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Surface-tension-driven flows and, in particular, their tendency to decay spontaneously into drops have

long fascinated naturalists, the earliest systematic experiments dating back to the beginning of the 19th

century. Linear stability theory governs the onset of breakup and was developed by Rayleigh, Plateau,

and Maxwell. However, only recently has attention turned to the nonlinear behavior in the vicinity of

the singular point where a drop separates. The increased attention is due to a number of recent and

increasingly refined experiments, as well as to a host of technological applications, ranging from

printing to mixing and fiber spinning. The description of drop separation becomes possible because jet

motion turns out to be effectively governed by one-dimensional equations, which still contain most of

the richness of the original dynamics. In addition, an attraction for physicists lies in the fact that the

separation singularity is governed by universal scaling laws, which constitute an asymptotic solution of

the Navier-Stokes equation before and after breakup. The Navier-Stokes equation is thus continued

uniquely through the singularity. At high viscosities, a series of noise-driven instabilities has been

observed, which are a nested superposition of singularities of the same universal form. At low

viscosities, there is rich scaling behavior in addition to aesthetically pleasing breakup patterns driven

by capillary waves. The author reviews the theoretical development of this field alongside recent

experimental work, and outlines unsolved problems. [S0034-6861(97)00303-6]
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I. INTRODUCTION

The formation of drops is a phenomenon ubiquitous
in daily life, science, and technology. But although it is

plain that drops generically result from the motion of
free surfaces, it is not easy to predict the distribution of
their sizes or to observe the intricate dynamics involved;
see Fig. 1. Only the extremely short flash used by the
photographer, Harold Edgerton, clearly reveals the for-
mation of individual drops. Thus the subject has been
far from exhausted after more than 300 years of scien-
tific research, which in fact has gained considerable mo-
mentum only recently. On the one hand, the reason for
this interest lies in the tremendous technological impor-
tance of drop formation in mixing, spraying, and chemi-
cal processing, which leads to applications such as ink-jet
printing, fiber spinning, and silicon chip technology. On
the other hand, the modern theory of nonlinear phe-
nomena has created a new paradigm of self-similarity
and scaling, which opened a new perspective on this
classical problem.

The first mention of drop formation in the scientific
literature is in a book by Mariotte (1686) on the motion
of fluids. He notes that a stream of water flowing from a
hole in the bottom of a container decays into drops. Like
many authors after him, he assumes that gravity, or
other external forces, are responsible for the process. A
simple estimate shows, however, that uniform forces
cannot lead to drop formation and that another force,
which of course is surface tension, is responsible for the
eventual breakoff of drops. For reasons of mass conser-
vation, the rate at which the minimal cross section of a
fluid filament decreases is proportional to the cross sec-
tion itself, multiplied by an axial velocity gradient. As
long as this gradient is finite, as is to be expected when
only uniform forces are acting, the decrease of the mini-
mum thickness will be at most exponential, leading to
separation only in infinite time.

The basis for a more thorough understanding of drop
formation was laid by Savart (1833), who very carefully
investigated the decay of fluid jets. By illuminating the
jet with sheets of light, he observed tiny undulations
growing on a jet of water, as shown in Fig. 2. These
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undulations later grow large enough to break the jet.
Savart’s research showed that (i) breakup always occurs
independent of the direction of gravity, the type of fluid,
or the jet velocity and radius, and thus must be an in-
trinsic property of the fluid motion; (ii) the instability of
the jet originates from tiny perturbations applied to the
jet at the opening of the nozzle.

In spite of his fundamental insights, Savart did not
recognize surface tension, which had been discovered
some years earlier (de Laplace, 1805; Young, 1805) as
the source of the instability. This discovery was left to
(Plateau 1849), who showed that perturbations of long
wavelength reduce the surface area and are thus favored
by surface tension. On a level of quasistatic motion it
would thus be desirable to collect all the fluid into one
sphere, corresponding to the smallest surface area. Evi-
dently, as shown in Fig. 1, this does not happen. It was
Rayleigh (1879a,1879b) who noticed that surface tension
has to work against inertia, which opposes fluid motion
over long distances. By considering small sinusoidal per-
turbations on a fluid cylinder of radius r , Rayleigh found
that there is an optimal wavelength, lR'9r , at which
perturbations grow fastest, and which sets the typical
size of drops. Analyzing data Savart had obtained al-
most 50 years earlier, Rayleigh was able to confirm his
theory to within 3%.

Accordingly, the time scale t0 on which perturbations
grow and eventually break the jet is given by a balance
of surface tension and inertia, and thus

t05S r3r

g D 1/2

, (1)

where r is the density and g the coefficient of surface
tension of the fluid. This tells us two important things:
Substituting the values for the physical properties of wa-
ter and r51 mm, one finds that t0 is 4 ms, meaning that
the last stages of pinching happen very fast, far below
the time resolution of the eye. Secondly, as pinching
progresses and r gets smaller, the time scale becomes
shorter and pinching precipitates to form a drop in finite

time. At the pinch point, the radius of curvature goes to
zero, and the small amount of fluid left in the pinch
region is driven by increasingly strong forces. Thus the
velocity goes to infinity, and the separation of a drop
corresponds to a singularity of the equations of motion,
in which the velocity and gradients of the local radius
diverge.

Even in the case of an infinite-time singularity of the
equations of hydrodynamics, the physical event of
breaking may occur in finite time. That is, when the fluid
thread has become sufficiently thin, it may break owing

FIG. 1. A dolphin in the New England
Aquarium in Boston, Massachusetts; Edger-
ton (1977). © The Harold E. Edgerton 1992
Trust, courtesy of Palm Press, Inc.
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to microscopic effects that are outside the realm of hy-
drodynamics. The crucial distinction from the finite-time
singularity, which results from surface tension, is that
there is a chance to describe breaking in terms of con-
tinuum mechanics alone without resorting to micro-
scopic notions. The description of such singularities will
form a substantial part of this review.

For one hundred years after Rayleigh’s original work,
theoretical research focused on the extension of his re-
sults on linear stability. For example, Rayleigh (1892)
himself considered a highly viscous fluid, but the general
Navier-Stokes case was only treated in 1961 by Chan-
drasekhar. Tomotika (1935) took the surrounding fluid
into account; Keller, Rubinow, and Tu (1973) looked at
the growth of a progressive wave rather than a uniform
perturbation of a cylinder. To illustrate the power of
Rayleigh’s ideas even in completely different fields we
mention the application of linear stabilty to the breakup
of nuclei (Brosa, Grossmann, and Müller, 1990), in

which case the equivalent of a surface tension has to be
calculated from quantum mechanics. Another example
is the instability observed on pinched tubular vesicles
(Bar-Ziv and Moses, 1994), where entropic forces drive
the motion.

