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Abstract 
 

An analysis on nonlinear dynamic characteristics of a simply supported functionally graded materials (FGMs) rectangular plate sub-

jected to the transversal and in-plane excitations is presented in the time dependent thermal environment. Here we look the FGM Plates 

as isotropic materials which is assumed to be temperature dependent and graded in the thickness direction according to the power-law 

distribution in terms of volume fractions of the constituents. The geometrical nonlinearity using Von Karman’s assumption is introduced. 

The formulation also includes in-plane and rotary inertia effects. In the framework of Reddy’s third-order shear deformation plate theory, 

the governing equations of motion for the FGM plate are derived by the Hamilton’s principle. Then the equations of motion with two-

degree-of-freedom under combined the time-dependent thermomechanical loads can be obtained by using Galerkin’s method. Using 

numerical method, the control equations are analyzed to obtain the response curves. Under certain conditions the periodic and chaotic 

motions of the FGM plate are found. It is found that because of the existence of the temperature which relate to the time the motions of 

the FGM plate show the great difference. A period motion can be changed into the chaotic motions which are affected by the time de-

pendent temperature.  
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1. Introduction 

Functionally graded material (FGM) used initially as ther-

mal barrier materials for aerospace structural applications and 

fusion reactors are now developed for the general use as struc-

tural components in high temperature environments and being 

strongly considered as a potential structural material candidate 

for the design of high speed aerospace vehicles [1]. FGMs are 

multi-phase materials with the phase volume fractions varying 

gradually in space, in a pre-determined profile. This results in 

continuously graded thermomechanical properties at the mac-

roscopic structural scale. One of the advantages of the FGM is 

that it can be able to withstand high-temperature-environments. 

Because of their specially-tailored thermomechanical proper-

ties, they are well suited for thermal protection against large 

temperature gradients [2, 3]. Due to this superior thermo-

mechanical property, FGM plate structures have found a wide 

range of applications in many industries, especially in space 

vehicles and aircrafts, where they are very often subjected to 

high levels of thermal and dynamic loading, such as large 

temperature gradients and acoustic pressure. This may result 

in complicated large amplitude, nonlinear vibration behavior 

of the FGM plate due to the bending–stretching coupling and 

combined external loads [4]. With the increased use of these 

materials for structural components in many engineering ap-

plications, it is necessary for us to understand the nonlinear 

dynamic characteristics of functionally graded plates in ther-

mal environments. 

There are many studies for isotropic or laminated composite 

plate and shell structures such as Refs. [5-11]. Among the 

research about the nonlinear dynamic behaviors of the FGM 

plates under thermo-mechanical environment available, 

Praveen and Reddy [2] adopting finite element procedure 

analyzed the nonlinear dynamic response of functionally 

graded ceramic metal plates subjected to mechanical and 

thermal loads. Sundararajan [3] studied the free vibration 

characteristics of functionally graded material (FGM) plates 

subjected to thermal environment. Temperature field was as-

sumed to be a uniform distribution over the plate surface and 

varied in the thickness direction. Yang et al. [4] presented the 
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large amplitude vibration of pre-stressed functionally graded 

