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NONLINEAR DYNAMIC BUCKLING OF A COMPRESSED
ELASTIC COLUMN*
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1. Introduction. In a recent paper [1] the nonlinear dynamic buckling of an elastic
column subjected to a constant, compressive, axial displacement was considered. The
model was derived from a modified Euler-Bernoulli beam theory [2, 3, 4, 5], including
damping and negleeting axial inertia. Assuming the axial displacement to be slightly
above that value at which linear theory first predicts instability (the first bifurcation
point), the authors in [1] predict the leading term in a formal asymptotic expansion of
the response of the column using a multi-time technique [6] along the lines presented
in [7]. A restriction on the initial data had to be imposed in order for the solution gen-
erated to be bounded. As is noted in [1], if this restriction is violated a different asymp-
totic expansion is presumably required to solve the problem.

We present here a solution of this problem using the technique of averaging [8, 9, 10].
In the formal development of this solution we note that it is not necessary to impose
any restrictions on the initial data. In addition, this approach yields more information
about the solution than the multi-time procedure even in the case when the above
mentioned restriction on the initial data is made. This problem is therefore an example
of a case where multi-timing is inapplicable while the averaging proecedure does work.

In Sec. 2 we present the equations to be solved and first consider the undamped
case with monochromatic initial data. The purpose of this is to motivate the scaling
which follows. Then in Sec. 3, using appropriate scalings and a set of new variables, we
put the problem into the form of a coupled system of ordinary differential equations.
We then formally apply the method of averaging to derive the equations governing the
leading terms in an asymptotic expansion of the solution. Finally, in Sec. 5 we discuss
these equations and point out why the attempt in [1] led to the above-mentioned re-
striction on the initial data.

The application of the averaging procedure to dynamic bifurcation problems appears
to be new and is presently being applied to other problems in elastic vibrations and
fluid dynamics by the author and his co-workers at Rensselaer Polytechnic Institute.

2. Undamped equations with menochromatic initial data. The non-dimensional
equations governing the transverse displacement of a bar are [1]

wzzzz + xwz: + wtl + 26’Y'wg = 0, 0 < x < l, t > 0, (la)
1

N = 2ck — g w, dx, t>0, (1b)
0
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w=w,=0 for =01, t>0, (1e)
w(z, 0) = ¢f(x), 0<=z<1, (1d)
wt(xy 0) = eg(x), 0 S z < 1’ (le)

where w(z, t) is the non-dimensional transverse displacement, A(f) the non-dimensional
axial stress, ¢ the non-dimensional compressive (¢ > 0) axial displacement applied at
the ends, k a dimensionless parameter related to the physical constants and dimensions,
2ey is a small damping coefficient and €f(x) and eg(x) are small initial conditions. The
object is to determine the asymptotic nature of the displacement w as ¢ — 0.

An analysis of the nonlinear, static equations in [11] reveals the existence of a number
of different buckled (non-zero w) states of small norm. A new pair appears each time
the end displacement ¢ passes through the values ¢, = n°x*/2k (n = 1,2, ---). When ¢
is less than ¢, , the only steady state is the unbuckled one (w = 0).

We now assume that the end displacement ¢ exceeds ¢, , but is close to it. That is,
following [1], we will assume

¢ = (x"/2k) + ¢, @)

and attempt to find an asymptotic approximation for the solution of Eqs. (1) when w
is subject to the small-amplitude initial data given by (1d, e).

We first consider the special case of monochromatic initial data with no damping.
That is, in (1) we put

v =0, f(x) = f.sin (nwx), g(x) = g, sin (nwz). (3.1-3.3)

We do this because, as is shown below, the equations for w(z, ¢) can be reduced to a
single ordinary differential equation whose solution can be easily discussed. This will
provide motivation for the proper scales to be used to solve the problem with arbitrary
initial data (this is done in the next section).

