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SUMMARY 

This paper is devoted to the study of the connections among risk-sensitive stochastic optimal control, 
dynamic game optimal control, risk-neutral stochastic optimal control and deterministic optimal control 
in a nonlinear, discrete-time context with complete state information. The analysis worked out sheds light 
on the profound links among these control strategies, which remain hidden in the linear context. In 
particular, it is shown that, under suitable parameterizations, risk-sensitive control can be regarded as 
a control methodology which combines features of both stochastic risk-neutral control and deterministic 
dynamic game control. 
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1. INTRODUCTION 

Over the last decade, robust control has attracted increasing interest. A huge stream of 
literature has been devoted to H, control theory, which has shown to be a systematic and 
effective way to design robust controllers such that bounds on the H,-norm of certain transfer 
functions are achieved. The H, approach leads to robust controllers of the worst-case type, 
in the sense that focuses attention on that disturbance input which produces the largest effect 
on the system output and tries to minimize such an effect. The min-max nature of H, has been 
widely emphasized by connecting H, control with deterministic game theory, see, for example, 
Doyle et al., ' Limebeer et a/. l6  and Basar and Bernhard. 

The H, approach is alternative to (and somewhat in contrast with) the well-developed H2 

design procedure. In Hz, uncertainties on the model are described as statistical variations with 
respect to a nominal situation. The control goal is then to minimize the mean value of certain 
cost functions over all the possible statistical occurrences. This approach is somewhat more 
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optimistic than Hm in that one does not assume that disturbances are necessarily malicious and 
act so as to hinder the controller objectives. The difference between Hm and H2 is made even 
sharper when one considers the mathematical formulation of the two problems: the first one 
involves no probability, whereas the second one is inherently stochastic. 

In 1973, Jacobson” replaced the usual quadratic cost function used in the HZ control 
problem with a modified criterion obtained through an exponential transformation. More 
precisely, he considered the linear system 

X j +  1 = A x j  + B u j  + [ j  

where uj is the control variable and [ [ j )  is a white Gaussian disturbance and introduced the 
cost function 

V =  E[exp J ]  

where 
N -  1 

J =  C (fUj’Ruj + 4Xj ’QXj )  + 1 >XNQXN I -  
j - 0  

Since the exponential function is convex, the penalty in the occurrence of values of J larger 
than E [ J ]  outweighs the alleviation in penalty caused by the occurrence of some values less 
than E [ J ] .  This corresponds to a pessimistic viewpoint in the control design: one acts as 
though all the uncertainties [ j  affecting the state X j + l  were likely to turn out to  one’s 
disadvantage (risk-sensitive control). As the second derivative of the exponential function is 
increasing with its argument, the larger the value of J, the greater the predisposition to 
pessimism. As a consequence of this fact, one will try to keep J small. This leads to  a 
conservative control policy with robust stability characteristics. 

Jacobson, l 1  studies the risk-sensitive control problem in the case of perfect state observation 
and shows that the feedback control law is linear in the state, the gain of the controller being 
computed from a generalized Riccati equation. Moreover, via explicit calculations, he shows 
that the structure of the corresponding controller is the same as that for a dynamic game 
control problem. This interesting result established a link for the first time between 
deterministic dynamic game problems and control problems based on the minimization of 
stochastic cost functions. The case of imperfect state observation was first addressed in 
Reference 12. However, it was not until Whittle19 that a satisfactory treatment of this case was 
worked out. In this same paper, Whittle introduces a risk-sensitivity parameter and 
demonstrates that selecting this parameter to  be too large may lead to situations in which, 
regardless of the control policy, the cost function is infinite. This causes paralysis in the control 
design in the conviction of inability to control. Instead, when the risk-sensitivity parameter 
goes to  zero, the usual linear quadratic gaussian control (risk-neutral control) is recovered. 
Glover and Doyle9 see also Bernstein and Haddad,’ study the connection between risk- 
sensitive control and H ,  control. By focusing on linear time-invariant regulators, they show 
that in the infinite horizon case the risk-sensitive criterion enforces a bound on the Hm-norm 
of the closed-loop transfer function. Moreover, the optimal controller minimizes the entropy 
integral over the set of all controllers meeting the Hm-norm bound. The interested reader is 
referred to Whittle” for a comprehensive presentation of risk-sensitive optimal control theory. 