material laminated plates that were composed of a shear de-

formable functionally graded layer and two surface-mounted 

piezoelectric actuator layers. Nonlinear governing equations 

of motion were derived within the context of Reddy’s higher-

order shear deformation plate theory to account for transverse 

shear strain and rotary inertia. Cheng and Batra [12] studied 

the steady state vibration of a simply supported functionally 

graded polygonal plate with temperature independent material 

properties. He et al. [13] presented finite element formulation 

based on thin plate theory for the shape and vibration control 

of FGM plate with integrated piezoelectric sensors and actua-

tors under mechanical load. The constituent materials possess 

temperature-dependent properties. Ng et al. [14] investigated 

the parametric resonance of plates based on the Hamilton’s 

principle and the assumed mode technique. Yang and Shen 

[15, 16] analyzed dynamic response of thin FGM plates sub-

jected to impulsive loads using Galerkin procedure coupled 

with modal superposition method whereas, by neglecting the 

heat conduction effect, and examined such plates and panels 

based on shear deformation with temperature dependent mate-

rial properties. Sills et al. [17] presented different modeling 

aspects and also simulated the dynamic response under a step 

load. By adopting Laplace transformation technique and 

power series method, Vel and Batra [18] analyzed the three-

dimensional thermomechanical deformations of simply sup-

ported functionally graded plates subjected to time-dependent 

thermal loads on its top or bottom surface. Based on perturba-

tion technique, Huang and Shen [19] dealt with the nonlinear 

vibration and dynamic response of FGM plates in thermal en-

vironment. Heat conduction and temperature-dependent mate-

rial properties were both considered. The temperature field 

considered was assumed to be a uniform distribution over the 

plate surface and varied in the thickness direction only. Kim 

and Noda [20] discussed transient displacement of FGM plates 

due to heat flux by a Green’s function approach based on the 

classical laminated plate theory. Jacob [21] analyzed the 

steady-state response of a functionally graded thick cylindrical 

shell subjected to thermal and mechanical loads. The function-

ally graded shell was simply supported at the edges and it is 

assumed to have an arbitrary variation of material properties in 

the radial direction. Reddy and Cheng [22] used the method of 

asymptotic expansion to study the three-dimensional thermoe-

lastic deformations of functionally graded elliptic and rectangu-

lar plates. Qian and Batra [23] obtained results for the steady-

state and transient thermoelastic response of functionally 

graded plates by the meshless local Petrov–Galerkin method. 

However to the authors’ knowledge, the studies of the bifur-

cation and chaos for the FGM plates under the time-dependent 

thermomechanical loads have been given quite a few investiga-

tions. Since the magnitudes of transient thermal stresses are 

usually larger than those of steady state stresses, it is important 

to quantify them for proper design of an FGM plate. 

This paper aim focuses on a simply supported at the four-

edge FGM rectangular plate subjected to in-plane and trans-

versal excitation simultaneously in the time dependent thermal 

environment. Here we look the FGM Plates as isotropic mate-

rials which is assumed to be temperature-dependent and 

graded in the thickness direction according to the power-law 

distribution in terms of volume fractions of the constituents. 

The geometrical nonlinearity using Von Karman’s assumption 

is introduced. The formulation also includes in-plane and ro-

tary inertia effects. In the framework of Reddy’s third-order 

shear deformation plate theory [24-27], the governing equa-

tions of motion for the FGM plate are derived by the Hamil-

ton’s principle. Then the equations of motion with two-

degree-of-freedom under combined the time-dependent ther-

momechanical loads can be obtained by using Galerkin’s me-

thod. Using numerical method, the control equations are ana-

lyzed to obtain the response curves. Under certain conditions 

the chaotic motions of the FGM plates are found. It is found 

that there exist different kinds of chaotic motions in the FGM 

plate.  

 

2. Formulation 

An simply supported at the four-edges FGM rectangular 

plate subjected to in-plane and transversal excitations is con-

sidered, as shown in Fig. 1. The edge width and length of the 

FGM rectangular plate in the x and y directions are respec-

tively a  and b  and the thickness is h . A Cartesian coor-

dinate Oxyz  is located in the middle surface of the FGM 

rectangular plate. Assume that ( ), ,u v w  and ( )0 0 0, ,u v w  

represent the displacements of an arbitrary point and a point in 

the middle surface of the FGM plate in the x , y , and z  di-

rections, respectively. It is also assumed that xφ  and yφ  

respectively represent the mid-plane rotations of two trans-

verse normals about the x  and y  axes. The in-plane excita-

tion of the FGM plate is distributed along the y direction at 

0x =  and x a=  and is of the form 0 1 2cosP P t− Ω . The 

transversal excitation subject to the FGM plate is represented 

by ( ) 1, cosF x y tΩ . Here 1Ω , 2Ω  are the frequencies of the 

in-plane excitation and transversal excitation, respectively.  

 
2.1 FGM material properties 

Generally speaking, most of the FGM are employed in 

high-temperature environments and many of the constituent 

 

Fig. 1. The model of a FGMs rectangular plate and the coordinate 

system. 
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materials may possess temperature-dependent properties. We 

assume that the temperature variation occurs with non-

uniform in-plane and the steady state temperature distribution 

along the thickness of the plate.  

