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Abstract 

The Principal Component Analysis (PCA) and the Partial Least Squares (PLS) are 

two commonly used techniques for process monitoring. Both PCA and PLS assume 

that the data to be analysed are not self-correlated i.e. time-independent. However, 

most industrial processes are dynamic so that the assumptions of time-independence 

made by the PCA and the PLS are invalid in nature. Dynamic extensions to PCA and 

PLS, so called DPCA and DPLS, have been developed to address this problem, 

however, unsatisfactorily. Nevertheless, the Canonical Variate Analysis (CVA) is a 

state-space based monitoring tool, hence is more suitable for dynamic monitoring than 

DPCA and DPLS. The CVA is a linear tool and traditionally for simplicity, the upper 

control limit (UCL) of monitoring metrics associated with the CVA is derived based 

on a Gaussian assumption. However, most industrial processes are non-linear and the 

Gaussian assumption is invalid for such processes so that CVA with a UCL based on 

this assumption may not be able to correctly identify underlying faults. In this work, a 

new monitoring technique using the CVA with UCLs derived from the estimated 

probability density function through kernel density estimations (KDE) is proposed 
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and applied to the simulated nonlinear Tennessee Eastman Process Plant. The 

proposed CVA with KDE approach is able to significantly improve the monitoring 

performance and detect faults earlier when compared to other methods also examined 

in this study. 

 

Keywords: Canonical Variate Analysis, Probability Density Function, Kernel 

Density Estimation, Process Monitoring  

 

1. INTRODUCTION 

Process monitoring is essential to maintain high quality products as well as process 

safety. Widely applied process monitoring techniques like the PCA and the PLS rely 

on static models, which assume that the observations are time independent and follow 

a Gaussian distribution. However, the assumptions of time-independence and 

normality are invalid for most chemical processes because variables driven by noise 

and disturbances are strongly auto-correlated and most plants are nonlinear in nature. 

Therefore, the static PCA and PLS based approaches are inappropriate to monitor 

such nonlinear dynamic processes.  

 

To extend PCA applications to dynamic systems, Ku et al.1 presented a study of PCA 

on lagged variables to develop dynamic models and Multivariate Statistical Process 

Monitoring (MSPM) tools for dynamic continuous processes. In this so called 

Dynamic PCA (DPCA) approach, Ku et al.1 used parallel analysis to determine the 

number of time-lagged value for the process variables as well as the number of 

principal components to retain in the DPCA model. Although dynamic models are 

developed in DPCA and faults are detected, diagnosis of abnormal behaviour is more 
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complicated with DPCA given that lagged variables are involved2. It is also reported 

that principal components extracted in this way are not necessarily the minimal 

dynamic representations3. Furthermore, Komulainen4 extended PLS applications to 

dynamic systems, in a similar way to the DPCA, for the monitoring of an online 

industrial dearomatization process. The extended PLS approach is known as the 

Dynamic PLS (DPLS). Although the DPLS technique was reported to be efficient for 

fault detection, like the DPCA, the capability of the DPLS to identify dynamic faults 

is still questionable because the way of the DPCA and DPLS to represent a dynamic 

system is not efficient and may not be able to capture some important dynamic 

behaviours of the system. .   

 

More recently, monitoring techniques based on Canonical Variate Analysis (CVA) 

have been developed with UCLs derived based on the Gaussian assumption5,6,7. CVA 

was first introduced in 1936 by Hotelling7, adopted for use in dynamic systems for a 

limited class of processes by Akaike in 19757,8 and adapted to general linear systems 

by Larimore in 19838. CVA is a state space based MSPM method, hence is more 

appropriate for dynamic process monitoring.  

 

Norvalis et al.7 developed a process monitoring and fault diagnosis tool that combined 

canonical variate state space (CVSS) models with knowledge based systems (KBS) 

for monitoring multivariate process operations.  Faults were detected using the CVSS 

models and then UCLs derived based on the Gaussian assumption while diagnosis 

was based on the KBS. The efficiency of the technique was illustrated by monitoring 

simulated data of a polymerisation reactor system.  
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Juan and Fei6 employed CVA for fault detection based on Hotelling’s T2 charts to 

monitor a chemical separation plant. The results from the study illustrated a good 

performance of the statistical model based on CVA. Furthermore, it was demonstrated 

that the precision of the CVA model improved with an increase in the length of the 

data employed for the CVA analysis.  