It is interesting to note that all the above connections between dynamic game and H m  control 
theories and risk-sensitive optimal control theory are a consequence of the linear quadratic 
context in which they have been worked out. In fact, if one turns to nonlinear systems and/or 
to cost functions which are not quadratic (or exponential of quadratic, in the risk-sensitive 
case), different solutions are obtained for the different control problems. Only in the linear- 
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quadratic case, these solutions collapse and turn out to be coincident. This could make one 
to think that all these links are just an accidental consequence of special circumstances. 

In the context of nonlinear systems with complete state information, the link was established 
with the aid of an asymptotic analysis in James13 and Fleming and McEneaney.8 These two 
papers treat the mathematically technical continuous-time case, making use of PDE viscosity 
solution methods. In this paper we are concerned with risk-sensitive optimal control for 
nonlinear discrete-time systems with complete state information. 

By suitably parametrizing the corresponding cost function, we will be able to clarify the 
relationships between this control problem and various other optimal control strategies. To be 
specific, the value function for the risk-sensitive control problem we consider is 

where Uj is the control variable and xf is the controlled process governed by the dynamical 
system 

x>+1 = b ( x j ,  Uj) + ((,I white Gaussian sequence 

After applying the logarithmic transformation 

& 

P 

we study the limits of WP9'(x; k )  when the parameters fi and e tend to zero (Section 3). For 
el0 the value function of the dynamic game control problem is obtained, whereas the value 
function of the risk-neutral control problem is achieved for p 10. When both p 1 0  and E LO, 
W"'(X; k )  tends to  the value function of a deterministic optimal control problem. All these 
limits are illustrated in Figure 1. 

These results shed light on the profound links between deterministic dynamic games and 
stochastic optimal control problems in the nonlinear context, where the solutions of the 
different problems are not coincident due to accidental circumstances. As can be seen from 
Figure 1, the risk-sensitive regulator problem can be regarded as a generalization of the 

WfiJ(x; k )  = - log S",E(X; k )  

Figure 1 
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deterministic control problem which combines features of both dynamic games and stochastic 
control. To better clarity this point, in Section 4 we shall work out the following first order 
expansion for w'P,~Q(x,  k ) :  

(x;  k )  = W(x;  k )  + P (  W,(x; k) ,  W d x ;  k) )  + o(P), as P 10 (1) 

In equation (l), W(x:  k )  is the value function of the deterministic optimal control problem, 
W,(x;k )  will be interpreted as an incremental cost due to a deterministic opposing player 
whereas Wn(x;k)  is a term due to the diffusion effect of stochastic noise. 

The linkage between deterministic dynamic games and risk-sensitive stochastic control for 
nonlinear discrete-time systems with incomplete state information has recently been established 
by James et al. I4,l5 We also refer the reader to Ball and Helton, van der Shaft, l 7  Isidori and 
Astolfi, l o  and Baras and James3 for the formulation of H, control problems in a nonlinear 
context. 

(3 Waph 

2 THE OPTIMAL CONTROL PROBLEMS 

In this section, we formulate the four optimal control problems which will be studied in the 
forthcoming sections. 

2.1. Risk-sensitive stochastic optimal control problem 

Consider the nonlinear discrete-time stochastic system described by 

X ~ + I  = b(x j ,  U j )  + b t j  (2) 

where x j  € R" is the state vector, U j  € U C R" is the control variable and [ [ j  ) is a sequence of 
independently distributed Gaussian random variables with probability density p ( z )  = (27r) - n ' 2  

exp( - ) l z lZ) .  Moreover, consider two functions L ( * ; ) : R " x  U + R  and ' P ( * ) : R " + R  and 
assume that b( -, .), L (  * , .) and 'P( .) satisfy the following regularity conditions 

(i) b ( * , . )  is bounded ad continuous and b ( .  , u )  is uniformly Lipschitz continuous, 

(ii) L( . ; )  is bounded and continuous and L(. ,u)  is uniformly Lipschitz continuous, 

(iii) a(*) is bounded and Lipschitz continuous. 

Denoting by U(k)  the class of control sequences u = ( u k ,  ..., U N - 1 )  such that U j  E U, 
j = k ,  . . . , N - 1, is measurable with respect to the a-algebra generated by [ x i ,  . . . , x j ) ,  the 
value function for the risk-sensitive optimal control problem in the interval [k ,  N] is defined by 

uniformly in u E U, 

uniformly in u E U. 

I1 N -  1 

u f U ( k )  [ [ j = k  
S""(X; k )  = inf E x , k  exp - L(x:, U j )  + 'P(Xk) 

where x j  is generated by system (2) initialized at time k with state x.  