Meanwhile, experimental results had accumulated
that probed the dynamics of free surfaces beyond the
validity of linear theory. Early examples include Ray-
leigh’s photographs of jets (1891), Worthington’s study
of splashes (1908), and Edgerton, Hauser, and Tucker’s
(1937) photographic sequences of dripping faucets. Ex-
perimental techniques have also become available more
recently with sufficient resolution in space and time to
look at the immediate vicinity of the point of breakup.
Notable examples include the jet experiments of Rut-
land and Jameson (1970) as well as those of Goedde and
Yuen (1970) for water jets and of Kowalewski (1996) for
jets of high-viscosity fluids. A momentous paper by Per-
egrine, Shoker, and Symon (1990) not only helped to
crystallize some of the theoretical ideas, but also con-
tained the first high-resolution pictures of water falling
from a faucet. For higher viscosities, corresponding pic-
tures were taken by Shi, Brenner, and Nagel (1994).

By comparison, the development of computer codes
that would permit the calculation of free-surface flows
from first principles has been slow. Owing to the diffi-
culties involved in implementing both moving bound-
aries and surface tension, resolution has not been pos-
sible anywhere near the experimentally attainable limit,
even with present-day computers. An important excep-
tion is the highly damped case of the breakup of a vis-
cous fluid in another, which recently led to a detailed
comparison between experiment and numerical simula-
tion (Tjahjadi, Stone, and Ottino, 1992).

Only gradually did the theoretical tools evolve that
allowed for an analytical description of the nonlinear
dynamics close to breakup. The first was developed in
the theory of waves and often goes by the name of ‘‘lu-
brication theory’’ or ‘‘the shallow-water approximation’’
(Peregrine, 1972). It captures nonlinear effects in the
limit of small depths compared with a typical wave-
length. During the 1970s, lubrication approximations
were developed for the corresponding axisymmetric
problem, to study drop formation in ink-jet printers.
This is of particular relevance since a jet does not break
up uniformly, as predicted by linear theory, but rather
into main drops and much smaller ‘‘satellite’’ drops. The
satellite drops fundamentally limit the print quality at-
tainable with this technology, as drops of different sizes
are deflected differently by an electric field, which
should direct the stream of droplets to a given position
on the paper. Thus a fully nonlinear theory is needed to
understand and to control satellite formation. The first
dynamical equation, based on lubrication ideas, was in-
troduced by Lee (1974) for the inviscid case. His nonlin-
ear simulations indeed showed the formation of satellite
drops. But it took two decades until systematic approxi-
mations of the Navier-Stokes equation were found that
included viscosity (Bechtel, Forest, and Lin, 1992; Egg-
ers and Dupont, 1994).

FIG. 2. Perturbations growing on a jet of water (Savart, 1833).
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Another important concept, which allows for the de-
scription of nonlinear effects, is that of self-similarity
(Barenblatt, 1996), which arises naturally in problems
that lack a typical length scale. In the case of a singular-
ity, the length scale of the solution will depend on time,
reaching arbitrarily small values in the process. Thus
self-similarity here means that the solution, observed at
different times, can be mapped onto itself by a rescaling
of the axes. In the context of flows with surface tension,
self-similarity was introduced by Keller and Miksis
(1983). Kadanoff and his collaborators (Constantin
et al., 1993; Bertozzi et al.., 1994) have looked at singu-
larities in a Hele-Shaw cell, which is the two-
dimensional analogue of the present problem, as a
simple model for singularity formation. They inge-
niously combined lubrication ideas and self-similarity to
arrive at a detailed description of the pinchoff of a
bubble of fluid.

In the wake of this success, Eggers (1993) and Eggers
and Dupont (1994) applied the same idea to the three-
dimensional case. As spelled out first by Peregrine et al.
(1990), the dynamics near breakup are independent of
the particular setup such as jet decay, a dripping faucet,
or even the complicated spraying shown in Fig. 1, but
rather are characteristic of the nonlinear properties of
the equations of motion. As the motion near a point of
breakup gets faster, only fluid very close to that point is
able to follow, making the breakup localized both in
space and time. Thus one expects the motion to become
independent of initial conditions, and the type of experi-
ment becomes irrelevant to the study of the singular mo-
tion. This brings about two crucial simplifications: (i) in
a local description around the point of breakup, the mo-
tion becomes ‘‘universal,’’ thus reducing the number of
relevant parameters. The only parameter upon which
the motion near the singularity still depends is the length

l n5

n2r

g
, (2)

which characterizes the internal properties of the fluid
(Peregrine et al., 1990; Eggers and Dupont, 1994); (ii) an
asymptotic analysis of the equations of motion reveals
that the motion close to the singularity is self-similar,
with the radius shrinking at a faster rate than the longi-
tudinal extension of the singularity. Near the pinch
point, almost cylindrical necks develop, making the mo-
tion effectively one-dimensional close to the singularity.

Using these ideas, a local solution of the Navier-
Stokes equation was found, which contained no free pa-
rameters (Eggers, 1993). To select a specific prediction
of this theory, the minimum radius of a fluid thread at a
given time Dt away from breakup found to be

hmin50.03
g

rn
Dt . (3)

The surface profiles calculated from theory have been
compared quantitatively and confirmed by experiment
(Kowalewski, 1996). The columnar structure of the fluid
neck allows for a stability analysis of the flow close to
the breaking point, and is modeled closely on Rayleigh’s

analysis of a liquid cylinder (Brenner, Shi, and Nagel,
1994; see also Brenner, Lister, and Stone, 1996). As the
neck becomes sufficiently thin, it is prone to a finite-
amplitude instability, which may be driven by thermal
noise. This causes secondary necks to grow on the pri-
mary neck, which again have a self-similar form. The
corresponding complicated structure of nested singulari-
ties has also been observed experimentally (Shi, Bren-
ner, and Nagel, 1994).

At the same time stability analysis indicates that cy-
lindrical symmetry is not just a matter of convenience,
but rather a generic property near breakup. Rayleigh’s
analysis tells us that any azimuthal variation results in
only a relative increase in surface area and is thus unfa-
vorable. The universality and stability of the solution
near breakup therefore lead to answers of a much
greater generality than could be hoped for by investigat-
ing individual geometries and initial conditions. At the
same time, the singular motion is the natural starting
point for the calculation of nonlinear properties away
from breakup, which controls phenomena such as satel-
lite formation. Another advantage of universality is that
only one particular initial condition needs to be investi-
gated to construct a unique continuation of the Navier-
Stokes equation to times after the singularity (Eggers,
1995a). This establishes that breaking is described by
continuum mechanics alone, without resorting to a mi-
croscopic description, as long as observations are re-
stricted to macroscopic scales.

The scope of this review is limited mostly to the dy-
namics in the immediate vicinity of the point of breakup.
This is motivated by the expectation that pinching is uni-
versal under quite general circumstances, even if the
motion farther away from the singularity is more com-
plicated. In the nonasymptotic regime, our focus is on
the axisymmetric case of a jet with or without gravity.
This excludes many important examples of nonlinear
free-surface motion, such as drop oscillations, the dy-
namics of fluid sheets, and in particular the vast field of
surface waves.