 

Different from the above mentioned studies, Chiang et al.5 employed canonical 

variate analysis to include the input and output variables for the estimation of the state 

space variable. From the estimated state space variable, UCLs of T2 and Q metrics 

were determined to judge whether or not those processes were in-control.  

 

The T2 and Q metrics are widely employed with various MSPM 

techniques1,3,5,9,10,11,12. For linear MSPM techniques, such as PCA, PLS and CVA, 

traditionally, UCLs of the T2 and Q metrics are estimated based on an assumption that 

the latent or state variables follow a Gaussian distribution. However, most industrial 

processes are nonlinear. For such processes, although the distribution of stochastic 

sources might be Gaussian, such as measurement noises and normally distributed 

disturbances, the distribution of process variables, in general, will be non-Gaussian. In 

such a case, the UCL estimated based on the Gaussian assumption is unable to 

correctly identify underlying faults.  

 

The problem of monitoring non-Gaussian processes can be addressed by directly 

estimating the underlying probability density function (PDF) of the T2 and Q metrics 

through the kernel density estimation (KDE) to derive the correct UCL13,14.  
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Martin and Morris13 presented an overview of multivariate process monitoring 

techniques using the PCA and the PLS with T2 and M2 metrics for process 

monitoring. The control limit of M2 metric was estimated based on the PDF, 

combining techniques of standard bootstrap and kernel density estimations to 

overcome the limitations of the T2 metric mentioned above. Both methodologies were 

applied to a continuous polyethylene reactor and a polymerisation reactor to 

demonstrate the efficiencies of both methodologies and the M2 metric was reported to 

be a more efficient process monitoring tool than the T2 metric.   

 

Chen et al.14 adopted several KDE approaches in association with PCA for process 

monitoring. A gas melter process was used as the case study and it was demonstrated 

that the KDEs could obtain nonparametric empirical density function as a tool for a 

more efficient process monitoring. Their emphasis was to demonstrate the efficiencies 

of three different density estimators which were verified based on the 

misclassification rates at given confidence intervals.  

 

In order to use the linear dynamic tools, such as the CVA to monitor nonlinear 

dynamic processes, the limitation of the Gaussian assumption based T2 and Q metrics 

mentioned above has to be addressed. In this paper, KDE is employed in association 

with the CVA resulting in a new extension of the CVA algorithm, the ‘CVA with 

KDE’ for process monitoring. To achieve this, a CVA model is firstly estimated from 

the so called past and future variables constructed from the collected process data. 

From the estimated CVA model, the T2 and Q metrics are then calculated and the 

KDE is employed to estimate the PDF of these T2 and Q metrics calculated. UCLs are 

then determined based on the estimated PDF for a given confidence bound. For 
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comparison, different monitoring algorithms; DPCA and DPLS with and without 

KDE as well as CVA with and without KDE have been applied to the simulated 

nonlinear Tennessee Eastman Process Plant in the present study. Results show that the 

monitoring performance is significantly improved by using the ‘CVA with KDE’ 

approach compared with other monitoring algorithms aforementioned. Although the 

CVA is a linear model, in this study, the CVA is employed to monitor a nonlinear 

dynamic process plant. Hence, this study is described as nonlinear dynamic process 

monitoring.   

 

The rest of the paper is organised as follows: Section 2 explains the CVA model while 

section 3 describes monitoring metrics and their UCLs derived through Kernel 

Density Estimations. The procedure of CVA with KDE is then summarised in section 

4. Section 5 describes the case study whilst the results of the case study are presented 

and discussed in section 6. Finally, the work is concluded in section 7. 

 

2. CANONICAL VARIATE ANALYSIS 

Canonical Variate Analysis (CVA) is a linear dimension reduction technique to 

construct a minimum state space model for dynamic process monitoring. This section 

applies the linear CVA algorithm to a nonlinear dynamic plant for identifying state 

variables directly from the process measurements.  