2.2. Dynamic game optimal control problem 

Consider the nonlinear discrete-time deterministic system described by 

X j +  1 = b(xj ,  U j )  + Z j  
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where X j  E R" is the state vector, U j  E U C R" is the control variable, and Z j  € R" is the input 
variable to be chosen by an opposing player. In the deterministic context, the set U(k)  denotes 
the class of control policies u such that for each j =  k ,  ..., N -  1 there exists a map i i j :  

+ U with U j  = f i j ( X k ,  . . . l X j ) .  The value function for the dynamic game optimal 
control problem is defined as 
R n x ( j - k + i )  

where X j  is generated by system (3) initialized at time k with state x, and z denotes the sequence 
Zk ,  . . a ,  ZN-1. 

2.3. Risk-neutral stochastic optimal control problem 

The value function for the risk-neutral stochastic optimal control problem is given by 

1 w ' ( X ;  k )  = inf Ex,k L ( X j ,  U j )  -I- @ ( X k )  
u E U ( k )  j = k  

where U(k)  is defined as in the risk-sensitive case and x j  is generated by system (2) initialized 
at time k with state x .  

2.4. Deterministic optimal control problem 

Consider the nonlinear discrete-time deterministic system described by 

X j + l =  b ( x j ,  U j )  

where xj E R" is the state vector, and uj E U c Rm is the control variable. 
The value function for the deterministic optimal control problem is defined as 

where U(k)  is defined as in the dynamic game case and x j  is generated by system (6) initialized 
at time k with state x. 

3.  LIMIT RESULTS 

The goal of the present section is to establish the limit results relating the value functions of 
the four optimal control problems introduced in the previous section. We start by stating the 
dynamic programming equations for the different control problems. 

Risk-sensitive stochastic optimal control problem 

Wp*'( X; N )  = 9 ( X )  

where Wp*'(x; k) = (f/p)log 9 v E ( ~ ;  k) .  
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Dynamic game optimal control problem 

Risk-neutral stochastic optimal control problem 

W E ( x ;  k )  = inf Ex,k[L(x,  u )  + WC(b(x ,  u )  + &&; k + 111 

W‘(x;N)  = @ ( x )  
ucu 

Deterministic optimal control problem 

W(x;  k )  = inf ( L ( x ,  u )  + W(b(x ,  u); k + I ) ]  
u c  u 

(1  1) 

We now focus our attention on the link between the value function of the risk-sensitive 
control problem and the one of the dynamic game control problem. The relevant result is given 
in Theorem 3.2. First, we analyse some important characteristics of W p ( - ;  k )  and introduce 
a lemma useful in the proof of Theorem 3.2. 

Assumptions (i) to (iii) in Section 2 imply that W p (  * ; k) ,  k = 0, 1, . . . , N ,  are bounded and 
Lipschitz continuous. The boundeness follows from the boundedness of L ( *  , a )  and +(.). For 
k = N ,  the Lipschitz continuity is an immediate consequence of assumption (iii). For k < N ,  
one can inductively assume that W”( * ;  k + 1) is Lipschitz continuous. Then, assumptions (ii) 
and (iii) entail that L ( * ,  u )  - (1/2p) I z l 2  + W P ( b ( . ,  u )  + z; k + 1) is Lipschitz continuous 
uniformly in (u,  z )  E U x R”. Hence, 

W(x;  N )  = cp ( x )  

is Lipschitz continuous uniformly in u E U and 

is Lipschitz continuous. These properties will justify the use of Lemma 3.1 in the proof of 
Theorem 3.2. 

Lemma 3.1 

Consider a function f ( *  , - )  E C(R” x 0, R), 8 C RP, such that 

(ii) 3c3: supz f ( z ,  6) 2 c3, V6 € 8; 
(iii) f(- , 6 )  is uniformly Lipschitz continuous on compact sets, uniformly in 8 E 8. 

(i) 3c1, c2 > 0: f ( z ,  e )  G C ,  - c21 z Iz, vz E R”, ve E 8; 

Given a family of functions fc( * , .) E C(R“ x 8, R), E > 0, uniformly approaching f( * ,  .): 

SUP“ I fe (z ,6) - f ( z ,8) I  + O ,  as e l 0  
( z .B)ER x e  
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we have 

uniformly in 6 c  8. 

Proof. Given in the Appendix. 0 

The following theorem relates risk-sensitive stochastic optimal control and dynamic game 
optimal control. 

