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Abstract A size-dependent model of functionally graded carbon nanotubes (FGCNTSs)
reinforced microbeam with piezoelectric layer is presented based on unifying nonlocal
stress and strain gradient framework. Nonlinear dynamic characteristics of the
microbeam arise from electrostatic, piezoelectric actuation and thermal loading, with
consideration of quantum and thermal fluctuations induced Casimir force. The
nonlinearly dynamic frequency and pull-in instability of FGCNTs reinforced
microbeam with damping effect are investigated by perturbation technique and
verified by numerical method, where the coupling effects of nonlocal stress gradient
and strain gradient parameters on fundamental frequency are described. The results
show that the frequency of piezoelectric laminated microbeam-damping system
declines with the growth of nonlocal stress gradient parameter while increases with
the increment of strain gradient parameter. The pull-in voltage of micro- piezoelectric
laminated beam can be tuned by excitation voltage exerted on piezoelectric layer, and
the frequency and pull-in voltage decrease with the increase of the excitation voltage
exerted on piezoelectric layer. In addition, dissipative effects originating from viscous
and structural damping are evaluated. It is found that the pull-in voltage of

micro-structures with damping system is higher than that of undamped system.
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1. Introduction

Micro-/nano-electromechanical systems (M/NEMS) have attracted considerable
attention from academic and industrial communities due to their advantages of small
size, low weight, rapid response, relatively intensive and low cost [1]. These
characteristics collectively render M/NEM-based devices suitable for a wide range of
promising applications in micro-/nano-scale sensors, actuators, switches, and
resonators [2-6].

One critical phenomenon of electrostatically actuated devices is pull-in instability,
where the balance between Coulomb force and elastic restoring force is lost and
accordingly the system collapses onto the substrate [7]. To avoid such failure, the
laminated structures with piezoelectric layers are proposed to control or tune the
pull-in voltage by piezoelectric effect [8-13]. Because piezoelectric materials have a
significant strength of high force transmission with low driving voltage, the hybrid
electrostatic and piezoelectric microbeam devices are proved to possess the greater
efficiency, reduce energy consumption and effectively control pull-in voltage by
piezoelectric layer actuation.

However, dispersion forces exhibiting dominant role in micro-structures were not
considered in above studies of electrostatically actuated microbeam with piezoelectric
layer(s). The schemes of different types of dispersion forces [14, 15] are shown in Fig.
1: (a) van der Waals force interacting between neutral particles like atoms and
molecules; (b) Casimir-Polder force dominating between neutral particle and
macroscopic solid; (¢) quantum Casimir force between two macroscopic bodies at
zero temperature; (d) complete description of Casimir force with quantum and
thermal fluctuations of electromagnetic field at finite temperature. Note that Casimir
force originates from two paths of quantum and thermal fluctuations of
electromagnetic waves [16, 17]. Although there exist a great deal of literature on
pull-in instability considering quantum Casimir force at zero temperature [3, 5, 6,
18,19], the assumption of zero temperature is not accurate enough, and thermal

Casimir force is few reported to exploit the electrostatic devices. Therefore, thermal



fluctuation effects should be considered on electromechanical behaviors of
microstructure at finite temperature.

Continuing miniaturization of devices calls conventional continuum theories into
question due to their inability to capture size-dependent characteristics of
micro-/nano-scale materials. In the past decade, several modified elasticity theories
were proposed to study mechanical properties of microstructure with small scale
effect. These modified theories mainly incorporate two types: (i) stress gradient model
based on Eringen’s nonlocal elasticity [20, 21], which considers long-range
interactions between atoms of solids; (ii) strain gradient model including (modified)
couple stress theory [22, 23] and strain gradient theory [24], which postulate
mechanical response of material at a point relies not only on the local strain, but also
on higher-order strain gradients.

There have been plentiful applications of nonlocal stress gradient model and strain
gradient model to investigate the pull-in instability of microstructures. The results
show that the stress gradient model only reflects the softening effect of structural
stiffness, which are against the hardening effect observed from experiment as well as
strain gradient model [3, 5, 25, 26]. Lim et al. proposed one higher-order nonlocal
stress gradient and strain gradient model to investigate the wave propagation of
carbon nanotubes (CNTs) based on nanobeam model [27]. Li et al. utilized nonlocal
stress-strain gradient model to evaluate the buckling and flexural wave propagation of
nanobeam [28,29]. It is seen from literature that the size-dependent mechanical
response of micro-/nano-scale structures depends on coupling influences of nonlocal
stress gradient and strain gradient parameters.

Furthermore, functionally graded materials (FGMs) have become a promising
branch of composite materials due to their properties varying spatially in terms of
non-uniform distribution of the reinforcing phase [30, 31]. In particular, CNTs
reinforced composites (CNTsRC) have been widely utilized in the field of
nano-composite structures because of super high strength and stiffness ratio of CNTs
[32,33]. There have been numerous papers on the nonlinear bending [34], free
vibration [35], buckling [36] problems of functionally graded CNTs (FGCNTs)
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reinforced composites. Recently, Kiani et al. investigated the nonlinear dynamics and
thermal analysis of FGCNTs reinforced composite face sheets, such as snap-through
[37], free vibration [38], low velocity impact [39] and thermal postbuckling
characteristics [40]. They utilized temperature-dependent sandwich beam model to
study the influences of CNTs distribution pattern, volume faction and thermal
environment on fundamental frequency and dynamic stability of sandwich beam.

