1 1 1)[m] with (1 1 1)[m] the incidence
matrix of the complete bipartite graph K3,m. Therefore, the time needed to solve this
universal program for any fixed m involves an O(ng(m)) term, where

g(m) := g
(

⊟ (1 1 1)[m]
)

= g
(

K3,m

)

.

So the Graver complexity g(m) of the complete bipartite graph K3,m controls the solution
time of the universal integer program, explaining its special importance. In particular,
since integer programming feasibility is NP-complete, g(m) must grow as a function of
m under the hypothesis P �= NP. We show below that, in fact, it grows exponentially fast,
as g(m) = Ω(2m). This provides a new type of evidence of unusual flavor supporting
the P �= NP hypothesis. An exponential upper bound g(m) = O(m46m) holds as well
and can be easily derived from Cramer’s rule and Hadamard’s bound. Narrowing the
gap between these bounds remains a challenging and important problem. While g(1) =
g(K3,1) = 0, g(2) = g(K3,2) = 3, and g(3) = g(K3,3) = 9, the value of g(m) =
g(K3,m) is unknown for all m ≥ 4.

We proceed to establish the claimed exponential lower bound on g(m). Throughout,
let A := ⊟(1 1 1)[m] be the bimatrix with first block A1 = I3m and second block
A2 = (1 1 1)[m] the incidence matrix of K3,m. So g(m) = g(K3,m) = g(A). Now, A2 is
totally unimodular, so by Lemma 3.19, its Graver basis equals its set of circuits. Let G2

denote the matrix having as columns the elements of G(A2) = C(A2).
Our starting point is the following lemma.

Lemma 5.16. Any circuit h ∈ C(G2) of G2 gives a lower bound g(m) ≥ ‖h‖1.

Proof. First, our data satisfies A1G2 = I3mG2 = G2. Second, C(G2) ⊆ G(G2) holds.
Therefore, computing the Graver complexity by Algorithm 4.6, we obtain the following:

g(m) = g(A) = max
{

‖v‖1 : v ∈ G(G2)
}

≥ max
{

‖h‖1 : h ∈ C(G2)
}

.
✷

We use the following notation with m any integer clear from the context. Let

B := {a, b, c}, U :=
{

u1, . . . , um

}

, V := B ⊎ U, E := B × U.

Then V and E are, respectively, the set of vertices and set of edges of the complete bi-
partite graph K3,m, and index, respectively, the rows and columns of its incidence matrix
A2 = (1 1 1)[m]. It is convenient to interpret each vector x ∈ ZE also as (1) an integer-
valued function on the set of edges E = B×U ; (2) a 3×m matrix with rows and columns

5.4 Graver complexity of graphs and digraphs 93

indexed, respectively, by B and U . With these interpretations, x is in C(A2) = G(A2) if
and only if (1) as a function on E, its support is a circuit of K3,m, along which it alter-
nates in values ±1 and can be indicated by the sequence (v1, v2, . . . , vl) of vertices of
the circuit of K3,m on which it is supported, with the convention that its value is +1 on
the first edge (v1, v2) in that sequence; (2) as a matrix, it is nonzero, has 0,±1 entries,
has zero row and column sums, and has inclusion-minimal support with respect to these
properties.

We also use the following terminology. Suppose that x1, . . . , xk ∈ C(A2) = G(A2)

are circuits satisfying a relation
∑k

i=1 hix
i = 0 with all hi positive. We call it a primitive-

relation if (h1, . . . , hk) is the restriction of a circuit h ∈ C(G2) ⊆ G(G2) to the columns

of G2 corresponding to the xi, in which case g(m) ≥ ∑k
i=1 hi.

Here is an example that demonstrates this notation and also plays a role below.

Example 5.17 (m = 4: lower bound on the Graver complexity of K3,4). Consider the
following seven circuits of (1 1 1)[4] and K3,4:

u1 u2 u3 u4

0 0 −1 1 a

x1 := (a, u4, c, u2, b, u3) = 0 −1 1 0 b

0 1 0 −1 c

−1 1 0 0 a

x2 := (a, u2, c, u3, b, u1) = 1 0 −1 0 b

0 −1 1 0 c

0 −1 0 1 a

x3 := (a, u4, b, u1, c, u2) = 1 0 0 −1 b

−1 1 0 0 c

−1 0 0 1 a

x4 := (a, u4, b, u2, c, u1) = 0 1 0 −1 b

1 −1 0 0 c

1 0 −1 0 a

x5 := (a, u1, b, u2, c, u3) = −1 1 0 0 b

0 −1 1 0 c

0 −1 1 0 a

x6 := (a, u3, b, u4, c, u2) = 0 0 −1 1 b

0 1 0 −1 c

0 1 0 −1 a

x7 := (a, u2, b, u3, c, u4) = 0 −1 1 0 b

0 0 −1 1 c

94 5 Multiway Tables and Universality

Then the following linear dependency on x1, . . . , x7 is a primitive-relation:

7
∑

i=1

hix
i = x1 + 2x2 + 3x3 + 3x4 + 5x5 + 6x6 + 7x7 = 0,

which demonstrates the bound g(4) ≥ ∑7
i=1 hi = 1 + 2 + 3 + 3 + 5 + 6 + 7 = 27.

We proceed with the general lower bound. We have the following lemma.

Lemma 5.18. Suppose there are k circuits xi of (1 1 1)[m] which admit a primitive-

relation
∑

i hix
i = 0 with xk = (a, um−2, b, um−1, c, um) and hk odd. Then there are

also k + 2 circuits x̄i of (1 1 1)[m+1] which admit a primitive-relation
∑

i h̄ix̄
i = 0

with x̄k+2 = (a, um−1, b, um, c, um+1) and h̄k+2 odd, where the h̄i are given by the

following:

h̄i = 2hi, i = 1, . . . , k − 1, h̄k+2 = h̄k+1 = h̄k = hk. (5.6)

Proof. Using the natural embedding of the complete bipartite graph K3,m in K3,m+1,
we can interpret circuits of the former also as circuits of the latter. Put yi := xi for
i = 1, . . . , k − 1 and define the following circuits:

u1 · · · um−2 um−1 um um+1

0 · · · 1 0 0 −1 a

yk := (a, um−2, b, um−1, c, um+1) = 0 · · · −1 1 0 0 b

0 · · · 0 −1 0 1 c

0 · · · 1 0 −1 0 a

yk+1 := (a, um−2, b, um+1, c, um) = 0 · · · −1 0 0 1 b

0 · · · 0 0 1 −1 c

0 · · · 0 0 −1 1 a

yk+2 := (a, um+1, b, um−1, c, um) = 0 · · · 0 1 0 −1 b

0 · · · 0 −1 1 0 c

Note that these circuits satisfy yk + yk+1 + yk+2 = 2xk. Suppose that
∑

i h̄iy
i = 0

is a nontrivial relation on the yi. Without loss of generality, we may assume that the h̄i

are relatively prime integers, at least one of which is positive. Since the edges (a, um+1),
(b, um+1), (c, um+1) of K3,m+1 are not in K3,m and hence in no circuit yi for i < k,
the restrictions of the relation

∑

i h̄iy
i = 0 to these edges (or to the corresponding matrix

entries) force the equalities h̄k+2 = h̄k+1 = h̄k. Therefore,

0 =
k+2
∑

i=1

h̄iy
i =

k−1
∑

i=1

h̄iy
i + h̄k

(

yk + yk+1 + yk+2
)

=

k−1
∑

i=1

h̄ix
i + h̄k

(

2xk
)

=

k−1
∑

i=1

h̄ix
i + 2h̄kxk,

5.4 Graver complexity of graphs and digraphs 95

which is a nontrivial integer relation on the xi. So there must exist an integer α so that,
for all i, the coefficient of xi in that relation is α times the coefficient of xi in the relation
∑k

i=1 hix
i = 0:

h̄i = αhi, i = 1, . . . , k − 1, 2h̄k = αhk.

Since all the hi and at least one of the h̄i are positive, these equations imply that α is
positive. Therefore, all h̄i are positive, implying that

∑

i h̄iy
i = 0 is a primitive-relation

on the yi. Since hk is odd, the equation 2h̄k = αhk implies that α is even and therefore
α = 2µ for some positive integer µ, implying h̄k = µhk. Then µ divides each of the h̄i,
which are relatively prime, and therefore µ = 1 and α = 2. Therefore, the h̄i satisfy (5.6),
and in particular, h̄k+2 = hk is odd.

Now, apply to the vertices of K3,m+1 a permutation that maps um+1, um−1, um to
um−1, um, um+1 in that order and fixes the rest of the vertices. For each i = 1, . . . , k+2,
let x̄i be the circuit of K3,m+1 which is the image of yi under this permutation. Then
the x̄i also satisfy the primitive-relation

∑

i h̄ix̄
i = 0 with the same coefficients h̄i and

x̄k+2 = (a, um−1, b, um, c, um+1), as claimed. ✷

We are now in position to prove the following exponential bound from [13].

Theorem 5.19. For every m ≥ 4, we have g(m) = g(K3,m) ≥ 17 · 2m−3 − 7.

Proof. We prove by induction on m that, for all m ≥ 4, there are 2m − 1 circuits xi

of (1 1 1)[m] with x2m−1 = (a, um−2, b, um−1, c, um), satisfying a primitive-relation
∑

i hix
i = 0 with h2m−1 = 7 and

∑

i hi = 17 · 2m−3 − 7, which implies the bound.
The induction basis at m = 4 is provided by the circuits in Example 5.17.
Suppose that the hypothesis holds for some m ≥ 4 and let xi be 2m− 1 circuits with

corresponding coefficients hi verifying the hypothesis. Lemma 5.18 applied to this data
with k = 2m − 1 then guarantees the existence of k + 2 = 2m + 1 = 2(m + 1) − 1
circuits x̄i with corresponding coefficients h̄i which satisfy the following:

x̄2(m+1)−1 =
(

a, um−1, b, um, c, um+1

)

, h̄2(m+1)−1 = h̄2m = h̄2m−1 = h2m−1 = 7,

and, moreover,

2m+1
∑

i=1

h̄i =
2m−2
∑

i=1

2hi + 3h2m−1 = 2
2m−1
∑

i=1

hi + h2m−1

= 2
(

17 · 2m−3 − 7
)

+ 7 = 17 · 2(m+1)−3 − 7.
✷

Example 5.20 (m = 5: lower bound on the Graver complexity of K3,5). Using our
construction, we obtain the following nine circuits of (1 1 1)[5] and K3,5:

x1 =
(

a, u5, c, u2, b, u4

)

, x2 =
(

a, u2, c, u4, b, u1

)

, x3 =
(

a, u5, b, u1, c, u2

)

,

x4 =
(

a, u5, b, u2, c, u1

)

, x5 =
(

a, u1, b, u2, c, u4

)

, x6 =
(

a, u4, b, u5, c, u2

)

,

x7 =
(

a, u2, b, u4, c, u3

)

, x8 =
(

a, u2, b, u3, c, u5

)

, x9 =
(

a, u3, b, u4, c, u5

)

,

96 5 Multiway Tables and Universality

which satisfy the primitive-relation:

2x1 + 4x2 + 6x3 + 6x4 + 10x5 + 12x6 + 7x7 + 7x8 + 7x9 = 0,

providing the lower bound g(K3,5) = g(5) ≥ 61 on the Graver complexity of K3,5.

Notes

Multiindex transportation problems and polytopes have been studied for decades, starting
with the classical 1952 paper [75] by Motzkin. Theorem 5.1 shows that, remarkably, ev-

ery rational polytope is an l × m × 3 line-sum transportation polytope. This enables to
reduce the study of any algorithmic or structural property of rational convex polytopes to
such triple-index polytopes, whose defining matrix is much more structured and depends
on two parameters l and m only. A particularly important question, triggered by a letter
of M. Hirsch to G. Dantzig in 1957, and open to date, is whether the diameter of the graph
of every polytope is polynomially bounded in its dimension and number of facets; see
[61] for an up-to-date survey. The universality theorem reduces this question to l×m× 3
line-sum polytopes. Motivated by their universality, some bounds on the diameter of such
multiindex polytopes were recently established in [25]. Let us also mention a universality
theorem for {0, 1}-polytopes in [15] by Billera and Sarangarajan, which asserts that every
polytope all of whose vertices are {0, 1}-valued, is the face of some traveling salesman
polytope. Privacy in databases is an area which is becoming increasingly important in the
Internet era and is studied extensively by computer scientists, public data agencies, and
statisticians. Let us mention the papers [8], [22], and [36], and the references therein, as
informative sources corresponding to these three lines of investigation. Corollaries 5.8
and 5.11 provide the first polynomial time solutions of some of the most fundamental
problems that occur in this area. It should be noted, though, that the running time of n-
fold integer programming algorithms is typically a polynomial of very large degree. It is
therefore of interest to study approximations of the Graver basis as in Sections 4.5 and
5.3. Initial experimentations for 3 × 3 × n multiway tables show very promising results,
but much more study is needed. The Graver complexity of a graph and a digraph was
introduced in [13]. The importance of these invariants stems from the fact that they form
the degree of the polynomial time complexity of solving multiway table and multicom-
modity flow problems. Unfortunately, they seem to be very hard to compute, and even the
complexity g(K3,4) of the 7-vertex bipartite graph K3,4 is unknown, coincidentally rem-
iniscent of the hardness of the Shannon capacity invariant of a graph which is unknown
even for the 7-vertex circuit C7.

6 Nonlinear Combinatorial Optimization

In this chapter, we discuss the nonlinear combinatorial optimization problem, namely,

min{f(Wx) : x ∈ S} (6.1)

with S ⊆ {0, 1}n presented compactly or by an oracle, integer d × n matrix W , and
arbitrary function f : Zd → Z. We consider the minimization form, but our results hold
for any function f and hence apply for the maximization form as well.

We assume as usual that the function f is presented by a mere comparison oracle. But
unlike previous chapters, were we have assumed and exploited some structure on f , such
as being convex, here we allow the function f to be arbitrary, making the problem much
harder. In fact, any algorithm that solves problem (6.1) for arbitrary function f , must,
whenever the image WS = {Wx : x ∈ S} of S under W contains at least two points,
include every image point in some query to the comparison oracle of f and hence must
compute the entire image. Indeed, if some point ŷ ∈ WS is not included in any query
then the algorithm cannot tell between the possible situations where either f(ŷ) is strictly
smaller or strictly larger than f(y) for every y ∈ WS \ {ŷ}, and hence cannot tell if the
optimal solution is in the fiber of ŷ or not and cannot solve the problem correctly.

Note that this is in contrast with the special case of maximizing convex functions (or
minimizing concave functions) considered in Chapter 2, where it suffices to compute the
typically smaller subset vert(conv(WS)) of vertices of the image.

So the time taken by any algorithm for solving problem (6.1) is at least the cardinality
|WS| of the image. Therefore, when W is binary encoded, the problem is intractable and
hopeless even in fixed dimension d = 1, for instance, the image in Z of S := {0, 1}n

under w := (1, 2, 4, . . . , 2n−1) has |wS| = 2n points, since

wS =
{
∑n

j=1 2j−1xj : x ∈ {0, 1}n
}

=
{

0, 1, . . . , 2n − 1
}

.

Therefore, in this chapter we assume that the weight matrix W is unary encoded. We
follow the general outline of the Naı̈ve Strategy 2.1 of Section 2.1, consisting of three
steps: computing the image WS, finding a point y ∈ WS minimizing f(y) over WS,
and finding a feasible point x ∈ W−1(y)∩S in the fiber of y. The key problem is the first
step of the strategy, that of computing the image WS.

We solve (6.1) in polynomial time for several types of combinatorial families S, using
different implementations of Strategy 2.1 involving a variety of methods. For matroids, in
Section 6.1.2, we compute the image exactly, leading to deterministic algorithm in The-
orem 6.8. For matroid intersections, in Section 6.1.3, we compute a random subset of
the image, leading to randomized algorithm in Theorem 6.12. Finally, for arbitrary inde-
pendence systems, in Section 6.2.1, we compute an approximating subset of the image,
leading to approximative algorithm in Theorem 6.23. This approximation has unusual fla-
vor, and its quality is bounded by certain Frobenius numbers derived from the entries of
W . We also establish an exponential lower bound in Theorem 6.24 on the time needed to
solve the problem to optimality.

98 6 Nonlinear Combinatorial Optimization

We conclude with some concrete applications including experimental design in statis-
tics and universal Gröbner bases in computational algebra.

The table below enables quick navigation among theorems in this chapter providing
polynomial time solution of problem (6.1). Additional results are in the applications Sec-
tion 6.3. The first row indicates assumptions on the data (combinatorial structure of S,
assumptions on d, assumptions on W), and the second row indicates the type of polyno-
mial time algorithm established herein. Our results for matroids and matroid intersections
apply to bases and independent sets. Restricting attention to independent sets, all systems
considered in the table are independence systems, of generality and difficulty increasing
from left to right.