Theorem 3.2 

We have 
lim W p * E ( ~ ;  k )  = W”(x;  k ) ,  
r l O  

uniformly in x €  R“, where W”(x;  k )  is the value of 

k = 0 , 1 ,  ..., N 

the dynamic game control problem (4). 

Proof, For k = N the result is trivially true. For k < N ,  the result will be proved by 
induction. Assume that 

lirn WPqE(x; k + 1) = W”(x;  k + 1) 
E l 0  

uniformly in x c  R” and write 

I & 1 V’+‘(x, u; k )  = - log u )  - - I z l 2  + Wp,‘(b(x, u )  + z; k + 1) ( 2 ? y ~ ) - “ / ~  dz  
P 2P 

We want to apply Lemma 3 .1  to Vp*‘(x,  u;  k ) .  To this end, define 

e = (x, u); 

Assumptions (i) and (ii) of Lemma 3.1 are satisfied in view of the boundedness of L ( . ; )  
(assumption (ii) in Section 2) and W ” ( - ; k +  1). Assumption (iii) holds true thanks to the 
Lipschitz continuity of W ” ( - ;  k + 1). Then, 

I 1 lim v ~ ~ J ( x ,  u; k )  = sup L ( X ,  u )  - - I z 1’ + ~ ” ( b ( x ,  u )  + z; k + 1) 
f10 J 2P 

uniformly in (x, u )  € R“ x U. Finally, thanks to the uniform validity of this limit, 

lim W”*‘(X; k )  = lirn inf V”,‘(X, u; k )  
el0 e l 0  u € U  I 1 u) - - I z 1 2 +  W”(b(x ,  u )  + z; k + 1) 

ucu z 2P 

= W ’ ( x ; k )  

uniformly in x E R”. 0 
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Next, Theorem 3.3 studies the behaviour of WP>'(x; k )  when the risk-sensitivity parameter 
p tends to  zero. 

Theorem 3.3 

We have 

lim W P i c ( x ;  k )  = W e ( x ;  k ) ,  
P i 0  

k = 0, 1, ..., N 

uniformly in XER", where Wc(x;k) is the value of the risk-neutral stochastic control 
problem ( 5 ) .  

Proof. The theorem will be proved by induction. For k = N the result is trivially true. Next, 
consider the function V P p c ( . , . ;  k) defined by equation (12) and assume that 

lim WP*'(x; k + 1) = W c ( x ;  k + 1) 
P i 0  

uniformly in xER". Since L ( . ; )  and a(.) are bounded (Assumptions (ii) and (iii) in 
Section 2), W e ( . ,  k + 1)  is bounded as well. Then, the inductive assumption (13) implies 

x exp[ - - 1 I z (27r~)-" '~  dz  + o ( p ) ]  
2e 

uniformly in ( x ,  u )  ER" x U. The last part of the proof is entirely similar to that of 
Theorem 3.2. 0 

The value function for the deterministic optimal control problem is obtained as limiting case 
both from the risk-sensitive stochastic optimal control and the dynamic game optimal control 
problem. 

Theorem 3.4 

We have 

lim W'(x;k)=lim Wp(x;k)=  W ( x ; k ) ,  
e l 0  P i 0  

k = 0 , 1 ,  ..., N 

uniformly in X E  R", where W ( x ;  k )  is the value of the deterministic optimal control problem 
(7). 
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Proof. Note that the result is trivially true for k = N and assume the inductive assumption 

lirn W f ( x ;  k + 1) = lim W ( x ;  k + 1 )  = W(x;  k + 1) 
c 1 0  "10 

uniformly in x c  R". Define 

1 1 V"(x, u; k )  = sup L(x ,  u )  - - 12 l 2  + WP(b(x, u) + 2; k + 1 )  J 2P 
and 

R" 

Similarly to WP(.;k+ I ) ,  also W(. ;  k +  1) is Lipschitz continuous. Then, the inductive 
assumption implies 

lim V+ ( x ,  u; k )  = lim VE ( x ,  u; k )  
P i 0  e l 0  

= L ( x ,  u )  + W(b(x ,  u) ;  k + 1) 

uniformly in ( x ,  u )  c R" x U. The last part of the proof is entirely analogous to that of 
Theorem 3.2. 0 

Remark 3.5 

k = 0,  1 ,  ..., N,  one can also prove that lim, 10 WapSbp(x; k )  = W(x;  k) ,  uniformly in x €  R". 
In full analogy with the proof that limEio W f ( x ;  k )  = lim,io W"(x; k )  = W(x;  k), 

In this section, we have shown that the value functions of the four control problems introduced 
in Section 2 are linked to each other when certain parameters tend to zero. This result 
enlightens the profound links among these techniques in the general nonlinear context. In the 
next section, a first-order expansion supplying more details on these connections is provided. 