We begin with an overview of the experimental basis
of the subject. Here and in the rest of this review, we
confine ourselves to cylindrical symmetry. In the case of
free surfaces, this is representative of the majority of
experimental work in the physics literature. But it ex-
cludes important effects like bending (Entov and Yarin,
1984; Yarin, 1993), branching (Lin and Webb, 1994), and
spraying (Yang, 1992) of jets. There is also substantial
work on splashes, i.e., the impact of drops on liquid
(Og̃ uz and Prosperetti, 1990) or on solid surfaces (Yarin
and Weiss, 1995) surfaces. Mixing processes can also not
be expected to respect cylindrical symmetry. The outline
of experimental work in the second section is comple-
mented by a review of numerical work in the third sec-
tion. As indicated above, numerical simulations of the
full hydrodynamic equations are only slowly catching up
with the resolution possible in experiments. On the
other hand, important information on the velocity field
is not available experimentally. This and the superior
variability of simulations, for example, in the choice of
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fluid parameters and of initial conditions, is bound to
make simulations an important source of information.

In the fourth section we give a detailed account of
linear stability theory, which is the classical approach to
the problem, but which remains an area of research to
the present day. Some nonlinear effects can be included
in perturbation theory, but the expansion quickly breaks
down near pinching.

The groundwork for the description of nonlinear ef-
fects is laid by the development of one-dimensional
models. We spell out two different approaches to the
problem and explain some of the properties of the re-
sulting models in Sec. V. In Sec. VI we study in detail
the universal self-similar solution leading up to breakup.
The solution can be continued uniquely to a new solu-
tion valid after breakup, which now consists of two
parts. The nonlinear stability theory of the asymptotic
solution explains the complicated structure seen in the
presence of noise.

Section VII explores the dynamics away from the
asymptotic regime, but where nonlinear effects are still
dominant. The area best understood is the case of highly
viscous jets, in which the pinching has not yet become
sufficiently fast for inertial effects to become important.
In the opposite limit of very low viscosity, the smoothing
effect of viscosity is missing, and gradients of the flow
field become large at a finite time away from breakup.
This makes the problem a hard one, and the understand-
ing of this regime is only in its early stages. However,
this subject is bound to remain an interesting and fre-
quently studied topic for the years to come, since low
viscosity fluids like water are the most common. From a
theoretical point of view, the understanding of the sin-
gularities of the Euler equation is one of the major un-
solved problems in hydrodynamics, and fluid pinching
serves as a particularly simple model system. To con-
clude Sec. VII, we describe some research on satellite
formation and present a numerical simulation of the sta-
tionary state of a decaying jet.

So far we have dealt only with free surfaces, with sur-
face tension being the only driving force. We relieve this
restriction in the final section, where we explore some
examples of related topics. First we look at two-fluid
systems, which are particularly important for the theory
of mixing and the hydrodynamics of emulsions. An
asymptotic theory for breakup in the presence of an
outer fluid has not yet been developed. Electric or mag-
netic fields represent another possible external driving
force. They force the fluid into sharp tips, where the
fields are strong, out of which tiny jets are ejected. This
allows for the production of very fine sprays. In chemical
processing, macromolecules are often present in solu-
tion. They result in non-Newtonian properties of the
fluid, to which we give a brief introduction in the context
of free-surface flows.

II. EXPERIMENTS

Historically, research on drop formation was moti-
vated mostly by engineering applications, hence the

three most common experimental setups, which are de-
scribed in more detail below: (1) Jets are produced when
a fluid leaves a nozzle at high speeds; (2) slow dripping
under gravity has been used for the measurement of sur-
face tension; and (3) liquid bridges are used to suspend
fluid in the absence of gravity. For a review on drop
formation in the context of engineering applications of
spraying, see Walzel (1988). Early work focused either
on the early stages of drop formation, characterized by
the growth of linear disturbances, or on the size and
number of the resulting drops. Either aspect of drop for-
mation is relatively easy to observe, but is highly depen-
dent on the experimental setup and on parameters like
nozzle diameter or jet speed.

Only slowly, as experimental techniques became
available for observing the actual evolution of the flow
during drop formation, did common features emerge
from the seemingly disparate results of individual ex-
periments. The last stages of the evolution are domi-
nated by the properties of the pinch singularity, which is
the same for all cases. This idea was first enunciated
clearly by Peregrine et al. (1990). The appearance of the
motion depends only on the scale of observation l obs

relative to the size of the internal length l n [see Eq. (2)]
of the fluid. If l obs /l n is large, which is typical for flows
of low viscosity like water, the shapes near the pinch
point are cones attached to a spherical shell. After
breakup, as the fluid neck recoils, capillary waves are
excited. If on the other hand l obs /l n is small, as for
fluids of high viscosity like glycerol, long and skinny
threads are observed, which rapidly contract into tiny
drops after breakup. At the highest viscosities, the
threads tend to break at random places. It is from this
universality that much of the physical interest of the sub-
ject of drop formation derives, and we try to emphasize
common features in discussing different kinds of experi-
ments.

A. Jet

By far the most widely used experimental setup in the
study of drop formation is that of a jet of fluid leaving an
orifice at high speeds. The earliest jet experiments were
performed with fluid being driven out of holes near the
bottom of a container (Bidone, 1823). The focus of the
early research was on the shape of jets produced by ori-
fices of different forms. It was Savart (1833) who dis-
tinctly noticed the inevitability of a decay into drops and
carefully investigated the laws governing it. By deliber-
ately disturbing the jet periodically at the nozzle, he pro-
duced disturbances on the surface of the jet with the
same frequency. Many other 19th-century researchers
repeated these experiments, notably Hagen (1849),
Magnus (1855), and Rayleigh (1879b,1882). Both Pla-
teau (1873) and Rayleigh were able to perform some
quantitative tests of their theories, but without photog-
raphy it was impossible to record the shapes of jets in
detail. Photographic methods were introduced by Ray-
leigh (1891), but these observations were only qualita-
tive in nature. The first quantitative experiments were
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those of Haenlein (1931), Donelly and Glaberson
(1966), and Goedde and Yuen (1970). Their main con-
cern was to test the linear theories of Rayleigh (1879a,
1892) and Chandrasekhar (1961) for different viscosities.
Goedde and Yuen also recorded shapes characterizing
the nonlinear behavior near breakup. Experiments fo-
cusing on the measurement of satellites were performed
by Rutland and Jameson (1970), Chaudhary and Max-
worthy (1980a,1980b), and Vasallo and Ashgriz (1991).
Becker, Hiller, and Kowalewski (1991, 1994) studied the
nonlinear oscillations of drops produced in the breakup
process. Their experimental setup was used by Kow-
alewski (1996) to record surface shapes near breakup
with a spatial and temporal resolution far superior to
previous work. We shall describe this experiment in
some detail, since it demonstrates the degree of sophis-
tication the experimental technique has acquired over
the last few decades.

Figure 3 gives an overall flow chart of the apparatus
(Becker, Hiller, and Kowalewski, 1991). Fluid is forced
out of a nozzle directed vertically downward, so the axis
of symmetry is preserved. Typical jet speeds are of the
order of m/s, so the air drag can be neglected. On the
other hand, the breakup takes place far from the nozzle
(approximately 1000 jet diameters), so the entire region
of interest can be regarded as being in free fall. Nozzle
diameters vary between 1/10 mm and 2 mm. In an ante-
chamber of the nozzle a piezoceramic transducer pro-
duces pressure oscillations, which translate into sinu-
soidal disturbances of the jet speed at the nozzle exit. As
a result, the jet breaks into drops in a perfectly periodic
fashion. This is an advantage of this experimental setup,
as it is amenable to observations by the stroboscopic
method pioneered by Rayleigh (1882).