Single matroid Two matroid intersections Any independence system

d arbitrary d arbitrary d = 1

W unary encoded W unary encoded W has entries in {a1, . . . , ap}
Theorem 6.8 Theorem 6.12 Theorem 6.23

deterministic randomized r(a1, . . . , ap)-approximative

6.1 Nonlinear matroid optimization

In this section, we solve the nonlinear combinatorial optimization problem (6.1) over
matroids and two matroid intersections for arbitrary function f and unary-encoded W .
The following table summarizes the time complexities of all our algorithmic results for
matroids and matroid intersections, including the results of this section and the results of
Section 2.5.2 on the maximization of convex functions.

Single matroid Two matroid intersections

Maximizing convex f Corollary 2.25 Corollary 2.26

polynomial in 〈W 〉 polynomial in W

Optimizing any f Theorem 6.8 Theorem 6.12

polynomial in W randomized polynomial in W

6.1.1 Preparation

As noted, our solution of problem (6.1) follows the outline of Strategy 2.1, consisting of
three steps: computing the image WS, finding a point y ∈ WS minimizing f(y) over
WS, and finding a feasible point x ∈ W−1(y) ∩ S in the fiber of y.

We begin with some preparatory lemmas which are used in the sequel. As usual
‖W‖∞ = maxi,j |Wi,j |. Also, for any 0 ≤ r ≤ n, let {0, 1}n

r be the set of all vectors
x ∈ {0, 1}n with precisely r entries equal to 1, that is, with | supp(x)| = r.

The first lemma enables to restrict attention to nonnegative weight matrices.

6.1 Nonlinear matroid optimization 99

Lemma 6.1. The image of S ⊆ {0, 1}n
r under an integer d × n matrix W is obtainable

as the translation WS = W̄S−v of the image of S under the nonnegative integer matrix

W̄ defined by W̄i,j := Wi,j + ‖W‖∞ for all i, j with v := r‖W‖∞1 ∈ Zd.

Proof. The proof follows at once since W̄x = Wx + v for every x ∈ {0, 1}n
r . ✷

The restriction of S ⊆ {0, 1}n to a subset J ⊆ N := {1, . . . , n} of the ground set
is the set SJ := {x ∈ S : supp(x) ⊆ J} ⊆ {0, 1}n of all points in S supported on J .
Recall the fiber problem from Section 2.1: given S ⊆ Zn, integer d × n matrix W , and
point y ∈ Zd, find x ∈ W−1(y) ∩ S, that is, x ∈ S with Wx = y, or assert that none
exists. The next lemma shows that the fiber problem for S ⊆ {0, 1}n can be solved by
deciding if y ∈ WSJ = {Wx : x ∈ SJ} for n + 1 restrictions of S.

Lemma 6.2. The fiber problem of finding x ∈ W−1(y) ∩ S or asserting that none exists

can be solved by deciding if y ∈ WSJ for n + 1 restrictions SJ of S ⊆ {0, 1}n.

Proof. If y /∈ WSN then assert that there is no feasible point in the fiber of y. Otherwise,
set J0 := N and for j = 1, 2, . . . , n repeat the following iteration: set J := Jj−1 \ {j};
if y ∈ WSJ then set Jj := J , else set Jj := Jj−1. Output the indicator x := 1Jn

of the
final set Jn obtained that way. Then x ∈ W−1(y) ∩ S. ✷

We conclude our preparation with some properties of multivariate polynomials. Let
x = (x1, . . . , xd) be a vector of d variables. Each u ∈ Zd

+ serves as an exponent of

a corresponding monomial xu :=
∏d

i=1 xui

i in x. A (multivariate) polynomial in x is a
linear combination g = g(x) :=

∑

guxu of finitely many monomials with coefficients gu

in a suitable field. A polynomial is integer (rational, real, complex) if all its coefficients
are integer (rational, real, complex). We mostly restrict attention to integer or rational
polynomials, whose coefficients can be processed by our algorithms. The support of g
is the finite set supp(g) := {u ∈ Zd

+ : gu �= 0} of exponents of all monomials xu

having nonzero coefficients gu. We denote by ‖g‖∞ := ‖(gu : u ∈ Zd
+)‖∞ the maximum

absolute value of any coefficient of g. The degree of g is deg(g) := max{‖u‖1 : u ∈
supp(g)}, that is, the maximum value ‖u‖1 =

∑d
i=1 ui of an exponent of a monomial xu

having a nonzero coefficient gu. As usual, an evaluation oracle for g is one that, queried
on x ∈ Zd, returns g(x).

We need two lemmas about polynomials. The first one concerns interpolation.

Lemma 6.3. For any fixed d, there is an algorithm that, given s ∈ Z+ and d-variate in-

teger polynomial g presented by evaluation oracle, with supp(g) ⊆ {0, 1, . . . , s}d, com-

putes supp(g) and all gu, u ∈ supp(g), in time polynomial in s and 〈‖g‖∞〉.

Proof. Let U := {0, 1, . . . , s}d so that g(x) =
∑

u∈U guxu. For each of the polynomially

many integers t = 1, 2, . . . , (s + 1)d, let x(t) be the vector in Zd obtained by substituting

xi := t(s+1)i−1

for i = 1, . . . , d, and use the evaluation oracle of g to compute g(x(t)).
We then obtain a system of (s+1)d linear equations in (s+1)d indeterminates gu, u ∈ U ,

100 6 Nonlinear Combinatorial Optimization

where, for t = 1, 2, . . . , (s + 1)d, the tth equation is as follows:

∑

u∈U

gu

(

x(t)
)u

=
∑

u∈U

gu

d
∏

i=1

(

t(s+1)i−1)ui
=

∑

u∈U

t(
∑d

i=1
ui(s+1)i−1)gu = g

(

x(t)
)

.

As u = (u1, . . . , ud) runs through U , the sum
∑d

i=1 ui(s + 1)i−1 attains precisely all
|U | = (s + 1)d distinct values 0, 1, . . . , (s + 1)d − 1. This implies that, under the total

order of the points u in U by increasing value of
∑d

i=1 ui(s + 1)i−1, the vector of coef-

ficients of the gu in the tth equation is precisely the point (t0, t1, . . . , t(s+1)d−1) on the

so-called moment curve in RU ∼= R(s+1)d

. Therefore, the equations are linearly indepen-
dent. Moreover, each coefficient and each right-hand side of each equation in this system
have a polynomially bounded binary length, since

(

x(t)
)u ≤

(

(s + 1)d
)(s+1)d−1

,
∣

∣g
(

x(t)
)∣

∣ ≤ (s + 1)d
(

(s + 1)d
)(s+1)d−1‖g‖∞.

Therefore, the system of equations can be solved in polynomial time, and the coefficients
gu and the support supp(g) = {u ∈ U : gu �= 0} be obtained as claimed. ✷

The second lemma, from [93], bounds the number of zeros of a polynomial.

Lemma 6.4. Let g be a nonzero n-variate complex polynomial with deg(g) ≤ r and q a

positive integer. Then g(x) = 0 for at most r
q of the vectors x ∈ {1, 2, . . . , q}n.

Proof. We show by induction on n that g(x) = 0 for at most r
q qn = rqn−1 such vectors.

For n = 1, this holds since any nonzero univariate polynomial of degree at most r has
at most r complex roots. Now, suppose that n ≥ 2 and g is nonzero. Then for some
0 ≤ k ≤ r and some (n − 1)-variate polynomials g0, . . . , gk with gk �= 0:

g
(

x1, . . . , xn

)

=

k
∑

i=0

gi

(

x1, . . . , xn−1

)

xi
n.

For each vector (v1, . . . , vn−1) ∈ {1, . . . , q}n−1 which is not a zero of gk, we have
that g(v1, . . . , vn−1, xn) is a nonzero univariate polynomial in xn of degree at most
k and hence is zero for at most k values of xn. So g has at most kqn−1 such zeros.
For each vector (v1, . . . , vn−1) ∈ {1, . . . , q}n−1 which is a zero of gk it may be that
g(v1, . . . , vn−1, xn) is zero for all q values of xn in {1, . . . , q}. Since deg(gk) ≤ r − k,
by induction gk has at most (r − k)qn−2 zeros (v1, . . . , vn−1) ∈ {1, . . . , q}n−1. So g
has at most q(r − k)qn−2 such zeros. Therefore, the total number of zeros of g at most
kqn−1 + q(r − k)qn−2 = rqn−1 and the induction step follows. ✷

6.1.2 Matroids

The main result of this subsection is Theorem 6.8: for every fixed d, we can minimize
any nonlinear composite function f(Wx) with W presented in unary, over the bases or
independent sets of a vectorial matroid, in polynomial time.

6.1 Nonlinear matroid optimization 101

Let M be the vectorial matroid of an integer r × n matrix A of rank r and let S :=
{1B : B ∈ B} be its set of bases. Let W be a nonnegative integer d × n weight matrix.
For each x ∈ {0, 1}n

r let Ax := [Aj : j ∈ supp(x)] be the r×r submatrix of A consisting
of the columns corresponding to nonzero entries of x.

For each y ∈ Zd
+ define the following:

gy :=
∑

{

det2
(

Ax
)

: x ∈ W−1(y) ∩ S
}

.

Let b = (b1, . . . , bd) be a vector of variables. Define the following polynomial in b:

g = g(b) :=
∑

y

gyby =
∑

y

gy

d
∏

i=1

byi

i . (6.2)

The following lemma bounds the support and norm of g and shows that the image WS
of bases coincides with the support of g. As usual, ∆(A) denotes the maximum absolute
value of a determinant of a square submatrix of A.

Lemma 6.5. For every integer r × n matrix A of rank r and nonnegative integer d × n
matrix W , with S the bases of the matroid of A, the polynomial g satisfies the following:

supp(g) = WS ⊆
{

0, 1, . . . , r‖W‖∞
}d

, ‖g‖∞ ≤
(

n

r

)

∆2(A).

Proof. We have det(Ax) �= 0 if and only if x ∈ S. Therefore, gy �= 0 if and only if
W−1(y) ∩ S �= ∅, that is, if and only if y ∈ WS. The first claim then follows by the
following:

supp(g) =
{

y : gy �= 0
}

= WS ⊆ W{0, 1}n
r ⊆

{

0, 1, . . . , r‖W‖∞
}d

.

The second claim, bounding ‖g‖∞, follows by noting that for all y ∈ Zd
+ we have the

following:

∣

∣gy

∣

∣ ≤ |S|∆2(A) ≤
∣

∣{0, 1}n
r

∣

∣∆2(A) =

(

n

r

)

∆2(A).
✷

Let A(b) be the r × n matrix obtained from A by multiplying, for j = 1, . . . , n,

column Aj by monomial bW j

=
∏d

i=1 b
Wi,j

i having as exponent column W j of W :

Aj(b) := bW j

Aj =

d
∏

i=1

b
Wi,j

i Aj , j = 1, . . . , n.

The next lemma provides an efficient evaluation oracle for the polynomial g.

Lemma 6.6. For every integer r × n matrix A of rank r and nonnegative integer d × n
matrix W , the following identity of polynomials in variables b, which enables to evaluate

g(b) for any given b ∈ Zd in time polynomial in W and 〈A, b〉, holds:

g(b) = det
(

A(b)AT
)

.

102 6 Nonlinear Combinatorial Optimization

Proof. The classical Binet–Cauchy identity for two r×n matrices B and C is as follows:

det
(

BCT
)

=
∑

x∈{0,1}n
r

det
(

Bx) det(Cx). (6.3)

Applying the Binet–Cauchy identity to B := A(b) and C := A, we obtain the claimed
identity, with S ⊆ {0, 1}n

r the set of bases of the vectorial matroid of A:

det
(

A(b)AT
)

=
∑

x∈{0,1}n
r

det
(

Ax(b)
)

det(Ax) =
∑

x∈{0,1}n
r

n
∏

j=1

(

bW j)xj
det2

(

Ax
)

=
∑

x∈S

b(
∑n

j=1
xjW j)det2

(

Ax
)

=
∑

x∈S

bWxdet2
(

Ax
)

=
∑

y

by
∑

x∈W−1(y)∩S

det2
(

Ax
)

=
∑

y

gyby = g(b).

Now, given any b ∈ Zd, we can clearly evaluate g(b) = det(A(b)AT) in time which
polynomial in W , 〈A, b〉, by computing the determinant of an integer matrix. ✷

We can now compute the image of the bases or independent sets of a matroid.

Lemma 6.7. For every fixed d, there is an algorithm that, given vectorial matroid M
which is presented by integer r × n matrix A, and integer d× n matrix W , in time which

is polynomial in 〈A〉 and W , computes the image WS of the set S := {1B : B ∈ B} of

bases or set S := {1I : I ∈ I} of independent sets of M .

Proof. We begin with the statement for bases. Removing some rows of A if necessary,
we may assume that A has rank r and therefore S = {1B : B ∈ B} ⊆ {0, 1}n

r . By
Lemma 6.1, we may then assume that W is nonnegative. Define the polynomial g as in
(6.2). By Lemma 6.5, we have supp(g) ⊆ {0, 1 . . . , s}d with s := r‖W‖∞ and ‖g‖∞ ≤
(

n
r

)

∆2(A). By Lemma 6.6, we can realize in polynomial time an evaluation oracle for
the polynomial g. So we can apply the algorithm of Lemma 6.3 and compute supp(g),
which by Lemma 6.5 provides the image as WS := supp(g), in time polynomial in s and
〈‖g‖∞〉 and hence polynomial in W and 〈A〉.

We continue with the statement for S = {1I : I ∈ I} the independent sets. Let
W̄ := [W 0] be the d× (n+ r) matrix obtained by appending to W the d× r zero matrix
and let Ā := [A Ir] be the r × (n + r) matrix obtained by appending to A the r × r
identity matrix. Let S̄ := {1B : B ∈ B̄} be the set of bases of the vectorial matroid M̄ of
Ā. Then it is not hard to verify that WS = W̄ S̄, which can be computed in polynomial
time by the above algorithm for bases of M̄ . ✷

We can now obtain a result of [10] about nonlinear matroid optimization.

Theorem 6.8. For every fixed d, there is an algorithm that, given vectorial matroid M of

integer r × n matrix A, integer d × n matrix W , and function f : Zd → R presented by

comparison oracle, solves in time polynomial in 〈A〉,W , the problem:

min
{

f(Wx) : x ∈ S
}

(6.4)

over the bases S := {1B : B ∈ B} or independent sets S := {1I : I ∈ I} of M .

6.1 Nonlinear matroid optimization 103

Proof. Use the algorithm of Lemma 6.7 and compute the image WS. Then use the com-
parison oracle of f and obtain a point y ∈ WS minimizing f over WS.

We proceed to show how to implement the algorithm of Lemma 6.2 to obtain a point
x ∈ W−1(y)∩S. For this, we need to show how to decide if y ∈ WSJ for the restriction
SJ = {x ∈ S : supp(x) ⊆ J} of S to any subset J ⊆ {1, . . . , n}.

Consider any such restriction. Let Ā be the r×n matrix obtained from A by replacing
each column Aj , j /∈ J , by the zero vector 0 ∈ Zr. If S is the set of bases and rank(Ā) <
rank(A) then SJ = ∅ so y /∈ WSJ . Otherwise, namely, if S is the set of bases and
rank(Ā) = rank(A), or S is the set of independent sets, then SJ is precisely the set of
bases or independent sets, respectively, of the matroid M̄ of Ā. Now, compute WSJ by
the algorithm of Lemma 6.7 for M̄ and check if y ∈ WSJ .

Using this decision procedure for restrictions, we can indeed use the algorithm of
Lemma 6.2 and obtain x ∈ W−1(y) ∩ S which is an optimal solution. ✷

6.1.3 Matroid intersections

We proceed to solve the nonlinear optimization problem over two matroid intersections.
The general outline of the solution method is similar to the one over matroids, but the
problem is harder and we need to incorporate randomization.

The main result here is Theorem 6.12: for every fixed d, we can minimize any nonlin-
ear composite function f(Wx) with W in unary, over the common bases or independent
sets of two vectorial matroids, in randomized polynomial time.

Let M1, M2 be vectorial matroids of integer r × n matrices A1, A2 of rank r and let
S := {1B : B ∈ B1 ∩ B2} be the set of common bases. Let W be a nonnegative integer
d × n weight matrix. As before, for each x ∈ {0, 1}n

r let Ax
k := [Aj

k : j ∈ supp(x)] be
the corresponding r × r submatrix of Ak for k = 1, 2.