It is also supposed that the FGM plate is linear elastic 

throughout the deformation, and that the plate is initially stress 

free at 0T  and is subjected to a non-uniform temperature 

variation 0T T TΔ = − . 

The time-dependent thermal field contains two separable 

functions for the transient temperature variation and the spatial 

temperature distribution, respectively, i.e., 
 

( ) ( )2 1 3, , , , cos .T x y z t T T x y t= + Ω                (1) 

 

It is assumed that the plate is made from a mixture of the ce-

ramics and metals with continuously varying such that the top 

surface of the plate is ceramic rich, whereas the bottom surface 

is metal rich. The material properties P such as Young’s 

modulus E , the coefficient of thermal expansionα , can be 

expressed as a function of the temperature 2T , see Refs. [28, 

29], as 
 

( )1 2 3
0 1 2 1 2 2 2 3 21iP P P T PT P T P T−

−= + + + +           (2) 

 

where 0P , 1P− , 1P , 2P  and 3P  are temperature coeffi-

cients.  

The effective material properties P of the FGM can be ex-

pressed as 

 

t c b mP PV P V= +                                (3) 

 

where subscript ‘ t ’ and ‘ b ’ respectively represent the top and 

bottom surfaces of the FGM plate, cV  and mV  are the ce-

ramic and metal volume fractions and add to unity 

 

1.c mV V+ =                                    (4) 

 

The metal volume fraction mV  is defined as 

 

2
( )

2

N

m

z h
V z

h

+⎛ ⎞= ⎜ ⎟
⎝ ⎠

                           (5) 

 

where power law exponent N  is a real number which char-

acterizes the ceramic variation profile through the plate thick-

ness. From Eqs. (2)-(4), the Young’s modulus E, the coeffi-

cient of the thermal expansion α , the mass density ρ  can 

be expressed as 

 

( )b t m tE E E V E= − + , ( )b t m tVα α α α= − + ,  

( ) .b t m tVρ ρ ρ ρ= − +                            (6) 

 

2.2 Theoretical equations 

According to the Reddy’s third-order shear deformation 

theory [24-27, 30] and the Hamilton’s principle, the nonlinear 

governing equations of motion for the FGM rectangular plate 

are given as 

 

( ) 0
, , 0 0 1 1 3 1 3xx x xy y x

w
N N I u I c I c I

x
φ

∂
+ = + − −

∂
&&&&&& ,      (7a) 

( ) 0
, , 0 0 1 1 3 1 3yy y xy x y

w
N N I v I c I c I

y
φ ∂

+ = + − −
∂
&&&&&& ,      (7b) 

2
0 0 0 0

, , ,2yy y yy xy x xy y

w w w w
N N N N

y y xy

∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂∂
  

( )
2

0 0
, 1 , , ,2

2xx x xx xx xx xy xy yy yy

w w
N N c P P P

x x

∂ ∂
+ + + + +
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2
02 xy

w
N

y x

∂
+

∂ ∂
0 0

0 0 1 3

u v
I w c I

x x

∂ ∂⎛ ⎞= + +⎜ ⎟∂ ∂⎝ ⎠

&& &&
&&   

( )
2 2

0 0
1 4 1 6 1 6 2 2

yx w w
c I c I c I

x y x y

φφ⎛ ⎞ ⎛ ⎞∂∂ ∂ ∂⎜ ⎟+ − + − +⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

&&&& && &&
,  (7c) 

( ), , 1 , 1 , 2xx x xy y xx x xy y x xM M c P c P Q c R+ − − − −  

( ) ( ) ( )2 0
1 1 3 0 2 1 4 1 6 1 4 1 62 x

w
I c I u I c I c I c I c I

x
φ

∂
= − + − + − −

∂
&&&&&& , 

 (7d) 

( ), , 1 , 1 , 2yy y xy x yy y xy x y yM M c P c P Q c R+ − − − −  

( ) ( ) ( )2 0
1 1 3 0 2 1 4 1 6 1 4 1 62 y

w
I c I v I c I c I c I c I

x
ϕ

∂
= − + − + − −

∂
&&

&&&&  

 (7e) 
 

where the stress resultants are given as follows: 
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   (8) 