To this end the region of interest is illuminated with
the light of a pulsed light-emitting diode (LED), the
typical duration of the flash being 0.2 ms. The jet is then
viewed through a microscope and images are recorded
with a charge-couple device (CCD) camera. The optics
is set up in bright field illumination, exposing parallel
light to the camera, so that the image is bright. If a piece

of fluid is in the path of the light, the light is diffracted
away from the camera’s view, so it appears black, apart
from a bright center, where light passes straight through
the fluid. This allows for spatial resolution of about 1
mm. To make observations of a given stage in jet decay,
one arranges for the flash to illuminate the jet with the
same frequency with which it is excited. If the light pulse
is ensured to be in a fixed phase with the current driving
the jet modulator, a stationary image is seen. By chang-
ing the phase, a different time within the evolution of
one period is illuminated. The whole process is so stable
and reproducible that a time resolution of 10ms is
reached. By scanning an entire range of phases, movies
of the breakup process with this time resolution can be
produced, some examples of which are presented in Sec.
VI.

We now discuss the dimensionless parameters con-
trolling jet decay. We shall assume that the driving is
purely sinusoidal, so that the speed at the nozzle is

vnozzle5v j1eS g

rr0
D 1/2

sin~2pft !. (4)

Here v j is the speed of the jet and r0 its unperturbed
radius. The dimensionless perturbation amplitude e is
multiplied by the capillary velocity u05(g/(rr0))1/2. By
properly adjusting the driving frequency f , we can
choose a wavelength l5v j /f . In typical experimental
situations the frequency is several kHz.

The parameter most significant to jet decay is the re-
duced wave number

x52pr0 /l . (5)

If x,1, the jet is unstable to the corresponding pertur-
bations, and at small viscosities, xR50.697 is the most
‘‘dangerous’’—or the Rayleigh mode for which pertur-
bations grow fastest. For x.1 irregular breakup is ob-
served, as the jet responds to tiny random perturbations
with components x,1. The temporal perturbation is
translated into space by convection with velocity v j . The
time scale on which surface perturbations grow is
t05(rr0

3/g)1/2, since surface-tension forces will be bal-
anced by inertia, at least at low viscosities. Thus the We-
ber number

b2
5rr0v j

2/g (6)

measures how much a disturbance can grow from one
swell to the next. Typical values of b are O(100). The
last parameter is the Reynolds number1

Re5u0r0 /n5~r0 /l n!1/2, (7)

1It should be noted that the nomenclature in Eq. (7) is open
to criticism, since at high viscosities the velocity scale is no
longer set by surface tension and initial radius alone, but also
depends on viscosity. A better name, used for example in Mc-
Carthy and Molloy (1974), is ‘‘Ohnesorge number.’’ An Ohne-
sorge number conventionally is a number that depends on ge-
ometry and fluid properties alone. However, since ‘‘Reynolds
number’’ is so much more likely to carry a meaning for physi-
cists, we decided to be cavalier about these subtleties.

FIG. 3. Experimental setup for the stroboscopical observation
of a decaying jet as developed by Becker, Hiller, and Kow-
alewski (1991).
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constructed from the jet radius r0 and the capillary ve-
locity u0, divided by the kinematic viscosity n5h/r . It
measures the damping effects of viscosity on the motion
caused by surface tension. For water and a jet diameter
of 1 mm, Re'200, but technologically relevant fluids
cover a wide range of different viscosities. For example,
in the case of glycerol the Reynolds number is reduced
to 0.5, and by mixing water and glycerol a wide range of
Reynolds numbers can be explored.

So, in the case of purely sinusoidal driving, there are
four dimensionless parameters governing jet decay: the
driving amplitude e , the reduced wave number x , the
Weber number b2, and the Reynolds number Re. The
range of possible dynamics in this large parameter space
has never been fully explored, so we shall focus on the
dependence on the two most important parameters, the
reduced wave number and the Reynolds number.

Figure 4 shows typical pictures of a decaying jet of
water for three different wavelengths. The bottom pic-
ture is for the mode of maximum instability. It is easily
found by tuning the frequency, since it makes the
breakup point move closest to the nozzle. This situation
is the least sensitive to noise, since all other frequencies
have lower growth rates and therefore decay relative to
the Rayleigh mode. Up to one wavelength from the
point where a drop first separates, the disturbances look
fairly sinusoidal. (There are significant higher-order cor-
rections, though, which will be discussed in Sec. IV.) But
the last neck pinches off almost simultaneously at both
ends, causing significant deviations from linear, sinu-
soidal growth. This final, localized pinching produces
characteristic forms, namely, a sharp conical tip attached
to a flat cap. In recoiling, the tip excites capillary waves
on its surface, which give it the appearance of a string of
pearls. While the tip is still recoiling, it breaks on its rear
side and starts recoiling on the other side as well. Thus a
small satellite drop is produced, which is a remnant of
the neck. In general it will receive momentum from the
recoiling process and therefore has a velocity slightly
different from the main drops. This will make it merge
either with the preceding or the following drop a few
wavelengths downstream.

If the wavelength is long enough, the growth rate of
the second harmonic will be larger than that of the pri-
mary disturbance. Since higher harmonics are always ex-
cited at the nozzle or through the nonlinear interaction,
a swell develops in the middle between the drops. If it
has a chance to grow sufficiently large, the jet will break
in this l/2 mode and produce drops and satellites at
twice the fundamental frequency of excitation. This is
shown in the middle picture of Fig. 4 for a driving fre-
quency that is a factor of 0.36 below the frequency cor-
responding to the Rayleigh mode. The appearance of
such a ‘‘double stream’’ of droplets thus depends sensi-
tively on the amplitude of the second harmonic pro-
duced by the driving. Plateau (1857) used a cello to ex-
cite the jet, and always found a double stream at half the
frequency of the Rayleigh mode. Later Rayleigh (1882)
showed that this was due to harmonics inconveniently
produced by a musical instrument. Using tuning forks
instead, he still observed breakup with the principal fre-
quency at a third of the Rayleigh frequency. For even
longer wavelengths (top picture), the satellite drop be-
comes substantial, owing to the much longer neck. This
causes the recoil patterns to be even more pronounced,
since there is more time for capillary waves to develop.
As a result, the satellite drop is subject to very compli-
cated secondary breakings.

Decreasing the Reynolds number significantly, for ex-
ample, by increasing the viscosity using a glycerol-water
mixture, causes the breakup process to change substan-
tially. After the initial sinusoidal growth, a region devel-
ops where almost spherical drops are connected by thin
threads of almost constant thickness, which take quite a
long time to break (see Fig. 5). In general, the thread
will still break close to the swells. If the viscosity is in-
creased further, the threads become so tenuous before
they break at the end, that they break at several places
in between, in what seems to be a random breakup pro-
cess.