Let a = (a1, . . . , an) and b = (b1, . . . , bd) be vectors of n variables and d variables,
respectively. For each y ∈ Zd

+, define the following polynomial in a:

gy(a) :=
∑

{

det
(

Ax
1

)

det
(

Ax
2

)

ax : x ∈ W−1(y) ∩ S
}

, ax =

n
∏

j=1

a
xj

j . (6.5)

Now, define the following polynomial in both vectors of variables a and b:

g = g(a, b) :=
∑

y

gy(a)by, by =

d
∏

i=1

byi

i . (6.6)

We now consider numerical substitutions of vectors a ∈ Zn into g = g(a, b), turning
g into a polynomial in b only. In what follows, we often make random substitutions for a,
in which case g becomes a random polynomial in b with random support supp(g) = {y ∈
Zd

+ : gy(a) �= 0}. The following lemma bounds the norm and support of g under such
substitutions and shows that any point in the image WS of common bases appears in the
random support of g with high probability.

104 6 Nonlinear Combinatorial Optimization

Lemma 6.9. Let A1, A2 be integer r×n matrices of rank r, S the set of common bases of

their vectorial matroids, and W nonnegative integer d×n matrix. Let g be the polynomial

in b obtained by substituting a ∈ {1, 2, . . . , q}n into g(a, b). Then

supp(g) ⊆ WS ⊆
{

0, 1, . . . , r‖W‖∞
}d

, ‖g‖∞ ≤
(

n

r

)

qr∆
(

A1

)

∆
(

A2

)

.

If a is randomly uniformly sampled from {1, 2, . . . , q}n then, for every y ∈ WS,

P
[

y ∈ supp(g)
]

≥ 1 − r

q
.

Proof. We begin with the claims on the support and norm. For the support, note that if
y /∈ WS then W−1(y) ∩ S = ∅ and hence gy(a) = 0 for any a. Therefore,

supp(g) =
{

y : gy(a) �= 0
}

⊆ WS ⊆ W{0, 1}n
r ⊆

{

0, 1, . . . , r‖W‖∞
}d

.

For the bound on the norm ‖g‖∞, note that for all y ∈ Zd
+, we have the following:

∣

∣gy(a)
∣

∣ ≤ |S|∆
(

A1

)

∆
(

A2

)

qr ≤
∣

∣{0, 1}n
r

∣

∣∆
(

A1

)

∆
(

A2

)

qr =

(

n

r

)

qr∆
(

A1

)

∆
(

A2

)

.

For the claim on random substitutions, consider any point y ∈ WS. Consider

gy(a) =
∑

{

det
(

Ax
1

)

det
(

Ax
2

)

ax : x ∈ W−1(y) ∩ S
}

as a polynomial in a. Since distinct x ∈ {0, 1}n give distinct monomial ax, no cancela-
tions occur among terms in the sum defining gy(a). Since y is in the image, there is some
x ∈ W−1(y) ∩ S and hence the monomial ax appears with coefficient det(Ax

1) det(Ax
2)

which is nonzero since x is a common basis. Therefore, gu(a) is a nonzero polynomial in
a of degree r. The claim now follows from Lemma 6.4 which bounds the probability of
gy(a) = 0 which is equivalent to y /∈ supp(g). ✷

Let A1(a, b) be the r × n matrix obtained from the matrix A1 by multiplying, for

j = 1, . . . , n, the column Aj
1 by the monomial ajb

W j

= aj

∏d
i=1 b

Wi,j

i , that is,

Aj
1(a, b) := ajb

W j

Aj
1 = aj

d
∏

i=1

b
Wi,j

i Aj
1, j = 1, . . . , n.

The next lemma provides an efficient evaluation oracle for the polynomial g.

Lemma 6.10. For every integer r×n matrices A1, A2 of rank r and nonnegative integer

d × n matrix W , the following identity, which enables to evaluate g(a, b) for any given

a ∈ Zn and b ∈ Zd in time polynomial in W and 〈A1, A2, a, b〉, holds:

g(a, b) = det
(

A1(a, b)AT
2

)

.

6.1 Nonlinear matroid optimization 105

Proof. The Binet–Cauchy identity (6.3) with B := A1(a, b) and C := A2 gives the
claimed identity, with S ⊆ {0, 1}n

r the common bases of the matroids of A1, A2:

det
(

A1(a, b)AT
2

)

=
∑

x∈{0,1}n
r

det
(

Ax
1(a, b)

)

det
(

Ax
2

)

=
∑

x∈{0,1}n
r

n
∏

j=1

(

ajb
W j)xj

det
(

Ax
1

)

det
(

Ax
2

)

=
∑

x∈S

axbWx det
(

Ax
1

)

det
(

Ax
2

)

=
∑

y

by
∑

x∈W−1(y)∩S

ax det
(

Ax
1

)

det
(

Ax
2

)

=
∑

y

gy(a)by = g(a, b).

Given a ∈ Zn, b ∈ Zd, we can evaluate g(a, b) = det(A1(a, b)AT
2) in time polynomial in

W , 〈A1, A2, a, b〉, by computing the determinant of an integer matrix. ✷

We can now show how to compute a random subset of the set of common bases or
common independent sets of two matroids, which contains every point of the image with
high probability. A randomized algorithm is an algorithm that has access to a random bit
generator. Its running time then counts also the number of random bits used. A random-
ized algorithm is polynomial time if its running time, including the number of random bits
used, is polynomial in the input length.

Lemma 6.11. For every fixed d, there is a randomized algorithm that, given two vectorial

matroids, with Mk presented by integer rk × n matrix Ak, and integer d × n matrix W ,

in time polynomial in 〈A1, A2〉, W , computes a random subset Y ⊆ WS of the image

of S := {1B : B ∈ B1 ∩ B2} common bases or S := {1I : I ∈ I1 ∩ I2} common

independent sets of M1 and M2, such that for every point y ∈ WS:

P[y ∈ Y] ≥ 1 − 1

2(n + 1)
.

Proof. We begin with the statement for common bases. Removing some rows of Ak if
necessary, we may assume that the rank of Ak is rk for k = 1, 2. If r1 �= r2 then there is
no common basis so the image is empty. So assume r := r1 = r2 and therefore S = {1B :
B ∈ B1 ∩ B2} ⊆ {0, 1}n

r . By Lemma 6.1, we may then assume that W is nonnegative.
Define the polynomial g as in (6.6). Let q := 2r(n + 1). Consider any a ∈ {1, 2, . . . , q}n

and let g = g(a, b) be the polynomial in b obtained by substituting a. By Lemma 6.9, we
have supp(g) ⊆ {0, 1, . . . , s}d with s := r‖W‖∞ and ‖g‖∞ ≤

(

n
r

)

qr∆(A1)∆(A2). By
Lemma 6.10, we can realize in polynomial time an evaluation oracle for the polynomial
g. So we can apply the algorithm of Lemma 6.3 and compute supp(g) in time polynomial
in s and 〈‖g‖∞〉 and hence polynomial in W and 〈A1, A2〉. Now, let a be randomly
uniformly sampled from {1, 2, . . . , q}n, let g = g(a, b) be the random polynomial in b

106 6 Nonlinear Combinatorial Optimization

obtained by substituting a, and let Y := supp(g) = {y ∈ Zd
+ : gy(a) �= 0} be the random

support of g. We claim that this Y satisfies the claim of the lemma. Indeed, as just shown,
Y can be computed in polynomial time for any realization of the random vector a, and by
Lemma 6.9, for every point y ∈ WS of the image:

P[y ∈ Y] ≥ 1 − r

q
= 1 − 1

2(n + 1)
.

We continue with the statement for S = {1I : I ∈ I1 ∩ I2} the common independent
sets. Let r := max{r1, r2}. Let W̄ := [W 0] be the d × (n + r2) matrix obtained by
appending to W the d× r2 zero matrix. For k = 1, 2, let Âk be the r×n matrix obtained
by appending r − rk zero rows to Ak. Let C1, C2 be the r × r2 matrices consisting of
the first r rows and last r rows, respectively, of the (r + r) × r2 incidence matrix of the
complete bipartite graph Kr,r. For k = 1, 2, let Āk := [Âk Ck] be the r×(n+r2) matrix

obtained by appending Ck to Âk, and let M̄k be the vectorial matroid of Āk. Finally, let
S̄ := {1B : B ∈ B̄1 ∩ B̄2} be the set of common bases of M̄1, M̄2. Then it is not hard
to verify that WS = W̄ S̄, and the claim follows from the above statement for common
bases of M̄1, M̄2. ✷

We can now obtain a result of [11], providing a randomized polynomial time algo-
rithm for solving the nonlinear matroid intersection problem. By this, we mean that the
algorithm either asserts that the problem is infeasible or outputs a point x ∈ {0, 1}n

which is an optimal solution with probability at least a half. By repeatedly applying the
algorithm several times and picking the best solution if any, the probability of success
can be increased at will. In particular, repeating it n times increases the probability of
obtaining a true optimal solution to at least 1− 2−n while increasing the running time by
a linear factor only.

Theorem 6.12. For every fixed d, there is a randomized algorithm that, given two vecto-

rial matroids, with Mk presented by integer rk × n matrix Ak, integer d × n matrix W ,

and function f : Zd → R presented by comparison oracle, solves over the set of common

bases S := {1B : B ∈ B1 ∩ B2} or common independent sets S := {1I : I ∈ I1 ∩ I2}
of M1, M2, in time polynomial in 〈A1, A2〉, W , the following problem:

min
{

f(Wx) : x ∈ S
}

.

Proof. First, either detect that S is empty or obtain some point x̄ ∈ S as follows: for
common independent sets take x̄ := 0 ∈ Zn which is always feasible; for common
bases apply the deterministic matroid intersection algorithm of [33]. So from here on, we
assume that S is nonempty and some x̄ ∈ S has been obtained.

We begin by describing the polynomial time randomized algorithm, and then prove
that it outputs an optimal solution with probability at least a half.

Use the algorithm of Lemma 6.11 and compute a random subset Y ⊆ WS of the
image. Set ȳ := Wx̄ and Y := Y ∪ {ȳ} ⊆ WS making sure Y is nonempty. Use the
comparison oracle of f to obtain a point ŷ ∈ Y minimizing f over Y .

We proceed to show how to implement a randomized counterpart of the algorithm of
Lemma 6.2 which outputs a random candidate x̂ for being in W−1(ŷ) ∩ S. For this, we

6.1 Nonlinear matroid optimization 107

need to describe a randomized procedure for deciding if ŷ ∈ WSJ for the restriction
SJ = {x ∈ S : supp(x) ⊆ J} of S to any subset J ⊆ {1, . . . , n}.

Consider any such restriction. For k = 1, 2, let Āk be the r × n matrix obtained from
Ak by replacing each column Aj , j /∈ J , by 0 ∈ Zrk . If S is the set of common bases and
rank(Ā1) < rank(A1) or rank(Ā2) < rank(A2) then SJ = ∅ so ŷ /∈ WSJ . Otherwise,
namely, if S is the set of common bases and rank(Āk) = rank(Ak) for k = 1, 2, or
S is the set of common independent sets, then SJ is precisely the set of common bases
or common independent sets, respectively, of the vectorial matroids M̄1, M̄2 of Ā1, Ā2.
Now, compute a random subset Y (J) ⊆ WSJ by the algorithm of Lemma 6.11 for M̄1,
M̄2, check if ŷ ∈ Y (J) and decide accordingly.

Incorporating this randomized decision procedure for restrictions into the algorithm
of Lemma 6.2, we obtain a randomized algorithm which outputs the random indicator
x̂ := 1Jn

of the set Jn obtained in the final iteration of that algorithm.
We now show that x̂ is an optimal solution with probability at least a half. Consider

the following random events:

E0: the minimizer ŷ of f over Y further satisfies f(ŷ) = min{f(y) : y ∈ WS}.

Ej: the algorithm of Lemma 6.2 decides correctly in iteration j whether ŷ ∈ WSJ .

If all events E0,E1, . . . ,En hold then the algorithm clearly outputs a point x which is an
optimal solution. We proceed to bound the probabilities of these events.

First, let y∗ ∈ WS be any minimizer of f over WS. If y∗ ∈ Y then f(ŷ) = f(y∗) by
choice of ŷ and hence ŷ is also a minimizer of f over WS. So, by Lemma 6.11,

P
(

E0

)

≥ P
[

y∗ ∈ Y
]

≥ 1 − 1

2(n + 1)
.

Next, consider the decision whether ŷ ∈ WSJ in iteration j of the algorithm of
Lemma 6.2, based on computing a random subset Y (J) ⊆ WSJ by the algorithm of
Lemma 6.11 and checking if ŷ ∈ Y (J). Then again by Lemma 6.11, we have the follow-
ing:

P
(

Ej | ŷ /∈ WSJ
)

= P
(

ŷ /∈ Y (J) | ŷ /∈ WSJ
)

= 1,

and

P
(

Ej | ŷ ∈ WSJ
)

= P
(

ŷ ∈ Y (J) | ŷ ∈ WSJ
)

≥ 1 − 1

2(n + 1)
.

Therefore, we obtain the following:

P
(

Ej

)

= P
(

Ej | ŷ /∈ WSJ
)

P
[

ŷ /∈ WSJ
]

+ P
(

Ej | ŷ ∈ WSJ
)

P
[

ŷ ∈ WSJ
]

≥
(

1 − 1

2(n + 1)

)

(

P
[

ŷ /∈ WSJ
]

+ P
[

ŷ ∈ WSJ
])

= 1 − 1

2(n + 1)
.

So the probability that the algorithm outputs an optimal solution x̂ is at least as follows:

P
(

n
⋂

j=0

Ej

)

= 1 − P
(

n
⋃

j=0

E
c
j

)

≥ 1 −
n
∑

j=0

P
(

E
c
j

)

≥ 1 −
n
∑

j=0

1

2(n + 1)
=

1

2
.

This completes the proof, solving the nonlinear matroid intersection problem. ✷

108 6 Nonlinear Combinatorial Optimization

6.2 Optimization over independence systems

In this section, we study the nonlinear combinatorial optimization problem (6.1) over an
arbitrary independence system introduced in Section 1.2.1, that is, over a nonempty set
S ⊆ {0, 1}n such that z ∈ {0, 1}n and z ≤ x ∈ S imply z ∈ S. This is a very broad
problem and hence very difficult. In particular, the set of common independent sets of
any number k of matroids is an independence system, so, as explained in Section 2.5.2,
already for d = 1 includes the traveling salesman problem and is hard.

Therefore, we consider the problem under the following quite restrictive assumptions.
First, as in Chapter 2, we assume that we can do linear optimization over S to begin
with, that is, we assume that S is presented by a linear-optimization oracle that, queried
on w ∈ Zn, solves the problem max{wx : x ∈ S}. Second, we assume that d = 1
so that the weight matrix W becomes simply a weight vector w ∈ Zn and the function
f is univariate. Finally, we restrict the entries of w to take on values from a fixed p-
tuple a = (a1, . . . , ap) of positive integers, so that w ∈ {a1, . . . , ap}n. Without loss
of generality, we assume that a = (a1, . . . , ap) is primitive, that is, the ai are distinct
positive integers having greatest common divisor gcd(a) := gcd(a1, . . . , ap) = 1. But, as
elsewhere in this chapter, we do allow the function f : Z → R, presented by comparison
oracle, to be arbitrary.

It turns out, as we show later, that even under these restrictions, the solution of the
nonlinear problem (6.1) to optimality may require exponential time. Nonetheless, we are
able to find in polynomial time a solution which is approximative in the following unusual
and interesting sense. For a nonnegative integer r, we say that x∗ ∈ S is an r-best solution

to the minimization problem over S, if there are at most r better objective function values

attainable by feasible points, that is,

∣

∣

{

f(wx) : f(wx) < f
(

wx∗
)

, x ∈ S
}∣

∣ ≤ r.

In particular, a 0-best solution is optimal. Recall that the Frobenius number of a primitive
tuple a = (a1, . . . , ap) is the largest integer F(a) that is not expressible as a nonnegative
integer combination of the ai (see more details in Section 6.2.1). It turns out that we can
obtain an r(a)-best solution with r(a) depending on a only and bounded by the Frobenius
numbers derived from subtuples of a. In particular, for p = 2 and any pair a = (a1, a2),
we have r(a) ≤ F(a) the Frobenius number. So, for a = (2, 3), that is, for weight vectors
w ∈ {2, 3}n, since F(2, 3) = 1, our algorithm obtains a 1-best solution in polynomial
time. Quite amazingly, it turns out that finding a 0-best (namely, optimal) solution for w ∈
{2, 3}n requires exponential time. The following table emphasizes the contrast between
these results.

w ∈ {a1, . . . , ap}n w ∈ {2, 3}n w ∈ {2, 3}n

r(a1, . . . , ap)-best solution 1-best solution 0-best (optimal) solution

Theorem 6.23 Theorem 6.23 Theorem 6.24

time polynomial in n time polynomial in n time exponential in n

6.2 Optimization over independence systems 109

We now proceed to derive these results. In Section 6.2.1, we provide the approximative
solution, and in Section 6.2.2, we prove that exponential time is needed for exact solution.