 

From Eq. (8), it is known that the thermal stress resultants 

are represented as 

 

11 12 16/ 2

21 22 26
/ 2

61 62 66 0

T
xx

h
T
yy

h
T
xy

N Q Q Q

N Q Q Q T dz

Q Q Q
N

α
α

−

⎧ ⎫ ⎡ ⎤⎡ ⎤ ⎧ ⎫⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥= − Δ⎨ ⎬ ⎨ ⎬⎢ ⎥⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎢ ⎥ ⎩ ⎭⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

∫ ,  
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11 12 16/ 2

21 22 26
/ 2

61 62 66 0

T
xx

h
T
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Q Q Q
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⎪ ⎪ ⎪ ⎪⎢ ⎥⎢ ⎥ ⎩ ⎭⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

∫   (9) 

 

Substituting the stress resultants of Eq. (9) into Eq. (7), we can 

write Eq. (7) in terms of generalized displacements 
( )0 0 0, , , ,x yu v w φ φ  
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2 2 2
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11 66 12 662 2

u u v
A A A A
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where γ  is the damping coefficient, ijA , ijB , ijD , ijE , 

ijF , and ijH  respectively are the stiffness elements of the 

FGM plate, which are denoted as  
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All kinds of inertias in Eq. (10) are calculated by 
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The simply supported boundary conditions can be ex-

pressed as 

 

at 0x =  and x a= , 0y xx xyw M Nφ= = = =    (15a) 

at 0y =  and y b= , 0x yy xyw M Nφ= = = =   (15b) 

( )0, 0 1 2 0,
0 0

cos .
b b

xx x a x aN dy P P t dy= == + Ω∫ ∫    (15c) 
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In order to obtain the dimensionless equations, we introduce 

the transformations of the variables and parameters  
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We mainly consider transverse nonlinear oscillations of the 

FGM rectangular plate in the first two modes. It is our desir-

able to choose a suitable mode function to satisfy the first two 

modes of transverse nonlinear oscillations and the boundary 

conditions for the FGM rectangular plates. Thus, we write the 

w  as follows: 

 

1 2

3 3
sin sin sin sin

x y x y
w w w

a b a b

π π π π
= +         (17) 

 

where 1w  and 2w  are the amplitudes of two modes, respec-

tively.  

The transverse excitation can be represented as 
 

1 2

3 3
( , ) sin sin sin sin

x y x y
F x y F F

a b a b

π π π π
= +   (18) 

 

where 1F  and 2F  represent the amplitude of the transverse 

forcing excitation . 

The time dependent temperature field is defined as 

 

1 11 12

3 3
( , ) sin sin sin sin

x y x y
T x y T T

a b a b

π π π π
= +   (19) 

 

where 11T  and 12T  represent the amplitude of the tempera-

ture field . 

For simplicity we drop the overbars in the following analy-

sis. Based on research given in Refs. [31, 32], neglecting all 

inertia terms on u , v , xφ  and yφ  in Eq. (10) and the term 

of time dependent temperature stress in Eqs. (16a), (16b), 

(16d) and (16e), substituting Eq. (17) into Eqs. (10a), (10b), 

(10d) and (10e), we obtain the displacements u , v , xφ  and 

yφ  with respect to w. Substituting Eqs. (17), (18) and (19) 

into Eq. (10c) and applying the Galerkin procedure yield the 

governing differential equation of transverse motion of the 

FGM rectangular plate for the dimensionless as follows: 

 
2 2

1 0 1 1 1 2 1 2 3 1 4 2cosw a w a w a w t a w a w+ + + Ω + +&& &  

2 3
5 1 2 6 1 7 1 2a w w a w a w w+ + +  

( ) ( )8 11 9 12 1 10 11 11 12 2 12 11 3cosa T a T w a T a T w a T t⎡+ + + + + Ω⎤⎦⎣  

1 1cosf t= Ω                                 (20a) 

2
2 0 2 1 2 2 2 2 3 1 2 4 1cosw b w b w b w t b w w b w+ + + Ω + +&& &  

2 2 3
5 2 6 2 1 7 2b w b w w b w+ + +  

( ) ( )8 11 9 12 1 10 11 11 12 2 12 12 3cosb T b T w b T b T w b T t⎡+ + + + + Ω⎤⎦⎣  

2 1cos .f t= Ω                                (20b) 

 

All coefficients aforementioned in Eq. (20) are too long to 

be listed out in the paper for abbreviation. 