Jet experiments are particularly useful for studying
the universal motion near breakup with extremely high
precision, as we shall see in Sec. VI. On the other hand,
it is hard to design an experiment to make the full evo-

FIG. 4. Photographs of a decaying jet (Rut-
land and Jameson, 1971) for three different
frequencies of excitation. The bottom picture
corresponds to x50.683, which is close to the
Rayleigh mode. At longer wavelengths sec-
ondary swellings develop (middle picture,
x50.25), which cause the jet to break up at
twice the frequency of excitation. At the long-
est wavelength (top picture, x50.075) main
and secondary swellings have become virtu-
ally indistinguishable. Reprinted with permis-
sion of Cambridge University Press.
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lution of the jet leading up to breakup completely repro-
ducible. This is because the driving is never purely sinu-
soidal, but contains harmonics that depend on the nozzle
design and that significantly influence jet evolution.
Thus it is hard to make exact quantitative comparisons
with numerical simulations, comparisons that are
needed to validate numerical codes. The great merit of
the two other experiments to be described in the follow-
ing two subsections is that they are both simple, and all
of the dynamics are completely reproducible.

B. Dripping faucet

This experimental setup involves the opposite limit to
that of a jet: Fluid is released very slowly from a nozzle,
so that at first surface-tension forces are in balance with
gravitational forces. One can easily reach a limit where
the flow plays no role and the hanging drop goes
through a sequence of equilibrium shapes. These se-
quences have been studied very carefully by Worthing-
ton (1881). The theory of their stability was begun by
Plateau (1873) and Maxwell (1875) and is summarized
by Michael and Williams (1976). Instability will set in
sooner or later as the drop becomes heavier and gravity
overcomes surface tension. All these static aspects can
only depend on the dimensionless number

Bo5rgr0
2/g , (8)

which is called the Bond number and expresses the ratio
of gravitational forces to surface-tension forces.

After the initial instability, the fluid begins to fall and
eventually a drop separates. This familiar phenomenon
has been the subject of some early work (Guthrie, 1864;
Tate, 1864). Tate measured the drop weight W and no-
ticed a proportionality to the nozzle radius. Rayleigh
(1899) analyzed the problem in terms of dimensionless
groups and arrived at the simple empirical relation
W53.8gr0. To produce an accurate method for the
measurement of surface tension, Harkins and Brown
(1919) performed a careful experimental study of the
relation between the dimensionless drop weight
W/(gr0) and the Bond number. They found a compli-
cated functional form, which deviated considerably from

the proportionality proposed by Tate. In fact, it was
pointed out by Hauser et al. (1936), as well as Edgerton,
Hauser, and Tucker (1937), that it was unlikely that a
simple theoretical derivation for such a relation existed.
In fact, their high-speed motion pictures revealed a very
complicated structure produced by the neck between the
main drop and the nozzle. As in the jet experiments, this
structure resulted in the production of one or more sat-
ellite drops. They also noticed a significant dependence
on viscosity, with a long and thin neck forming at high
viscosities. The beauty of the experiment lies in the fact
that the only other dimensionless parameter needed to
specify the entire evolution is the Reynolds number
Re5(r0g/n2r)1/2.

But it was only the pioneering work of Peregrine et al.
(1990) that focused on the dynamics immediately before
and after the bifurcation. The whole sequence of events
contains no free parameters, which makes it an ideal
testing ground for theory. Later, this work was extended
to higher viscosities by Shi, Brenner, and Nagel (1994).
Figure 6 shows a sequence of single flash photographs of
a water drop. Shortly after the lower part of the hanging
drop begins to fall, it produces a neck on which surface
tension acts, making it thinner. At a certain stage, pinch-
ing sets in and a drop separates. Again the pinch point is
very localized and the shapes remarkably resemble Fig.
4. Recoil produces capillary waves, but before the tip
can completely retreat the neck breaks at the other end,
the flat part now being on top of the cone. The whole
sequence of pictures is completely reproducible. Quali-
tatively, this process is quite similar for different Bond
numbers, but the size of the main drop and the length of
the neck increase with Bond number. At high viscosities,
a transition to long and thin necks is observed. A par-
ticular example is shown in Fig. 7, with a fluid 100 times
more viscous than water. Note the emergence of a tiny
thread coming out of the neck just above the drop. Just
as in the jet experiments, at the highest viscosities
threads form which are thin enough to be prone to ran-
dom breakup.

In addition to the single flash photographs described
above, Zhang and Basaran (1995) and Brenner et al.
(1997) produced time-resolved motion pictures of the
bifurcation. From those, the temporal dependence of
neck radius and neck length could be measured. Zhang
and Basaran not only varied the radius of the nozzle and
the viscosity of the fluid, but also the flow rate, to obtain
a detailed ‘‘phase diagram’’ of main drop and satellite
sizes, final neck lengths, etc. The dependence of drop
size on the flow rate has also been measured and com-
pared with a simple one-dimensional theory by Wilson
(1988). Singular properties like the temporal evolution
of the radius of the neck close to pinchoff were found to
be insensitive to the flow rate (Zhang and Basaran,
1995). On the other hand, viscosity had a profound in-
fluence, not only on the final length of the neck, but also
on the time dependence of the radius. This is in accord
with the expectation that singular properties depend
only on the internal length l n . To measure the neck
radius well below the time scale t05(r0

3r/g)1/2, which is

FIG. 5. A photograph of a viscous jet (Donnelly and Glaber-
son, 1966) for a reduced wave number of x50.268 and a Rey-
nolds number of 2. A thread connecting two main drops has
just broken at the ends and is contracting into a satellite drop.
Reprinted with permission of the Royal Society.
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of the order of 10 ms for typical experiments with water,
Brenner et al. (1997) took high-speed motion pictures
with a time resolution of 20 ms. Thus a detailed analysis
of scaling properties at low viscosity was possible, as ex-
plained in more detail in Sec. VII B.

C. Liquid bridge

The last experimental setup to be described here is
that of a piece of fluid between two disks; see Fig. 8. The
fluid is held in place by surface tension, which is possible
only for very small bridge sizes if gravity is present.
Therefore experiments are designed either to be per-
formed in space (Meseguer, Sanz, and Lopez, 1986) or
with an outer fluid of the same density in a so-called
Plateau tank (Spiegelberg, Gaudet, and McKinley,
1994). It is this setup which Plateau (1843, 1849) used for

his detailed experimental investigation of the stability of
liquid cylinders. The disadvantage of the Plateau tank is
that the inner fluid can no longer be tested in isolation,
and the dynamics of the outer fluid has to be taken into
account as well. The effect of the outer fluid on the dy-
namics can be partly eliminated by working with a fluid
of very high viscosity, much larger than that of the outer
fluid, so that the viscosity of the outer fluid can be ne-
glected. At the same time the motion is slowed down so
as to make the inertia of the outer fluid irrelevant as
well.

Most of the experimental work in the liquid-bridge
configuration is motivated less by an interest in breakup,
than by the desire to hold a free fluid drop in place. It is
used to measure rheological properties of liquids and to
investigate crystal growth in the absence of gravity.
Nevertheless, this configuration is highly appealing for
our purposes as well, for its simplicity and for the ease

FIG. 6. A sequence of pictures of a water drop falling from a
circular plate 1.25 cm in diameter (Shi, Brenner, and Nagel,
1994). The total time elapsed during the whole sequence is
about 0.1 s. Reprinted with permission. © American Associa-
tion for the Advancement of Science.