6.2.1 Approximative nonlinear optimization

The main result in this subsection is Theorem 6.23: for every tuple a = (a1, . . . , ap),
there exists a constant r(a), such that we can find an r(a)-best solution for the problem
of minimizing any nonlinear composite function f(wx) with any weight vector w ∈
{a1, . . . , ap}n over any independence system S, in polynomial time.

As the derivation of this is quite long, we split this subsection into two parts.

Monoids and the Frobenius numbers

We begin with some properties of monoids and the Frobenius numbers needed in the
sequel. The key result here is Lemma 6.16 which is of interest in its own right.

Throughout, a = (a1, . . . , ap) is a primitive tuple, that is, the ai are distinct positive
integers having greatest common divisor gcd(a) = gcd(a1, . . . , ap) = 1. For p = 1, the
only primitive a = (a1) is the one with a1 = 1. The monoid of a = (a1, . . . , ap) is the
set of nonnegative integer combinations of its entries:

M(a) :=
{

µa =
∑p

i=1 µiai : µ ∈ Zp
+

}

.

The gap set of a is the set G(a) := Z+ \ M(a) and is well known to be finite [16]. If
all ai ≥ 2, then G(a) is nonempty, and its maximum element is known as the Frobenius

number of a and will be denoted by F(a) := max G(a). If some ai = 1 then G(a) = ∅, in
which case we define F(a) := 0 by convention. We also define G(a) := ∅ and F(a) := 0
by convention for the empty p-tuple a = () with p = 0.

Example 6.13. The gap set and the Frobenius number of the pair a = (3, 5) are as
follows:

G(a) = {1, 2, 4, 7}, F(a) = 7.

Classical results of Schur and Sylvester assert that for all p≥2 and all a=(a1, . . . , ap)
with each ai ≥ 2, the Frobenius number obeys the upper bound:

F(a) + 1 ≤ min
{(

ai − 1
)(

aj − 1
)

: 1 ≤ i < j ≤ p
}

(6.7)

with equality F(a) + 1 = (a1 − 1)(a2 − 1) holding for p = 2, see [16] for details.
For monoid M(a) and λ ∈ Zp

+, we frequently use the following subset of M(a):

M(a, λ) :=
{

µa : µ ∈ Zp
+, µ ≤ λ

}

⊂ M(a).

Such subsets satisfy the following simple lemma. Here and later on, for integers z, s ∈ Z
and set of integers Z ⊆ Z, we let z + sZ := {z + sx : x ∈ Z}.

Lemma 6.14. For every primitive p-tuple a and λ ∈ Zp
+ the set M(a, λ) satisfies the

following:

M(a, λ) ⊆ {0, 1, . . . , aλ} \
(

G(a) ∪
(

aλ − G(a)
))

. (6.8)

110 6 Nonlinear Combinatorial Optimization

Proof. Note that M(a, λ) is symmetric on {0, 1, . . . , aλ}, that is, for any integer g we
have that g ∈ M(a, λ) if and only if it aλ − g ∈ M(a, λ); indeed, g = aµ with 0 ≤
µ ≤ λ if and only if aλ − g = a(λ − µ) with 0 ≤ λ − µ ≤ λ. Clearly, M(a, λ) ⊆
{0, 1, . . . , aλ} \ G(a). The claim now follows from the symmetry. ✷

The following definition plays an important role in the sequel.

Definition 6.15. Call λ ∈ Zp
+ saturated for primitive p-tuple a if we have equality:

M(a, λ) = {0, 1, . . . , aλ} \
(

G(a) ∪
(

aλ − G(a)
))

.

In particular, if some ai = 1 then λ saturated for a implies M(a, λ) = {0, 1, . . . , aλ}.

Example 6.13 (continued). Let a = (3, 5) and λ = (3, 4). Then aλ = 29, and the
two values 12 = 4 · 3 + 0 · 5 and 17 = 4 · 3 + 1 · 5 are not in M(a, λ) but are in
{0, 1, . . . , aλ} \ (G(a) ∪ (aλ − G(a))). Therefore, this λ is not saturated for this a.

Let as usual ‖a‖∞ := max{a1, . . . , ap}. Call a = (a1, . . . , ap) divisible if ai divides
ai+1 for i = 1, . . . , p − 1. The following key lemma asserts that, for every primitive a,
every componentwise sufficiently large λ ∈ Zp

+ is saturated.

Lemma 6.16. Let a = (a1, . . . , ap) be any primitive p-tuple. Then we have the following:

1. every λ ∈ Zp
+ with λi ≥ ‖a‖∞ for 1 ≤ i ≤ p is saturated for a;

2. every λ ∈ Zp
+ with λi ≥ ai+1

ai
− 1 for 1 ≤ i < p is saturated for divisible a.

Proof. We begin with part 1. We prove that λ is saturated if all λi ≥ 2‖a‖∞. The proof
of the stronger statement is quite technical and can be found in [67].

Fix any λ = (λ1, . . . , λp) satisfying λi ≥ 2‖a‖∞ for all i. Consider any integer
v ∈ {0, 1, . . . , aλ} \ (G(a) ∪ (aλ − G(a))). We show that v ∈ M(a, λ) as well.

Suppose first that v ≤ 1
2λa. Assume indirectly that v /∈ M(a, λ) and choose µ ∈ Zp

+

such that v = µa and µ has smallest possible violation
∑{µi − λi : µi > λi}. Let j be

an index such that µj > λj . Now, v = µa ≤ 1
2λa and 1

2λi ≥ ‖a‖∞ for all i imply the
following:

p
∑

i=1

((

λi − ‖a‖∞
)

− µi

)

ai ≥
p
∑

i=1

(1

2
λi − µi

)

ai ≥ 0.

So some index k satisfies (λk − ‖a‖∞) − µk ≥ 0 and therefore µk ≤ λk − ‖a‖∞.
Now, define a new tuple ν by the following:

νj := µj − ak, νk := µk + aj , and νi := µi for all i �= j, k.

Then νj > λj − ak > 0 and νk ≤ (λk −‖a‖∞) + aj ≤ λk. So ν is nonnegative, satisfies
νa = µa = v, and has smaller violation than µ, which is a contradiction to the choice of
µ. Therefore, indeed v ∈ M(a, λ).

Next, suppose that v > 1
2λa. Put u := λa − v. Then v /∈ (G(a) ∪ (aλ − G(a)))

implies u /∈ ((aλ−G(a))∪G(a)). Since u < 1
2λa, by what we just proved applied to u,

6.2 Optimization over independence systems 111

we conclude that u ∈ M(a, λ), and hence u = µa for some µ ≤ λ. Then v = (λ − µ)a
and hence v ∈ M(a, λ) as well. This completes the proof of part 1.

We proceed with part 2. We use induction on p. For p = 1, we have a1 = 1 and hence
G(a) = ∅. Therefore, it is easy to verify that every λ = (λ1) is saturated.

Next, consider p > 1. We now use induction on λp. Suppose first that λp = 0. Let
a′ := (a1, . . . , ap−1) and λ′ := (λ1, . . . , λp−1). Consider any 0 ≤ v ≤ λa = λ′a′.
Since λ′ is saturated by induction on p, there exists µ′ ≤ λ′ with v = µ′a′. Then µ :=
(µ′, 0) ≤ λ and v = µa. So λ is also saturated. Suppose next that λp > 0. Let τ :=
(λ1, . . . , λp−1, λp − 1). Consider any value 0 ≤ v ≤ τa = λa − ap. Since τ is saturated
by induction on λp, there is a µ ≤ τ < λ with v = µa and so v ∈ M(a, τ) ⊆ M(a, λ).
Moreover, v + ap = µ̂a with µ̂ := (µ1, . . . , µp−1, µp + 1) ≤ λ so v + ap ∈ M(a, λ) as
well. Therefore,

{0, 1, . . . , τa} ∪
{

ap, ap + 1, . . . , aλ
}

⊆ M(a, λ). (6.9)

Now,

τa =

p
∑

i=1

τiai ≥
p−1
∑

i=1

λiai ≥
p−1
∑

i=1

(ai+1

ai
− 1

)

ai =

p−1
∑

i=1

(

ai+1 − ai

)

= ap − 1,

implying that the left-hand side of (6.9) is in fact equal to {0, 1, . . . , λa}. So λ is indeed
saturated. This completes the double induction and the proof of part 2. ✷

Efficient approximation

We proceed to solve the nonlinear optimization problem min{f(wx) : x ∈ S} with S ⊆
{0, 1}n an independence system presented by a linear-optimization oracle, weight vector
w ∈ {a1, . . . , ap}n taking values in a primitive tuple a = (a1, . . . , ap), and arbitrary
univariate function f : Z → R presented by a comparison oracle.

The outline of our approach is the following variant of Strategy 2.1. The key step is
that of computing a subset T ⊆ S of the feasible set, whose image wT ⊆ wS contains
most image points and hence provides a good approximation of the true image wS. Note
that here wS = {wx : x ∈ S} ⊂ Z is a set of integer numbers. Then, by inspecting T
and using the comparison oracle of f , we determine a point x ∈ T ⊆ S whose image
y := wx minimizes f over wT ⊆ wS, and output x, which is in the fiber W−1(y)∩ T ⊆
W−1(y) ∩ S, as the approximative solution.

For any point x ∈ {0, 1}n, define the independence system generated by x to be as
follows:

S(x) :=
{

z ∈ {0, 1}n : z ≤ x
}

.

For any independence system S and any x ∈ S, we have S(x) ⊆ S and hence wS(x) ⊆
wS, so the image of S(x) provides an approximation of the image of S.

The set S(x) has 2k points, where k := | supp(x)| and hence its cardinality is typically
exponential. Nonetheless, as the next lemma shows, for w taking values in a we can
compute in polynomial time a subset T ⊆ S(x) such that wS(x) = wT .

112 6 Nonlinear Combinatorial Optimization

Here and later on, for a = (a1, . . . , ap) ∈ Zp
+ and w ∈ {a1, . . . , ap}n, we use the

following notation. Let N := {1, . . . , n} and Ni := {j ∈ N : wj = ai} for i = 1, . . . , p,
giving a partition N =

⊎p
i=1 Ni of the ground set according to weights of elements.

Also, for x ∈ {0, 1}n and i = 1, . . . , p, let σi(x) := | supp(x) ∩ Ni| and σ(x) :=
(σ1(x), . . . , σp(x)), so that the weight of x under w satisfies wx = aσ(x).

Lemma 6.17. For every fixed p, there is an algorithm that, given x ∈ {0, 1}n, a ∈ Zp
+,

and w ∈ {a1, . . . , ap}n, in time polynomial in 〈w〉, obtains T ⊆ S(x) with the following:

wS(x) =
{

wz : z ∈ S(x)
}

= {wz : z ∈ T} = wT.

Proof. Using the notation introduced above, let σ := σ(x) = (σ1(x), . . . , σp(x)). For
each µ ∈ Zp

+ satisfying µ ≤ σ determine some xµ ≤ x with σ(xµ) = µ by zeroing out
suitable entries of x. Then T := {xµ : µ ∈ Zp

+, µ ≤ σ} is computable in polynomial
time since there are

∏p
i=1(σi + 1) ≤ (n + 1)p such µ ≤ σ, and

wS(x) =
{

wz = aσ(z) : z ∈ {0, 1}n, z ≤ x
}

=
{

aµ : µ ∈ Zp
+, µ ≤ σ

}

=
{

aσ
(

xµ

)

= wxµ : µ ∈ Zp
+, µ ≤ σ

}

= {wz : z ∈ T} = wT.
✷

A particularly appealing approximation wS(x) of the image wS is given by any point
x̂ ∈ S maximizing the linear function wx over S, since for any such point:

{0, wx̂} ⊆ wS(x̂) ⊆ wS ⊆ {0, 1, . . . , wx̂}. (6.10)

Moreover, such an approximation wS(x̂) can be easily computed as follows: first query
the linear-optimization oracle of S about w and obtain x̂ ∈ S attaining wx̂ = max{wx :
x ∈ S}; next compute wS(x̂) by the algorithm of Lemma 6.17.

Unfortunately, as the following example shows, the number of points of wS which
are missing from wS(x̂) cannot generally be bounded by any constant.

Example 6.18 (unbounded gap). Let a := (1, 2) and n := 4m. Define three vectors in

Zn by x1 :=
∑2m

j=1 1j , x2 :=
∑4m

j=2m+1 1j , and w := x1 + 2x2, namely,

x1 := (1, . . . , 1, 0, . . . , 0), x2 := (0, . . . , 0, 1, . . . , 1), w = (1, . . . , 1, 2, . . . , 2).

Let S be the following independence system:

S := S
(

x1
)

∪ S
(

x2
)

=
{

x ∈ {0, 1}n : x ≤ x1
}

∪
{

x ∈ {0, 1}n : x ≤ x2
}

.

Then the unique maximizer of wx over S is x̂ := x2, with wx̂ = 4m, and hence

wS(x̂) = {2i : i = 0, 1, . . . , 2m}
�

{

i : i = 0, 1, . . . , 2m} ∪ {2i : i = 0, 1, . . . , 2m} = wS,

and

∣

∣wS \ wS(x̂)
∣

∣ =
∣

∣{1, 3, . . . , 2m − 1}
∣

∣ = m =
n

4
.

6.2 Optimization over independence systems 113

This example shows that approximating the image using a single system which is
generated by a point is not satisfactory. We proceed to refine the above approach by parti-
tioning S into many pieces, approximating the image of each individually and combining
these approximations to get a good overall approximation.

Let S ⊆ {0, 1}n be a set, a = (a1, . . . , ap) ∈ Zp
+ a tuple, and w ∈ {a1, . . . , ap}n a

weight vector. Fix any λ ∈ Zp
+. For any µ ∈ Zp

+ satisfying µ ≤ λ, define the following:

Sλ
µ :=

{

x ∈ S :
σi(x) = µi if µi < λi,

σi(x) ≥ µi if µi = λi

}

. (6.11)

Then each x ∈ S is in precisely one Sλ
µ , the one with µi = min{σi(x), λi} for all i.

Therefore, the Sλ
µ with λ fixed and µ ≤ λ form a partition of S, that is, we have the

following:

S =
⊎

µ≤λ

Sλ
µ .

We can now outline our approach for approximating the image. We choose λ satu-
rated for a. For each Sλ

µ , we compute a point xλ
µ ∈ Sλ

µ maximizing w over Sλ
µ . We then

compute Tλ
µ ⊆ S(xλ

µ) such that wTλ
µ = wS(xλ

µ) approximates wSλ
µ . Finally, we take

T :=
⋃

µ≤λ Tλ
µ and show that wT is a good approximation of wS.

We proceed to develop the details of this outlined approach. We need two lemmas to
show that we can maximize the linear function wx over each Sλ

µ . For any set S ⊆ {0, 1}n

and any two subsets ∅ ⊆ I ⊆ J ⊆ N = {1, . . . , n} let

SJ
I := {x ∈ S : I ⊆ supp(x) ⊆ J}.

The restriction of S to J in Section 6.1.1 is the special case SJ = SJ
∅ . Our first simple

lemma reduces linear optimization over such sets to linear optimization over S.

Lemma 6.19. There is an algorithm that, given any set S ⊆ {0, 1}n presented by linear-

optimization oracle, w ∈ Zn, and I ⊆ J ⊆ N = {1, . . . , n}, solves the linear optimiza-

tion problem max{wx : x ∈ SJ
I } in time which is polynomial in 〈w〉.

Proof. Given such S, w, I and J , let α := n‖w‖∞ + 1 and define u ∈ Zn by the
following:

uj :=

⎧

⎪

⎨

⎪

⎩

wj + α, j ∈ I,

wj , j ∈ J \ I,

wj − α, j /∈ J,

j = 1, . . . , n.

Using the linear-optimization oracle of S, solve the linear optimization problem:

max
{

ux : x ∈ S
}

.

114 6 Nonlinear Combinatorial Optimization

If the oracle asserts that S is empty then so is SJ
I . Otherwise, let x∗ ∈ S be the optimal

solution returned by the oracle. Now, note that for all x ∈ SJ
I and all z ∈ S \ SJ

I , if any,
we have ux = wx + |I|α and uz ≤ wz + (|I| − 1)α and therefore,

ux − uz ≥ α + w(x − z) ≥ α − n‖w‖∞ = 1.

This implies that if x∗ /∈ SJ
I then SJ

I is empty, whereas if x∗ ∈ SJ
I then for all x ∈ SJ

I

we have wx∗ − wx = ux∗ − ux ≥ 0 and therefore x∗ maximizes w over SJ
I . ✷

Lemma 6.20. For every fixed p and λ ∈ Zp
+, there is an algorithm that, given set S ⊆

{0, 1}n presented by linear-optimization oracle, a ∈ Zp
+, w ∈ {a1, . . . , ap}n, and µ ∈

Zp
+ with µ ≤ λ, solves max{wx : x ∈ Sλ

µ} in time polynomial in 〈w〉.