4. FIRST-ORDER EXPANSION 

In this section we provide an explicit first-order expansion formula for Wf'.'( * ; k). This result 
illuminates how risk-neutral stochastic optimal control and dynamic game optimal control 
combined in determining the value function for the risk-sensitive stochastic optimal control 
problem. The expansion will be worked out under the following additional conditions 
(throughout the section, the symbols D and A will denote the gradient and the Laplacian 
operators, respectively). 

(iv) b(x ,  u )  = f ( x )  + g(x )u ,  u E U, U compact and convex. 
(v) f(.), g ( - ) ,  L ( * , . )  and +(*) are of class C3. 

(vi) D2+(x)  2 0, V x E  R". 
D;L(x,  u )  > 0,  uniformly in ( x ,  u )  E R" x U. 

(vii) W ( -  ; k) is of class C2 and D2W(x;  k )  2 0,  v x  E R", k = 0,1, . .., N - 1. 

Under Assumptions (iv) to (vii) 

D;( L(x ,  u )  + W(b(x ,  u ) ;  k + 1 ) )  = D i L ( x ,  u )  + g(x ) 'DZW(f (x )  + g(x)u;  k + l ) g ( x )  
>0,  k=0, 1, ..., N -  1 
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uniformly in (x, u) E R" x U. Therefore, taking also into account the convexity assumption on 
U, the optimal control law for the deterministic control problem exists and is unique. Denote 
by 

u*(x; k )  = argmin(l(x,  u) + W(b(x,  u); k + 1)) 
U E  u 

the optimal feedback control law at time k .  We assume that 

(ix) u*(x;k)EInterior(U), V x € R n ,  k=0,1,  ..., N -  1. 
(viii) u*( . ;k ) ,k=O, l ,  ..., N-1, a reo fc l a s sC3 .  

Remark 4.1 

0 Assumption (4) implies that W ( .  ; k), k = 0, 1, ..., N - 1, are of class C 3 .  
0 If L(x,  u) = r (x )  + $ 1  u 1 2 ,  then Assumption (ix) is always satisfied provided that U is 

'sufficiently large'. 

We first introduce the following lemma which will be useful in the proof of the expansion 
result. 

Lemma 4.2 

Given a family of uniformly bounded functions fc(*): R" + R, c > 0, assume that the 
following expansion 

fr(z) = f ( z )  + a ( z )  + o(E) ,  as €10 

holds true uniformly on compact sets, where f(.) E C2(R", R) and g(- )  E C(R", R). Then, 

uniformly on compact sets. 

Proof. Given in the Appendix. 0 

Denoting by xk*(x; j ) ,  j = k, k + 1, ..., N ,  the optimal state trajectory for the deterministic 
control problem with initial state x at time k, define the following functions 

1 "  Wg(X; k) = - C I OW(xk*(X;j);j)l2 
2 j = k + l  

1 "  Wn(X; k)  = - C A W(X:(X;~);~) 
2 j = k + l  

Theorem 4.3 

Given a > 0 and b > 0, we have the following expansion 

W u P s b P ( ~ ; k ) =  W(x;k)+p(W,(x;k), Wn(x;k))(i) + o ( p ) ,  as p i 0  

uniformly on compact subsets of R". 
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Proof. The expansion is trivially true for k = N. Define 

V(x ,  u;  k )  = L(x ,  u )  + W(b(x,  2.4); k + l),  k = 0, 1, ... ) N -  1 (14) 

and Vup~,bp(x, u; k )  by equation (12) and consider the following preliminary result 

(3 
(i) 

V'p,b"(~, U ;  k )  = V ( X ,  U; k )  + p(W,(b(x, u); k + l), W,(b(x, u); k + 1)) 

+ p ( i  I DW(b(x,  u ) ;  k + 1) 1 2 ,  $ A  W(b(x,  u); k + 1)) 

+ o ( P ) ,  as P 10 

uniformly in (x ,  u )  E R" x U. The theorem will be proved by showing that the preliminary 
result at time k implies the expansion at time k and that the expansion at time k + 1 implies 
the preliminary result at time k .  

