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Abstract 

Based on Reddy’s higher-order shear deformation plate theory, this paper presents an analysis of 

the nonlinear dynamic response and vibration of imperfect functionally graded material (FGM) 

thick plates subjected to blast and thermal loads resting on elastic foundations. The material 

properties are assumed to be temperature-dependent and graded in the thickness direction 

according to a simple power-law distribution in terms of the volume fractions of the constituents. 

Numerical results for the dynamic response and vibration of the FGM plates with two cases of 

boundary conditions are obtained by the Galerkin method and fourth-order Runge-Kutta method. 

The results show the effects of geometrical parameters, material properties, imperfections, 

temperature increment, elastic foundations and boundary conditions on the nonlinear dynamic 

response and vibration of FGM plates. 

Keywords: Nonlinear dynamic response, vibration, FGM plates, higher-order shear deformation 

plate theory, blast and thermal loads, elastic foundations.  D
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1. Introduction 

The concept of functionally graded materials (FGMs) was first introduced in Japan in 1984 

during a space plane project. FGMs are microscopically inhomogeneous materials that exhibit 

continuous variation of material properties from one surface to another and thus eliminate the 

stress concentration generally found in conventional laminated composites. FGM structures are 

widely used in various engineering applications such as hoppers, marine and ocean engineering 

structures, components of missiles and spacecraft, and other civil applications.  

 

Therefore, the problems of static and dynamic stability of structures such as FGM plates and 

shells have attracted increasing research effort. Asemi et al. [1] investigated the shear buckling 

analysis of FGM annular sector plates based on a three-dimensional elasticity approach. Nejad et 

al. [2] introduced a semi-analytical solution for the purpose of elastic analysis of rotating thick 

FGM truncated conical shells under non-uniform pressure; whilst Dozio [3] derived the first-

known exact solutions for free vibration of thick and moderately-thick FGM rectangular plates 

on the basis of a family of two-dimensional shear and normal deformation theories with variable 

order. Duc [4] investigated the nonlinear dynamic response of imperfect eccentrically stiffened 

FGM double curved shallow shells on elastic foundations. Alipour and Shariyat [5] studied the 

stress and deformation analysis of FGM annular sandwich plates subjected to non-uniform 

normal and/or shear tractions. Duc et al. [6] considered the nonlinear dynamic analysis and 

vibration of imperfect FGM thick doubly curved shallow shells with piezoelectric actuators on 
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elastic foundations subjected to the combination of electrical, thermal, mechanical and damping 

loading; and Shen [7] analysed thermal post-buckling analysis for a simply supported, shear 

deformable functionally graded plate under thermal loading. Dai et al. [8] presented an analysis 

of vibrations and transient responses of FGM hollow cylinder under a radially symmetric 

dynamic load. Loc et al. [9] proposed a novel and effective formulation that combines the 

extended isogeometric approach and higher-order shear deformation theory to study the free 

vibration of cracked FGM plates. Huang and Han [10] investigated the nonlinear dynamic 

buckling problems of unstiffened FGM cylindrical shells subjected to time-dependent axial load 

by using a one-term solution form. In 2014, Duc [11] published a valuable book "Nonlinear 

static and dynamic stability of functionally graded plates and shells", in which the results of 

nonlinear dynamic analysis of shear deformable FGM structures were presented. 

In recent years, buildings and critical infrastructures across the globe have become 

more vulnerable to extreme dynamic explosion and impact loads due to increased 

terrorist activities, accidental explosions, proliferation of weapons, and so forth. As a 

result, blast loads and their impact on the safety and performance of structures have 

received considerable interest. Shi et al. [12] conducted a spatial reliability analysis to 

predict the damage on reinforced concrete columns subjected to explosive blast loading. 

Gauch et al. [13] presented the effect of preloading a thin composite plate subjected to 

underwater explosive loading through computational simulations; and Ignatieva et al. 

[14] investigated the peculiarities of the structure of copper- and nickel-fluoropolymer 

composites fabricated by explosive pressing. Jones [15] carried out tests on the dynamic 
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inelastic response of strain rate sensitive ductile plates due to large impact, dynamic 

pressure and explosive loadings. Mohotti et al. [16] conducted an experimental and 

numerical study to determine the deformation time history behaviour of square 

aluminium alloy AA5083-H116 plates supported by a bolted frame subjected to low 

velocity impact. Yehia et al. [17] investigated wave propagation and dispersion in 

sandwich plates subjected to blast loads. Further, Ackland et al. [18] performed 

experimental and numerical studies to investigate the effect of polyurea coatings on the 

blast resistance of mild steel plates. Gonçalves et al. [19] researched the impact of 

projectiles on ceramic/metal armour using a simple one-dimensional mode. Luong et al. 

[20] presented an analysis of the underground structure in a coral foundation under 

dynamic loading; and Geretto et al. [21] dealt with the experimental analysis of square 

mild steel plates subjected to blast loads in three different degrees of confinement. The 

energy absorption of circular and square aluminium alloy tubes subjected to an axial 

explosive load, which is transmitted to a tube by a small attached mass, is discussed in 

the investigation of Karagiozova et al. [22].  