Proof. Let K := {i : µi < λi}. As usual, let Ni := {j : wj = ai} for i = 1, . . . , p. It is
clear that if µi > |Ni| for some i then Sλ

µ is empty. Otherwise, for every choice of subsets
Si ⊆ Ni satisfying |Si| = µi for i = 1, . . . , p, do the following: let

I :=

p
⋃

i=1

Si, J :=
⋃

i∈K

Si ∪
⋃

i/∈K

Ni,

and use the algorithm of Lemma 6.19 to either detect that SJ
I is empty or obtain a point

x(S1, . . . , Sp) ∈ SJ
I which attains max{wx : x ∈ SJ

I }.
It is clear that Sλ

µ is the union of the SJ
I over all choices S1, . . . , Sp as above. So if

all SJ
I are empty then so is Sλ

µ . Otherwise, the point x∗ among the x(S1, . . . , Sp), which

attains the maximum value wx, is a point Sλ
µ which maximizes w over Sλ

µ .
Now, when µi ≤ |Ni| for all i, the number of possible choices S1, . . . , Sp is as fol-

lows:

p
∏

i=1

(|Ni|
µi

)

≤
p
∏

i=1

nµi ≤
p
∏

i=1

nλi ,

which is polynomial since λ is fixed, and so we can indeed either conclude that Sλ
µ is

empty or find x∗ ∈ Sλ
µ which maximizes w over Sλ

µ in polynomial time. ✷

For each primitive p-tuple a = (a1, . . . , ap), define a constant r(a) as follows. Let
λ := (λ1, . . . , λp) with λi := ‖a‖∞ for all i. For each µ ∈ Zp

+ with µ ≤ λ let

Iµ :=
{

i : µi = λi

}

, gµ := gcd
(

ai : i ∈ Iµ

)

, aµ :=
1

gµ

(

ai : i ∈ Iµ

)

. (6.12)

Finally, let r(a) be the sum of cardinalities of gap sets of aµ for all µ ∈ Zp
+ with µ ≤ λ,

which is bounded by the sum of corresponding Frobenius numbers, that is,

r(a) :=
∑

µ≤λ

∣

∣G
(

aµ

)∣

∣ ≤
∑

µ≤λ

F
(

aµ

)

. (6.13)

We can now approximate the image by a subset missing at most r(a) points.

6.2 Optimization over independence systems 115

Lemma 6.21. For every fixed primitive a = (a1, . . . , ap), there is an algorithm that,

given independence system S ⊆ {0, 1}n presented by linear-optimization oracle and

w ∈ {a1, . . . , ap}n, computes, in time polynomial in n, a subset T ⊆ S satisfying the

following:

|wS \ wT | ≤ r(a).

Proof. We begin by describing the polynomial time algorithm, and then prove that the
image wT of its output T ⊆ S misses at most r(a) points from wS.

Define λ := (λ1, . . . , λp) by λi := ‖a‖∞ for every i. For every µ ∈ Zp
+ with µ ≤ λ

do the following: use the algorithm of Lemma 6.20 to either detect that Sλ
µ is empty or

obtain a point xλ
µ ∈ Sλ

µ which attains max{wx : x ∈ Sλ
µ}; if Sλ

µ = ∅ then define Tλ
µ := ∅,

else compute by the algorithm of Lemma 6.17 a subset Tλ
µ ⊆ S(xλ

µ) of the system S(xλ
µ)

generated by xλ
µ, such that wS(xλ

µ) = wTλ
µ . Finally, let

T :=
⋃

µ≤λ

Tλ
µ .

Note that the number of tuples µ ≤ λ and hence of applications of the polynomial time
algorithms of Lemma 6.17 and Lemma 6.20 is

∏p
i=1(λi + 1) = (1 + ‖a‖∞)p which is

constant since a is fixed. Therefore, the algorithm is polynomial time.
We proceed to bound the number of missing image points. Consider any µ ≤ λ with

Sλ
µ �= ∅ and let xλ

µ be the maximizer of w over Sλ
µ obtained by the algorithm. Let Iµ,

gµ, and aµ be as in (6.12), and let hµ :=
∑ {aiµi : i /∈ Iµ}. For every x ∈ {0, 1} let

σµ(x) := (σi(x) : i ∈ Iµ) where, as usual, σi(x) = | supp(x)∩Ni|. Then for every point
x ∈ Sλ

µ , we have the following:

wx =
∑

i/∈Iµ

aiσi(x) +
∑

i∈Iµ

aiσi(x) =
∑

i/∈Iµ

aiµi + gµ

∑

i∈Iµ

1

gµ
aiσi(x) = hµ + gµaµσµ(x),

and hence wx ∈ hµ + gµM(aµ) and wx ≤ wxλ
µ = hµ + gµaµσµ(xλ

µ). Therefore,

wSλ
µ ⊆ hµ + gµ

(

M
(

aµ

)

∩
{

0, 1, . . . , aµσµ

(

xλ
µ

)})

.

Let S(xλ
µ) = {x : x ≤ xλ

µ} be the system generated by xλ
µ. For any ν ≤ σµ(xλ

µ), there

is an x ∈ S(xλ
µ) obtained by zeroing out suitable entries of xλ

µ such that σµ(x) = ν and

σi(x) = σi(x
λ
µ) = µi for i /∈ Iµ, and hence wx = hµ + gµaµν. Therefore,

hµ + gµM
(

aµ, σµ

(

xλ
µ

))

⊆ wS
(

xλ
µ

)

.

Since xλ
µ is in Sλ

µ , for each i ∈ Iµ, we have σi(x
λ
µ) ≥ µi = λi = ‖a‖∞ ≥ ‖aµ‖∞.

Therefore, by Lemma 6.16, we find that σµ(xλ
µ) is saturated for aµ, and hence,

M
(

aµ, σµ

(

xλ
µ

))

=
(

M
(

aµ

)

∩
{

0, 1, . . . , aµσµ

(

xλ
µ

)})

\
(

aµσµ

(

xλ
µ

)

− G
(

aµ

))

.

116 6 Nonlinear Combinatorial Optimization

This implies that

wSλ
µ \ wS

(

xλ
µ

)

⊆ hµ + gµ

(

aµσµ

(

xλ
µ

)

− G
(

aµ

))

.

Since Tλ
µ ⊆ S(xλ

µ) computed by the algorithm satisfies wTλ
µ = wS(xλ

µ), we obtain the
following:

∣

∣wSλ
µ \ wTλ

µ

∣

∣ =
∣

∣wSλ
µ \ wS

(

xλ
µ

)∣

∣ ≤
∣

∣G
(

aµ

)∣

∣.

Since the set T ⊆ S computed by the algorithm satisfies the following:

wS \ wT = w
(

⋃

µ≤λ

Sλ
µ

)

\ w
(

⋃

µ≤λ

Tλ
µ

)

⊆
⋃

µ≤λ

(

wSλ
µ \ wTλ

µ

)

,

it therefore finally follows that:

|wS \ wT | ≤
∑

µ≤λ

∣

∣wSλ
µ \ wTλ

µ

∣

∣ ≤
∑

µ≤λ

∣

∣

(

G
(

aµ

)∣

∣ = r(a).

✷

The next lemma provides some estimates on the constant r(a) controlling the approx-
imation quality. Recall our notation in (6.12) and (6.13) for primitive tuple a ∈ Zp

+: define
λ ∈ Zp

+ by λi := ‖a‖∞ for all i and for each µ ∈ Zp
+ with µ ≤ λ let

Iµ :=
{

i : µi = λi

}

, gµ := gcd
(

ai : i ∈ Iµ

)

, aµ :=
1

gµ

(

ai : i ∈ Iµ

)

,

and

r(a) :=
∑

µ≤λ

∣

∣G
(

aµ

)∣

∣ ≤
∑

µ≤λ

F
(

aµ

)

.

Lemma 6.22. For every primitive p-tuple a = (a1, . . . , ap) the following hold:

1. an upper bound on r(a) is given by r(a) ≤ 2p‖a‖p
∞;

2. for divisible a we have r(a) = 0;

3. for p = 2, that is, for a = (a1, a2), we have r(a) = |G(a)| ≤ F(a).

Proof. Define λ ∈ Zp
+ by λi := ‖a‖∞ for all i and Iµ, aµ, r(a) as above. Note that if Iµ

is empty or a singleton then aµ = () or aµ = 1 so G(aµ) = ∅ and F(aµ) = 0.

Part 1. First, as noted, for each tuple µ ≤ λ with |Iµ| ≤ 1, we have F(aµ) = 0. Second,
there are at most 2p‖a‖p−2

∞ tuple µ ≤ λ with |Iµ| ≥ 2, and for each, the bound of (6.7)
implies F(aµ) ≤ ‖a‖2

∞. So we obtain, as claimed the following:

r(a) ≤
∑

µ≤λ

F
(

aµ

)

≤ 2p‖a‖p−2
∞ ‖a‖2

∞ = 2p‖a‖p
∞.

Part 2. If a is divisible, then the least entry of every nonempty tuple aµ is 1 and hence
G(aµ) = ∅ for every µ ≤ λ. Therefore, r(a) = 0.

6.2 Optimization over independence systems 117

Part 3. As noted, G(aµ) = ∅ for each µ ≤ λ with |Iµ| ≤ 1. For p = 2, the only µ ≤ λ
with |Iµ| = 2 is µ = λ. Since aλ

λ = a, we obtain r(a) = |G(a)| ≤ F(a). ✷

We can finally obtain a result of [67], providing an approximative polynomial time
algorithm for nonlinear optimization over independence systems. Recall that x∗ ∈ S is
an r-best solution of the minimization problem (6.1) if there are at most r better objective
function values attainable by feasible points, that is,

∣

∣

{

f(wx) : f(wx) < f
(

wx∗
)

, x ∈ S
}∣

∣ ≤ r.

Theorem 6.23. For every primitive p-tuple a = (a1, . . . , ap), there is a constant r(a) and

an algorithm that, given any independence system S ⊆ {0, 1}n presented by a linear-

optimization oracle, weight vector w ∈ {a1, . . . , ap}n, and function f : Z → R pre-

sented by a comparison oracle, determines an r(a)-best solution of the nonlinear problem

min{f(wx) : x ∈ S}, in time polynomial in n. Furthermore:

1. the quality of the approximation obtained satisfies the bound r(a) ≤ 2p‖a‖p
∞;

2. if ai divides ai+1 for 1 ≤ i < p then the algorithm finds an optimal solution;

3. for p = 2, that is, for a = (a1, a2), the algorithm finds an F(a)-best solution.

Proof. Define r(a) as in (6.13). Compute T ⊆ S such that |wS \ wT | ≤ r(a) by the
algorithm of Lemma 6.21. Now, inspecting T and using the comparison oracle of f , find
a point x̂ ∈ T whose image ŷ := wx̂ attains f(ŷ) = min{f(y) : y ∈ wT}. Then

∣

∣

{

f(wx) : f(wx) < f(wx̂), x ∈ S
}∣

∣ =
∣

∣

{

f(y) : f(y) < f(ŷ), y ∈ wS
}∣

∣

=
∣

∣

{

f(y) : f(y) < f(ŷ), y ∈ wS \ wT
}∣

∣

≤ |wS \ wT | ≤ r(a).

Therefore, x̂ is an r(a)-best solution of the given problem. The additional claims 1, 2, and
3 now follow at once from the corresponding claims of Lemma 6.22. ✷

6.2.2 Exponential time to exact optimization

We now demonstrate that Theorem 6.23 is best possible in the following sense. Con-
sider a := (2, 3) which is the simplest primitive tuple with nonzero Frobenius number
F(2, 3) = 1. Consider weight vectors w ∈ {2, 3}n, that is, where each ground set element
has weight either 2 or 3. Then part 3 of Theorem 6.23 assures that we can produce a 1-best
solution, that is, either an optimal or a second best solution, in polynomial time. We now
show that, in contrast, a 0-best, that is, an optimal, solution for such weight vectors cannot

be computed in polynomial time.

Theorem 6.24. There is no polynomial time algorithm for solving the problem

min{f(wx) : x ∈ S} with S ⊆ {0, 1}n independence system presented by linear-

optimization oracle, f : Z → R presented by comparison oracle, and w ∈ {2, 3}n.

In fact, the following stronger statement holds. Let n := 4m with m ≥ 2. Define

w ∈ {2, 3}n by wj := 2 for j ≤ 2m and wj := 3 for j > 2m. Define f on Z by

f(5m − 1) := −1 and f(z) := 0 for all z �= 5m − 1. Then at least 2m queries of the

oracle presenting S are needed to determine the optimal objective function value.

118 6 Nonlinear Combinatorial Optimization

Proof. Let n := 4m with m ≥ 2, I := {1, . . . , 2m} and J := {2m+1, . . . , 4m}. Define
weight w ∈ {2, 3}n by wj := 2 for j ∈ I and wj := 3 for j ∈ J , and function f on Z
by f(5m − 1) := −1 and f(z) := 0 for all z �= 5m − 1. For E ⊆ {1, . . . , n} and any
nonnegative integer k, let

(

E
k

)

be the set of all k-element subsets of E. For i = 0, 1, 2, let

Ti :=
{

x = 1A + 1B : A ∈
(

I
m+i

)

, B ∈
(

J
m−i

)}

⊂ {0, 1}n.

Let S be the independence system generated by T0 ∪ T2, that is,

S :=
{

z ∈ {0, 1}n : z ≤ x for some x ∈ T0 ∪ T2

}

.

Then the image of S under w and the minimum value of f(wx) over S satisfy the follow-
ing:

wS = {0, . . . , 5m} \ {1, 5m − 1}, min
{

f(wx) : x ∈ S
}

= 0.

For each y ∈ T1 let Sy := S ∪{y}. Note that Sy is also an independence system. Further,
the image of Sy under w and the minimum value of f(wx) over Sy satisfy the following:

wSy = {0, . . . , 5m} \ {1}, min
{

f(wx) : x ∈ Sy

}

= −1.

Finally, for each vector c ∈ Zn, let

Y (c) :=
{

y ∈ T1 : cy > max{cx : x ∈ S}
}

.

First, we claim that |Y (c)| ≤
(

2m
m−1

)

for every c ∈ Zn. Consider two elements y, z ∈
Y (c) if any. Then y = 1A + 1B and z = 1U + 1V for some A,U ∈

(

I
m+1

)

and

B, V ∈
(

J
m−1

)

. Suppose, indirectly, that A �= U and B �= V . Pick a ∈ A \ U and
v ∈ V \ B. Consider the following vectors:

x0 := y − 1a + 1v ∈ T0,

x2 := z + 1a − 1v ∈ T2.

Now y, z ∈ Y (c) and x0, x2 ∈ S imply the contradiction:

ca − cv = cy − cx0 > 0,

cv − ca = cz − cx2 > 0.

So all vectors in Y (c) are of the form 1A + 1B , with either A ∈
(

I
m+1

)

fixed, giving

|Y (c)| ≤
(

2m
m−1

)

, or B ∈
(

J
m−1

)

fixed, giving |Y (c)| ≤
(

2m
m+1

)

=
(

2m
m−1

)

, as claimed.

Now, consider any algorithm, and let c1, . . . , cp ∈ Zn be the sequence of oracle
queries made by the algorithm. Suppose that p < 2m ≤

(

2m
m+1

)

. Then

∣

∣

∣

p
⋃

i=1

Y
(

ci
)

∣

∣

∣ ≤
p
∑

i=1

∣

∣Y
(

ci
)∣

∣ ≤ p

(

2m

m − 1

)

<

(

2m

m + 1

)(

2m

m − 1

)

=
∣

∣T1

∣

∣.

6.3 Some applications 119

So there is some y ∈ T1 which is not an element of any Y (ci), that is, satisfies ciy ≤
max{cix : x ∈ S} for each i = 1, . . . , p. So whether the linear-optimization oracle
presents S or Sy, on each query ci it can reply with some xi ∈ S attaining the following:

cixi = max
{

cix : x ∈ S
}

= max
{

cix : x ∈ Sy

}

.

Therefore, the algorithm cannot tell whether the oracle is presenting S or Sy and therefore
cannot tell whether the optimal objective function value is 0 or −1. ✷

6.3 Some applications

6.3.1 Nonlinear bipartite matching

We begin with a simple immediate application of Theorem 6.12. Consider once again
the classical assignment problem discussed in Examples 2.4 and 2.27. The feasible set
S consists of the m × m permutation matrices, which are also interpreted as the perfect
matchings in the complete bipartite graph Km,m. Nonlinear assignment problems have
applications in operations research and scheduling concerning the optimal assignment of
jobs to processors; see, for instance, [12] for a concrete application to find the minimum
so-called make-span scheduling.

In Chapter 2, we have demonstrated, in Example 2.27, that the assignment problem is
polynomial time solvable for convex objectives. We now obtain a result of [12], solving
the problem for arbitrary objectives in randomized polynomial time.