FIG. 7. A drop of a glycerol and water mixture, 100 times as
viscous as water, falling from a nozzle 1.5 mm in diameter. As
opposed to the case of water, a long neck is produced (Shi,
Brenner, and Nagel, 1994). Reprinted with permission. ©
American Association for the Advancement of Science.
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with which the experimental parameters can be
controlled. To begin with, the problem of static stability
of the bridge becomes purely geometrical: it depends
only on the radii of the disks and the volume of the fluid.
This stability has been investigated theoretically in a
number of circumstances (Gillette and Dyson, 1971; Da-
Riva, 1981).

If one wants to observe breaking, the bridge has to be
made unstable. This can be achieved either by sucking
fluid from the bridge (Meseguer and Sanz, 1985) or by
pulling the disks apart (Spiegelberg, Gaudet, and McK-
inley, 1994). The latter method is illustrated in Fig. 8.
The initial state was that of a cylinder with aspect ratio
L5r0 /L50.77, where 2L is the distance between the
disks. Over a period of a few minutes, it was pulled apart
to an aspect ratio of L51.58, which is an unstable con-
figuration. The figure shows the collapse after the disks
stopped moving. As expected for the extremely low
Reynolds number of 3.731023, a thin thread forms be-
fore the bridge finally breaks.

III. SIMULATIONS

In many areas of fluid mechanics, flow simulations
have become standard procedure. If the Reynolds num-
ber is not too high, carefully executed simulations can
virtually replace experiments, since the validity of the
equations of motion is not a source of concern. In the
presence of a free surface, however, the situation is dif-

ferent. The flow geometry is essentially determined by
the evolution itself or may change its topology alto-
gether due to breakup events. Thus computations need
to be tailored to each initial condition. If breakup oc-
curs, the validity of continuum mechanics, underlying
the equations of motion, is itself called into question.
This concern must be addressed separately through a
more careful study of the singularities involved, or
through complementing simulations of the underlying
molecular dynamics (Greenspan, 1993; Koplik and Ba-
navar, 1993).

Free-surface flows are also very sensitive to the for-
mation of cusp singularities (Joseph et al., 1991) even in
seemingly innocuous flow situations. It seems as if sur-
face tension should make the surface more regular, thus
simplifying simulations. But instead it offers very little
resistance to the formation of singularities (Jeong and
Moffatt, 1992) and makes the system more sensitive to
noise and prone to numerical instabilities, whose nonlin-
ear origins are poorly understood. Indeed, surface ten-
sion introduces a complicated coupling between the flow
that advances the interface and the interface’s shape,
which through the Young-Laplace equation determines
the pressure driving the fluid.

For that reason, so-called boundary integral formula-
tions are very attractive, since they involve only infor-
mation about the surface of the fluid. They are possible
whenever the flow is governed by a linear equation, for
which the Green’s function is known. This is the case for

FIG. 8. Liquid-bridge evolution starting from
an unstable configuration. The disk diameter
is 3.8 cm, the Reynolds number is 3.731023.
The outer fluid, which eliminates buoyancy
forces, has a viscosity approximately 1000
times smaller than the inner fluid. (Spiegel-
berg, Gaudet, and McKinley, 1994).
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inviscid, irrotational flow and highly viscous flow gov-
erned by the Stokes equation. Then the only informa-
tion needed apart from the position of the interface is its
velocity. Thus one is relieved from calculating the subtle
interplay of internal motion and the boundary shape,
since all the information is contained on the boundary.
In the more general case of Navier-Stokes flow, the in-
terior and the boundary have to be dealt with sepa-
rately. Both the surface tracking and the flow computa-
tions are highly nontrivial problems in themselves and
are now coupled in a complicated fashion. Such compu-
tations have been performed only fairly recently and are
not sufficiently accurate to resolve the universal behav-
ior close to the singularity. Boundary integral methods
are more accurate, but neglect either viscous or inertial
forces, both of which become important asymptotically.
Nevertheless, simulations are an indispensable tool for
predicting the nonuniversal dynamics away from
breakup. One hopes that numerical codes will soon be-
come sufficiently reliable to yield an alternative to ex-
periments. A useful overview on computational methods
of free-surface flows is provided by Tsai and Yue (1996),
who draw most of their examples from problems related
to free-surface waves.

A. Inviscid, irrotational flow

We first turn to the problem of a low-viscosity drop
with a free surface (see Fig. 9). Most studies assume
axisymmetry, so the boundary is given by a curve in the
r–z plane, but this is not essential to our discussion. If
the velocity field is irrotational initially, and viscosity can
be neglected, it will remain so for the rest of its evolu-
tion (Landau and Lifshitz, 1984a). Thus the velocity po-
tential f ,

v~r ,z !5“f~r ,z !, (9)

obeys the Laplace equation

Df50. (10)

The evolution of f follows from the Bernoulli equation

] tf1v2/21p/r50,

where p is the pressure. On the boundary, and in ab-
sence of viscous forces, the pressure is given by the
Young-Laplace formula, hence

] tf52v2/22

g

r
S 1

R1
1

1

R2
D on ]V , (11)

where R1 ,R2 are the principal radii of curvature.
If x(j ,t) is the position of the surface as a function of

some marker (or grid point) j , the surface moves ac-
cording to

] tx~j ,t !5vu]V . (12)

Note that the definition of j as a surface marker makes
the left-hand side a convective time derivative. The po-
tential can be written as a function of the marker, as
well, according to

f~j ,t !5f(x~j ,t !,t),

and the resulting Lagrangian evolution equation is

] tf~j ,t !5v2/22

g

r
k on ]V . (13)

Here we abbreviated (1/R111/R2), which is twice the
mean curvature, to k . Thus Eqs. (12) and (13) give the
evolution for both the surface and the value of the po-
tential on it, provided the velocity v on the surface is
known. Decomposed into tangential and normal compo-
nents, v can be written as

v5~]sf !n1~]nf !t, (14)

where n and t are unit vectors normal and tangential to
the surface, respectively. The tangential derivative ]sf
can be evaluated from the knowledge of f on the sur-
face alone, but to compute ]nf one must bring the
Laplace equation into play. That is, given Eq. (10), it
follows from Green’s second theorem that

2pf~r!5P.V.E
]V

S f~r8!]n

1

ur2r8u
2

]n8
f~r8!

ur2r8u Dd2s8,

(15)

where both r and r8 lie on the surface. This is an integral
equation that can be solved for ]nf , once f is known on
]V .

The procedure outlined was developed by Longuet-
Higgins and Cokelet (1976) for the study of water waves
in two dimensions. It has been adapted and used for the
study of drops by Dommermuth and Yue (1987) and
Schulkes (1994a, 1994b). Most of the computing time is
spent on solving the integral equation (15), which is a
matrix equation in discrete form. If the number of grid
points is N , then the effort in computing the matrix ele-
ments is ;N2, and to invert the matrix ;N3. For
N'100, a typical value for current computations, most
of the time is spent evaluating the matrix coefficients,
which contain elliptic integrals. Clearly, if much higher
resolution is to be attained, matrix inversion becomes
the limiting factor. Therefore other authors have used a
method originally developed for vortex simulations by
Baker, Meiron, and Orszag (1980). The idea is first to
calculate a distribution of dipoles m on the surface,

FIG. 9. Sketch of a typical flow geometry. Rotational symme-
try around the z axis is assumed. The velocity field inside the
fluid is v(r ,z)5vz(r ,z)ez1vr(r ,z)er .
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which produce the potential f . This can be done effi-
ciently by iteration. The dipole distribution is then used
to calculate the normal component of the velocity field,
which is an N2 process. For the present problem, this
procedure has been adopted by Og̃ uz and Prosperetti
(1990) and Mansour and Lundgren (1990).