This work aims to investigate dynamic behaviors and pull-in instability of FGCNTs
reinforced microbeam with piezoelectric layer based on unifying nonlocal
stress-strain gradient model, where the microbeam is subjected to electrostatic and
piezoelectric actuation incorporating quantum and thermal Casimir effect. The
coupling influences of nonlocal stress and strain gradient parameters on dynamic
behaviors of microbeam with piezoelectric layer are also discussed. The main results
and new conclusions obtained may be useful references for application and design of

micro-/nano-electromechanical systems with piezoelectric layer.

2. Theoretical model and governing equation

The FGCNTs reinforced microbeam with piezoelectric layer under electrostatic and
dispersion forces is depicted in Fig. 2(a, b). The FGCNTs microbeam is regarded as

the long and thin beam with the length L , widthb, where the thicknesses of elastic

microbeam and piezoelectric layer are h,and i, respectively. The initial gap between

two electrodes is g . The coordinate system is located to the neutral axis at middle-left

end of microbeam, where x and z are the horizontal and perpendicular directions.

2.1 Material properties of FGCNTs composites with piezoelectric layer

Considering that the material property of CNTsRC microbeam depends on

environment temperature, the effective Young’s modulus of CNTsRC is determined

by the single material parameter E¢,, so that the effective material properties of

€

CNTsRC with temperature-dependency are expressed in terms of the extensive rule of



mixture as [35]

E,(z,T) =1V, (2E, (1)+V,(E,T) (1a)
(2.1 =V,, (e, ()+V, (D), (T) (1b)
Py (2.T) =V, (2)p,,(1)+V,(2)p,T) (lc)

where E°¢

o> E,, and E are temperature-dependent effective modulus of CNTsRC,

Young’s modulus of CNTs and matrix; &, and p, are effective thermal expansion

coefficient and mass density of CNTsRC; ¢&,, and &, are thermal expansion

coefficients of CNTs and matrix. Additionally, the material properties of the
piezoelectric layer as Young’s modulus E”, thermal expansion coefficient a” and

mass density " are considered as independent of temperature.

Here, CNTs reinforcement is considered to be uniformly distributed (UD-CNTsRC)
or functionally graded in thickness direction of microbeam, such as O-type
(FGO-CNTsRC), X-type (FGX-CNTsRC), A-type (FGA-CNTsRC) and V-type
(FGV-CNTSsRC) illustrated as in Fig.2(b) [41]. The geometrical distribution of CNTs

is, respectively, considered as

Vu(@=V,, (UD-CNTSsRC) (2)
V,.(2)=2(1-2|4|/k,)V,,, (FGO-CNTsRC) (2b)
V..(2)=2Q2|g|/h)V,,, (FGX-CNTsRC) (2¢)

V..(2)=(1-2z/h)V,,,  (FGA-CNTsRC) (2d)

V. (2)=(1+2z/h)V,,,  (FGV-CNTsRC) (2¢)
where

* m.
Vou = » 3)
M. + Pent / P~ (pcnt /Iom )mcnt

and m,, is the mass fraction of CNTs; p and p, are mass densities of CNTs and

matrix, respectively.



For the thin-long microbeam, the Young’s modulus of CNTsRC only depends on

E!' and n,, so that according to the rule of mixture [35]4iR! RENHL. , the

cnt

general effective material properties of CNTsRC are expressed by

E,(T)=nV,,E, (D)+V,E,I) 4

cnt™—cnt

where E!' is the longitudinal Young’s modulus of CNTs, E,_ is the Young’s

cnt m

modulus of the matrix, and 7,1s the CNTs efficient parameter for the scale-dependent
material properties, determined by MD simulation. V, and V are the volume

fractions of CNTs and matrix, satisfying V_+V =1.

Note that the physical neutral axis of the FGCNTs reinforced microbeam with
piezoelectric layer is no longer located at the geometric reference axis. According to

the sum of bending moments are zero at the physical neutral axis [42], satisfying
lh —lh
2°¢ e _ 2°¢ P(r_ —
I_;he Ey(z-2,)dz+ j_;he_hp E"(z-2,)dz=0 5)

From Eq. (5), the physical neutral axis of bilayer structure is written as

1 1

—h, ——h,

2" E° zdz+J 2" EPzdz
I —%he o Ln

2 e P
=4 (©)
2°¢ e 2 p
j_lh Edz+ j_lh | E'dz
2 e 2 e 'p

Z

n

2.2 Nonlocal stress-strain gradient elasticity
According to the nonlocal stress-strain gradient elasticity theory, the influence of
higher-order strain gradients are considered except for nonlocal effects of the classical

strain field. The extended internal energy density potential is expressed as [27]

,e,a)e’,, dV

iy i ij,m> % ij,m> ij

Uye.,e' a8, al)———lguc.k, a0(|x—x'
27 v
(7)
,ea)', ,, dV

1~
+§l 25ij’mCl.jkl IV a, (|x -x'

where &, and ¢';, are higher-order counterparts of strain tensors at point x and

ij,m



x'; a, 1s another attenuation kernel function representing the nonlocal effect of the

first-order strain gradient field; [ and e, are the material length scale originating

from higher-order statin gradient field and related material constant, respectively.

The higher-order nonlocal stress-strain gradient elasticity can be further simplified
by assuming e, =¢, and keeping related terms of order O(V?), the reduced model
incorporating unified nonlocal stress-strain gradients is expressed as [27]

[1-(ea)'V? ]o, =E (1-1;V?)s,, ()
where E , is effective Young’s modulus of bulk. Note that the nonlocal stress gradient

constitutive relation can be gained by setting strain gradient material length scale

l[,=0, and the single strain gradient constitutive relation can be obtained by setting

nonlocal stress gradient material constant ¢, =0.