With initial conditions given by (3.2) and (3.3), the solution to (1) can be written as

w(z, t) = w,(t) sin (nrx), (4)

where w,(f) satisfies
W, + n'n [(n — D — 2k + Z—’“ ,.’:Iw,. =0, (53)
wa(0) = ¢fn,  W(0) = eg. . (5b, ¢)

In (5a), “-”” denotes d/dt and we have made use of (2).
A first integral of (5) is easily determined to be

W, + 2’0 — Do’ — 2ke|w,’ + n_1r L N

4ke 1.t )

= €9, + n’r’éf ((n® — Da® — 2ké] + (6)

Solving for w,” from (6), we find that
32uw,”

w,” = T 2k (@® — Da® — 2ké’] & 5 [ 4k2( -1 - n‘w‘;c
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+ [Sg" +32(s° — )’fﬁ—Mr"—l—)] [2356**4’" o ]] @

n ’n1l'

From (7), we can easily show that, for e << 1, the requirement that w, be real-valued
leads to

W, = 0(5)7 n =1,
= O(glel/z) + 0(9), n=1,
w, = 0(¢), forall n, 9)

where “0” denotes the usual order symbol.

It might be pointed out here that w, changes from O(e) when g, = 0 to O(¢'’*) when
g1 # 0.

3. The nonlinear dynamic theory: arbitrary initial data. If, in Eqgs. (1), we expand
f(x), g(x), and w(z, t) in the eigenfunction expansions

®

fx) = Z fa sin (nwx), (10.1)
g(@) = Z; g. sin (n7z), (10.2)
w(z, t) = Zm: w,(t) sin (n7x), (10.3)

then it is an easy matter to show that the Fourier coefficients w,(t) satisfy the following
infinite coupled system of ordinary differential equations:

W, + 2eyb, + n’w’w,,[ *m® — 1) — 2ké + = Z Jow; ] = 0, (1.1

i=1
w,(0) = €fn, Wa(0) = €ga, (11.2, 11.3)

where “-’” means d/dt.

The object now is to transform the above equations into a first-order system to
which we can apply the formalities of averaging. To do this we define the real functions
u, and v, , and the complex function u, by

w, = 61/2u1 y wl = €Uy y (12.1, 12.2)
W, = £ (uy exp (iant) + @ exp (—int)), 022, (12.3)
w, = tew, (u exp (tw,t) — 4, exp (—iw,t)), n > 2, (12.4)
where
w, = no(n® — 1), n>2 (13)

and the bar denotes complex conjugate.

The definitions of «, and v, above are motivated by the discussion in Sec. 2. To
motivate the definition of u, , we observe from (11.1) that, for n > 2, the equation for
w, is a perturbation from an harmonic oscillator equation with natural frequency o, .
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Egs. (12.3) and (12.4) are then just standard transformations used in averaging [9].
The equations governing u, , v; and u, (the equation governing 4, is just the complex
conjugate of that for u,) can easily be shown to be

U = 61/201, (14.1)

. kﬂ" 172, 3 23
v, = __4'5 /ul - 2671}1 - k1re/2u1

.[—2 + %2 iz (u; exp (iw;t) + ; exp (—'L'w;t))z] , (14.2)

.2 4
= e[—v(u,. — 4, exp (~2i0.t)) + BT 0, + 4, exp (—mt»]
.2 27 2
+ IR G, 44, exp (—2is,0)

2 o )
.[—2 + 1;— E (u; exp (iw;t) + 4, exp (—iwit))2] , n>2 (14.3)

w(0) = &7, (14.4)
00) = g1, (14.5)
0 () =2 (f,. - :’i) o> (14.6)

These equations are now in a form which is amenable to a formal application of the
averaging technique, where the small parameter is ¢/*>. Thus, we formally write

W=t PO, b ), (15.1)
W=t DG w6 D), (15.2)
= £ + 2 PG L g 3D, n>2, (15.3)
n=bt DR,k 30, a2, (15.4)

where £, , ; and £, are to satisfy

©

él = ; einAl(i)(El y My 'Ey )) (161)
o= 2 € B, E ), (16.2)
é" = Z eimflnu)(‘gl y My 'E) )’ n _>_ 2; (163)

i=1

and where £ and ¥ symbolically represent the infinite vectors whose components are
(iand £, > 2.
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Very briefly, the point is to substitute (15) and (16) into (14), equate coefficients
of like powers of ¢, and to choose the unknowns P,*’, ¢,’, P,’, A,’, B,’, and A,
in such a way that no secular terms are introduced. Then, once the 4,’, B,’, and
A, are determined, Eqs. (16) can be solved for &, , 7, , and &, . We will not dwell on
the details here since they are amply presented in [10]. Let us note, however, that we
must at least go up to the ¢¥* terms in order to bring into focus the interesting features
of equations (14). The calculations were done up to O(¢’) and the results are presented
in Appendix A.

