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A nonlinear dynamic theory is developed for the formation of photorefrac-
tive volume phase holograms. A feedback mechanism existing between the photo-
generated field and free electron density, treated explicitly yields thé growth
and saturation of the space charge field in a time'scale characterized by
the coupling strength between them. The expression for the field reduces in
the short time limit to previous theoriés and approaches in the long t{me
limit the internal or photovoltaic field. Additiqna]]y,the phase of the space

charge field is shown to be time dependent.
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Photorefractive volume phase holography in electro-optic crystals such

as LiNbO3 has recently been investigated for optical data storage and dis-

play. Amodei3 propqsed a theory for the photorefractive effect in the
limit of electron drift or diffusion with the assumption that the electron
migration length is short. For the same limits, Young et a].4 removed
this assumption and considered its effect on the phase shift between space
charge field (&) and the light moduiation pat;ern. Both these theories are
linear in that they do not consider the effect of photogenerated & back on
to the electron drift or diffusion. Thus, they are only valid in the short
writing time regime and do not explain the saturation behavior exhibjted by
these crysta]ss.

(]n this Letter, we present a nonlinear theory of phase hologram formation.
By adopting Amodei's general framework of electron drift and diffusion, we
derive the coupled equation of the photogenerated electron density (n) and

the resultant €, and obtain a closed form solution. The continuity equation

of n is given along the c-axis by
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where 7, D,’n, E denote, respectively, thé electron trapping time, diffu-
sion coefficient, mobility, and internal as well as bulk photovoltaic fie]d.6:
The magnitude ofrthe generation rate g s given in terms of photon number
flux, absorption cross section O, and the donor concentration N by g =
IOON/hw; m is the depth of intensity modulation and K = 4msind/N the grating

wavevector with © the writing half angle. Note that we have included in
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Eq. (1) the modification in the electron drift arising from the generated
space charge field. Also we have taken the field, E, to be directed along
2
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the negative c-axis .

We proceed by partitioning the clectron density n as

n = n(o) +n (2a)
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Here n(o) represents the electron density produced directly by illumination
and hence is obtained from Eq. (1) by setting & =0 . Note that n(o) also

contains transient terms which, however, decay rapidly within a few trapping

times, T . We have defined the electron drift and diffusion length as L =

P
pET, L' = (D7)®* as in Ref. 4. It is to be noted that the previous theo-

. 2,3 (o) . . .
ries regarded n as the total electron density giving rise to the space
chérge field, ¢ . However, it is important to realize that n(o) initially

gives rise to .&, which in turn affects the motion of electrons, i.e., the

overall n . This modification of n due to & is in our theory incorporated

in the Flterm, which then affects & and so forth. This nonlinear interac-
tion between n and & significantly affects the evolution in time of phasgri
holograms,

We investigate this feedback mecEanism by the coupled mode approach in

which we represent n and & by
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Upon inserting Eq. (3) into Eq. (1) and Coulomb’s law , (B/BX)Etota] =

p/e, one can obtain a hierarchy of coupled equations for each mode. We will

consider the fundamental modes of n and & , the equations of which read’
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Equations (4) clearly show that F‘,ﬁl are driven by the dominant terms,

1
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n = n

o » Ny and are coupled to each other via the electron drift, uE and

diffusion, DK. We point out here that a new time scale, Tg = (epgT)/e)-]
naturally enters Eq. (4b) from first principles. Tg is analogous to Rabi

grows and

spin flipping time and provides a measure of time in which 6]

saturates. The S-term represents higher order coupling between the funda-
mental modes under consideration and other components in n and € .