To the authors' best knowledge, there are very little researches on the problems of FGM 

structures subjected to blast loads. Aksoylar et al. [23] studied the nonlinear transient analysis of 

FGM and fibre–metal laminated plates under blast loads by experimental and mixed finite 

element methods. Hause [24] developed the foundation of the theory of FGM plates with simply 

supported edges, under a Friedlander explosive air-blast within the classical plate theory. 

Further, Übeyli et al. [25] investigated the potential of using silicon carbide reinforced FGM as 
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armour material when impacted by an armour-piercing projectile. Lam et al. [26] developed the 

modelling of blast pressure for engineering applications. Bodaghi et al. [27] presented nonlinear 

active control of the dynamic response of FGM beams with rectangular cross-sections in thermal 

environments exposed to blast loadings. To date, no studies on the analytical approach to 

investigate the dynamic response of FGM plates subjected to blast load has been published. 

New contribution of the paper is that this is the first investigation successfully establish 

modeling and analytical formulations for the nonlinear dynamic response and vibration of FGM 

thick plates subjected to blast and thermal loads using the higher-order shear deformation plate 

theory. Material properties are assumed to be temperature-dependent. Two cases of boundary 

conditions are considered. The Galerkin method and fourth-order Runge-Kutta method are used 

to solve basic equations.  

2. Problem statement 

Consider an FGM plate on elastic foundations as shown in Figure 1. A coordinate system 

( , , )x y z
 
is established, in which the ( , )x y  plane is on the middle surface of the plate and z  is 

the thickness direction ( / 2 / 2)h z h   . The length, width, and total thickness of the plate are 

a , b  and h , respectively.  

By applying the power-law distribution, the volume fractions of ceramic and metal are 

assumed as: 

2
( ) , ( ) 1 ( ),

2

N

c m c

z h
V z V z V z

h

 
   
 

 

                                                               

(1) 
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where N  is the volume fraction index ( 0 N  ); and subscripts m  and c  stand for the metal 

and ceramic constituents, respectively. The effective properties, ,
eff

Pr  of the FGM plate, such as 

the elastic modulus E , the mass density ,  and the thermal expansion coefficient   are 

determined by a linear rule of mixture as:  

e ( ) ( ) ( ),ff c c m mPr z PrV z Pr V z   (2) 

in which Pr  denotes a temperature-dependent material property. The effective properties of the 

FGM plate are obtained by substituting Eq. (1) into Eq. (2) as:   

     
2

( ), ( ), ( ) , , , , ,
2

N

m m m cm cm cm

z h
E z z z E E

h
     

 
   

 
 

 

(3)                                             

where, 

, , ,
cm c m cm c m cm c m

E E E             (4) 

and Poisson’s ratio is assumed to be constant, ( )z v const   . 

A material property, ,Pr  can be expressed as a nonlinear function of temperature [6, 7, 

11]: 

 1 2 3

0 1 1 2 31 ,Pr P P T PT PT PT

              (5)                                                               

in which 0 ,T T T   T  is the temperature increment in the environment containing the panel 

and 0 300T K  (room temperature), and 0 1 1 2, , ,P P P P  and 3P  are coefficients characterizing the 

constituent materials.  

The plate–foundation interaction of the Pasternak model is given by: 
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2

1 2
,

e
q k w k w    (6)                        

in which 
2 2 2 2 2/ /x y      , w  is the deflection of the plate, 

1
k  is the Winkler foundation 

modulus, and 
2

k  is the shear layer foundation stiffness of the Pasternak model. 

3. Governing equations 

In the present study, higher-order shear deformation plate theory is used to derive the governing 

equations and determine the nonlinear response of FGM thick plates.  

The strain components across the plate thickness at a distance z
 
from the mid-plane are 

represented by: 

0 1 3

0 1 3 3

0 1 3

,

x x x x

y y y y

xy xy xy xy

k k

z k z k

k k

 

 

 

       
       

         
       
       

 

0 2

2

0 2
,

xz xz xz

yz yz yz

k
z

k

 

 

    
         

     
 

(7) 

where, 

0 2

, ,

0 2

, ,

0

, , , ,

/ 2

/ 2

x x x

y y y

xy y x x y

u w

v w

u v w w







   
   

    
       

, 

1

,

1

,

1

, ,

x x x

y y y

xy x y y x

k

k

k





 

   
   

   
      

, 

3

, ,

3

1 , ,

3

, , ,
2

x x x xx

y y y yy

xy x y y x xy

k w

k c w

k w





 

   
   

     
       

, 

0

,

0

,

x xxz

y yyz

w

w





   
       

, 

2

,

12

,

3
x xxz

y yyz

wk
c

wk





   
        

, 

 

     (8)                
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in which 
2

1
4/3c h ; ,u v  are the displacement components along the ,x y  directions, 

respectively; and ,
x y
   are the rotations of normals to the mid-surface with respect to the x  and 

y  axes, respectively. 

 

Hooke’s stress–strain relation is applied for the FGM plate as: 

 

   

   

2
, [( , ) , (1 ) (1,1)],

1

, , , , .
2(1 )

x y x y y x

xy xz yz xy xz yz

E
T

E

        


     


    





. 