First, taking into account only terms up to O(e
are (see Eqgs. (16) and Appendix A):

/%), the equations for £, , 7, and £,

£o=¢"n, 17.1)

. "'kﬂ'4 1/2, 3 2 3/2 7"2 - 2

o= € = 2eym — ke —2 4+ ,f__; &2, (17.2)
'k,

én = e&. -y + 80) El ) n Z 2~ (17.3)

£t _ 3 i?f%r‘k 2:]

nE - e‘fn[_'y - 80’,, El ° (17.4)

2/2)
’

The initial conditions for the above quantities, up to O(e are easily computed from

Eqgs. (14) and (15), using Appendix A. They are

£0) = ¢, (18.1)
m(0) = g, (18.2)
b0 =3 (- ) tam(y i) sy (18.3

We note that the coupling in Eqs. (17.1) and (17.2) with the £, is only through |£,|>.
This quantity can be computed from Eqs. (17.3) and (17.4), even though these two
equations are coupled to the solution of (17.1) and (17.2). To see this, multiply (17.3)

I*:

by %., (17.4) by £, and add to get the following single equation for |&,|":
Llp= -2y, n>2. (19
Thus we have that

|&a* = [£.0)]" exp (—2ext), n > 2, (20)

where |£,(0)|® is easily computed from Eq. (18) to be, up to O(¢*?),

2 _ (o g\, g
LOF =2 (17 + Z) + e

2
2w,

Inserting the right-hand side of Eq. (20) into Eq. (17.2), and eliminating », between
(17.1) and (17.2), we get the following equations for £, and &, :

4
ek

b+ 20h+ =6 [zf - gé +¢ 2 O exp (—‘Mt):l ) (22.1)
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. 2 4
£ = e&.[-—v "g;'k 1’] , n>2 (22.2)

These equations are now decoupled in that Eq. (22.1) can be solved for & (e.g.
numerically) and in terms of the now-known ¢, , Eq. (22.2) easily yields

'inz"f‘Ek ¢ 2
& = £.(0) exp (—vel) exp | —o"— | & (r) dr |- (23)
If we now take into account terms up to O(¢’), Eqs. (17) become
£ =€, (24.1)
4 2 ™
h = _";l €1/2$ — 2eym — kx® 3/2&[ 2+ 1:1_" Zz IE:'{I ) (24-2)
3 in'r'k 2] i€%,
éﬂ = 6&.[— Sw 1 - 2‘%
4 2 o
-[v W k(T e 24T 3 w)] , mz2, (243
n i=2

with the equation for £, just being the complex conjugate of (24.3).

Let us make the following interesting observations about Eqgs. (24). First of all,
the equations for £, and 7, are precisely as before (see (17.1) and (17.2)). Secondly, the
equation for £, has a non-trivial additional term coupling this equation even further
to those for £ and all of the |¢;]|° (j > 2). However, this coupling occurs as a purely
imaginary term in (24.3) and we can, as before, derive

&l = 6O ™, n 22, (25)

where |£,(0)|° is again computed, up to O(¢”), from (14), (15) and Appendix A.

With Eq. (25), Eqgs. (24) are again decoupled, enabling us to derive a single equation
(the same one as (22.1)) for £, , and to integrate the remaining equation for £, in terms
of the “known”’ function £, . In fact, we get

£+ 2evE + ekT’r& [212 - §§ + € Z |£.(0)|* exp (—2evt):| ) (26.1)

£, = £.(0) exp (—eyt) exp i["é{:k j; £3(r) dr — gﬁ_’f_k f £ () dr — (n ’k +2 )

2 4 . ©
S (O 4 2 33 IO e (~2vet) 1)] n22 (262

n i=2

4. Discussion of results. From Egs. (10.3) and (12) we have that
w(x, ) = Y w,(t) sin (nxz), 27
n=1
where

wl(t) = El/zul, (28.1)

w,(t) = i (U, exp (iwnl) + U, exp (—iwnd)), n > 2. (28.2)
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Also, from Egs. (15), the leading term in the asymptotic expansion of u, is given by &, ,
which are to satisfy equations (22) to O(¢*’?)