 

Assume the nonlinear dynamic plant under consideration represented as follows. 
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where   and  are state and measurement vectors respectively, nR∈kx mR∈ky )(⋅f  

and  are unknown nonlinear functions, while  and  are plant disturbances and 

measurement noise vectors respectively. It is clear that such an unknown nonlinear 

dynamic system is generally difficult to deal with for monitoring. However, at a stable 

normal operating point, the nonlinear plant can be approximated by a linear stochastic 

state space model as follows; 

)(⋅g kw kv

k

k

ηCxy
εAxx

kk
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where  and  are unknown state and output matrices respectively while  and  

are collective modelling errors partially due to the underlying nonlinearity of the plant 

which has not been included in the linear model, as well as associated with process 

disturbance and measurement noise,  and  respectively. Due to the unknown 

nonlinearity, the collective modelling errors,  and  generally will be non-

Gaussian although  and  might be normally distributed processes. This is the 

main difference of this work from other CVA based approaches reported in literature. 

Instead of dealing with the unknown nonlinear system (1) directly, in this work, the 

approximated linear state space model given in (2) is considered through the standard 

CVA approach. Although the linear model (2) is easier to deal with than the nonlinear 

system (1), the collective errors  and  have to be treated as non-Gaussian 

processes. This leads to the direct PDF estimation of the associated T2 and Q metrics 

through the KDE approach explained in section 3.  

A C kε kη

kw kv

kε kη

kw kv

kε kη

 

 7



In the CVA approach, firstly, the measurement vector  is expanded by  past and 

future measurements to give the past and future observation vectors y  and  

respectively. 
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where kp,y  and kf ,y  are the sample means of  and  respectively, and the 

products of  represents the lengths of the past and future observation vectors 

respectively. The length of the past and future observations can be determined by 

checking the autocorrelation of the square sum of the process variables such that the 

correlation can be neglected when the time distance is larger than the number of lags 

determined.  

kp,y kf ,y

mq

 

These past and future observations are stochastic processes. Their sample-based 

covariance and cross-covariance matrices can be estimated through the truncated 

Hankel matrices as follows; 
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where  and  are past and future truncated pY fY M -column Hankel matrices 

respectively, and defined as follows.  

Mmq
Mqpqpqpp R ×

+++ ∈= ]~~~[ ,2,1, yyyY L        (8) 
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For a set of measurements with total  observations, the last element of  in (3) 

is , whilst the last element of  in (4) should be . Therefore, the maximum 

number of columns of these Hankel matrices is  

N

M+

1, +qpy

1y qf ,y Ny

12 +−= qNM                    (10)  

 

The CVA aims to find the best linear combinations,   )~( ,kf
T ya  and )~( ,kp

T yb  of the 

future and past observations so that the correlation between these combinations is 

maximised. The correlation can be represented as follows: 
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According to linear algebra theory, the solution,  and  are left and right singular 

vectors of the scaled Hankel matrix,  and the maximal correlation 

u

fpΣ

v

2/12/1: −−= ppff ΣΣH

 9



),(max , baba fpρσ =

H

 is the corresponding singular value of . If the rank of the scaled 

Hankel matrix,  is r, then there are 

H

r  non-zero singular values, rii K,2,1, =σ  in 

the descending order and correspondingly r  pairs of the left and right singular 

vectors,  and  for . Singular values and vectors can be collected in 

the following matrix form of the singular value decomposition (SVD). 
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Furthermore, the canonical variates can be directly estimated from the past 

observation vector  as illustrated in (14). kp,

kpkp ,,
2 ~~ yJyΣΣ
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where  is the transformation matrix, which transforms the -

dimensional past measurements to the 

R

r -dimensional canonical variates. These 

canonical variates are normalised with a unit sample covariance. 
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retained as the state variables where rn < . In addition, the remaining  

canonical variates are said to be in the residual space. Equation (15) below shows the 

entire canonical variate space spanned by the state variables and the 

residual canonical variates ( .  

)( nr −

)( r
k R∈z

)nr
k R −∈

)( n
k R∈x

d

TT
k

T
kk ][ dxz =                                                                                                              (15) 

The state variables  are a subset of the canonical variates  estimated in (14). 

Hence the state variable like the canonical variates is defined as a linear combination 

of the past observation vector , 

)( kx )( kz

kp,
~y kpxk ,

~yJx = , where  with 

consisting of the first n columns of  defined in (13). 

2/1−= pp
T
x ΣVxJ

xV V

 

Like the canonical variates, the state variables also have the unit covariance. Once the 

states of the system are determined, the state and output matrices,  and C  can then 

be estimated through linear least squares regression. However, the determination of 

the state and output matrices A and C  will be omitted from the rest of the paper since 

these matrices will not be used in this work.  