        

(9) 

The force and moment resultants are expressed by: 

 

   
/2

3

/2

/2

2

/2

, , 1, , , , , ,

( , ) (1, ) , , .

h

i i i i

h

h

i i iz

h

N M P z z dz i x y xy

Q K z dz i x y









 

 





 

                            

(10) 

Substituting Eqs. (7) into Eqs. (9), and the result into Eqs. (10) gives: 
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0 0 1 1

1 2 4 2 3 52

3 3

4 5 7 1 2 4

0 0 1 1

1 2 4 2 3 52

3 3

4 5 7 1 2 4

0

1 2 4 2

1
, , , , , ,

1

, , (1 ) , , ,

1
, , , , , ,

1

, , (1 ) , , ,

1
, , , ,

2(1 )

x x x x y x y

x y

y y y y x y x

y x

xy xy xy xy

N M P E E E E E E k k

E E E k k

N M P E E E E E E k k

E E E k k

N M P E E E E

  


 

  


 




   

       

   

       

 


   

     

     

1 3

3 5 4 5 7

0 2

1 3 3 5

0 2

1 3 3 5

, , , , ,

1
, , , ,

2(1 )

1
, , , ,

2(1 )

xy xy

x x xz xz

y y yz yz

E E k E E E k

Q K E E E E k

Q K E E E E k







  

   

   

 
                                                     

(11) 

where, 

   

   

/2

2 3 4 6

1 2 3 4 5 7

/2

/2

3

1 2 4

/2

, , , , , ( ) 1, , , , , ,

, , ( ) ( ) 1, , ,

h

h

h

h

E E E E E E E z z z z z z dz

E z z T z z dz







    





 (12) 

The nonlinear equilibrium equations of a perfect FGM plate based on the higher-order 

shear deformation plate theory are [11]: 

22 3

, , 1 2 32 2 2

w
,x

x x xy y

u
N N I I I

t t t x

 
   

   
 (13a) 

22 3

, , 1 2 32 2 2

w
,

y

xy x y y

v
N N I I I

t t t y

 
   

   
 (13b) 
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   , , 1 , , 1 , , ,

2

, , , 1 2

332 3 3

1 1 3 52 2 2 2 2

4 4

2

1 7 2 2 2 2

3 2

2

w
2

w w
,

x x y y x x y y x xx xy xy y yy

x xx xy xy y yy

yx

Q Q c K K c P P P

N w N w N w p k w k w

w u v
I I I I

t t t x t y t x t y

c I
t x t y




     

       

      
       

            

  
  

    

 (13c) 

 
22 3

, , 1 1 , , 2 4 52 2 2

w
3 ,x

x x xy y x x x x xy y

u
M M Q c K c P P I I I

t t t x

 
       

   
 (13d) 

 
22 3

, , 1 1 , , 2 4 52 2 2

w
3 ,

y

xy x y y y y xy x y y

v
M M Q c K c P P I I I

t t t y

 
       

   
 (13e) 

where   is the damping coefficient, and  

   

2 2

2 2 1 4 3 1 4 4 3 1 5 1 7 5 1 5 1 7

/2

2 3 4 6

1 2 3 4 5 7

/2

, , 2 , ,

, , , , , ( ) 1, , , , , .

h

h

I I c I I c I I I c I c I I c I c I

I I I I I I z z z z z z dz


       

 
 (14) 

The blast load ( )p t  is a short–term load and is generated by an explosion or by a shock-

wave disturbance produced by an aircraft flying at supersonic speed, or by a supersonic 

projectile, rocket or missile operating in its vicinity. It can be expressed as [26]: 

( ) 1.8 1 ,max

s s

t bt
p t Ps exp

T T

   
    

   
 (15) 

where the "1.8" factor accounts for the effects of a hemispherical blast, maxPs  is the maximum 

(or peak) static over-pressure, b  is the parameter controlling the rate of wave amplitude decay 

and sT  is the parameter characterizing the duration of the blast pulse. 
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From the constitutive relations (11), one can inversely obtain: 

           

 

0 0 1 1 3 3

, , , , 2 4 1

1

0 1 3

, 2 4

1

1
, , , , , 1,1 ,

1
2 1 ,

x y yy xx xx yy x y x y

xy xy xy xy

f f f f E k k E k k
E

f E k E k
E

  

 

      

      

 (16) 

where the stress function  , ,f x y t  is defined as:                                        

, , ,, , .x yy y xx xy xyN f N f N f     (17) 

Replacing Eq. (17) into Eqs. (13a) and (13b) gives:  

22 3

32

2 2 2

1 1

w
,x IIu

t t t xI I

 
  

   
 

(18a) 

2 **2 3

32

2 2 2* *

1 1

w
.

y IIv

t t t yI I

 
  

   
 

(18b) 

 Substituting Eqs. (18a) and (18b) into Eqs. (13c–13e) yields: 

       