One can analyze Eq. (4) by a straightforward perturbation scheme in
which the unperturbed term n(b) drives € which then gives rise to the
first order modification to n and so forth. Alternatively, cne can use
the Laplace transform technique and deal with a truncated matrix equation
whose rank is determined by the number of coupled modes one chooses to con-

sider. An exact solution in this truncated matrix equation is equivalent to

summing over dominant contributions in each order of perturbation series in
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the long time approximation (which in our case is longer than the trapping
time T). By using the second method,we analyzed in great detail Eq. (4) as
well as other harmonic components. In this Letter, we discuss the major term

of the space charge field due to &+] and will report the detailed analysis

in a later pﬁblication. The space charge field was found to be
E(t) = m?&(t)cost + m?s(t)sinKx (5)

with the in-phase and quadrature amplitudes,
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and the time scale
T, = (eugr/e)”! (5)
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flo=KL/[(T+ KLP)™ + K'LT] (5e)

Equations (5) explicitly describe the dynamic formation of the fundamental
component of € in terms of writing time, t; the internal or photovoltaic
field, E; the generation rate, g; and the electron drift (L) and diffusion

(L") lengths. Here we considered the electron drift and diffusion contribu~

tion simultaneously. Note that in the short writing time limit, i.e., linear
regime (t << Tg), our space charge field yields an expression identical to
those in Ref. 4 for drift and diffusion only cases. (See their equations (3)
and (4).) On the other hand, in the long time limit, € attains asymptotically
the steady state value mE in phase with the intensity pattern and the value

mDK/u in quadrature. In this paper, we have not included the small modifica-




tions in these steady state values arising from the subsequent generation of
harmonic terms in & and E‘. In order to ré]ate the modulation of index of
refraction in space and time to that of intensity pattern, it is convenient to
recast Eq. (5) in the form

E(t)
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The significant information contained in Eqs. (5) and (6) is summarized
as follows: (1) The time scale in which € grows and saturates, determined by
Tg,f;f', is mainly affected by the generation rate, the mobility and trapping
time and to a lesser extent by E . Since g is proportional to the light
intensity as well as the donor concentration, one can control the time re-
quired to form an efficient hologram; (2) the relative phase, @g, between
€ and intensity pattern is determined by the relative contribution of drift
and diffusion.to € and even more importantly, ¢g undergoes a significant
change as a function of writing time.

To illustrate the time dependence of the quantities involved, we present
two theoretical curves. In Fig. la are shown the magnitude (A) and the rela-
tive phase (@g) of & as a function of writing time for a fixed field énd
for three different genération rates, g. As g increases, A(t) rises rapidly.
reaching its steady state value in a short time interval. For E = 80XV/cm
and g =5 x 10]5/cm3_sec, the space charge fie]d attains the mE value within

40 seconds. Additionally, @g(t) deéreaseé at a much faster rate with in~

creasing g . In Fig. 1b are shown A(t) and ¢g(t) for a fixed generation




rate and various field strengths, E. |In this case, @g(t) decreases mono-
tonically at about the same rate and A(t) rises with about the same time
sca]e; The absolute value of A(t) at a given time is proportional to E .

In conclusion, a nonlinear dynamic theory of photorefractive volume phasg
hologram formation has been developed. Our general expression for the spa;e
charge field includes the results of previous theories in appropriate limits.
The nonlinear growth in time of the spéce charge field amplitude (or equiva-
lently the index of refraction modulation) shows the general trend experimen-
tally observed in Ref. 5. Needless to say, further contact of € with experi-
mentally measured quantities can be made in terms of the diffraction efficiency
of a hologram, T . Recently a closed form solution of 1 was obtained9 and
the linear (in time) results of & in Ref. 4 were used to fit the data with
nonlinear time dependence of & introduced phenomenologically. The expres-
sion for TN in Ref. 9 considers the modification of the refractive jndex
due to &€ . We feel, however, that a closed form expression of 1 should
include a similar modification in the local absorption coefficient due to the

10,11

time varying space charge field ' . This discussion will be.presented

elsewhere,
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FI1GURE CAPTIONS

Fig. la The time dependence of the amplitude A(t) (solid line) and the rela-
tive phase (dashed line) in units of 2m for three different electron

generation rates and a constant field, E .

Fig. 1b The time dependence of the amplitude A(t) (solid line) and the rela-
tive phase ¢g(t) (dashed 1ine) in units of 2m for a constant genera=

tion rate and for different values of electric field.
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