Corollary 6.25. For every fixed d, there is a randomized algorithm, that, given m, integer

d × N matrix W with columns indexed by N := {(i, j) : 1 ≤ i, j ≤ m}, and arbitrary

function f : Zd → R presented by comparison oracle, and letting S ⊂ {0, 1}N be the

set of m × m permutation matrices, solves in time which is polynomial in m and W , the

nonlinear assignment (or bipartite matching) problem:

min
{

f(Wx) : x ∈ S
}

.

Proof. We use the obvious identification Rm×m ∼= RN . As in Example 2.27, let S1 ⊂
{0, 1}N be the set of m × m matrices with one 1 per row and let S2 ⊂ {0, 1}N be the
set of m × m matrices with one 1 per column. Then S1, S2 are the sets of indicators
of bases of matroids M1, M2 on N := {(i, j) : 1 ≤ i, j ≤ m}, and S = S1 ∩ S2 is
the set of common bases. Moreover, M1, M2 are the vectorial matroids of the m × N
matrices A1, A2 which consist of the first m rows and last m rows, respectively, of the
(m+m)×N incidence matrix of the complete bipartite graph Km,m. The corollary now
follows at once from Theorem 6.12. ✷

As noted in Example 2.4, the fiber problem for S the permutation matrices, d = 2,
and {0, 1}-valued W , includes the so-called exact bipartite matching problem, whose
complexity is long open [12], [76]. So, an important, more general open problem is to de-
termine conditions under which Corollary 6.25 and Theorem 6.12 could be strengthened
to provide deterministic rather than randomized algorithms for the nonlinear assignment
problem and nonlinear matroid intersection problem.

120 6 Nonlinear Combinatorial Optimization

6.3.2 Experimental design

We now discuss an application of nonlinear matroid optimization to the area of exper-
imental design. It concerns the choice of a model that can best describe an unknown
system which is learned by experimentation, see [86] for more details. Here, we consider
the commonly used class of multivariate polynomial models. So the unknown system
is assumed to be a real polynomial function y = g(x) =

∑

u guxu of real variables
x = (x1, . . . , xk). (See Section 6.1.1 for terminology on polynomials.)

Each finite subset U ⊂ Zk
+ provides a model for the system: under such model, the

system is assumed to be a polynomial y = g(x) =
∑

u∈U guxu whose support supp(g) =

{u ∈ Zk
+ : gu �= 0} is contained in U . Assuming model U for the system, the user

conducts experiments in order to learn the system. Each experiment consists of feeding the
system with some input point x ∈ Rk and measuring the corresponding output y = g(x).
We assume that admissible experiments are limited to points which lie in a prescribed
finite set P ⊂ Rk, called the design. Indeed, in practice, experiments at arbitrary points
may be impossible or costly. Once all experiments are made, that is, each point p ∈ P is
input to the system and the corresponding output y = g(p) is measured, the user tries to
fit the model, that is, use the information to try and determine the coefficients gu, u ∈ U .

A model U = {u1, . . . , ur} ⊂ Zk
+ is identifiable by design P = {p1, . . . , pr} ⊂ Rk

if for all possible experiment outcomes y1, . . . , yr at design points p1, . . . , pr, there is a
unique polynomial g(x) =

∑

u∈U guxu with support in U which is consistent with all
experiments, that is, satisfies g(pi) = yi for i = 1, . . . , r. It is not hard to verify that U is
identifiable by P if and only if the r × r matrix PU defined by the following:

(

pU
)

i,j
:= p

uj

i =
k
∏

t=1

p
uj,t

i,t , 1 ≤ i, j ≤ r

is invertible. If U is identifiable by P then fitting the model, that is, finding the vector g =
(gu1

, . . . , gur
) of coefficients of the polynomial model given any vector of experiment

outcomes y := (y1, . . . , yr), is done by computing g := (PU)−1y.
The problem we consider here is that of choosing the best identifiable model, de-

fined as follows. Given design P = {p1, . . . , pr} ⊂ Rk, set of potential exponents
V = {v1, . . . , vn} ⊂ Zk

+, and objective function A on models, the so-termed aberration

in the statistics literature (see, e.g., [99]), the problem is to determine a model U ⊆ V
which is identifiable by design P and has minimum aberration A(U).

Broadly speaking, preferred polynomial models are those in which variables do not
occur with high degrees, and the aberration is chosen accordingly.

The following example illustrates some useful aberrations.

Example 6.26. We describe two classes of aberrations A(U) on models U ⊂ Zk
+. Let

degi(x
u) := ui denote the degree of variable xi in monomial xu =

∏

i xui

i .
1. Average degree

For each model U , consider the following vector, whose ith component is the aver-
age degree of xi over all monomials of the model polynomial

∑

u∈U guxu:

a(U) :=
(1

|U |
∑

u∈U

deg1

(

xu
)

, . . . ,
1

|U |
∑

u∈U

degk(xu)
)

.

6.3 Some applications 121

Define the aberration by A(U) := f(a(U)) for some function f : Zk → R. In
particular, with f the lp-norm for some p, this aberration is A(U) = ‖a(U)‖p. For
p = ∞, this aberration is the maximum over variables of average degree:

A(U) = max
{ 1

|U |
∑

u∈U

deg1

(

xu
)

, . . . ,
1

|U |
∑

u∈U

degk

(

xu
)

}

.

2. Excess degree

Let ∆ be a positive integer serving as desired upper bound on variable degree. For
each model U , consider the following vector, whose ith component is the number
of monomials of

∑

u∈U guxu in which xi has degree exceeding ∆:

e(U) :=
(∣

∣{u ∈ U : deg1(x
u) > ∆}

∣

∣, . . . ,
∣

∣

{

u ∈ U : degk

(

xu
)

> ∆
}∣

∣

)

.

Define the aberration by A(U) := f(e(U)) for some function f : Zk → R. In
particular, with f the lp-norm for some p, this aberration is A(U) = ‖e(U)‖p. For
p = ∞, this aberration is the maximum number of excesses over variables:

A(U) = max
{∣

∣

{

u ∈ U : deg1

(

xu
)

> ∆
}∣

∣, . . . ,
∣

∣

{

u ∈ U : degk

(

xu
)

> ∆
}∣

∣

}

with A(U) = 0 if and only if degi(x
u) ≤ ∆ holds for all i and all u ∈ U .

We proceed to define a broad class of abberations which includes as special cases the
average degree and excess degree functions of Example 6.26 with any f .

Given design P ={p1, . . . , pr} ⊂ Rk and set V ={v1, . . . , vn}⊂Zk
+, let S(P, V) ⊆

{0, 1}n be the set of (indicators of) models U ⊆ V identifiable by P :

S(P, V) :=
{

1J : J ⊆ {1, . . . , n}, U =
{

vj : j ∈ J
}

is identifiable by P
}

.

Now, consider aberrations defined for z ∈ S(P, V) ⊆ {0, 1}n by A(z) := f(Wz) where,
as usual, W is an integer d × n weight matrix and f : Zd → R any function.

Example 6.26 (revisited). We now show that, given design P = {p1, . . . , pr} ⊂ Rk and
set V = {v1, . . . , vn} ⊂ Zk

+ of potential exponents, the average degree and excess degree
aberrations over S(P, V) can be expressed as suitable A(z) = f(Wz).

1. Average degree

Let d := k and let W := 1
r [v1, . . . , vn] be 1

r times the k×n matrix whose columns
are the potential exponents in V . Then it is easy to verify that, for any model z ∈
S(P, V), the average degree vector is precisely a(U) = Wz, and hence the average
degree aberration for any f is precisely A(z) = f(Wz).

2. Excess degree

Given ∆, let d := k and let W be the k × n matrix defined by Wi,j := 1 if
degi(x

vj) > ∆ and Wi,j := 0 otherwise. Then it is easy to verify that, for any
model z ∈ S(P, V), the excess degree vector is precisely e(U) = Wz, and hence
the excess degree aberration for any f is precisely A(z) = f(Wz).

122 6 Nonlinear Combinatorial Optimization

As a corollary of Theorem 6.8 and Corollary 2.25, we obtain a result of [10] showing
that a minimum aberration model can be efficiently found. We restrict attention to designs
of rational points, which are processable on a Turing machine.

Corollary 6.27. For every fixed d, there is an algorithm that, given rational design P =
{p1, . . . , pr} ⊂ Rk, set V = {v1, . . . , vn} ⊂ Zk

+ of potential exponents, integer d × n
matrix W , and function f : Zd → R presented by comparison oracle, solves, in time

polynomial in V , 〈P 〉, and W , the minimum aberration model problem:

min
{

A(z) := f(Wz) : z ∈ S(P, V)
}

.

Moreover, if f is concave then the running time is polynomial in V and 〈P,W 〉.

Proof. Define an r × n matrix PV by the following:

(

pV
)

i,j
:= p

vj

i =

k
∏

t=1

p
vj,t

i,t , 1 ≤ i ≤ r, 1 ≤ j ≤ n.

Clearly, PV can be computed in polynomial time. Now, if the rank of PV is less than
r then the set S(P, V) ⊆ {0, 1}n of models U which are identifiable by P is empty.
Otherwise, S(P, V) is precisely the set of bases of the vectorial matroid of PV . The
corollary now follows at once from Theorem 6.8 and Corollary 2.25. ✷

6.3.3 Universal Gröbner bases

We conclude with an application to computational algebra. Let C[x] denote the algebra of
multivariate complex polynomials in variables x = (x1, . . . , xd). The ideal generated by
a finite system of polynomials p1, . . . , pm is the set I(p1, . . . , pm) of all linear combina-
tions

∑m
i=1 cipi of the pi with polynomial coefficients ci ∈ C[x]. An ideal is any subset

I ⊆ C[x] of polynomials generated in such a way by some finite system. Every ideal has
a finite number of special generating sets termed reduced Gröbner bases. The universal

Gröbner basis of ideal I is the union U(I) of all its reduced Gröbner bases, and in a sense
is the ultimate finite generating set of I for computational purposes. Below, we show how
to compute all reduced Gröbner bases and the universal Gröbner basis efficiently, and
define them in a nonstandard way on the fly. For standard definitions and further details
see [95].

We restrict attention to systems of polynomials which have a finite set of common
zeros, that is, vectors x ∈ Cd satisfying pi(x) = 0 for i = 1, . . . , m. For such systems,
the universal Gröbner basis contains a univariate polynomial in each of the variables,
thereby reducing the problem of computing the set of common zeros to that of finding
roots of d univariate polynomials. Here is an example.

Example 6.28. Consider the system of m = 3 polynomials in d = 2 variables:

p1 := x2
1 − x2, p2 := x2

2 − 7x2 + 6x1, p3 := x1x2 − 3x2 + 2x1.

6.3 Some applications 123

The universal Gröbner basis of the ideal I of this system is a set U(I) = {p1, . . . , p7}
consisting of the three given polynomials along with four additional ones given by the
following:

p4 := x3
1 − 3x2

1 + 2x1, p5 := x3
2 − 5x2

2 + 4x2,

p6 := x1 +
1

6
x2

2 −
7

6
x2, p7 := x2 − x2

1.

Consider any common zero x = (x1, x2) of the system. Then x1 must be a root of the
univariate polynomial p4 = p4(x1) and hence must satisfy x1 ∈ {0, 1, 2}; likewise,
x2 must be a root of the univariate polynomial p5 = p5(x2) and hence must satisfy
x2 ∈ {0, 1, 4}. Checking the 9 = 3 × 3 potential zeros, we find that the set of common
zeros of U(I) and hence of the original system p1, p2, p3 is {(0, 0), (1, 1), (2, 4)}, thereby
solving the given system of polynomial equations.

A subset V ⊆ Zd
+ is basic for ideal I if for every polynomial f ∈ C[x] there is

a unique polynomial fV ∈ C[x] with support satisfying supp(fV) ⊆ V such that f −
fV ∈ I . The polynomial fV is called the normal form of f under V . The normal form
satisfies f − h ∈ I if and only if fV = hV ; f ∈ I if and only if fV = 0; f = fV if
and only if supp(f) ⊆ V ; (f + h)V = fV + hV ; (fh)V = (fV hV)V . All basic sets
have the same cardinality which is called the length of the ideal I , and is finite if and
only if the set of common zeros of I is finite. If I has finite length n then n equals the
number of common zeros with suitable multiplicities, and in particular is an upper bound
on the number of distinct common zeros of I . The set of ideals of length n in d variables
is denoted Hilbd

n and referred to as the Hilbert scheme, admitting an embedding into a
suitable Grassmanian, see [6].

Example 6.28 (continued). The ideal I = I(p1, p2, p3) in d = 2 variables of Example
6.28 has length n = 3 and 3 common zeros. The set V := {00, 10, 20} is basic for I . We
use here abridged notation such as 00 := (0, 0) for vectors in Zd

+. The following table
shows a few monomials f with their normal forms under V .

f 1 x1 x2
1 x3

1 x2

fV 1 x1 x2
1 3x2

1 − 2x1 x2
1

(6.14)

f x1x2 x2
1x2 x2

2 x1x
2
2 x3

2

fV 3x2
1 − 2x1 7x2

1 − 6x1 7x2
1 − 6x1 15x2

1 − 14x1 31x2
1 − 30x1

From here on, we restrict attention to ideals of finite length only. Let

V d
n :=

{

v ∈ Zd
+ :

d
∏

i=1

(

vi + 1
)

≤ n
}

.

For any finite subset V ⊂ Zd
+, let

∑

V :=
∑

u∈V u be the sum of the vectors in V . The
following fundamental definition from [6] plays a central role in the sequel.

124 6 Nonlinear Combinatorial Optimization

Definition 6.29. The basis polytope of an ideal I of length n in d variables is as follows:

P(I) := conv
{

∑

V : V ⊆ V d
n , V is basic for I

}

⊂ Rd.

We now explain the role of the polytope P(I) in constructing the universal Gröbner
basis U(I). Let vert(P(I)) be the set of vertices on the lower envelope of P(I), namely,
those v for which there exists some h ∈ Rd

+ with strictly positive entries which is min-
imized over P(I) uniquely at v. For V ⊆ Zd

+, let min(V̄) ⊂ V̄ := Zd
+ \ V be the set

of ≤-minimal vectors not in V , namely, those u ∈ Zd
+ \ V for which there is no other

v ∈ Zd
+ \ V with v ≤ u. Note that min(V̄) is always finite by the lemma of Gordan

[40]. The following facts about any ideal of length n in d variables were established in [6]
(extending results of [85] on generic radical ideals):

1. every v ∈ vert(P(I)) satisfies v =
∑

V for a unique V ⊆ V d
n basic for I;

2. the reduced Gröbner bases of I are in bijection with vert(P(I)). Moreover, the
reduced Gröbner basis corresponding to v =

∑

V is given by the following:

Gv = GV =
{

xu − xu
V : u ∈ min(V̄)

}

.

We proceed to exploit these facts for constructing the universal Gröbner basis. Let

Ud
n := V d

n ∪
{

v + 1i : v ∈ V d
n , 1 ≤ i ≤ d

}

⊆ V d
2n.

This set is sufficiently large so that min(V̄) ⊆ Ud
n for every n-element V ⊆ V d

n . Yet, it is
known that for any fixed d, the cardinality of V d

n and hence also of Ud
n are O(n(log n)d−1),

and so are polynomial in n, see [6], [85] and references therein.
A basic presentation of ideal I of length n in d variables consists of V ⊆ V d

n which
is basic for I , along with the set {xu

V : u ∈ Ud
n}. It is known that such a presentation can

be computed efficiently from any given generating set of I by computing the so-called
degree reverse lexicographic Gröbner basis of I , see [35] and the references therein. So
we assume that the ideal is presented in this way. We also assume that the polynomials
in {xu

V : u ∈ Ud
n} have rational coefficients and so are processable by a Turing machine.

The binary length of such a presentation is the sum of binary lengths 〈‖xu
V ‖∞〉 of the

given polynomials over all u ∈ Ud
n (where, as in Section 6.1.1, the l∞-norm ‖g‖∞ of a

polynomial g is the maximum absolute value of any coefficient of g).

Example 6.28 (continued). Consider again the ideal I = I(p1, p2, p3) of length n = 3 in
d = 2 variables of Example 6.28. Then V 2

3 = {00, 10, 20, 01, 02} and

U2
3 = {00, 10, 20, 30, 01, 11, 21, 02, 12, 03}.

Therefore, Table (6.14) provides precisely all normal forms xu
V under the basic set V =

{00, 10, 20} for all u ∈ U2
3 . So V and this table is a basic presentation of I .

Our results on matroids imply the following result of [6] which extends [85].

6.3 Some applications 125

Corollary 6.30. For every fixed d, there is an algorithm that, given rational basic pre-

sented ideal I ⊆ C[x] of length n in d variables, computes the universal Gröbner basis

U(I) of I in time polynomial in the binary length of the presentation of I .