Preliminary result at time k * expansion at time k. Let X be a compact subset of R". Write 

Hapvbp(~ ,  u;  k )  = V ( X ,  U; k )  + pQ(x, u; k) 

where 

(9 Q(x,  u;  k )  = (Wg(b(x, u ) ;  k + I), W n ( b ( ~ ,  u ) ;  k + 1)) 

+ (i I DW(b(x,  u) ;  k + 1) (', ;A W(b(x ,  u ) ;  k + 1)) 

Name u&+(x;k)  a minimum point of Hup3bp(x,*;k) .  Since Q(x ,u ;k )  i s  bounded on R" x U 
and Dt V(x ,  u;  k )  > 0 uniformly in (x ,  u )  € R" x (I, 

Iim I ua*(x;  k )  - u*(x; k )  I = o 
P 1 0  

uniformly in R". Hence, with suitable p ,  

u f i*(x;  k )  c Interior(U), v x  E X ,  p E (0 ,p)  

For any x E X ,  u € Rm, and p E (0, j), we then have 

0 = D,HUp'P.bP(x, ufi*(x; k ) ;  k ) u  
= D,V(x, u*(x; k ) ;  k )u  + u'D:V(x, P ( x ;  k ) ;  k)(u&*(x; k )  - u*(x; k ) )  

+pD,Q(x, U $ + ( X ;  k ) ;  k ) ~  

where iip(x; k )  E u&*(x; k )  u*(x; k ) .  Setting u = (ufi*(x; k) - u*(x; k ) )  this implies 

( U ~ * ( X ;  k )  - u*(x; k ) ) ' D t V ( x ,  Up(x; k);k)(u&'(x; k )  - u*(x; k)) 
= -pDuQ(x, u ~ * ( x ;  k ) ;  k)(ufi*(x; k )  - u* (x ;  k) 

Since D:V(x, f ip(x;  k ) ;  k )  > 0 uniformly in X E  X and DuQ(x, ufi'(x; k); k )  is bounded, we 
obtain the uniform estimate 

Iuf i+(x;k)-u*(x;k)I  G c p ,  VXEX, p E ( 0 , p )  (15) 
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with c a suitable constant. Next, consider the following expansion 

HapJqx, uf i * (x ;  k); k) = 

V ( x ,  u * (x ;  k); k) + DuV(x,  u * (x ;  k); k)(upi*(x; k) - u* (x ;  k)) 
+$(u f i * (x ;  k) - u* (x ;  k) ) ’&V(X,  2 ( x ;  k); k) (u f i * (x ;  k) - u* (x ;  k)) 
+pQ(x,  u* (x ;  k); k) + pDUQ(x, i ” ( x ;  k); k ) ( ~ f i * ( ~ ;  k) - u* (x ;  k)) 

where P ( x ;  k), i p ( x ;  k) E uf i * (x ;  k ) u * ( x ;  k). Taking into account that &V(x ,  Up(x;  k); k) 
and D , Q ( x , i P ( x ; k ) ; k )  are bounded in X ,  the uniform estimate (15) used in this last 
equation leads to 

inf Hap*bp(~ ,  u; k) = inf V ( x ,  u; k) + pQ(x, u*(x;  k); k) + o ( p ) ,  as p 10 (16) 
U E  u U E  u 

uniformly on X .  On the other hand, the preliminary result at time k implies 

uniformly on X. Equaitons (16) and (17) give 

inf V a p * b p ( ~ ,  u; k) = inf V ( x ,  u; k) + pQ(x, u * (x ;  k); k) + o(p) ,  as p 10 
U t  rJ U E  u 

uniformly on X. Since, 

the expansion at time k is proved. 

Expansion at time k + 1 - preliminary result at time k. Set 

The regularity assumptions o n f ( . )  and g(.) assumed in Lemma 4.2 hold true in view of the 
regularity of W ( * ; k +  1). Moreover, the expansion for Y E ( * )  is satisfied thanks to the 
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inductive assumption. Then, the result stated in Lemma 4.2 gives 

b 2  1 a 
a bp b 

= lim - - log Wap*bp(b(x,  u )  + z;  k + 1) - - W(b(x ,  u ) ;  k + 1) 

1 - __ I z 1 2 ]  (27rbp)-"I2 dz 
2bP 

Remark 4.4 

In the expansion stated in Theorem 4.3 ,  the term apW,(x;k)  represents the first-order 
variation of the value function due to dynamic game features of risk-sensitive control. As a 
matter of fact, such a term can be easily interpreted as the incremental cost due to the 
noncooperative action of the opposing player in the dynamic game control problem. At time 
j ,  the opposing player choose z so as to drift the state away from the optimal trajectory 
x:(x; - )  with the goal of maximizing the dynamic programming cost function 