 

3. Numerical simulations of periodic and chaotic mo-

tions 

Before proceeding to the nonlinear vibration analysis of the 

FGM plates, a comparison example is solved to validate the 

present analysis firstly. The transient response results are 

compared in Fig. 2 with the finite element solutions provided 

by Reddy [33], where the temporal evolution curves of center 

deflection are presented for a simply supported intact alumi-

num-zirconia FGM square plate ( 0.2a b m= = , 0.01h m= ) 

under a suddenly applied uniform load of intensity of 

0 1q MPa= .  

The material composition is assumed to follow a simple 

power-law distribution through the thickness direction such that 

the plate is 100% zirconia ( 151tE GPa= , 33000 /t kg mρ = ) 

at the top surface and 100% aluminum ( 70bE GPa= , 
32707 /b kg mρ = ) at the bottom surface. The power-law ex-

ponent and the Poisson’s ratio are taken as 0.2n = and 

0.3ν = , respectively. The dimensionless center deflection and  

dimensionless time are defined as ( )2
0c bw w E h q a=  and  

( )2
bt t E baρ= , respectively. Our results agree well  

with the finite element results.  

 
 

Fig. 2. Comparison of temporal evolution of center transverse deflec-

tion obtained by present results( ) and that published in Ref. [36] (

read from graph). 
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In the following investigation, the Runge-Kutta algorithm 

[34] is utilized to numerically analyze the periodic and chaotic 

motions of the FGMs rectangular plate subjected to time de-

pendent thermal and mechanical loads. We consider the Eq. 

(20) to do numerical simulation. To study the thermal effect 

on nonlinear dynamic response, we choose the time dependent 

temperature 11T  and 12T  as the controlling parameters when 

the periodic and chaotic responses of the FGM rectangular 

plate are investigated. At the same time, we consider the gov-

erning equations of motion for the FGM plate without the 

terms of the time dependent temperature to do numerical 

simulation too as a comparison studies. The zirconia and tita-

nium alloy are selected for the two constituent materials of the 

plate in the present examples, referred to as ZrO2/Ti-6Al-4V 

shown in Ref. [35]. The two-dimensional phase portrait, 

waveform, three-dimensional phase portrait are plotted to 

demonstrate the nonlinear dynamic behaviors of the FGMs 

rectangular plate. 

Fig. 3 illustrates the existence of the periodic motion for the 

FGMs rectangular plate when the governing equations of mo-

tion for the FGM plate don’t include the terms of the time 

dependent temperature. Obviously, Fig. 3 illustrates that the 

periodic response of the FGM rectangular plate occurs if we 

don’t consider the effect of the time dependent temperature. 

The parameters and the initial conditions are respectively cho-

sen as 0 29a 0.= , 1 3.014a = , 2 1.8a = , 3 5.03a = , 

4 8.69a = , 5 12.37a = , 6 16.7a = , 7 0.93b = , 8 0.2a = , 

9 0.93a = , 10 0.93a = , 11 0.93a =  12 10.0a = , 0 37.8b = , 

1 0.14b = , 2 15.49b = , 3 37.7b = , 4 10.1b = , 5 14.3b = , 

6 16.6b = , 7 25.7b = , 8 3.08b = , 9 3.08b = , 10 3.08b = , 

11 9.02b = , 12 12.0b = , 1 1.86f = , 2 8.79f = , 1 5Ω = , 

2 5Ω = , 3 1Ω = , 10 0.21x = , 20 0.21x = , 30 0.38x = , 

40 0.16x = .  