   , , 1 , , 1 , , , , , , , , ,

332 4 4
2

1 2 1 1 5 72 2 2 2 2 2 2

3 2 w 2 w w

w w w
w w 2 ,

x x y y x x y y x xx xy xy y yy yy xx xy xy xx yy

yx

Q Q c K K c P P P f f f

w
p k k I I I I

tt t x t y t x t y




        

      
                       

         (19a) 

 
2 3

, , 1 1 , , 3 52 2

w
3 ,x

x x xy y x x x x xy y
M M Q c K c P P I I

t t x

 
      

  
 (19b) 

 
2 3

, , 1 1 , , 3 52 2

w
3 ,

y

xy x y y y y xy x y y
M M Q c K c P P I I

t t y

 
      

  
 

(19c) 

in which, 
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2 2

2

3 4 2 1 5 5 2 3 1 7 3 1 1 7/ , / , / .I I I I I I I I I I I I c I       (20) 

Introducing of Eq. (16) into Eq. (11) and then into Eqs. (19) gives: 

                         

       11 12 13

332 4 4

1 1 5 72 2 2 2 2 2 2

,

w w w
2 ,

x y

yx

R w R R S w f p

w
I I I I

tt t x t y t x t y

 




    

      
                   

 

     
2 3

21 22 23 3 52 2

w
,x

x yR w R R I I
t t x


 

 
   

  
 

     
2 3

31 32 33 3 52 2

w
,

y

x y
R w R R I I

t t y


 

 
   

  
 

(21) 

with,  

     

 

 

 
 

 

 

 

2 2 4

11 6 2 1 3 1

12 6 , 1 5 , ,

13 6 , 1 5 , ,

, , , , , ,

21 6 , 1 5 , ,

22 7 , 8 , 6

23 9 ,

( ) w w ,

( ),

( ),

, 2 w w ,

w (w w ),

,

,

x x x x xxx x xyy

y y y y xxy y yyy

yy xx xy xy xx yy

x xxx xyy

x x xx x yy x

y y xy

R w D k c D k w

R D c D

R D c D

S w f f w f f

R w D c D

R D D D

R D

R

   

   

   

 

     

  

  

  

   

  



 

 

 

 

31 6 , 1 5 , ,

32 9 ,

33 7 , 8 , 6

2 2

1 3 2 1 5 2 4 1 7 4

1 2 32 2 2

1 1 1

2

4 1 1 2 5 2 1 3 6 1 1 3 1 5

7 4 1 5 8

w (w w ),

,

,

, , ,
(1 ) (1 ) (1 )

1
, , 6 9 ,

2(1 )

(1 )
, (

2

y yyy xxy

x x xy

y y yy y xx y

w D c D

R D

R D D D

E E E E E E E E E E
D D D

E E E

D D c D D D c D D E c E c E

D D c D D

 

   

  





   



  

  
  

  

      



   4 1 5 9 4 1 5

(1 )
), ( ).

2
D c D D D c D


  

 

(22) 
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         For an imperfect FGM plate, Eqs. (21) may be transformed to the following form:      

          

        *

11 12 13 1

332 4 4

1 1 5 72 2 2 2 2 2 2

, ( , )

w w w
2 ,

x y

yx

R w R R S w f S w f p

w
I I I I

tt t x t y t x t y

 




     

      
                   

 

     
2 3

* *

21 22 23 21 3 52 2

w
( ) ,x

x yR w R R R w I I
t t x


 

 
    

  
 

     
2 3

* *

31 32 33 31 3 52 2

w
( ) ,

y

x y
R w R R R w I I

t t y


 

 
    

  
 

(23) 

in which the imperfection function 
*( , )w x y  represents an initial small deviation of the plate 

surface from a perfect configuration, and 

 

* * *

21 6 ,

* * *

31 6 ,

* * * * * *

1 6 , , , , , , , ,

( ) w ,

( ) w ,

, ( +w ) 2 w w .

x

y

xx yy yy xx xy xy xx yy

R w D

R w D

S w f D w f w f f

 

 

   

 

(24) 

The geometrical compatibility equation for an imperfect FGM plate may be derived as 

[11]: 

0 0 0 2 * * *

, , , , , , , , , , , ,
2 .

x yy y xx xy xy xy xx yy xy xy xx yy yy xx
w w w w w w w w w        

 

(25) 

Inserting Eqs. (16) into Eq. (25), the compatibility equation of an imperfect FGM plate is 

given as:  

 4 2 * * *

1 , , , , , , , , ,
2 0

xy xx yy xy xy xx yy yy xx
f E w w w w w w w w w        (26) 

The nonlinear Eqs. (23) and (26) are used to investigate the nonlinear vibration and dynamic 
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stability of imperfect FGM thick plates using the higher-order shear deformation theory.  

 

4. Solution procedure  

4.1. Boundary conditions 

Suppose that two cases of boundary conditions will be considered, as shown below: 

Case 1: Four edges of the plate are simply supported. Assume an imperfect FGM plate 

with immovable edges is under blast load p . Thus, the boundary conditions are: 

0

0

w 0, 0,

w = 0, 0,

xy y x x x

xy x y y y

N M N N at x a

N M N N at y b





     

    
 (27) 

where 
0 0
,

x y
N N  are fictitious compressive edge loads at immovable edges. 