2.3 Quantum and thermal dispersion forces

FGCNTs reinforced microbeam with piezoelectric layer is subjected to electrostatic
load incorporating first-order correction fringing field, as shown in Fig. 2(a). The
electrostatic force per unit length exerted on the microbeam is defined by [5]
g,V.’b

Fp=rrr——
2[g —w(x)]

e

{1 +%<g - w(x))} 9)

where g =8854x10""C°N'm” is the permittivity of vacuum,V, is the applied
electrostatic voltage, y is the linear correction of fringing field and g is the initial

gap between two electrodes.

The idealized dispersion forces without thermal effects such as van der Waals force
and quantum Casimir force are derived by vacuum quantum fluctuation of the
electromagnetic field modes of a cavity within two perfect flat bodies, and the

idealized expressions of the dispersion forces at zero temperature are, respectively [3]



Fw = Ab 3 (10)
67r[g —w(x)]
7°h c,b

B 240 [g — w()c)]4

(11)

C

where A is the Hamaker constant, 1=1.055x10"*Js is the reduced Plank’s constant

and ¢, =3.0x10°m-s~" is the speed of light.

Based on the Lifshitz’s theory [43], thermal Casimir force not only depends on gap
distance, but also are dependent on the permittivity of materials in the complex way.
When the thermal fluctuation effect of electromagnetic field at the finite environment
temperature is considered, Drude model and plasma model are utilized to predict
thermal Casimir force [19, 44], as follows

pn__ mheb ] 1 {2(g—w<x)>kBTT L kTCO)
¢ 240[g - w(x)]4 3 he 47 [g - w(x)]3

(12)

wherek, is Boltzmann’s constant, T is environment temperature and ¢£(3)=1.202 is

the Riemann zeta function. When 7'— 0, Eq.(12) is reduced to quantum Casimir

force F,. , Eq. (11) without considering thermal fluctuation effects.

2.4 Governing equation of microbeam with piezoelectric layer

Based on the Euler-Bernoulli beam theory, the axial displacementu_ and the

transverse displacement of any points at microbeam u, are expressed as

w (x,2,1) = u(x,1) - z%, 1, (%, 2,8) =w(x,1) (13)
X

where u(x,t) and w(x,7) are the axial and transverse displacements of the

mid-plane at time ¢. The strain-displacement relation in terms of von Karman-type
geometrical nonlinearity is given by

ou 1(ou. Y ou Pw 1w\
En=—"t+—-| = | =——71—F+-| — (14)
ox 2\ ox ox Oox 2\ Ox

Based on Hamilton’s principle, the motion equations of Euler-Bernoulli beam



with damping systems are expressed as [45]

. 2 o
ox

2 2 2

as +3(Nﬂ]+f;—cvd%— o=y (16)

ox ox ox Ot Otox or’

where N_, M_ are, respectively, the axial force and bending moment, as follows

x —7h -2, h

1
N :jzlh; "ot bdz+ [ 2" o” bdz (17)
.
L
— |2 n ol
M, = j;h ¢ bzdz+ | S, o’ bzdz (18)

, and dissipative effects of dynamic system are represented by the structural and

viscous damping with coefficients C, and C ,, respectively. F

w, F, are applied
axial and transverse forces, and 1, 1is the inertia of microbeam with piezoelectric layer

given by
1, ,
=12 ¥ 2° P
Il _J‘—;hy peff(Z’T)bdZ—‘r-[—;hy_hpp bdZ (19)

Considering that the microbeam with piezoelectric layer is immersed in thermal
environment of temperature change and utilizing Eqgs.(8) and (14), the constitutive

relations for nonlocal stress-strain gradients are, respectively, expressed by

ou__Ow 1w\
2 e(nl) 2y 72 e
[1 (eoa)v] E,(z.D)(1-4V ){a—z¥+5[§j —aqf(z,T)AT} (20a)
ou_ _Fw 1(owY
1—(e,a)*V* p("l)—E” z,T)(1- 12V2 ——z—+—(—} —a’AT—d. E 20b
[(0) ] ( )( )ax a2\ ox wE. | (20b)
where o " and o’ " denote nonlocal axial stresses of microbeam and piezoelectric

layer; e, and aare the material constant and the internal characteristic length [46].
d, 1s the piezoelectric constant and E_ is the electric field intensity determined by

electric potential V exerting on piezoelectric layer as £, =—V, /h, [47].



Integrating Eqs.(20a) and (20b), the nonlocal axial internal force N"” and bending

moment M " are given by

2 2
[1-(ea)’V? |N!™ =(1—l§V2){Ag—Z+%A(g—:] -B aaxvf}z\ﬂ ~N” (2la)

2 2
[1-(e,a)’V* M = (1—I§V2)[ég—z+%é(g—:j -D ‘Z};’}—MT —M" (21b)

Lh-z,

where { A, B, 13} = J-zl ) Eeﬁb {1, Z, zz} dz are, respectively, the stretching stiffness

75110 7Z/x 7hp

and bending stiffness, N ” and M ” are the axial internal force and bending moment

induced by the electric effect from piezoelectric layer, as follows

N M7= j%” E’bd,E. {17} dz (22)

Eh(, ~Z,—h,

and N ,M" are the axial internal force and bending moment induced by the

temperature change from microbeam and piezoelectric layer, as follows:

. E’a”ATbdz (23a)

T _ %he_zn e . _%hf -z,
N _j_lh " Ey(2.T)ag (2, T)ATbdz + j 2
2¢ " ot ™n

! %he g e —%he—z,l
MT=[2 " Eg (2 Tag (2 T)ATDdz + | 27
2 ) ’ 2 4 n

\ E’a”ATzbdz (23b)

Substituting Eq.(21a) into Eq.(15), and neglecting the applied axial force and the

axial inertial and rotational inertial terms, yield
A+x16—wzd—Ct+Ct (24)
wt| 2| = | dx|=CO+CO

Utilizing the clamped ends conditions of micro-beam (u#=0atx=0andL) and

integrating Eq.(24) result in

2
=[] S w42

Because the axial internal stress is a certain constant, Eq.(25) gives

0 (25)

10



e A e e

Substituting Eq.(16) and Eq.(26) into Eq.(21b) to eliminate o°M """ /ox*, the

nonlocal stress-strain gradient bending moment M " is written as

2

orr ox\ ' ox ot

2 2 2
o, VI 1—15‘9—2 asz—MT—M”
Otox ox~ ) Ox

o’ L1 ow o’w
_ 2 T _
= (e,a) {Il 3 { .[O 2(6 j dx—N N”}axz F,
2 2 2
o, e WL Bl 82 W MM (27)
ot otox ox® ) ox®

Then substituting Eq.(26) and Eq.(27) into Eq.(16) generates the nonlinearly

governing equation of microbeam with piezoelectric layer, expressed as

~ A ow o*w 0w
D 2 dx—N"—N?* +1,—
{ +(€0a) |: I (axJ }} ax a 6 atZ

4 2
(egay’ 1,2 _ A l(awjd _NT - NPFW

or*ox? 02\ ox ox?
- 1—(ea)2i F -C a—W—c Fw =0 (28)
a7 o orox

where the nonlocal stress gradient governing equation can be gained by setting/, =0
and the pure strain gradient governing equation can be given by setting ¢ =0. Then

substituting transversely applied forces F, = F, +(1-n)F,,, +nF." into Eq. (28) leads

to the normalized form of nonlinearly governing equation, as follows
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4 6 2 4
”Y—n&”%m”ﬂ o'W
& & or

2 2 vr 2 o 4 3
—[Kljl[a—wj d§—K2(NT+N")]6 W kW o W_ & oW _ o W

64W 1 oW ’ T P
K3a—§4+,u[K1J‘O(¥J dé—K,(N"+N )}

o\ a& o0& M owé or & " OE
2 2 2 _
(g [, Ve nprloma na
08 | 1-W  (1-W) (1-W) (1-W)
(29)
where the normalized variables are introduced as follows
w
g, W== ;= | Pu (30a)
L g I,
Ag? r D I, e,a) 1Y
K = D K =—, K =—, K =—, =| 2 s =X 5
'“2p > T D T 'U(L] "(L]
sd—ﬁ sas Cog = DI C.> Ve e 283Dm Vo = P
— 4
AbL' m*he,bl 7°hebl [ k,T k., TbL'C (3
6rg'D, 240¢°D,, 45¢D, | hc, 4r°g"D,

where D, and [ represent bending stiffness and inertia of microbeam without

CNTs. Consider normalized clamped-clamped boundary conditions as

W (&), 0= aWa(—g’%-o: 0, W(fx)lg-]:awﬁ(—?%_l:o (31a)

To evaluate the dynamic characteristics of microbeam, using the Eigen function

expansion the solution of Eq. (29) is considered as
N
W& D= 4@4(&) (31b)
where N represents the number of modes and ¢(&) is the i-th mode shape of

microbeam. Substituting the displacement function (31b) into Eq. (29), using Taylor’s
series expansion for electrostatic and dispersion forces and using Galerkin method

[48], the following equation are obtained:
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> 0.4,(r)q,(7)q,(1)g, (7)

1 m=1

M=

PR ACEDNCFAGEDIY

i=1 i=1 =1 j=1

+°3°>0,4,(r)g,(7)q,(7)+

i=1 j=1 k=l i=

~.
bl
Il

v (32)
Z®3q,<r)q,(r>+z®2q,<f>+@ )

Mz

where © ,m €[0,6] are given in Appendix A.

3. Solution method

When a step voltage is applied on the FGCNTs reinforced microbeam with
piezoelectric layer, the energy of system is stored as kinetic and potential energy,
where, the system without applied voltage is at rest and has no stored energy. Over
time, the stored energy before related to the equilibrium position is dissipated by
damping effects (i.e. structural and viscous damping). According to energy balance of

the system at any instant of time, one obtains [49]

E =E

system kinetic

+E (33)

potenttal E dissipated

where E__  is the total energy of system, E is

system kinetic

is the kinetic energy, E

potential

the elastic potential energy and E,

issipated

is the dissipated energy due to damping

effects. Thus, the lowest possible value of dynamic pull-in voltage can be obtained by
neglecting the damping effects. Consider the first term of eigen function expansion,

the nonlinear motion equation without damped system is expressed as
G,(0)+vs(q, (T))4 + W4(Q1(T))3 +y5(q, (T))z +y¥,q,(0)+y, =0 (34)
where y, =0,/0,, k €[1,5]. ¢,(&) is the first mode function as