Proof. Given the presentation of I construct a V ×Ud
n matrix B, that is, with rows indexed

by the given basic set V and columns indexed by Ud
n , by letting, for u ∈ Ud

n and v ∈ V ,
the entry Bv,u be the coefficient of xv in the polynomial xu

V . So the polynomial xu
V is

encoded by column u as xu
V =

∑

v∈V Bv,uxv . Let A be the V × V d
n submatrix of B

consisting of the columns corresponding to V d
n ⊆ Ud

n .

Now, a subset U ⊆ Ud
n is basic for I if and only if the corresponding V ×U submatrix

of B is invertible. Let N := |V d
n | = O(n(log n)d−1) and choose some total order V d

n =
{v1, . . . , vN} of the points of V d

n . Let S ⊆ {0, 1}N be the set of bases of the vectorial
matroid of A. Let W := [v1, . . . , vN] be the d×N matrix whose columns are the vectors
in V d

n . Then the basis polytope of I satisfies the following:

P(I) = conv
{

∑

U : U ⊆ V d
n , U is basic for I

}

= conv(WS}.

Now, compute Y := vert(P(I)) = vert(conv(WS)) and Z ⊆ S such that Y = WZ,
in one of several ways using the results of this chapter or Chapter 2, as follows. One
possibility is to compute the entire image WS ⊂ Zd

+ by the algorithm of Lemma 6.7
or the set vert(conv(WS)) by the algorithm of Lemma 2.8 (with the greedy algorithm
providing a linear-optimization oracle for S, see Section 1.2.1), identify its subset Y by
solving a suitable linear program for each of its points, and then obtain Z by finding a
feasible point z ∈ W−1(y) ∩ S in the fiber of each y ∈ Y using the algorithm of Lemma
2.9. This can all be done in time polynomial in 〈A〉 and W and hence polynomial in the
binary length of the presentation of I . Another, faster, possibility, in time polynomial in
〈A〉 and 〈W 〉, is as follows. Let

E :=
{

W i − W j : 1 ≤ i < j ≤ N
}

= W
{

1i − 1j : 1 ≤ i < j ≤ N
}

⊂ Zd.

Then E is a set of all edge directions of conv(WS) (see proof of Corollary 2.25 and
Lemma 2.14). Now, apply the algorithm of Lemma 2.15 and compute a set T ⊆ S with
vert(conv(WS)) ⊆ WT . During the algorithm (see proof of Lemma 2.15), each point
t ∈ T comes with h ∈ Zd maximized over WS at Wt; inspection of these t and h then
allows to directly distill Z ⊆ T with vert(conv(WS)) = WZ.

Let Z ⊆ S be the set with vert(P(I)) = WZ computed as above. For each z ∈ Z, do
the following. Let U := {vj : zj = 1} and v :=

∑

U = Wz be the basic subset of V d
n

and vertex in vert(P(I)) corresponding to basis z. Now, apply suitable row operations to
the matrix B so as to make U the new basis, that is, transform B into a U ×Ud

n matrix BU

whose rows are indexed by U and whose submatrix consisting of columns corresponding
to U is the identity. Then, for each u ∈ Ud

n , the normal form xu
U can be read off directly

from the column u of BU by the following:

xu
U =

∑

w∈U

(

BU

)

w,u
xw.

126 6 Nonlinear Combinatorial Optimization

Since min(Ū) ⊆ Ud
n , we can read off from BU the corresponding reduced Gröbner basis

GU := {xu − xu
U : u ∈ min(Ū)}. Repeating this for every z ∈ Z, we obtain all reduced

Gröbner bases. Their union is the universal Gröbner basis U(I) of I . ✷

y1

y2

v1

v2

v3

Figure 6.1: Universal Gröbner basis example

Example 6.28 (continued). We now illustrate the algorithm of Corollary 6.30 on the
ideal I of length n = 3 in d = 2 variables in our running Example 6.28 given by the
basic presentation with basic set V1 := V = {00, 10, 20} and set {xu

V : u ∈ U2
3 } of

polynomials in table (6.14). Given the presentation, we construct the matrix BV1
:

BV1
:=

⎛

⎜

⎝

00 10 20 30 01 11 21 02 12 03

00 1 0 0 0 0 0 0 0 0 0

10 0 1 0 −2 0 −2 −6 −6 −14 −30

20 0 0 1 3 1 3 7 7 15 31

⎞

⎟

⎠
.

The matrices A and W having columns indexed by the N := 5 elements in V 2
3 are as

follows:

A :=

⎛

⎜

⎝

00 10 20 01 02

1 0 0 0 0

0 1 0 0 −6

0 0 1 1 7

⎞

⎟

⎠
, W :=

(

00 10 20 01 02

0 1 2 0 0

0 0 0 1 2

)

.

6.3 Some applications 127

In this small example, we can write explicitly the set S of bases of the vectorial matroid
of A, the corresponding subsets of V 2

3 basic for I , and the image WS as follows:

S = {11100, 11010, 11001, 10101, 10011} ⊂ {0, 1}5

{00, 10, 20}, {00, 10, 01}, {00, 10, 02}, {00, 20, 02}, {00, 01, 02} ⊂ V 2
3

WS = {30, 11, 12, 22, 03} ⊂ Z2
+.

The polytope P(I) = conv(WS) is shown in Figure 6.1. The set Z ⊆ S, corresponding
subsets of V 2

3 basic for I , and lower vertex set vert(P(I)) = WZ are as follows:

Z = {11100, 11010, 10011}
V1 = {00, 10, 20}, V2 = {00, 10, 01}, V3 = {00, 01, 02}

vert
(

P(I)
)

= vert
(

conv(WS)
)

= WZ = {30, 11, 03}.
We now compute the three corresponding reduced Gröbner bases. For the given basic set
V1, we have min(V̄1) = {30, 01} and the reduced Gröbner basis is part of the presentation
of I and is read off from columns 30 and 01 of BV1

to be as follows:

GV1
=

{

x3
1 − 3x2

1 + 2x1, x2 − x2
1

}

=
{

p4, p7

}

.

For V2 = {00, 10, 01}, we make the basis change to obtain the matrix BV2
:

BV2
=

⎛

⎜

⎝

00 10 20 30 01 11 21 02 12 03

00 1 0 0 0 0 0 0 0 0 0

10 0 1 0 −2 0 −2 −6 −6 −14 −30

01 0 0 1 3 1 3 7 7 15 31

⎞

⎟

⎠
.

The matrix happens here to remain unchanged expect that its rows are now indexed by
V2. For V2, we have min(V̄2) = {20, 11, 02} and the reduced Gröbner basis is read off
from columns 20, 11, and 02 of BV2

to be as follows:

GV2
=

{

x2
1 − x2, x1x2 − 3x2 + 2x1, x

2
2 − 7x2 + 6x1

}

=
{

p1, p2, p3

}

.

Finally, for V3 = {00, 01, 02}, we make the basis change to obtain the matrix BV3
:

BV3
=

⎛

⎜

⎝

00 10 20 30 01 11 21 02 12 03

00 1 0 0 0 0 0 0 0 0 0

01 0 7/6 1 2/3 1 2/3 0 0 −4/3 −4

02 0 −1/6 0 1/3 0 1/3 1 1 7/3 5

⎞

⎟

⎠
.

For V3, we have min(V̄3) = {10, 03} and the reduced Gröbner basis is read off from
columns 10 and 03 of BV3

to be as follows:

GV3
=

{

x1 +
1

6
x2

2 −
7

6
x2, x

3
2 − 5x2

2 + 4x2

}

=
{

p5, p6

}

.

The universal Gröbner basis of I is now obtained as the union of all reduced Gröbner
bases and is found to be the one provided in the beginning of this section:

U(I) = GV1
∪ GV2

∪ GV3
=

{

p1, . . . , p7

}

.

128 6 Nonlinear Combinatorial Optimization

Notes

The algorithm for nonlinear matroid optimization and the applications to experimental
design in Section 6.3.2 are from [10]; more information on experimental design and on
the emerging area of algebraic statistics can be found in [86]. The randomized algorithm
for nonlinear matroid intersections in Section 6.1.3 is from [11] extending [12] and has
some of its origins in [71]. The understanding of the deterministic time complexity of the
fiber problem and the nonlinear optimization problem over various combinatorial families
is very limited yet. Of particular interest is the deterministic time complexity of nonlinear
matroid intersections, which includes the long-open exact matching problem of [76] as a
special case. The approximation providing an r-best solution for nonlinear optimization
over independence systems in Section 6.2.1 is from [67] and is of an unusual character.
The vast literature on approximation algorithms usually seeks feasible solutions whose
objective value is bounded by a constant multiple of the optimal objective function value;
more information on this line of study can be found in [96]. It is also unusual and quite
remarkable that, as shown in Theorem 6.24, the running time needed to solve the problem
to optimality is actually exponential. The results in Section 6.3.3 on universal Gröbner
bases of zero dimensional ideals are from [6], extending results of [85] on generic radical
ideals. More information on this can be found in these papers, the related paper [35], the
book [95] by Sturmfels, and the references therein.

Bibliography

[1] K. Allemand, K. Fukuda, T. M. Liebling, and E. Steiner, A polynomial case of unconstrained
zero-one quadratic optimization, Math. Program. 91 (2001), 49–52. 33

[2] N. Alon and S. Onn, Separable partitions, Discrete Appl. Math. 91 (1999), 39–51. 24

[3] S. Aoki and A. Takemura, Minimal basis for a connected Markov chain over 3 × 3 × K
contingency tables with fixed two-dimensional marginals, Aust. N. Z. J. Stat. 45 (2003), 229–
249. 73, 74

[4] M. Aschenbrenner and R. Hemmecke, Finiteness theorems in stochastic integer program-
ming, Found. Comput. Math. 7 (2007), 183–227. 70

[5] D. Avis and K. Fukuda, A pivoting algorithm for convex hulls and vertex enumeration of
arrangements and polyhedra, Discrete Comput. Geom. 8 (1992), 295–313. 39

[6] E. Babson, S. Onn, and R. Thomas, The Hilbert zonotope and a polynomial time algorithm
for universal Gröbner bases, Adv. in Appl. Math. 30 (2003), 529–544. 6, 123, 124, 128

[7] M. L. Balinski and F. J. Rispoli, Signature classes of transportation polytopes, Math. Pro-

gram. 60 (1993), 127–144. 74

[8] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar, Privacy, accuracy,
and consistency too: a holistic solution to contingency table release, in Proceedings of the

26th Symposium on Principles of Database Systems (Beijing, 2007), Association for Com-
puting Machinery, 2007, pp. 273–282. 74, 96

[9] A. Barvinok, Integer Points in Polyhedra, Zurich Lectures in Advanced Mathematics, Euro-
pean Mathematical Society, 2008. 13

[10] Y. Berstein, J. Lee, H. Maruri-Aguilar, S. Onn, E. Riccomagno, R. Weismantel, and H. Wynn,
Nonlinear matroid optimization and experimental design, SIAM J. Discrete Math. 22 (2008),
901–919. 6, 102, 122, 128

[11] Y. Berstein, J. Lee, S. Onn, and R. Weismantel, Parametric nonlinear discrete optimization
over well-described sets and matroid intersections, Math. Program., to appear. 22, 35, 39,
106, 128

[12] Y. Berstein and S. Onn, Nonlinear bipartite matching, Discrete Optim. 5 (2008), 53–65. 17,
22, 36, 119, 128

[13] , The Graver complexity of integer programming, Ann. Comb. 13 (2009), 289–296. 95,
96

[14] D. Bertsimas and R. Weismantel, Optimization over Integers, Dynamic Ideas, 2005. 13

[15] L. J. Billera and A. Sarangarajan, All 0-1 polytopes are traveling salesman polytopes, Com-

binatorica 16 (1996), 175–188. 96

[16] A. Brauer, On a problem of partitions, Amer. J. Math. 64 (1942), 299–312. 109

[17] W. Bruns, J. Gubeladze, M. Henk, A. Martin, and R. Weismantel, A counterexample to an
integer analogue of Carathéodory’s theorem, J. Reine Angew. Math. 510 (1999), 179–185.
42

[18] V. Chvátal, Edmonds polytopes and a hierarchy of combinatorial problems, Discrete Math.

4 (1973), 305–337. 13

130 Bibliography

[19] M. Conforti and G. Cornuéjols, A class of logic problems solvable by linear programming,
J. Assoc. Comput. Mach. 42 (1995), 1107–1113. 39

[20] W. Cook, J. Fonlupt, and A. Schrijver, An integer analogue of Carathéodory’s theorem, J.

Combin. Theory Ser. B 40 (1986), 63–70. 42

[21] G. Cornuéjols, Valid inequalities for mixed integer linear programs, Math. Program. 112

(2008), 3–44. 13

[22] L. H. Cox, On properties of multi-dimensional statistical tables, J. Statist. Plann. Inference

117 (2003), 251–273. 74, 96

[23] J. De Loera, R. Hemmecke, S. Onn, U. G. Rothblum, and R. Weismantel, Convex integer
maximization via Graver bases, J. Pure Appl. Algebra 213 (2009), 1569–1577. 27, 39, 40,
42, 50, 53, 54, 58, 73

[24] J. De Loera, R. Hemmecke, S. Onn, and R. Weismantel, n-fold integer programming, Dis-

crete Optim. 5 (2008), 231–241. 40, 42, 48, 53, 54, 56, 58, 73, 81

[25] J. De Loera, E. D. Kim, S. Onn, and F. Santos, Graphs of transportation polytopes, J. Combin.

Theory Ser. A 116 (2009), 1306–1325. 96

[26] J. De Loera and S. Onn, The complexity of three-way statistical tables, SIAM J. Comput. 33

(2004), 819–836. 76, 79, 80

[27] , All linear and integer programs are slim 3-way transportation programs, SIAM J. Optim.

17 (2006), 806–821. 54, 64, 76, 79, 80

[28] , Markov bases of three-way tables are arbitrarily complicated, J. Symbolic Comput. 41

(2006), 173–181. 76, 83

[29] A. Dobra, S. E. Fienberg, A. Rinaldo, A. Slavković, and Y. Zhou, Algebraic statistics and
contingency table problems: log-linear models, likelihood estimation, and disclosure limita-
tion, in Emerging Applications of Algebraic Geometry, IMA Vol. Math. Appl. 149, Springer,
2009, pp. 63–88. 74

[30] H. Edelsbrunner, J. O’Rourke, and R. Seidel, Constructing arrangements of lines and hyper-
planes with applications, SIAM J. Comput. 15 (1986), 341–363. 24

[31] H. Edelsbrunner, R. Seidel, and M. Sharir, On the zone theorem for hyperplane arrangements,
SIAM J. Comput. 22 (1993), 418–429. 24

[32] J. Edmonds, Matroids and the greedy algorithm, Math. Program. 1 (1971), 127–136. 5

[33] J. Edmonds, Matroid intersection, Ann. Discrete Math. 4 (1979), 39–49. 35, 36, 106

[34] J. Edmonds and R. M. Karp, Theoretical improvements in algorithmic efficiency for network
flow problems, J. Assoc. Comput. Mach. 19 (1972), 248–264. 31

[35] J. C. Faugère, P. Gianni, D. Lazard, and T. Mora, Efficient computation of zero-dimensional
Gröbner bases by change of ordering, J. Symbolic Comput. 16 (1993), 329–344. 124, 128

[36] S. E. Fienberg and A. Rinaldo, Three centuries of categorical data analysis: Log-linear mod-
els and maximum likelihood estimation, J. Statist. Plann. Inference 137 (2007), 3430–3445.
74, 96

[37] S. Fujishige, Submodular Functions and Optimization, Annals of Discrete Mathematics 58,
Elsevier, 2nd edition, 2005. 39

[38] K. Fukuda, From the zonotope construction to the Minkowski addition of convex polytopes,
J. Symbolic Comput. 38 (2004), 1261–1272. 24

Bibliography 131

[39] K. Fukuda, S. Onn, and V. Rosta, An adaptive algorithm for vector partitioning, J. Global

Optim. 25 (2003), 305–319. 37, 39

[40] P. Gordan, Über die Auflösung linearer Gleichungen mit reellen Coefficienten, Math. Ann. 6

(1873), 23–28. 40, 67, 124

[41] J. E. Graver, On the foundations of linear and integer linear programming. I, Math. Program.