To formulate the system comprised by Eqs. (12)–(15)
in discrete numerical form, a number of different proce-
dures were adopted, some of which are compared by
Pelekasis, Tsamopoulos, and Manolis (1992). Usually
the position of the interface x and the potential f is
taken at a discrete set of nodes i , 1<i<N . Using suit-
able interpolation formulas, one evaluates the curvature
at the interface and the integral in Eq. (15). An explicit
Runge-Kutta step is then used to advance the position of
the interface xi and the potential f i . However, a prob-
lem that appears, regardless of the numerical implemen-
tation, is nonlinear instability on the scale of the grid
spacing, giving the interface a saw-tooth appearance.
The origin of this instability has not yet been found.
Moore (1983), investigating a model problem, has shown
that such short-wavelength instabilities may be a result
of spatial discretization. But since the instability was re-
ported in all work on the problem, using many different
numerical techniques, there is a distinct possibility that
the evolution equations (10), (12), and (13) do not pos-
sess regular solutions, but rather have unphysical singu-
larities before breakup occurs. One has to bear in mind
that the underlying equations are inviscid, so there is no
natural way for momentum to be diffused, and cata-
strophically sharp gradients can occur, just as in the
three-dimensional Euler equation with large-scale driv-
ing (Majda, 1991). This analogy is of course a very rough
one, since singularities in the three-dimensional Euler
equation come about through the growth of vorticity,
which is constrained to be zero in the present case of
irrotational flow.

A number of different procedures have been pro-
posed to get rid of the instability. Grid points were re-
distributed after every time step to ensure equal grid
spacing (Dommermuth and Yue, 1987; Og̃ uz and Pros-
peretti, 1990; Schulkes, 1994a). This step removes short-
wavelength components and results in some numerical
energy dissipation (Schulkes, 1994a). Other possibilities
are the inclusion of numerical diffusion (Og̃ uz and Pros-
peretti, 1990; Pelekasis, Tsamopoulos, and Manolis,
1992), or simply filtering of the short-wavelength com-
ponents (Dold, 1992).

Only a few papers have focused on drop formation,
namely those of Mansour and Lundgren (1990), who
simulated a liquid cylinder with periodic boundary con-
ditions; Spangler, Hilbing, and Heister (1995), who in-
cluded the effect of a surrounding gas; and Schulkes
(1994b), who considered a dripping faucet. The spatially
uniform liquid cylinder is only a rough approximation of
the steady state of a decaying liquid jet, but the simula-
tions qualitatively produce the correct features. In par-
ticular, Mansour and Lundgren predict satellite drops at
all wave numbers, whose volumes agree well with ex-
periment.

Schulkes (1994b) directly compares his simulation
with the experiment by Peregrine et al. (1990) and finds
good agreement, except in the immediate neighborhood
of the bifurcation point (see Fig. 10). Instead of forming
an almost flat interface at the side of the drop, the pro-
file turns over in the inviscid simulation. This seems to
be a universal feature of this approximation, as a similar
overturning is observed for the initial condition consid-
ered by Mansour and Lundgren. In experiments, a very
large, but still finite, slope is observed. The steepening of
the interface has been the subject of a recent experimen-
tal and numerical study (Brenner et al., 1997).

Overturning thus seems to be an artifact of the invis-
cid theory, since the viscosity does become important as
the interface becomes steeper, as will be discussed in
more detail in Sec. VII.B. The inviscid approximation is
thus invalidated even on scales much larger than l n .
However, overturning is observed after breaking, when
the small remnant of the neck on the drop side recoils.
The momentum it acquires is large enough to produce a
dent on the flat surface of the drop. In experimental
pictures, which usually show a projection perpendicular
to the axis of symmetry, it turns up as a perfectly straight
interface, as seen in the sixth frame of Fig. 6. It would be
worthwhile to take pictures at an angle as well, to fur-
ther investigate the dented region.

B. Stokes flow

The other case that can be treated by boundary inte-
gral methods is that of a highly viscous fluid, described
by the Stokes equation

hDv5“p . (16)

FIG. 10. The shape of a drop of water falling from a nozzle at
the first bifurcation. The Bond number is Bo=1.02 and the
Reynolds number Re=452. The comparison with theory (solid
line) is taken from Schulkes (1994b). Reprinted with permis-
sion of Cambridge University Press.
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Here inertial terms have been dropped, so the fluid den-
sity does not appear. For Eq. (16) Green’s functions are
known (Ladyzhenskaya, 1969), so that an integral equa-
tion for the interfacial velocity can be derived in the
same vein as in the inviscid case. This was first accom-
plished by Youngren and Acrivos (1975) for a gas
bubble in a very viscous fluid. The method has been
generalized by Rallison and Acrivos (1978) to the case
of drops of arbitrary viscosity in another viscous fluid.
However, the early numerical work on viscous drops
was limited to the calculation of stationary shapes (Ral-
lison, 1984).

Only some years later did Stone and Leal (1989a,
1989b) develop codes of sufficient accuracy to study the
dynamics of extended drops. Because of the ample vis-
cous damping, this problem is much less sensitive to per-
turbations, and no numerical instabilities have been re-
ported. Most of the work concerns a drop of fluid in
another fluid, which is quiescent at infinity. However,
the viscosity of the outer fluid can be taken to be zero,
so the drop is isolated.

Some pictures of extended drops breaking up are con-
tained in Stone and Leal (1989b). The shape of the in-
terface near breakup and the velocity field is studied in
some detail. But only Tjahjadi, Stone, and Ottino (1992)
demonstrated the full power of viscous boundary inte-
gral methods by performing a quantitative comparison
with experiments on viscous drops in extensional flows.
This study showed extraordinary agreement between
simulation and experiment, which continued through a
number of breakups (see Fig. 11), and revealed an as-
tonishingly fine structure of satellite drops. Breakup was
simulated by cutting the interface and smoothing the
ends once some critical radius was reached. As the fluid
moves faster and faster near breakup, the Stokes ap-
proximation eventually will break down, but on the
scales observed it seems to remain remarkably good. A
similar Stokes code has recently been applied to a
stretching liquid bridge (Gaudet, McKinley, and Stone,
1996). The results are in excellent agreement with ex-
perimental data, and in addition supply a wealth of in-
formation about the dynamics of the bridge at different
viscosity ratios and stretching rates.