4.(£) = cosh A& —cos g~ SOMA T COS A iy 4 & —sin 4. (35)
sinh A, —sin 4,

where 4, =4.73. To determine the relation between frequencies and physical

parameters of system, the perturbation technique based on He’s parameter expansion

method (PEM) is used to obtain the second-order approximated analytical expression

of frequency [50]. From Eq. (34) with initial conditions as¢q,(0)=Aand ¢,(0)=0,
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the solution of ¢,(zr) and the relevant factors y, and 1 are expanded in series of

artificial parameter p as follows [51]

4q, (7) :ZPkQI,k(T) (36)
k=0
vi=a’ =) p"2, (37a)
m=0
1= pd, + p’S, +-- (37b)

Substituting Eqgs.(36) and (37a, b) into Eq.(34) and equating the terms with the

identical powers of p lead to

PU: (D) + @24, (1)=0, g, (0)=A, ¢,,(0)=0, (382)

PG, (D) 07q,(0) = 2,q,0(0) = 6, [1,07, (D) + 1,41, (D) + w41, (D) + 1,1,
4,,(0)=0, ¢,,(0)=0 (38b)

2

Pl G0+ 0’q,(7) = 1,4, (0) + 1:4,0(T) = 8,q,, (D20, () +3p,4., (7)
+ 4W4q13,0 (T)] - 52 [l//z%z,o (T) + 1/13%3,0 (Z') + ‘//4q;to (T) +, ]>

%,2(0):0’ Q1,2(0):O (38¢)
Note that when p — 0, Eq. (34) turns to a linear differential equation so that the
approximated solution can be computed for p =1. The solution of the first equation

isq, ,(r) = Acos(wr) and substituting this result into Eq. (38b) generates

. 3 1
G, (7)+ 0)2‘11,1 (@) =(nA- Z 51V/3A3 )cos(wr) — E ) (‘//4‘44 + ‘//2A2 )COS(ZCOT)
(39)

—i W, A’ cos(Bwr) —%611//4A4 cos(4mr) —%5151/2142 —%511//4A4 -8y,

where that the coefficient of term cos(w7) of the secular terms should be zero

results in y, :%§1W3A2. Then solving the updated Eq. (39) for ¢,(r) gives the

second-order approximated solution, as follows
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_ 1 4 2 3
q,,(0)= 13007 [( 96y, A" +160y,A” —15y,A” + 480y, ) cos(@r)
+(80p,A* +80y,A° | cos2wr) +15y,A° cos(3wr) (40)
+4y,A* cos(4ar) —( 480y, + 180y, A* +240p,A° )]

Egs. (38a) and (38b) for two terms approximation of series in terms of p, and for

p=1 leads to relevant parameters as 6, =1, §,=0 and y, =0’ —py, -y, .

Substituting the parameters into the right-hand side of Eq. (38¢c) and eliminating the
secular terms lead to the second-order approximated relation between frequency and
amplitude, as follows

o* - (v, +%%A2)w2 +2y W, +%t/f§ =2y ya-Lyya

2 2 (41)

3 7 3 63
+ﬁw§A4 + 3y, A’ +Zl//2V/4A4 —Tg VA’ +%t//f A"=0

4. Results and discussion
4.1 Validation of perturbation approach

In this section, the validity of analytical model and perturbation approach is
verified by comparing the results with the experiment and numerical methods from
literatures. The parameters of a clamped-clamped microbeam are listed in Table 1
[52], and the corresponding dynamic pull-in voltage are compared in Table 2. The
dynamic pull-in voltage by perturbation approach well agree with the results obtained
by experiment [52], Displacement Iteration Pull-In Extraction (DIPIE algorithm) [53],
Energy Balance Method (EBM) [54] and Finite Element Method (FEM) [55].

Also, based on the parameters for dynamic pull-in experiment of microbeam with
residual axial loads in Table 3 [56] the normalized frequencies of different microbeam
lengths are compared among the current perturbation approach, experiment [56], Ritz
method [57], Differential quadrature method (DQM) [58] and homotopy analysis
method (HAM) [59] in Table 4. It is seen from Table 4 that the present approach can

accurately predict the frequency of electrostatically actuated microbeam.
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Furthermore, the convergence of perturbation approach is investigated by
comparing the normalized deflection of UD-CNTRC microbeam with piezoelectric

layer subjected to different electrostatic voltage and piezoelectric voltage with results

calculated by the Runge-Kutta method, where V ,=0.12, V, =8, V =-1,

p
A=05,AT =200K , #=0.01, 7=0.01,,=10, shown as in Figs. 4(a, b),

respectively. The accuracy of perturbation approach keep well as the external
excitation loads alter and thus can be utilized to predict the dynamic behaviors of

FGCNTs microbeam with piezoelectric layer.

4.2 Nonlocal Stress and strain gradient coupling effects

Table 5 lists the temperature-dependent material properties of CNTs and silicon at
the temperature of 300K (room temperature), 400K, 500K, 600K and 700K [60, 61],
where the elastic modulus of [1 TO] direction silicon is used to perform data fitting to

obtain the wvalues of corresponding temperature  conditions.  The

temperature-dependent elastic modulus of silicon satisfy the relationship
of E, =(175.639-0.01987T)MPa, whereT =T, +AT and7, =300K .Table 6 gives
the size-dependent efficient parameters of CNTs determined by MD simulation and

the rule of mixture with scale effect [34, 35]. The physical properties of piezoelectric

material are regarded to be independent of temperature. The parameters of FGCNTs

reinforced microbeam and piezoelectric layer are considered as E, =78.6GPa,
dy =-123x10""m/V , h,=1um , h, =0.1um , L=25h,,¢g=0.3h, and b=4.5h,,

respectively

Fig. 4 depicts the variation of frequency under electrostatic voltage as a function of
the piezoelectric excitation voltage. Note that the positive and negative piezoelectric
voltages have extinct impacts on dynamic pull-in voltage. The dynamic pull-in
voltage and frequency decrease as the piezoelectric voltage grows. The dynamic

pull-in voltage can be tuned or adjusted by piezoelectric voltage according to the
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specific requirement of microbeam-based device.