9 (1975), 207–226. 40, 41, 53

[42] P. Gritzmann and B. Sturmfels, Minkowski addition of polytopes: computational complexity
and applications to Gröbner bases, SIAM J. Discrete Math. 6 (1993), 246–269. 24

[43] M. Grötschel and L. Lovász, Combinatorial optimization, in Handbook of Combinatorics,
Elsevier, 1995, PP. 1541–1597. 31

[44] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Combinatorial Opti-

mization, Springer-Verlag, 2nd edition, 1993. 12, 13, 19, 21, 39

[45] B. Grünbaum, Convex Polytopes, Springer-Verlag, 2nd edition, 2003. 23

[46] P. L. Hammer, P. Hansen, P. M. Pardalos, and D. J. Rader, Jr., Maximizing the product of two
linear functions in 0-1 variables, Optimization 51 (2002), 511–537. 33

[47] E. F. Harding, The number of partitions of a set of N points in k dimensions induced by
hyperplanes, Proc. Edinburgh Math. Soc. 15 (1967), 285–289. 24

[48] R. Hassin and A. Tamir, Maximizing classes of two-parameter objectives over matroids,
Math. Oper. Res. 14 (1989), 362–375. 34, 39

[49] R. Hemmecke, M. Köppe, J. Lee, and R. Weismantel, Nonlinear integer programming, in 50

Years of Integer Programming 1958–2008: The Early Years and State-of-the-Art Surveys (M.
Jünger, T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, and
L. Wolsey, eds.), Springer, to appear. 13, 53

[50] R. Hemmecke, S. Onn, and R. Weismantel, A polynomial oracle-time algorithm for convex
integer minimization, Math. Program., to appear. 40, 42, 48, 53, 54, 58, 67, 69, 70, 73

[51] , n-fold integer programming and nonlinear multi-transshipment, submitted. 40, 42, 54,
58, 62, 65, 73

[52] R. Hemmecke and R. Schultz, Decomposition of test sets in stochastic integer programming,
Math. Program. 94 (2003), 323–341. 67, 73

[53] D. S. Hochbaum and J. G. Shanthikumar, Convex separable optimization is not much harder
than linear optimization, J. Assoc. Comput. Mach. 37 (1990), 843–862. 29

[54] A. J. Hoffman and J. B. Kruskal, Integral boundary points of convex polyhedra, in Linear

Inequalities and Related Systems, Ann. Math. Stud. 38, Princeton University Press, 1956,
pp. 223–246. 8, 29, 54

[55] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and Compu-

tation, Addison-Wesley, 1979. 11

[56] S. Hoşten and S. Sullivant, Finiteness theorems for Markov bases of hierarchical models, J.

Combin. Theory Ser. A 114 (2007), 311-321. 55, 73

[57] F. K. Hwang, S. Onn, and U. G. Rothblum, A polynomial time algorithm for shaped partition
problems, SIAM J. Optim. 10 (1999), 70–81. 24, 25, 37, 39

[58] R. Irving and M. R. Jerrum, Three-dimensional statistical data security problems, SIAM J.

Comput. 23 (1994), 170–184. 74, 80, 83

132 Bibliography

[59] L. G. Khachiyan, A polynomial algorithm in linear programming, Sov. Math. Dokl. 20

(1979), 191–194. 8, 19, 30, 39, 54

[60] L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, and V. Gurvich, Generating all vertices of
a polyhedron is hard, Discrete Comput. Geom. 39 (2008), 174–190. 16, 39

[61] E. D. Kim and F. Santos, An update on the Hirsch conjecture, preprint, arXiv:0907.1186
(2009). 96

[62] V. Klee and C. Witzgall, Facets and vertices of transportation polytopes, in Mathematics of

the Decision Sciences, Part I, American Mathematical Society, 1968, pp. 257–282. 74

[63] P. Kleinschmidt, C. W. Lee, and H. Schannath, Transportation problems which can be solved
by the use of Hirsch-paths for the dual problems, Math. Program. 37 (1987), 153–168. 74

[64] D. C. Kozen, Theory of Computation, Springer-Verlag, 2006. 11

[65] M. Laurent and F. Rendl, Semidefinite programming and integer programming, in Handbook

on Discrete Optimization (K. Aardal, G. Nemhauser, and R. Weismantel, eds.), Elsevier,
2005, pp. 393–514. 13

[66] J. Lee, S. Onn, L. Romanchuk, and R. Weismantel, The quadratic Graver cone, quadratic
integer minimization, and extensions, submitted. 53

[67] J. Lee, S. Onn, and R. Weismantel, Approximate nonlinear optimization over weighted inde-
pendence systems, SIAM J. Discrete Math. 23 (2009), 1667–1681. 110, 117, 128

[68] T. Leighton and S. Rao, Multicommodity max-flow min-cut theorems and their use in de-
signing approximation algorithms, J. Assoc. Comput. Mach. 46 (1999), 787–832. 73

[69] H. W. Lenstra, Jr., Integer programming with a fixed number of variables, Math. Oper. Res.

8 (1983), 538–548. 54, 80

[70] F. V. Louveaux and R. Schultz, Stochastic integer programming, in Stochastic Programming,
Handbooks Oper. Res. Management Sci. 10, Elsevier, 2003, pp. 213-266. 65, 73

[71] L. Lovász, On determinants, matchings, and random algorithms, in Fundamentals of Com-

putation Theory, Math. Res. 2, Akademie-Verlag, 1979, pp. 565–574. 128

[72] , An Algorithmic Theory of Numbers, Graphs, and Convexity, CBMS-NSF Regional
Conference Series in Applied Mathematics 50, Society for Industrial and Applied Mathe-
matics (SIAM), 1986. 12, 13, 19, 21, 39

[73] L. Lovász and A. Schrijver, Cones of matrices and set-functions and 0-1 optimization, SIAM

J. Optim. 1 (1991), 166–190. 13

[74] D. Maclagan, Antichains of monomial ideals are finite, Proc. Amer. Math. Soc. 129 (2001),
1609–1615. 67

[75] T. S. Motzkin, The multi-index transportation problem, Bull. Amer. Math. Soc. 58 (1952),
494. 8, 74, 80, 96

[76] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani, Matching is as easy as matrix inversion,
Combinatorica 7 (1987), 105–113. 17, 119, 128

[77] K. Murota, Discrete Convex Analysis, SIAM Monographs on Discrete Mathematics and Ap-
plications, Society for Industrial and Applied Mathematics (SIAM), 2003. 39

[78] K. Murota, H. Saito, and R. Weismantel, Optimality criterion for a class of nonlinear integer
programs, Oper. Res. Lett. 32 (2004), 468–472. 44

[79] A. Nemirovskii, S. Onn, and U. G. Rothblum, Accuracy certificates for computational prob-
lems with convex structure, Math. Oper. Res. 35 (2010), 52–78. 20, 39

Bibliography 133

[80] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Program-

ming, SIAM Studies in Applied Mathematics 13, Society for Industrial and Applied Mathe-
matics, 1994. 72

[81] S. Onn, Convex matroid optimization, SIAM J. Discrete Math. 17 (2003), 249–253. 34, 39

[82] , Entry uniqueness in margined tables, in Proc. PSD 2006 – Symp. on Privacy in Statis-
tical Databses (Rome, Italy), Lec. Not. Comp. Sci. 4302, Springer, 2006, pp. 94–101. 83, 84,
85

[83] S. Onn and U. G. Rothblum, Convex combinatorial optimization, Discrete Comput. Geom.

32 (2004), 549–566. 27, 33, 37, 39

[84] S. Onn and L. J. Schulman, The vector partition problem for convex objective functions,
Math. Oper. Res. 26 (2001), 583–590. 37, 39

[85] S. Onn and B. Sturmfels, Cutting corners, Adv. in Appl. Math. 23 (1999), 29–48. 6, 124, 128

[86] G. Pistone, E. M. Riccomagno, and H. P. Wynn, Algebraic Statistics, Monographs on Statis-
tics and Applied Probability 89, Chapman & Hall, 2001. 120, 128

[87] J. Renegar, A polynomial-time algorithm, based on Newton’s method, for linear program-
ming, Math. Program. 40 (1988), 59–93. 8, 19

[88] R. W. Rosenthal, A class of games possessing pure-strategy Nash equilibria, Internat. J.

Game Theory 2 (1973), 65–67. 10, 62

[89] F. Santos and B. Sturmfels, Higher Lawrence configurations, J. Combin. Theory Ser. A 103

(2003), 151–164. 55, 73

[90] A. Schrijver, Theory of Linear and Integer Programming, Wiley-Interscience Series in Dis-
crete Mathematics, John Wiley & Sons, 1986. 13, 47, 70, 80

[91] , Combinatorial Optimization, Springer-Verlag, 2003. 13

[92] A. Schulz, R. Weismantel, and G. M. Ziegler, 0/1-integer programming: optimization and
augmentation are equivalent, in Proceedings of the Third Annual European Symposium on

Algorithms, Lecture Notes in Comput. Sci. 979, Springer, 1995, pp. 473–483. 31

[93] J. T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities, J. As-

soc. Comput. Mach. 27 (1980), 701–717. 100

[94] A. Sebö, Hilbert bases, Carathéodory’s theorem and combinatorial optimization, in Proceed-

ings of the 1st Integer Programming and Combinatorial Optimization Conference, University
of Waterloo Press, 1990, pp. 431–455. 42

[95] B. Sturmfels, Gröbner Bases and Convex Polytopes, University Lecture Series 8, American
Mathematical Society, 1996. 13, 51, 52, 53, 122, 128

[96] V. V. Vazirani, Approximation Algorithms, Springer-Verlag, 2001. 128

[97] M. Vlach, Conditions for the existence of solutions of the three-dimensional planar trans-
portation problem, Discrete Appl. Math. 13 (1986), 61–78. 74, 81

[98] D. J. A. Welsh, Matroid Theory, Academic Press, 1976. 5

[99] H. Wu and C. F. J. Wu, Clear two-factor interactions and minimum aberration, Ann. Statist.

30 (2002), 1496–1511. 120

[100] V. A. Yemelichev, M. M. Kovalëv, and M. K. Kravtsov, Polytopes, Graphs and Optimisation,
Cambridge University Press, 1984. 74

[101] D. B. Yudin, and A. S. Nemirovskii, Informational complexity and effective methods for the
solution of convex extremal problems, Matekon 13 (1977), 25–45. 19, 39

134 Bibliography

[102] T. Zaslavsky, Facing up to arrangements: face count formulas for partitions of space by hy-
perplanes, Mem. Amer. Math. Soc. 1 (1975). 24

[103] G. M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics 152, Springer-Verlag,
1995. 23

Index

A

approximation scheme
Graver, 72
universal, 89

approximative solution, 108, 117
assignment problem, 17, 36, 119
augmentation oracle, 41

B

bimatrix, 54
binary length, 11, 124
bipartite matching, 36, 119

exact, 17
brick, 55, 66, 67

C

circuit, 14, 29, 41, 51
combinatorial optimization, 2, 4, 97

ground set, 2, 99
compression, 56
conformal, 29, 40

sum, 29, 40
congestion, 10, 62
convex

combinatorial maximization, 31
discrete maximization, 14
matroid intersection, 36
matroid optimization, 34

D

d-way polytope, 76
d-way table, 74
divisible, 110, 116

E

edge-direction, 14, 23
set of all edge-directions, 15, 23, 31–33,

35, 50, 125
ellipsoid method, 19, 39
exact bipartite matching, 17, 119
expansion, 56
exponent, 99

exponential time, 5, 108, 117

F

face, 21, 23, 76, 77
fiber, 14, 15, 99

problem, 15, 17, 19, 20, 99, 119
forest, 4, 35
Frobenius number, 109
full vector, 55

G

gap, 84
set, 109, 114

Gröbner basis
reduced, 122
universal, 122, 125

Graver basis, 40
Graver complexity

of bimatrix, 55
of digraph, 90
of graph, 90

greedy algorithm, 5
ground set, 2, 99, 112, 117

of independence system, 112, 117
of matroid, 4

H

hierarchical margin, 9, 74, 86
constraint, 80, 81, 85, 86, 88

Hilbert basis, 58
Hilbert scheme, 123
hole, 16, 18, 21

I

ideal, 122
basis polytope of, 124
generated by, 122

image, 14, 15, 102, 105, 114
vertex set of, 16, 21, 26

incidence matrix, 5, 29, 63, 88, 90–92
independence system, 7, 108

generated by, 111

136 Index

ground set of, 112, 117
indicator, 11
integer

Carathéodory number, 42
convex set, 22
polyhedron, 8, 29

integer programming
n-fold, 54
nonlinear, 2, 3, 40, 54
stochastic, 66

interpolation, 99

L

lattice, 29, 40
line-sum, 74
linear programming, 8, 19
linear-optimization oracle, 108

M

margin, 8, 74, 86
hierarchical, 9, 74, 86
line-sum, 74
plane-sum, 74

matroid, 4
basis of, 4
graphic, 4
ground set of, 4
independent set of, 4
rank of, 4
vectorial, 4

moment curve, 100
monoid, 109
monomial, 99
multicriterion, 1
multiplayer, 1
multiway table, 74

format of, 74
long, 74, 81, 85–87
short, 74, 80, 83
side of, 74
universality of, 75, 76

N

n-fold integer programming, 54
convex maximization, 59
distance minimization, 59

linear, 58
separable convex minimization, 59
universality of, 75, 89
weighted separable minimization, 61

n-fold product
of bimatrix, 54
of matrix, 88

n-lifting, 56, 67, 71, 90
nonlinear

combinatorial optimization, 2, 4, 97
discrete optimization, 1
independence system, 7, 117
integer programming, 2, 3, 40, 54
matroid intersection, 7, 106
matroid optimization, 5, 102
multicommodity transportation, 63, 65
multicommodity transshipment, 9, 10, 62
multiindex transportation, 8, 9, 80, 82, 87

normal cone, 23
normal form, 123

O

oracle, 2, 12
augmentation, 31
basis, 5, 34
comparison, 1
evaluation, 50, 99, 101, 104
independence, 5, 34
linear-optimization, 2, 14, 15, 117
membership, 2, 15, 31, 33
separation, 20
subgradient, 20

P

plane-sum, 74, 77
polynomial

degree of, 99
integer, rational, real, complex, 99
multivariate, 99
support of, 99
zeros of, 100, 122

polynomial time, 12
oracle, 12
randomized, 105, 106

primitive tuple, 108, 109, 111, 116, 117
primitive-relation, 93

Index 137

privacy, 83, 86
problem

assignment, 17, 36, 119
distance minimization, 49, 59
entry uniqueness, 83–85, 87
fiber, 15, 17, 19, 20, 99, 119
many-commodity b-matching, 92
many-commodity transshipment, 62, 63
multicommodity transportation, 63, 65
multicommodity transshipment, 9, 10, 62
multiindex transportation, 8, 9, 80, 82, 87
nonlinear independence system, 7, 117
nonlinear matroid intersection, 7, 106
nonlinear matroid optimization, 5, 102
quadratic binary programming, 33
stochastic integer programming, 66
subset-sum, 81, 85
traveling salesman, 7, 36, 108

pure vector, 55

R

r-best solution, 108, 117
radius, 12
randomized algorithm, 105
refinement, 23
restriction, 99, 103, 107, 113

S

saturated, 110, 113
scenario, 66
separable convex function, 17, 43, 45, 51,

59–61
simplicial complex, 7
spanning tree, 4, 6, 35
stochastic integer programming, 65, 66, 69,

70
subset-sum problem, 81, 85
supermodularity, 43
support, 11

T

totally unimodular, 8, 29, 51, 52
traveling salesman problem, 7, 36, 108
type, 55

U

unary length, 12
universality, 9, 76, 89

of n-fold integer programming, 75, 89
of tables, 75, 76

V

vector partitioning, 36, 37

W

weight matrix, 1

Z

zonotope, 14, 23

	ZLAM_EMS.pdf
	ZLAM_EMS.pdf
	Preface
	Contents
	Introduction
	Outline of the monograph
	Two prototypical classes of examples
	Nonlinear matroid problems
	Nonlinear multicommodity flows

	Notation, complexity, and finiteness
	Notation
	Complexity
	Finiteness

	Convex Discrete Maximization
	Image and fibers
	Small radius and weight
	Convex maximization with edge directions
	Edge directions and zonotopes
	Efficient convex maximization
	Small radius and weight revisited
	Totally unimodular systems

	Convex combinatorial maximization
	Some applications
	Quadratic binary programming
	Matroids and matroid intersections
	Vector partitioning and clustering

	Nonlinear Integer Programming
	Graver bases
	Efficient separable convex minimization
	Specializations and extensions
	Linear integer programming
	Distance minimization
	Convex integer maximization
	Weighted separable convex minimization
	Totally unimodular systems revisited

	Bounds on Graver bases

	n-Fold Integer Programming
	Graver bases of n-fold products
	Efficient n-fold integer programming
	Some applications
	Nonlinear many-commodity transshipment
	Nonlinear multicommodity transportation

	Stochastic integer programming
	Graver approximation scheme

	Multiway Tables and Universality
	The universality theorem
	Some applications
	Multiindex transportation problems
	Privacy in statistical databases
	Extensions to hierarchical margins

	Universality of n-fold integer programming
	Graver complexity of graphs and digraphs

	Nonlinear Combinatorial Optimization
	Nonlinear matroid optimization
	Preparation
	Matroids
	Matroid intersections

	Optimization over independence systems
	Approximative nonlinear optimization
	Exponential time to exact optimization

	Some applications
	Nonlinear bipartite matching
	Experimental design
	Universal Gröbner bases

	Bibliography
	Index