Figs. 3(a) and 3(c) represent the phase portraits on the 

planes ( 1x , 2x ) and ( 3x , 4x ), respectively. Figs. 3(b) and 3(d) 

respectively denote the waveforms on the planes ( t , 1x ) and 

( t , 3x ). Figs. 3(e) and 3(f) represent the three-dimensional 

phase portrait in space ( )1 2 3, ,x x x  and the Poincare map on 

plane ( )3 4,x x , respectively. Here 1x , 2x , 3x  and 4x can be 

expressed as 1 1x w= 2 1x w= & , 3 2x w= , 4 2x w= &  respectively.  

It can be shown from Fig. 3 that the amplitude of the second 

order mode is larger than one of the first order mode. With the 

increasing of the controlling parameters 11T  and 12T , multi-

periodic occurs. Fig. 4 shows that the multi-periodic motion 

occurs when the temperature increased to 11 11.8T = and 

12 11.8T = . Until the temperature is increased to 11 50.8T =   

             (a)                            (b)  

 

              (c)                            (d) 

 

              (e)                            (f) 
 

Fig. 3. The periodic motion of the FGMs rectangular plate exists when

11 0T = , 12 0T = . 

 

              (a)                            (b)   

 

              (c)                            (d)   

 

              (e)                           (f) 
 

Fig. 4. The periodic motion of the FGMs rectangular plate exists when

11 11.8T = , 12 11.8T = . 
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             (a)                            (b)  

 

             (c)                           (d) 

 

             (e)                           (f) 
 

Fig. 5. The chaotic motion of the FGMs rectangular plate exists when

11 50.8T = , 12 50.8T = . 

 

              (a)                           (b)  

 

              (c)                           (d)  

 

              (c)                           (d) 
 

Fig. 6. The chaotic motion of the FGMs rectangular plate exists when

11 138T = , 12 138T = . 

              (a)                            (b) 

 

              (c)                           (d) 

 

              (e)                           (f) 
 

Fig. 7. The chaotic motion of the FGMs rectangular plate exists when 

11 300T = , 12 285T = . 

 

              (a)                           (b) 

 

              (c)                           (d) 

 

              (e)                           (f) 
 

Fig. 8. The chaotic motion of the FGMs rectangular plate exists when 

11 420T = , 12 433T = . 



 Y. X. Hao et al. / Journal of Mechanical Science and Technology 25 (7) (2011) 1637~1646 1645 

 

  

and 12 50.8T = , the response of the FGMs rectangular plate is 

the chaotic motion, as shown in Fig. 5. From Fig. 6 which the 

temperature is 11 138T =  and 12 136T =  to Fig. 9 which the 

temperature is 11 832T =  and 12 808T =  it can illustrate that 

the chaotic response of the FGM rectangular plate exists. In 

the fact, until the temperature increases to 11 2800T =  and 

12 2800T = , the FGM plate is in the conditions of the chaotic 

motion. Because of the limit of the page number, we don’t 

give other figures.  

From Figs. 3-9 it can be shown that the process of change 

for the motions of the FGMs rectangular plate is as follows: 

the periodic motion→ the multi-periodic motion→ the cha-

otic motion.  

 

4. Conclusions 

The nonlinear oscillations and chaotic dynamics of the 

FGMs rectangular plate under combined the transverse and in-

plane excitations in the time dependent thermal environment 

are investigated for the first time. The materials properties are 

assumed to be temperature-dependent. The geometrical 

nonlinearity using Von Karman’s assumption is introduced. 

Based on the Reddy’s third-order plate theory, the governing 

equations of motion for the FGM rectangular plate are derived 

by using the Hamilton’s principle. Only transverse nonlinear 

oscillations of the FGM plate are considered, then, Galerkin’s 

approach is utilized to discretize the governing equations of 

motion to a two-degree-of-freedom nonlinear system includ-

ing the quadratic and cubic nonlinear terms. Using numerical 

method, the control equations are analyzed to obtain the re-

sponse curves. Under certain conditions the chaotic motions of 

the FGM plates are found. It is found that because of the exis-

tence of the temperature which relate to the time the motions 

of the FGM plate show the great difference. A period motion 

can be changed into the chaotic motions which are affected by 

the time dependent temperature.  
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