Figs. 5(a, b) show the influence of excitation voltage exerted on piezoelectric layer
on normalized frequency as a function of nonlocal stress gradient and strain gradient
parameters, respectively. The increment of nonlocal stress gradient parameter
decreases the frequency whereas the frequency increases as the strain gradient
parameter increases. The increment of excitation voltage exerted on piezoelectric
layer degrades the frequency of microbeam for both stress and strain gradient
parameters.

Figs. 6(a, b) show the influence of geometrical distribution of CNTs on frequency
under different controlling voltages exerted on piezoelectric layer. The frequency of
UD-CNTsRC type micro-beam is lower than that of FGX-CNTsRC type but larger
than that of FGO-CNTsRC, FGA-CNTsRC and FGV-CNTsRC types with identical
stress and strain gradient parameters. The FGX-CNTsRC microbeam has superior
stiffness to other four types subjected to electrostatic and dispersion forces. In
addition, by increasing the controlling voltages exerted on piezoelectric layer, the
frequency of FGX-CNTsRC microbeam significantly decreases. The stiffness of
FGA-CNTsRC and FGV-CNTsRC microbeam are weaker, and thus their frequencies
are lower than other three types of microbeam.

Figs. 7(a, b) depict that the normalized frequency increase with volume fraction of
CNTs for both of the stress and strain gradient parameters, while the frequency
declines with increase of stress gradient parameter but enhances with increment of
strain gradient parameter. It is seen from Figs. 7(a, b) that the influence of volume
fraction of CNTs on the normalized frequency is dependent on nonlocal models.
Figs. 8(a, b) display the influence of variation of environmental temperature on
frequency is obvious and the frequency decreases as the change of temperature
increase for stress and strain gradient parameters, where the influence of variation of
environmental temperature on frequency is dependent on nonlocal models.

Fig. 9 shows the comparison of thermal Casimir force derived by plasma model
and Drude model considering thermal fluctuation with different separation distance. It
is seen that at the same temperature, the values of thermal Casimir force induced by
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plasma model are larger than those of Drude model. The temperature-dependence of
thermal Casimir force is more significant at higher temperature and wider initial gap.

Figs. 10 (a, b) compare the influences of quantum and thermal Casimir force on the
normalized frequency, respectively. The previous studies on Casimir effect on
micro-/nano-scale microbeam was not able to consider the thermal fluctuation effect
at the finite temperature environment. Actually, the frequency of microbeam is
impacted by quantum Casimir force in connection with thermal Casimir forceinduced
by thermal fluctuation at the finite temperature. Compared to quantum Casimir force,
the increment of the thermal Casimir force further decreases the normalized frequency.
The previous results overestimate the frequency of microbeam subjected to
electrostatic and quantum Casimir forces.

Fig.11 depicts the coupling effects of nonlocal stress and strain gradient parameters

on the frequency of FGCNTs reinforced microbeam with piezoelectric layer, where

UD-CNTsRC, V

cnt

=017, V,=5, V, =1, A=02, AT=200K, a,=1and

B, =p,=1. The frequency declines with the increase of nonlocal stress gradient

parameter while increases with increment of strain gradient parameter. As a result, the
size dependency of dynamic microbeam layer is determined by the coupling impacts

of two intrinsic material length parameters.

4.3 Dynamic behaviors of damping system

To further investigate the dynamic behaviors of microbeam with piezoelectric layer
near the critical pull-in domain, the time history response and phase plane without
damping effects are illustrated in Figs. 12(a, b), respectively. As can be observed, the

deflection increases with increment of electrostatic voltage before the pull-in occurs;

when the voltage increases to the pull-in value,V, =8.56 in Fig. 12(a), the dynamic

pull-in happens and the microbeam with piezoelectric layer loses its structural
stability and collapse onto the ground electrode. From the phase diagram in Fig. 12(b),

it is seen that at the lower voltage, the dynamic system presents periodic motion
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around the stable center point. When the voltage approaches to the pull-in value, the
trajectory gets closer to the unstable saddle node. By increasing the voltage to the
pull-in value, the system becomes dynamically unstable and sticks to the ground
electrode.

Figs. 13(a, b) show the time history and phase plane of dynamic system with
damping effects, respectively. From Fig. 13(a), it is seen that the magnitude of

deflection gradually decreases due to the damping effects before the pull-in state, and

when the applied voltage increases to dynamic pull-in value (V, =8.64) the amplitude

becomes divergent and the pull-in instability occurs, which leads the microbeam to
collapse onto the substrate. Note that the damping effects increase the values of
dynamic pull-in voltage, because the structural and viscous damping dissipate a part
of injected electrostatic energy of dynamic system. In Fig. 13(b), before the pull-in
instability, the phase plane has one stable center; owing to the damping effects, the
trajectory gradually converges into the center point. The dynamic system has
homoclinic orbit that originates from unstable branch and returns to the saddle node at
the stable one. At the dynamic pull-in voltage, the trajectory loses its stable center and
becomes divergent. After the voltage beyond the pull-in value, the system becomes
unstable and touches the substrate.