Case 2: Two edges 0x   and x a  are simply supported, and the remaining two edges 

0,y y b   are clamped. The imperfect FGM plate is under blast load p . The boundary 

conditions are: 

0
w 0, 0,

w
w = 0 0,

xy y x x x

xy x y y

N M N N at x a

N N at y b
y



 

     


     


 (28) 

4.2. FGM plate with simply supported four edges 

The approximate solution satisfying the abovementioned boundary conditions in Eq. (27) 

may be found in the following form: 

 

 

 

 

 

 

w , , W sin sin

, , = cos sin ,

, , sin os

m n

x x m n

y y m n

x y t t x y

x y t t x y

x y t t xc y

 

  

  

   
   

   
      

  (29) 
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where ,
m n

m n

a b

 
   , and , 1,2,...m n  are the natural numbers of half-waves in the 

corresponding direction ,x y . ( ), ,x yW t    are the time-dependent amplitudes. 

With regard to the initial imperfection 
*w , we introduce an assumption that it has a form 

like the plate deflection, i.e.: 

 *

0
w , W sin sin ,

m n
x y x y     (30) 

in which 0W  is the known initial amplitude. 

Introducing Eqs. (29) and (30) into the compatibility Equation (26), and solving the 

obtained equation for the unknown ,f  leads to: 

2 2

1 2 0 0

1 1
cos2 cos2 ,

2 2
m n x yf A x A y N y N x      

  

(31) 

with, 

2 2

1 1

1 0 2 02 2
( 2 ), ( 2 ).

32 32

n m

m n

E E
A W W W A W W W

 

 
   

 

 (32) 

 Replacing Eqs. (29)–(31) into Eqs. (23), and then applying the Galerkin method to the 

resulting equations yields: 

 2 2

11 12 13 1 0 0 0

2

2 0 0 3 0 12

22

5 52 2

W + ( )

W W
( )( 2 ) 2

,

x y x m y n

yx

m n

r r r s N N W W

s W W W W W s p I I
tt

I I
t t

 



 

       
 

 
     



  
 

 

 (33) 

D
ow

nl
oa

de
d 

by
 [

T
he

 U
ni

ve
rs

ity
 O

f 
M

el
bo

ur
ne

 L
ib

ra
ri

es
] 

at
 1

6:
10

 2
9 

M
ar

ch
 2

01
6 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 16 

2 2

21 22 4 0 3 52 2

W
( ) ,x

x y mr r s W W I I
t t


  

      
 

 2 2

31 32 5 0 3 52 2

W
( ) ,

y

x y nr r s W W I I
t t


  

      
 

 in which the detail of the coefficients 0 1, ( 1,3), ( 2,3, 1,2), ( 1,5)i jk mI r i r j k s m     may be 

found in Appendix A. 

The plate is subjected to blast load p  (Pascals) and simultaneously exposed to temperature 

environments. The in-plane condition on immovability at all edges, i.e. 0u   at 0,x a  and 

0v   at 0,y b , is fulfilled in an average sense as [6, 11]: 

0 0

0
b a u

dxdy
x





  , 

0 0

0
a b v

dydx
y





  . 

                                                                   

(34) 

 From Eqs. (8) and (16), one can obtain the following expressions in which the 

imperfection has been included: 

    2 *2 1 4 1

, , , , , , , ,

1 1 1 1

1 1
,

2
yy xx x x x x xx x x x

u E c E
f f w w w w

x E E E E
  

 
       


 

                                

(35) 

    2 *2 1 4 1

, , , , , , , ,

1 1 1 1

1 1

2
xx yy y y y y yy y y y

v E c E
f f w w w w

y E E E E
  

 
       


 

                                

(36) 

Substitution of Eqs. (29)-(31) into Eqs. (35) and (36) then result in Eqs. (34), giving 

fictitious edge compressive loads as: 

D
ow

nl
oa

de
d 

by
 [

T
he

 U
ni

ve
rs

ity
 O

f 
M

el
bo

ur
ne

 L
ib

ra
ri

es
] 

at
 1

6:
10

 2
9 

M
ar

ch
 2

01
6 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 17 

    

   

2 21

0 2 1 4 1 42 2

2 21

02

4

1 (1 )

2 ,
8(1 )

x m x n y m n

m n

N E c E c E W
mn

E
W W W

   
  

 



           

  


 

                        

(37) 

    

   

2 21

0 2 1 4 1 42 2

2 21

02

4

1 (1 )

2 ,
8(1 )

y m x n y m n

m n

N E c E c E W
mn

E
W W W

   
  

 



           

  


 (38) 

in which the thermal parameter is obtained from Eqs. (12) as:  

1
Lh T   , 

1 2 1

m cm cm m cm cm

m m

E E E
L E

N N

  



  

 
. (39)                                               

Replacing Eqs. (37), and (38) into the equations of motion (Eq. (33)), we have: 

 2 21
11 12 13 1 0

2 0 0 1 0

2

2 0 3 0 3 0 2

22

1 5 52 2

W + ( )
1

( )( 2 ) ( )

W
( ) ( )

W
2 ,

x y m n

x

y

yx
m n

r r r s W W

s W W W W W h W W

h W W h W W W s p I
t

I I I
t t t

 


  

 
        

     


      



  
  

  

 

2 2

21 22 4 0 3 52 2

W
( ) ,x

x y mr r s W W I I
t t


  

      
 

 2 2

31 32 5 0 3 52 2

W
( ) ,

y

x y nr r s W W I I
t t


  

      
 

 

(40) 

with the specific expressions of the coefficients 2( 1,3),ih i s  given in Appendix A. 
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By using the fourth–order Runge–Kutta method, the nonlinear dynamic responses of the 

simply supported FGM plates are investigated by solving the system of Eqs. (40), combined with 

the initial conditions. 