2apL(x, u )  - I z l 2  + 2apW'(b(x, u )  + z; k + 1) 
= [2apL(x ,u ) -  ( ~ 1 ~ + 2 a p W ( b ( x , u ) + z ; k +  1)l + o ( p )  

(See Section 3). Then, up to terms vanishing as o ( p ) ,  the best choice for z will be that value 
which minimizes the term in the square bracket above. Consequently, z will be proportional 
to  DW(xk*(x; j ) ;  j )  and the corresponding increment in the value function will be proportional 
to the square of this expression. The term b p  Wn(x;  k )  can be interpreted as the incremental 
cost due to the diffusion effect of noise around the optimal trajectory x:(x,  a ) ,  since the noise 
action tends to spread out the state in all the directions. 

Remark 4.5 

For clarity of exposition, in Theorem 4.3 the expansion for Wap'p.bp(x; k) has been worked 
out under boundedness conditions on b ( . ; ) ,  L ( - , . )  and a(-). However, the result is valid 
even under milder growth conditions on such functions. For instance, it is possible to  see that 
the following set of assumptions suffices for the expansion to hold true, provided p > 0 is 
sufficiently small: 

(i) b(x ,  u )  = f ( x )  + g(x )u ,  U = R". 
(ii) L ( x ,  u )  = f u ' R u  + r ( x ) ,  R > 0. 

(iii) f(*), g(.), r(-)  and a(-) are of class C3. 
(iv) Df(x ) ,  D 2 r ( x )  and D 2 @ ( x )  bounded. 

(vi) u * ( - ;  k ) ,  k = 0, 1, ..., N- 1, are of class C3. 
(v) D 2 @ ( x )  2 0 ;  D Z W ( x ; k )  2 0 ,  k = O , l ,  ..., N-1, V x € R " .  
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Remark 4.6 

Under the same assumptions as in Remark 4.5, it is possible to work out the following first- 
order expansion for the risk-sensitive control law: 

uaQ,bp*(x; k )  = u*(x; k )  

- IDuu V ( x ,  u*(x; k ) ;  k ) )  - 

x p(D,w,(x, u*(x; k ) ;  k + l ) ,  D,w,(x, u*(x; k ) ;  k + 1 ) )  (3 
+ o ( P ) ,  as P 10 

uniformly on compact sets, where u*(x; k )  is the control law at time k for the deterministic 
control problem, V( . ; ;  k +  1) is defined in Equation (14) and 

- l N  
W J X ,  u; k )  = - C I D ~ ( x k * ( b ( x ,  u);j);.i)I’ 2 j = k  

The second term in the right-hand-side of the expansion for the control law can be easily 
interpreted as a first-order variation due to dynamic game and diffusion effects (see the 
expansion stated in Theorem 4.3). 

5 .  THE LINEAR QUADRATIC CASE 

In this section, we consider the linear quadratic case obtained with the following choices 

b(x,  U )  = AX + Bu, I/= Rm 
L ( x , u ) = ~ u ‘ R u + $ x ’ Q x ,  R > 0 ,  Q 2 0  

+ ( x )  = txQx, Q 2 0 
This situation has been widely analysed in the literature. It is well known that the solution of 
the optimal control problems can be stated in terms of the solution of the following Riccati 
equations 

Pk=Q+A’Pk+lA - A ‘ P ~ + ~ B [ R + B ’ P ~ + I B ] - ’ B ’ P ~ + ~ A ,  P N = Q  

Pfi = Q +  A’pt+iA - A’i%+lB[R + B’&+iB] -‘B’&+iA, Pk= Q 

i % + 1 =  Pfi+1+ PI+l - I -  PI+l Pfi+l  [: I - l  

In the linear quadratic case, we have the following well-known results. 

Risk-sensitive stochastic optimal control l 1  

& 1 
CL CL 

W’*‘(x;k)=fX’PfiX+- log Fk, - I -  Pfi+l > 0 ,  k = O , l ,  ..., N -  1 
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and the optimal control law writes 

ufiJ* [x; k )  = - [ R + B’P$+lE] -‘B’IS$+lAX 

Dynamic game optimal control4 

1 
P 

W’(X;k)=)X’PfiX, -Z- P$+l > 0 ,  k = 0 , 1 ,  ..., N - 1  

with the control law 

U”‘(X; k )  = u”‘*(x; k )  

Risk-neutral stochastic optimal control’ 
N 

j = k + l  
W‘(X;k)=)X’PkX+)E trpj 

with the control law 

U“(X;k)= - [R+B‘Pk+IB]-’B’Pk+IAx 

Deterministic optimal control’ 

w(X; k )  = $X’PkX 

and 

u*(x; k )  = u“(x; k )  

By applying Theorem 4.3 one immediately obtains the following first-order expansion for 
(x ;  k )  Wap,bp 

uniformly on compact subsets of R”. This expansion shows explicitely the form taken in the 
linear quadratic case by the dynamic game and the diffusion contributions. 