Figs. 14(a, b) demonstrate the coupling influences of nonlocal stress and strain
gradient parameters on dynamic behaviors of damping system at the pull-in state. It is
seen from Fig. 14(a) that nonlocal stress gradient parameter extends the pull-in time
while the pull-in time obviously shortens with the increment of strain gradient
parameter. The pull-in deflection decreases as the stress gradient parameter increases
while the pull-in amplitude magnifies by increasing strain gradient parameter.
Moreover, in Fig. 14(b), the velocity of dynamic system increases as the strain
gradient parameter whereas the velocity reduces with increase of the stress gradient

parameter.

5. Conclusion
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A unifying nonlocal stress and strain gradient model is presented to study

size-dependent dynamic characteristics of electrostatically actuated FGCNTs

reinforced microbeam with piezoelectric layer. The tuning effect of piezoelectric layer

on pull-in instability, the quantum and thermal Casimir force and damping effect are

also considered. Main conclusions are list as follows

1)

2)

3)

4)

S)

The frequency and dynamic pull-in voltage of microbeam with piezoelectric layer
decrease with the increase of excitation voltage exerted on piezoelectric layer.
The dynamic pull-in voltage of microbeam can be tuned by piezoelectric effect.
The size dependency of microbeam is determined by coupling effects of nonlocal
stress and strain gradient parameters. The frequency declines with the increment
of stress gradient while increases with the growth of strain gradient.

The frequency of FGX-CNTsRC type microbeam is larger than that of
UD-CNTsRC, FGO-CNTsRC, FGA-CNTsRC and FGV-CNTsRC because of
FGX-CNTsRC microbeam having superior stiffness characteristics under
electrostatic and dispersion forces. The stiffness of FGA-CNTsRC and
FGV-CNTsRC microbeam are weaker, and thus their frequencies are lower than
other three types of microbeam.

The quantum and thermal Casimir effect cannot be ignored on investigating
dynamic behaviors of microbeam at finite temperature filed. The previous studies
overestimate the frequency of electrostatically actuated microbeam. The
frequency declines with increase of quantum and thermal Casimir forces.

The pull-in voltage of damping system is higher than that of undamped system
due to dissipative impacts of damping. The pull-in deflection and velocity of
microbeam decrease with the growth of stress gradient parameter but increase

with the increment of strain gradient parameter.

Appendix A

The associated coefficients of the normalized nonlocal governing equation of

motion are expressed as follows
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Capital of Figures

Fig. 1. Schematic of different micro-/nano-scale dispersion forces: (a) van der Waals
force, (b) Casimir-Polder force, (c) Casimir force at zero temperature and (d) quantum
and thermal fluctuation induced Casimir force at finite temperature environment.
Fig.2. (a) Model of FGCNTs reinforced microbeam with piezoelectric layer subjected
to electrostatic and intermolecular forces, and (b) Geometrical distribution of CNTs
reinforcement in elastic layer.

Fig.3. Comparison of time history response under (a) electrostatic voltage and (b)
piezoelectric voltage from second-order perturbation approach and numerical
approach.

Fig.4. Influence of controlling voltage exerted on piezoelectric layer on dynamic

pull-in voltage and fundamental frequency of FGCNTs reinforced microbeam, where

UD-CNTsRC, V.

=012,V =10, A=02, AT =200K,x=0.05,7=0.05 and
a,=1.

Figs.5 (a, b).Influence of excitation voltage exerted on piezoelectric layer on

normalized frequency as the function of (a) nonlocal stress gradient and (b) strain

gradient parameter (FGX-CNTsRC,V, =0.17, V,=5, A=02, AT =200K,
#=0.05, 7=0.05 and a,=1).

Figs.6 (a, b). Influences of geometrical distribution of CNTs on frequency under
controlling voltages exerted on piezoelectric layer for (a) nonlocal stress gradient and
(b) strain gradient parameter (V,, =0.28, V, =5,A=02,AT =200K and «a,=1).
Figs.7 (a, b). Influences of volume fraction of CNTs on normalized frequency for
different nonlocal models as (a) nonlocal stress gradient and (b) strain gradient
parameter (FGO-CNTsRC,V, =5,A=0.2,AT =200K and ¢, =1).

Figs.8 (a, b). Influences of variation of environmental temperature on normalized

frequency for different nonlocal models (a) nonlocal stress gradient and (b) strain
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gradient parameter (FGX-CNTsRC,V,,, =0.17,V, =5,V =1,A=02and a,=1).

Fig. 9.Temperature-dependent thermal Casimir force based on Plasma model and
Drude model under different initial gap
Figs. 10 (a, b).Comparison of quantum and thermal Casimir effect on normalized

frequency for different nonlocal models (a) nonlocal stress gradient and (b) strain

gradient parameter (FGX-CNTsRC, V.

w=017 ,V,=5,V =1, A=02 and
AT =200K).

Fig. 11.Coupling effects of nonlocal stress and strain gradient parameters on
normalized frequency of FGCNTSs reinforced microbeam with piezoelectric layer.

Figs. 12 (a, b). Dynamic behaviors of microbeam without damping effects near

dynamic pull-in domain for (a) time story response and (b) phase plane near pull-in

domain (1z=0.1, 7=0.1, C,=C,,=0).

Figs. 13 (a, b). Dynamic behaviors of microbeam with damping effects near dynamic

pull-in domain for (a) time story response and (b) phase plane near pull-in domain
(u=0.1, n=0.1, C,=1 and C, =1).