Taking linear parts of Eqs. (40) and making 0,p   the natural frequencies of the perfect 

simply supported plate is the smallest value of three frequencies,  , which can be determined by 

solving the following determinant: 

 2 2 2 2 21
11 1 0 12 5 13 5

2 2

4 5 21 3 22

2 2

5 5 31 32 3

+
1

0.

m n m n

m

n

r s I r I r I

s I r I r

s I r r I

      


  

  


    



  

 

 (41) 

4.3. FGM plate with two simply supported edges and two clamped edges 

The approximate solutions of ,
x

w   and 
y

  satisfying the boundary conditions from Eq. 

(28) are assumed to be: 

 

 

 

 

 

 

w , , W sin (1 os2 )

, , = cos sin .

, , sin sin

m n

x x m n

y y m n

x y t t x c y

x y t t x y

x y t t x y

 

  

  

   
   

   
      

 (42) 

The initial imperfection 
*w  is assumed to be in the form: 

 *

0
w , W sin (1 os2 ).

m n
x y x c y         (43)                                                          

Substituting Eqs. (42) and (43) into the compatibility Equation (26), we define the stress 

function as: 
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2

1 2 3 4 0

1
cos2 cos2 cos4 cos2 cos2 ,

2
m n n m n xf B x B y B y B x y N y        

 

  

(44

) 

with, 

 

2 2

1 1
1 0 2 02 2

2 2 2

1 1
3 0 4 022 2 2

( 2 ), ( 2 ),
8 8

( 2 ), ( 2 ).
128 8

n m

m n

m m n

n m n

E E
B W W W B W W W

E E
B W W W B W W W

 

 

  

  

   

 
   



 

 

(45) 

Subsequently, substitution of Eqs. (42)–(44) into Eq. (23), and applying the Galerkin 

procedure for the resulting equation yields: 

             

 2

11 12 1 0 0 2 0 0

22

3 0 1 52 2

( ) ( )( 2 )

16
2 ,

9

x x m

m x

n

l W l n N W W n W W W W W

W W
n p I I I

t bt t








       

  
   

 

 

2 2

21 22 4 0 3 52 2

16
W ( ) ,

3

x m
x

n

W
l l n W W I I

bt t





  
     

 

 2

31 3 2
,

y

yl I
t

 
 



 

(46) 

in which the detail of coefficients 31( , 1,2), , ( 1,4)ij ml i j l n m   may be found in Appendix B. 

The in-plane condition on immovability at 0,y b , i.e. 0v   at 0,y b , is fulfilled in an 

average sense as: 

0 0

0
a b v

dydx
y





               (47)                                                               
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Putting Eqs. (42)–(44) into Eq. (36), then substituting the obtained result into Eq. (47) leads 

to: 

2

11

0 0
( 2 ).

2

n

x

E
N W W W

v






    (48) 

Substituting Eq. (48) into Eqs. (46), the system of motion of Eqs. (46) can be rewritten as 

follows: 

21
11 12 1 0 2 0 0

22

3 0 1 52 2

( ) ( )( 2 )

16
2 ,

9

x m

m x

n

l W l n W W n W W W W W

W W
n p I I I

t bt t









 
        

 

  
   

 

 

2 2

21 22 4 0 3 52 2

16
W ( ) ,

3

x m
x

n

W
l l n W W I I

bt t





  
     

 

 2

31 3 2
,

y

yl I
t

 
 



 

(49) 

where the coefficient 
2

n  is described in detail in Appendix B. 

This is the system of equations used to investigate the dynamic characteristics of 

imperfect FGM plates with two edges simply supported and two edges clamped by using the 

fourth-order Runge-Kutta method. 

5. Numerical results and discussion 

The effective material properties mentioned in Eq. (5) are listed in Table 1 [6, 7, 11]. The 

Poisson’s ratio is 0.3v  . The initial conditions are chosen as follows: 
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(0) 0, (0) 0, (0) 0, (0) 0, (0) 0, (0) 0.
yx

x y

dddW
W

dt dt dt


         

    (50)                           

5.1. Comparative study 

In order to verify the accuracy of the proposed formulation, Figure 2 shows the 

comparison of nonlinear dynamic responses of the FGM plate ( / 1, / 20b a b h  ) without 

elastic foundations subjected to blast load in this paper based on the analytical approach and the 

results according to finite element method using Abaqus software. As can be seen, a good 

agreement is obtained in this comparison. 