A

 

The variation of state variables can be represented by the T2 metric. Another 

commonly used monitoring metric is the Q metric which measures the total sum of 

square errors of the variations in the residual space. The estimation and use of the T2 

and Q metrics are explained in the next section. 

 

3.  CONTROL LIMIT THROUGH KERNEL DENSITY ESTIMATIONS 
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Traditionally, it was assumed that  and  are normally distributed, as well as the 

state, measurement and residual vectors, , and  since a linear combination of 

multivariate Gaussian variables is also normally distributed.  

kε kη

kx yk ke

 

For  samples of data, the number of samples of the states available is N M , given in 

(10). For the normally distributed n -dimensional state vector, , with x M  samples, 

,  , the T2 statistic defined in (16) can be used to test whether the 

mean 

kx M,,2,1 K=k

μ  of  is at the desired target . x τ

( ) ( ) MkT k
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where  is the estimated covariance of . If S x τμ = , then , where ),(~2 nMnFCT −

nMMnM(MC )1)(1() +−−= . Therefore, the system (2) can be monitored by 

plotting  against time, , along with a UCL, T  corresponding to a 

significance level, 

2
kT k )(2

UCL α

α , that has the probability, ( ) αα =)(> 2
UCLT2TP k .  

 

Equation (16) can be simplified as the state covariance matrix, IS = . Furthermore, 

since the past and future observations, kp ,
~y  and kf ,

~y  have zero means, the desired 

target for the state is .  With these simplifications in place, the T2 metric for the 

state space is represented in (17). 
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where )(, αbaF  is the critical value of the F-distribution with a  and b  degrees of 

freedom for a significance level α. By comparing  against T  in real-time, an 

abnormal condition is then determined when T . 

2
kT

UCLT>

)α(2
UCL

)(2 αk

 

The Q metric is introduced to test the significance level of the prediction error 

represented in the scaled past observation space. According to (14), the prediction 

error for the scaled past measurement and the corresponding Q metric are then 

defined in (19) and (20) respectively. 
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Therefore, the calculation of )(αUCLQ  can be simplified by letting )( nri −=θ  and 

 in (21). By comparing  against 3/10 =h kQ )(αUCLQ  in real-time, an abnormal 

condition is determined when )(αUCLk QQ > . 

 

Both control limits in (18) and (21) are based on the assumptions that the state 

variables and prediction errors are Gaussian. However, when the collective modelling 

errors,  and  of the system (2) are non-Gaussian processes, this assumption is not 

valid. Hence,  and 

kε kη

2
UCLT )(α )(αUCLQ  derived above can no longer be used as control 

limits for real-time monitoring. One solution to this issue is to estimate the PDF 

directly for these T2 and Q metrics through a non-parametric approach13,14. Amongst 

various PDF estimating approaches, the kernel density estimation (KDE) approach13,14 

is selected for this work. The KDE is a well established approach to estimate the PDF 

particularly for univariate random processes16. Therefore, it is particularly suitable for 

the T2 and Q metrics which are univariate although the underlying processes are 

multivariate. Assume x  is a random variable and its density function is denoted 

by .  This means that  )(xp

∫
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dxxpbxP )()(                                                                                                  (22) 

Therefore, by knowing , an appropriate control limit can be determined for a 

specific confidence bound, 
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where kx , Mk ,,2,1 K=  are samples of x  and h  is the bandwidth. The bandwidth 

selection in KDE is an important issue because selecting a bandwidth too small will 

result in the density estimator being too rough, a phenomenon known as under-

smoothed while selecting a bandwidth too big will result in the density estimator 

being too flat. There is no single perfect way to determine the bandwidth. However, a 

rough estimation of the optim  subject to minimising the 

approximation of  

.  

T

 and 

al bandwidth opth

 the mean integrated square error can be derived in (24), where σ is

the standard deviation17

5/1
opt 06.1 −= Nh σ                                                                                                       (24) 

By replacing kx  with 2
kT  and kQ  obtained in equations (17) and (20) respectively, the 

above KDE approach is able to estimate the underlying PDFs of the 2 and Q metrics. 