Figs. 14 (a, b).Dynamic behaviors of microbeam with damping effects at dynamic
pull-in state for (a) time story response and (b) phase plane (CA"Y ,=1land évd =1).

Table 1. Experimental parameters of dynamic pull-in for a clamped-clamped
microbeam [52].

Table 2. Comparison of dynamic pull-in voltage obtained by different methods.

Table 3. Parameters of dynamic pull-in experiment with axial residual stress [56].
Table 4. Comparison of fundamental frequencies obtained by different methods.

Table 5. Temperature-dependent material property of CNTs and silicon [60, 61].

Table 6. CNTs efficient parameter of scale-dependent property for different volume
fraction [34, 35].
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Fig. 1. Schematic of different micro-/nano-scale dispersion forces: (a) van der Waals
force, (b) Casimir-Polder force, (c) Casimir force at zero temperature and (d) quantum
and thermal fluctuation induced Casimir force at finite temperature environment.
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Fig.2. Model of FGCNTs reinforced microbeam with piezoelectric layer subjected to
electrostatic and intermolecular forces.

26



0.18

—
o
N

Perturbation technique
Numerical approach

0.16 | o
0.14
0.12
0.10
0.08

0.06

Normalized deflection/q(t)

0.04

0.02

0.00 =i ? 9-0.Sra o
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Normalized time/t

1.0

—~
=3
=

Perturbation technique
o Numerical approach

Normalized deflection/q(t)

0.00 0.05 0.10 0.15 0.20

Normalized time/t

Fig.3. Comparison of time history response under (a) electrostatic voltage and (b) piezoelectric

voltage from second-order perturbation approach and numerical approach.

27



Normalized frequency/w

Fig.4. Influence of controlling voltage exerted on piezoelectric layer on dynamic pull-in voltage
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voltages exerted on piezoelectric layer for (a) nonlocal stress gradient and (b) strain gradient

parameter (V,, =0.17, V., =5,A=02,AT =200K and «,=1).
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Figs.7 (a, b). Influences of volume fraction of CNTs on normalized frequency for different

nonlocal models as (a) nonlocal stress gradient and (b) strain gradient parameter

(FGO-CNTsRC,V, =5,A=0.2,AT =200K and «, =1).
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Figs.8 (a, b). Influences of variation of environmental temperature on normalized frequency for

different nonlocal models (a) nonlocal stress gradient and (b) strain gradient parameter

(FGX-CNTsRC,V,, =0.17,V, =5,V, =1,A=02and a, =1).
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Fig. 9. Temperature-dependent thermal Casimir force based on Plasma model and Drude model

under different initial gap
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Figs. 10 (a, b).Comparison of quantum and thermal Casimir effect on normalized frequency for

different nonlocal models (a) nonlocal stress gradient and (b) strain gradient parameter

(FGX-CNTsRC,V,, =0.17,V, =5,V =1,A=0.2and AT =200K).
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Fig. 11.Coupling effects of nonlocal stress and strain gradient parameters on normalized

frequency of FGCNTs reinforced microbeam with piezoelectric layer.
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Figs. 12 (a, b). Dynamic behaviors of microbeam without damping effects near
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Figs.13 (a, b). Dynamic behaviors of microbeam with damping effects near dynamic

pull-in domain for (a) time story response and (b) phase plane near pull-in domain
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Table 1. Experimental parameters of dynamic pull-in for a clamped-clamped microbeam [44].

Parameters

Values

Length Width Height Initial gap
(nm) (nm) (nm) (nm)
610 40 2.12 2.07

Young’s modulus
(GPa)
164

Table 2. Comparison of dynamic pull-in voltage obtained by different methods.

Residual stress

Dynamic pull-in voltage (V)

(MPa) Experiment[44] DIPIE algorithm[45] EBM[46] FEM|[47] Present
o,=-3.5 8.10 — 8.027 7.980 7.985
o,=0 — 10.752 10.974 11.074 11.108
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Table 3. Parameters of dynamic pull-in experiment with axial residual stress [48].

Residual axial Initial gap Width Height Young’s modulus
Parameters

load (N) (nm) (km) (km) (GPa)
Values 0.0009 1.18 100 1.5 166

Table 4. Comparison of fundamental frequencies obtained by different methods.

Beam length  Fundamental frequency (kHz)

(pm) Experiment[48] Ritz method [49] DQM]|50] HAM]51] Present
210 322.05 324.21 324.70 324.78 324.34
310 163.22 164.35 163.46 163.16 163.30
410 102.17 103.80 103.70 103.42 103.72
510 73.79 74.80 73.46 74.38 74.73

Table 5. Temperature-dependent material property of CNTs and silicon [52, 53].

Temperature (K) E,, (TPa) a, (x10°/K) E, (MPa) a, (x10°/K)
300 5.6466 3.4584 169.68 2.57
400 5.5813 4.0919 167.69 3.14
500 5.5308 4.5361 165.71 3.59
600 5.4952 4.7438 163.72 3.88
700 5.4744 4.6677 161.73 3.99

Table 6. CNTs efficient parameter of scale-dependent property for different volume

fraction [30, 31].

v 0 0.12 0.17 0.28

n — 1.2833 1.3414 1.3238
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Fig. 1. Schematic of different micro-/nano-scale dispersion forces: (a) van der Waals
force, (b) Casimir-Polder force, (c) Casimir force at zero temperature and (d) quantum
and thermal fluctuation induced Casimir force at finite temperature environment.
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