Further, the feedback control law for the risk-sensitive optimal control problem is given by 

(x ;  k )  a p h *  

= - [ R  + B’pk+lB] -IB’Pk+IAx 

+ p ( [ R  + B’Pk+lB] -‘B’(Xk+i + Pi+i) (B[R + B’Pk+lB] -lB’Pk+l - z)AX, 0) 

+ o b h  as p i 0  

where & is recursively obtained as follows 

Xk=A’(B[R +B’Pk+lB]-lB’Pk+l-z)’(Xk+l + P$+l)  
x(BIR+BfPk+~B]-’B‘Pk+l - I ) A ,  x,v=o 

Remark 5.1 

U’~’P.~~’(X;~) due to noise effects is zero. 
Note that, unlike in the general case (see Remark 4.6), here the term in the expansion of 
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6. CONCLUSIONS 

In this paper, we have studied the connections among risk-sensitive control, dynamic game, 
risk-neutral control and deterministic optimal control in a general nonlinear context. We have 
shown that: 

(i) Dynamic game, risk-neutral control and deterministic optimal control can be recovered 

(ii) A first order expansion has been worked out which shows how features of stochastic 

These results shed new light on the robust characteristics of risk-sensitive control which stem 
from the compensation for two kinds of disturbances, namely the diffusion effect of the noise 
and the action of the opposing player of the dynamic game. Moreover, these achievements 
show the generality of risk-sensitive control which, in a certain sense, comprises both min-max 
and stochastic techniques. 

from risk-sensitive control by letting certain parameters go to zero. 

control and dynamic game combine in the risk-sensitive technique. 

APPENDIX 
Proof of Lemma 3.1 

Varadhan. I*) 

The proof is based on large deviations arguments (see, for example, Deuschel and Strook6 and 

Given y > 0, define 

Assumptions (i) and (ii) imply that the set [ argmin, f ( z ,  0 ) ,  8 E 9) is bounded. Then, Assumption (iii) 
entails that the Lebesgue measure of A,(@ is uniformly bounded from below, uniformly in 6 E 8: 
p ( A r ( 0 ) )  2 a ( y )  > 0, VO E 8, where p denotes Lebesgue measure in R". On the other hand, Assumptions 
(i) and (ii) imply that such a measure is also bounded from above: 

AA,(W G P W ,  ve E e 

Lower bound. With the notation 

we have 
1 

E l 0  R" & 
lirn inf c log i exp - f d z ,  O )  d z  

= SUP f ( z ,  0 )  - Y 
Z 

uniformly in O E  9. 

Upper bound. Note first that (A  denotes complement of set A )  
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uniformly in 0 6 6. Indeed, from the elementary inequality 
e a x < e ( 1 - a ) 6 e x ,  V X <  -6, v a >  1, 

it follows that 

This implies (18). 
Then, 

1 
lim sup r log 1 exp ; fdz ,  0 )  dz 

f10 R" 

Proof of Lemma 4.2 

Fix c > 0. Thanks to the regularity assumptions on f(*) and g(.)  and the expansion assumed for 
ff( *), the following holds true uniformly in 0 6 6 ,  where 6 is any compact set in R", 

2r 

x (1 + rg(z + 0))exp ( ~ T E ) - " / ~  dz + o(E) 

where i C G. Let us compute separately the three integral terms. Thanks to the continuity of g(*),  
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uniformly in 0 € 8. Thanks to the boundedness of g(z + 0)  and D exp f(O)/exp f ( 0 ) ,  I z I < c, 0 € 8, 

uniformly in 0 € 8. Thanks to  the regularity assumptions on f(.) and g(.), 

= Df(0) I’+ i E A f ( 0 )  + O ( E )  

uniformly in 0 6 0. Then, 

uniformly in 0 € 0. On the other hand, from the uniform boundedness of the sequence fc(.), it follows 
that 

(2re)-“” d z  = o ( f )  
2 E  

uniformly in 0 E 8. The result readily follows from equations (19) and (20). 
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