The corresponding control limits, )(2
UCL αT )(αUCLQ

given confidence bound, 

 can then be obtained from 

the PDFs of the T2 and Q metrics for a α  by solving the 

following equations respectively. 
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where ⊕  represents a logical OR operation.  By using the fault detection condition 

(26), the

)

monitoring performance becomes insensitive to the number of states,  n   
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since any ignored variances in the T2 metric by reducing  will be recovered by Q 

A using KDEs for nonlinear dynamic process monitoring is proposed to identify 

nderlying faults subject to non

proposed CVA with KDE algorithm is illustrated in the flo chart presented in Figure 

1. 

 

n

-Gaussian processes. The step by step procedure of the 

w

metric. 

 

4. CVA with KDE Algorithm 

By summarising the analysis presented in the previous sections, a new extension of 

CV

u
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Figure 1: Flowchart of the CVA with KDE algorithm, (a) Off-line modelling 

procedure,  (b) Real-time monitoring procedure 

(a) (b) 
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k=2  and kkQ eeT

k=                                 

State variable and prediction error estimation:  
 kpx ,

~yJxk =  ,  kkQ eeT
k=

Calculate transformation matrices: 
2/1−= pp

T
xx ΣVJ , ( ) 2/1−−= pp

T
xx ΣVVIF                  

Control Limit Estimation: For givenα , solve  

α
α

=∫ ∞−

)( 22
2

)(UCLT

kk dTTp

∫ ∞−
=

)(
)(

α
αUCLQ

kk dQQp

 and 
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5. Case Study - Tennessee Eastman Process Plant 

The Tennessee Eastman Process (TEP) plant18 has 5 main units which are the reactor, 

condenser, separator, stripper and compressor5,18. Streams of the plant consists of 8 

components; A, B, C, D, E, F, G and H. Components A, B and C are gaseous 

reactants which were fed to the reactor to form products G and H. The TEP data used 

for this work consists of two blocks; the training and test data blocks. Each block has 

21 data sets corresponding to the normal operation (Fault 0) and 20 fault operations 

(Fault 1 – Fault 20). The sampling time for most of the process variables in the TEP 

plant is 3 minutes. A total of 52 measurements are collected for each data set of 

length, N=960 representing 48-hour operation with a sampling rate of 3 minutes. 

However, 19 of the 52 measurements, 14 of them sampled at 6 minute interval and 5 

of them sampled in every 15 minutes, have not been included in this study due to the 

measurement time delay. Different from the work reported by Chiang15, 11 

manipulated variables are treated the same as other measured variables because under 

feedback control, these variables are not independent any more. The simulation time 

of each operation run in the test data block is 48 hours and the various faults are 

introduced only after 8 hours. This means that for each of the faults, the process is in-

control for the first 8 simulation hours before the process gets out of control at the 

introduction of the fault. All twenty faults have been studied in this work. Also in this 

paper, the normal operating process data will be referred to as the training data. A 

graphical description of the TEP Plant is shown in Figure 2 while a brief description 

of the twenty TEP Faults is presented in Table 1.  

 18



 

Figure 2 Graphical Description of the TEP Plant  
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Table 1. Brief Description of TEP Plant Faults 

 
Fault ID Description Type 

1 A/C Feed Ratio, B Composition Constant (Stream 4) Step 

2 An increase in B while A/C Feed ratio is constant (stream 4) Step 

3 D Feed Temperature (Stream 2) Step 

4 Reactor Cooling Water Inlet Temperature Step 

5 Condenser Cooling Water Inlet Temperature Step 

6 A loss in Feed A (stream 1) Step 

7 C Header Pressure Loss – Reader Availability (Stream 4) Step 

8 A,B,C Feed Composition (Stream 4) Random 

9 D Feed Temperature (Stream 2) Random 

10 C Feed Temperature (Stream 4) Random 

11 Reactor Cooling Water Inlet Temperature Random 

12 Condenser Cooling Water Inlet Temperature Random 

13 Reaction Kinetics Drift 

14 Reaction Cooling Water Valve Sticking 

15 Condenser Cooling Water Valve Sticking 

16 Unknown Unknown

17 Unknown Unknown

18 Unknown Unknown

19 Unknown Unknown

20 Unknown Unknown
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6. Monitoring Performance 

The monitoring performance in this study is assessed based on the percentage 

reliability which is defined as the percentage of the samples outside the control 

limits19 within the last 40 hour faulty operation.  Hence a monitoring technique is said 

to be better than another technique if the percentage reliability of this technique is 

numerically higher than the percentage reliability of another. Also, the monitoring 