We first note that nowhere in the formal derivations given in the previous section
was it necessary to demand that g, = 0, where ¢, is the Fourier coefficient of the first
mode in the initial velocity (see Eq. (10.2)). As was noted in the introduction, the authors
in [1] had to make this assumption when using the formal procedure of multi-timing.
To try and understand why this condition had to be met in [1], let us put our Eq. (22.1)
for £, into one involving those variables used in [1]. Thus define

0 =e, bo) = ;,% wnf). (29.1, 29.2)

Then (22.1), together with (17.1) and (18.1) and (18.2), yields

bos + 2vbe + 'ﬁ’jl—b I:b’ - % + 3 IO ex (-2eyt)] =0, (30.1)

b0) =fi, b(0) = gy/e. (30.2, 30.3)

The variable 6 is the slow time scale introduced in [1] and b(6) is the amplitude.
We note that (30.1) is the same as (7.1) in [1], with the same initial conditions only if
g1 = 0. If this is not the case, then the initial slow time-scale velocity for b is asymp-
totically large (O(1/¢)) and cannot be treated by the methods of [1]. The actual break-
down in the multi-time procedure when g, # 0 occurred, we believe, because of the
assumption that all the modes, including w, , had amplitude O(e) for all time (see Eq.
(6.5) in [1]). If the assumption g, = 0 was not made, the solution generated there ap-
peared to grow with . What really happens is that, due to the “large’” (g9, # 0) initial
velocity of the first mode, the amplitude of this mode will change from O(e) initially
to O(¢'®) at some later time (see the discussion in Sec. 2). This is manifested mathe-
matically by an apparent growth on the “#’’ scale because this mode was assumed to
have an amplitude which was not large enough for all time.

We also note that the phase plane diagrams given in [1] can still be used here to
describe the solutions of Eqs. (30).

The averaging procedure yields another additional improvement. Namely, from
Eq. (22.2), we not only get information about the amplitude of the higher-order modes
(the same as that derived in [1]), but also have some idea of how these modes oscillate
as they decay.
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Appendix

Pl(” — ql(l) = P”(l) = 0,
Al(” =,

B = —{497"4 513,

Pl(z) = ql(Z) = 0’
P"(g) - ’LE” exp (—27:60,,0 (‘Y + ’in21r4kil2) ’ " Z 2,

2w, 8w,
A1(2) = 0)
Bl(z) = —2ym
An(z) = Eu("‘)’ + n'r kEl ) , n > 2,
8w,

Pl(3) — 0,

. 4 ©
a® = szSEI Z wl exp (2iw;t) — E;° exp (—2iw,?)),

tkr'n’

P, = —167,?_5‘"‘?” exp (—2iw,l), n > 2,
A® =0,

B, = kw’sl[z - ”5 E l&; l’] )

A, =0, n > 2,

P = b 5 L e enp i) + B exp (~2i),

16 j=2 Wj
4 _ —k1r4171 ~ _L 2 . 72 .
@ = g 252 & exp Qiogt) + £ exp (—2iw,1),
4) n1rk£,.

Pa 160, ;2—(5, exp (2iw;t) — £ exp (—2iw;,))
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4 > [z exp (2i(w; — wt) &’ exp (—2iw; + wot)]

16w, =2 w; — Wy w; + w,
i#n

+ n’r’kE, exp (4— w,l) | 4r'n” — Siyrtlw, + kre '@’ — 1)
128w,

+ 640,” — 167°w,” X |& [
i=2
Al(d) = Bl(d) — 0

w _ 1, _
4,7 = 2w, [7

in27l'4k£12 2

8w,

2 2
— k(-2 + T+ Y |si12)] , 22
4 2 =

In the above, ||’ denotes absolute value.