 

5.2. Natural frequency 

Table 2 presents the natural frequency of the simply supported FGM plate with various 

temperature increments, ,T  and coefficients 1 2
( / ), ( . )k GPa m k GPa m  of the Winkler and 

Pasternak foundations. From the results in this table, it can be seen that the natural frequency 

of the plate increases when the temperature increment T
 
decreases and coefficients 1 2

,k k
 

increase. The effect of volume fraction index, ,N  on the natural frequency of the FGM plate 

is also shown in Table 2. Obviously, an increase of the volume fraction index leads to a 

decrease of the natural frequency of the FGM plate. 

5.3. Effects of temperature increment 

Figures 3 and 4 show the effects of temperature increment, ,T  on the nonlinear 

dynamic response of the simply supported FGM plate and the FGM plate with two edges simply 
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supported and two edges clamped under conditions: / 1,  / 20, 1,b a b h m n     

1
=1, 0.3 / ,N k GPa m  and 

2
0.02 . .k GPa m  As expected, an increase in temperature 

increment leads to a rise of the absolute value of the FGM plate amplitude. The results also show 

that the absolute value of the simply supported FGM plate is higher than the FGM plate with two 

edges simply supported and two edges clamped. 

5.4. Effects of elastic foundations  

Figures 5–8 present the effects of coefficients 1 2
,k k  of the Winkler and Pasternak 

foundations on the nonlinear dynamic response of the simply supported FGM plate and the FGM 

plate with two edges simply supported and two edges clamped under blast and thermal load. It is 

easy to see that the absolute value of FGM plate amplitude fluctuation decreases when these 

modules increase. In addition, compared to the case corresponding to the coefficient 
1

k  of the 

Winkler model, the Pasternak type elastic foundation with coefficient 
2

k  has a stronger effect.  

 

5.5. Effects of volume fraction index 

Figures 9 and 10 show the effect of volume fraction index, ,N  on the nonlinear dynamic 

response of the simply supported FGM plate and the FGM plate with two edges simply 

supported and two edges clamped, with: / 1,  / 20, 350b a b h T K     

1 2
0.3 / , 0.02 .k GPa m k GPa m  , respectively. As can be seen, the absolute value of 

nonlinear dynamic response amplitude of the FGM plate decreases when the power–law index 
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N  decreases. This is reasonable because when N  is decreased, the ceramic volume fraction is 

increased; however, the elastic module of the ceramic is higher than metal ( c mE E ).   

5.6. Effects of initial imperfection 

The influences of initial imperfection with amplitude 
0

W
 
on the nonlinear dynamic response 

of the simply supported FGM plate, and the FGM plate with two edges simply supported and two 

edges clamped are shown in Figures 11 and 12, respectively. Three values of 
4

0
: 0, 10W m

 and 

43 10 m  are used. As can be observed, the reduction of the amplitude of the initial imperfection 

leads to the decrease of the absolute value of the FGM plate amplitude fluctuation. 

 

5.7. Effects of geometrical parameters 

Figures 13–16 indicate the effects of geometrical parameters on the nonlinear dynamic 

response of the simply supported FGM plate and the FGM plate with two edges simply 

supported and two edges clamped under blast and thermal loads. Specifically, Figures 13 and 14 

consider the influences of ratio /b a  on the nonlinear dynamic response of the simply 

supported FGM plate, and two edges supported and two edges clamped FGM plate respectively. 

The nonlinear dynamic responses of the FGM plates with various values of ratio /b h  are 

illustrated in Figures 15 and 16. Obviously, the absolute value of the FGM plate amplitude 

increases when increasing the ratios  /b a  and / .b h
 

D
ow

nl
oa

de
d 

by
 [

T
he

 U
ni

ve
rs

ity
 O

f 
M

el
bo

ur
ne

 L
ib

ra
ri

es
] 

at
 1

6:
10

 2
9 

M
ar

ch
 2

01
6 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 24 

6. Conclusions 

This paper presents an analytical solution to investigate the nonlinear vibration and 

dynamic response of imperfect FGM thick plates resting on elastic foundations under blast and 

thermal loads using Reddy’s higher–order shear deformation plate theory. Material properties are 

assumed to be temperature–dependent and graded in the thickness direction according to a 

simple power-law distribution in terms of the volume fractions of the constituents. By using the 

Galerkin method the equation system of motion to determine dynamic response is found. The 

numerical results are investigated by the Runge–Kutta procedure. 

Some special conclusions are obtained for the FGM plate subjected to blast and thermal 

loads: 

- The temperature strongly influences the nonlinear dynamic response and vibration 

of FGM plates.  

- The elastic foundations significantly enhance the load–carrying capacity of the 

FGM plates. In addition, the stiffness 
2

k  of the shear layer of the Pasternak foundation model 

has a more pronounced effect on the nonlinear dynamic stability of FGM plates than the modulus 

1
k  of the Winkler model. 

- The geometrical dimensions affect considerably on the nonlinear dynamic 

response of the FGM plates.    

- The initial imperfection increases the dynamic fluctuation amplitude of the FGM 

plates.  