performance is assessed by the detection delay which is the time period it takes to 

detect a fault after the introduction of the fault. The false alarm rate was also 

investigated. The monitoring performance of the proposed CVA with KDE is 

compared with the performance of the DPCA and DPLS with and without KDE as 

well as CVA without KDE using all twenty faults described above. The 99% 

confidence interval is adopted in this study.  
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Figure 3. Autocorrelation function of the summed squares of all measurements. 
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The variability of the training data is characterised by the extracted canonical variate 

state space model. Firstly, the number of time lags for past and future observations is 

determined from the autocorrelation function of the summed squares of all 

measurements as shown in Figure 3 against ±5% confidence bounds. The 

autocorrelation function indicates that the maximum number of significant lags in this 

study is 16. Hence both p and f are set to 16. The length of the past and future 

observations ( ) is 528 according to (3) and (4). The number of columns of the 

truncated Hankel matrices according to (10) is 

mq

929=M . The singular value 

decomposition is then performed on the scaled Hankel matrix as in (13).  
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Figure 4 Normalised Singular Values from the Scaled Hankel Matrix 

 

Several ways have been suggested to determine the order ( ) of the system for CVA 

based approaches amongst which the dominant singular values3,5 and the Akaike 

n
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Information Criterion (AIC)6 are most widely adopted. The former method was 

adopted in this study to determine the order of the system. The singular values from 

the scaled Hankel were normalised to have the values ranging between 0 and 1 and 

then the order determined based on the dominant normalised singular values. For the 

TEP case study, it is noticed that the singular values of the scaled Hankel matrix H  in 

(13) decrease slowly. If  is determined from these singular values, it will be 

unrealistically large as indicated in Figure 4 (a), which shows the normalised sum of 

squares of residual singular values against the number of states. As mentioned in 

section 3, the value of  is not important to monitoring performance for this work due 

to the fault detection condition (26) adopted. Hence, a more realistic number of 

singular values, n = 26 represented by circles in Figure 4 are employed to represent 

the model space. Also, to make a fair comparison of the proposed technique with the 

other techniques considered, the process variables, the number of lag and the order to 

determine the dimension of the latent variables are the same for all the approaches 

compared. The monitoring criterion mentioned above is applied to all the other 

methods considered.   

n

n

 

6.1 Reliability Comparison 

The superiority of the CVA with KDE over other techniques considered in this paper 

is demonstrated in Table 2.  Over all the faults compared, the CVA achieves the best 

performance in terms of reliability. Both CVA techniques are able to improve the 

monitoring performance for most TEP faults comparing with the DPCA, DPCA with 

KDE, DPLS and DPLS with KDE techniques. Nevertheless, the proposed CVA with 

KDE technique is able to further improve the reliability for faults that are more 

difficult to detect such as Faults 3 and 9. Faults 3 and 9 are more difficult to detect 
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because these faults have very little effect on the corresponding process 

measurements. For such faults, the performance of the CVA with KDE is significantly 

better than that of the CVA. All KDE approaches achieve the reliability higher than or 

the same as their non-KDE counterparts as indicated in Table 2. This is due to the 

nonlinear and non-Gaussian features of the plant, which justify the necessity of this 

work. 

 
Table 2. Performance based on % Reliability of all Algorithms (99%) 

 
Faults CVA+KDE 

(%) 
CVA 
(%) 

DPCA+KDE
(%) 

DPCA 
(%) 

DPLS+KDE 
(%) 

DPLS 
(%) 

1 99.75 99.75 99.38 99.25 99.25 99.25 
2 99.5 98.5 98 97.88 98.13 98 
3 73.03 37.2 0 0 0.2497 0 
4 99.88 99.88 99.88 99.88 99.88 99.88 
5 99.88 99.88 29.09 27.84 28.21 26.47 
6 99.88 99.88 99.88 99.88 99.88 99.88 
7 99.88 99.88 99.88 99.88 99.88 99.88 
8 98.88 98.75 97.25 97.13 97 97 
9 92.26 75.28 0.2497 0 0.2497 0 
10 96.63 96.25 39.08 28.21 36.83 29.46 
11 99.38 99.38 98.88 98.63 97.88 97.75 
12 99.5 99.5 98.13 98.13 98 98 
13 96.13 96.13 95.01 95.01 94.76 94.76 
14 99.88 99.75 99.75 99.75 99.75 99.75 
15 99.5 99.5 0.1248 0 0.1248 0 
16 99.13 99.13 35.83 26.22 26.97 21.6 
17 98.13 98.13 97.75 97.75 97.75 97.75 
18 99.25 99.25 98.63 98.5 98.63 98.5 
19 99.88 99.88 90.51 87.02 84.64 79.28 
20 97.63 97.25 79.15 76.9 73.91 71.41 
 