Funding 

D
ow

nl
oa

de
d 

by
 [

T
he

 U
ni

ve
rs

ity
 O

f 
M

el
bo

ur
ne

 L
ib

ra
ri

es
] 

at
 1

6:
10

 2
9 

M
ar

ch
 2

01
6 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 25 

This work was supported by the Grant in Mechanics of the National Foundation for Science and 

Technology Development of Vietnam – NAFOSTED, code 107.02-2013.06. The authors are 

grateful for this support. 

Appendix A 

2 2 2 2
*

1 7 72 2

2
2 2 2 2 2 2 2 2

2

11 1 3 1 22 2 2 2
,

o

m n
I I I I

a b

m n m n
r c D k k

a b a b

 

   

 
   
 

    
         

     

 

3 3 2 2

12 6 1 5 1 53 2
,

m m m n
r D c D c D

a a a b

   
     

3 3 2 2

13 6 1 5 1 53 2
,

n n n m
r D c D c D

b b b a
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1 6 2 32 2 4 4 2
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16
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s D s s
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a b ab a a ab

mn n m n n
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ab b a b b
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4 2 2 4 4 2 2 41
3 1 4 2 22 2 2
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4 4
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m n
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Appendix B 

2 2 2 2

0 1 7 72 2

2 2 2 2 4 4 4 4 2 2 4
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Fig. 1. Geometry and coordinate system of FGM plate on elastic foundations. 
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Fig. 2. Comparison of nonlinear dynamic response of perfect FGM plate without elastic 

foundations subjected to blast load. 
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Fig. 3. Effects of temperature increment T
 
on 

the nonlinear dynamic response of the simply 

supported FGM plate. 

Fig. 4. Effects of temperature increment T
 
on 

the nonlinear dynamic response of the FGM plate 

with two edges simply supported and two edges 

clamped. 
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Fig. 5. Effect of the linear Winkler foundation on 

the nonlinear dynamic response of the simply 

supported FGM plate. 

Fig. 6. Effect of the linear Winkler foundation on 

the nonlinear dynamic response of the FGM plate 

with two edges simply supported and two edges 

clamped. 
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Fig. 7. Effect of the Pasternak foundation on the 

nonlinear dynamic response of the simply 

supported FGM plate. 

Fig. 8. Effect of the Pasternak foundation on the 

nonlinear dynamic response of the FGM plate 

with two edges simply supported and two edges 

clamped. 
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Fig. 9.  Effect of volume fraction index N  on 

nonlinear dynamic response of the simply 

supported FGM plate. 

Fig. 10.  Effect of volume fraction index N  on 

nonlinear dynamic response of the FGM plate 

with two edges simply supported and two 

edges clamped. 
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Fig. 11. Effects of initial imperfection on the 

nonlinear dynamic response of the simply 

supported FGM plate. 

Fig. 12. Effects of initial imperfection on the 

nonlinear dynamic response of the FGM plate 

with two edges simply supported and two edges 

clamped. 
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Fig. 13. Effects of ratio /b a  on the nonlinear 

dynamic response of the simply supported 

FGM plate. 

Fig. 14. Effects of ratio /b a  on the 

nonlinear dynamic response of the FGM 

plate with two edges simply supported and 

two edges clamped. 
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Fig. 15. Effects of ratio /b h  on the nonlinear 

dynamic response of the simply supported 

FGM plate. 

Fig. 16. Effects of ratio /b h  on the 

nonlinear dynamic response of the FGM 

plate with two edges simply supported and 

two edges clamped. 
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Table 1. Material properties of the constituent materials of the considered FGM plates.  

Material Property 
0

P  
1

P
  1

P  2
P  3

P  

Si3N4 

(Ceramic) 

E (Pa) 384.43e9 0 -3.07e-4 2.160e-7 -8.946e-11 

 (kg/m
3
) 2370 0 0 0 0 

1( )K   5.8723e-6 0 9.095e-4 0 0 

(W / )K mK  13.723 0 0 0 0 

SUS304 

(Metal) 

E (Pa) 201.04e9 0 3.079e-4 -6.534e-7 0 

 (kg/m
3
) 8166 0 0 0 0 

1( )K   12.330e-6 0 8.086e-4 0 0 

(W / )K mK  15.379 0 0 0 0 
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Table 2. Effects of temperature increment, ,T
 

and elastic foundations on the natural 

frequency  1s
 of the simply supported FGM plate with 1, / 1, / 20m n b a b h    . 

( )T K

 

N  
1 2( , ) (0,0)k k   1 2( , ) (0.3,0.02)k k   1 2( , ) (0,0.04)k k   

0 

0 18423.2 28208.7 34629.3 

1 10869.4 17732.5 22270.5 

5 8790.7 14792.2 18752.6 

10 8342.1 14227.9 18099.1 

500 

0 17628.7 27194.3 33807.2 

1 10095.9 17170.6 21825.8 

5 8050.2 14351.8 18406.0 

10 7602.5 13814.1 17777.9 

1000 

0 16803.3 26666.8 33384.6 

1 8053.6 16055.0 20959.5 

5 5678.4 13168.4 17499.2 

10 5266.9 12680.7 16910.4 
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