 

6.2 Detection Delay Comparison 

The detection delays for the CVA with KDE and other techniques considered are 

presented in Table 3. As shown in Table 3, the CVA with KDE approach is able to 

detect most of these faults earlier than other techniques. This means operators have 
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more time to take safety measures to counteract occurring faults if the proposed CVA 

with KDE approach is adopted. Again, all KDE associated approach achieve detection 

delay less than or the same as their non-KDE counterparts due to the same reason 

aforementioned. 

Also investigated is the false alarm rates for all the faults and no false alarm has been 

observed for all faults and all approaches studied.  

 
Table 3. Detection Delay for all the Algorithms 

 
Faults CVA +KDE CVA  DPCA+KDE DPCA DPLS+KDE DPLS 
1 9 9 18 21 21 21 
2 15 15 51 54 48 51 
3 15 39 - - 1125 - 
4 6 6 6 6 6 6 
5 6 6 12 12 12 12 
6 6 6 6 6 6 6 
7 6 6 6 6 6 6 
8 30 33 69 72 75 75 
9 33 45 2115 - 1125 - 
10 84 93 210 210 219 219 
11 18 18 24 24 24 24 
12 15 15 48 48 51 51 
13 96 96 123 123 129 129 
14 6 9 9 9 9 9 
15 15 15 1140 - 1125 - 
16 24 24 111 111 216 219 
17 48 48 57 57 57 57 
18 21 21 36 39 36 39 
19 6 6 36 39 36 42 
20 60 69 120 123 123 123 
    

 

6.3 Monitoring Chart Comparison of Fault 9 

To appreciate the superior performance achieved by the new CVA with KDE 

approach, the T2 and Q monitoring charts of all approaches for Fault 9 are presented 

in Figure 5. In Figure 5, sub-figures in the left column and the right column are for the 

T2 and Q charts respectively; whilst the first, second and third rows are for CVA, 
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DPCA and DPLS approaches respectively. Upper control limits obtained based on the 

Gaussian assumption are represented as dashed lines, whilst the UCLs determined by 

the KDE approach are shown in dash-dot lines. 
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Figure 5.  Fault 9 monitoring chats, solid: metrics, dashed: KDE based UCL, dash-

dot: Gaussian assumption based UCL.   

 

Figure 5 clearly indicates that only the CVA model is able to reveal the difference in 

dynamic behaviour between the normal operation and the operation with fault 9. Both 
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T2 and Q metrics produced by the DPCA and the DPLS approaches have no 

identifiable difference between the normal and faulty operations. Furthermore, the 

CVA with KDE approach gives tighter UCLs for both metrics resulting in a higher 

percentage of reliability and earlier fault detection than the traditional CVA approach.  

 

7 Conclusions 

To deal with fault monitoring for nonlinear dynamic processes, the linear state-space 

model based CVA approach is extended by directly estimating the underlying PDF of 

the associated T2 and Q metrics to derive more appropriate control limits for these 

monitoring metrics. This leads to the new CVA with KDE algorithm proposed for 

nonlinear dynamic process monitoring. The proposed approach is applied to the 

Tennessee Eastman Process. The monitoring performance of the proposed CVA with 

KDE is compared with that of the DPCA and DPLS with and without KDE as well as 

CVA without KDE techniques. The percentage reliability and the detection delays 

were adopted to assess and compare the monitoring performance of the proposed 

approach with that of all other techniques considered in this study. Although some of 

the faults are commonly detected by all the techniques considered, the outstanding 

superiority of the CVA with KDE is demonstrated in those faults that are not easily 

detectable. For such faults, the proposed CVA with KDE has higher percentage 

reliability than other techniques considered. In addition, the proposed CVA with KDE 

is able to detect faults earlier than other techniques considered. Hence, the CVA with 

KDE is a more efficient tool than the DPCA and the DPLS with and without KDE as 

well as the CVA without KDE for nonlinear dynamic process monitoring.  
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