C. Navier-Stokes simulations

The boundary integral methods described in the first
subsection are valid only for very low or very high vis-
cosity. As we we are going to see in Sec. VII, either
approximation breaks down close to the pinch point,
where viscous or inertial effects become important, at
least in the case that the outer fluid can be neglected. In
those cases, the full Navier-Stokes equation has to be
solved in the fluid domain, subject to a singular forcing
at the boundary. Even in a fixed domain this is not a
simple problem, so it is not surprising that Navier-Stokes
simulations in the nonlinear regime are few. Still, results
from first-principles calculations are indispensable, as
they provide the full information on the flow field, which
is not available from experiment. Johnson, Marschall,

and Esdorn (1985) and Marschall (1985) provide some
experimental measurements of the flow field, but the re-
gion near the point of breakup is particularly hard to
visualize, so the flow field is not known here.

The interior of the flow is described by the Navier-
Stokes equation

] tv1v~¹v!52

1

r
“p1nDv (17)

for incompressible flow

¹v50. (18)

Here v(r,t) is the three-dimensional velocity field and
p(r,t) the pressure. On the free boundary, pressure and
viscous forces are balanced by capillary forces:

s•n52gknu]V . (19)

In this formula, s is the stress tensor and n the normal
vector pointing out of the fluid. With the velocity
known, the interface is moved according to Eq. (12).

The main technical problem, as compared to other
Navier-Stokes simulations, involves the coupling to a
movable interface and the treatment of a varying com-
putational domain. The earliest work is that by Fromm
(1984), who uses a square grid with a refined grid super-
imposed on it to track the surface. The paper focuses on

FIG. 11. Time evolution of a highly extended fluid suspended
in another fluid. The viscosity ratio is 0.067, and the dimen-
sionless wave number is 0.5. The times the snapshots were
taken are shown in the middle (Tjahjadi, Stone,and Ottino,
1992). Reprinted with permission of Cambridge University
Press.
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the specific problem of ink-jet technology and does not
study pinching systematically. In the work by Shokoohi
and Elrod (1987, 1990), the computational domain is
mapped onto a cylinder with radius 1, making surface
tracking superfluous. The price one has to pay is that the
equations in the interior get very complicated. In par-
ticular, the earlier paper (Shokoohi and Elrod, 1987)
contains a number of surface profiles for different initial
disturbances at a fixed Reynolds number of Re550.

The technique most appropriate for the problem is
probably the one adopted by Keunings (1986), which
uses a deformable grid to accommodate the moving in-
terface. A similar technique was recently used in the
most extensive study of breakup to date (Ashgriz and
Mashayek, 1995). Here the fluid is bounded by a height
function h(z ,t); see Fig. 9. Thus one is limited to situa-
tions in which the profile does not overturn. The com-
putational domain is divided into quadrangles in the r–
z plane, four of which constitute a column in the radial
direction. On each of the quadrangles, four shape func-
tions are defined, into which the flow field is expanded.
Using a Galerkin method, one can derive a discrete set
of equations for the amplitudes of the velocity field and
the boundary points h i . To follow the motion of the
interface, the mesh points are allowed to move in the
radial direction. This is done in such away as to ensure
mass conservation in each element. From this the free
surface is reconstructed. Simulations are reported over a
wide range of Reynolds numbers up to Re=200, which
corresponds to a water jet of 1 mm in diameter. No nu-
merical instabilities are reported even at the highest
Reynolds number.

Simulations were performed with periodic boundary
conditions in the axial direction and for initial sinusoidal
disturbances of different wave numbers. The results
were tested against the predictions of linearized theory
(Rayleigh, 1879a; Chandrasekhar, 1961), which are dis-
cussed in greater detail in the next section. The overall
agreement with predicted growth rates is good. The larg-
est deviations occur for the highest Reynolds number,
for which a maximum error of 10% is reported. Particu-
larly interesting is a sequence of pictures testing the non-
linear evolution leading to breakup for a variety of wave
numbers and Reynolds numbers. Although the wave
number affects the overall shape, the appearance of the
interface near the point of breakup is very similar for
different wave numbers. However, viscosity affects the
breakup significantly: just as seen in experiment, the in-
terface looks like a cone attached to a steep front for
low viscosities and gets increasingly flat for higher vis-
cosities. We shall study the interfacial shape in greater
detail when we compare it with the results of one-
dimensional models (see Sec. V). One very important
point to notice right away is that overturning of the pro-
file does not occur, even at the highest Reynolds num-
bers, which are comparable with experimental ones with
water.

Almost all the work described so far deals with the
problem up to the point of first breakup. To continue
through the singularity, some ad hoc prescription for a

continuation has to be invented for each particular case,
as was done in Tjahjadi, Stone, and Ottino (1992) or
Schulkes (1994b). Apart from the theoretical questions
involved, it would be desirable to develop a general phe-
nomenological scheme to describe breakup and merging
in an arbitrary geometry. Instead of tracking the inter-
face with surface markers (‘‘front tracking’’), this is most
easily accomplished by describing the interface by a sca-
lar function C(r,t), which is defined everywhere (‘‘front
capturing’’). This function is 0 in one fluid and 1 in the
other. The crossover region represents the interface,
which is maintained to have some finite thickness by
numerical diffusion. The function C is advanced every-
where according to

] tC1v~“C !50. (20)

Obviously this description does not rely on specific as-
sumptions about the connectivity of the fluid domains.
On a ‘‘microscopic’’ scale set by numerical diffusion, a
thin sliver of fluid is dissolved and thus broken. Con-
versely, if two pieces of fluid come sufficiently close,
they are joined. The most widely used variant of this
idea is the ‘‘volume-of-fluid method’’ developed by Hirt
and Nichols (1981), which is designed to conserve vol-
ume exactly. Surface tension is included in two recent
papers by Lafaurie et al. (1994), and by Richards, Len-
hoff, and Beris (1994) by distributing surface-tension
forces continuously across the interface. The former
group emphasizes collision and merging of drops, the
latter studies breakup of jets. The computational do-
main, on which the Navier-Stokes solver operates, is sta-
tionary. Figure 12, showing two drops colliding at high
speeds and their subsequent breakup, nicely illustrates
the generality of this method.

On the other hand, the resolution available near
breakup is not very high, so the singularity cannot be
studied in detail. Lafaurie et al. (1994) also report some
numerical instabilities at large Reynolds numbers. So
despite some remarkable features, the development of
general-purpose codes capable of faithfully resolving
breakup in some detail remains a challenge for the fu-
ture.

As a last possibility, we mention the work of Becker,
Hiller, and Kowalewski (1994). It is concerned with
large-amplitude droplet oscillations. The Navier-Stokes
equation is here analyzed by expanding the velocity field
into a set of eigenmodes of the linear problem. This
method is very efficient when surface deformations are
not too large, so that they are representable by a reason-
able number of eigenmodes. However, one expects it to
become inefficient close to rupture, where typical flow
fields are dissimilar to eigenmodes of the linear problem.

IV. SMALL PERTURBATIONS

A. Linear stability

For a piece of fluid to break up, it must be unstable
against surface tension forces at some point during its
evolution. If the fluid is at rest initially, or the time scale
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of the surface-tension-induced motion is much shorter
than other time scales, then the problem of stability is
purely geometrical; that is, instability means that the
surface area can be reduced by an infinitesimal surface
deformation.

The classical example studied by Plateau (1873) and
Rayleigh (1896) is that of an infinitely long cylinder of
radius r0. To a good approximation such a fluid cylinder
will be produced by a jet emanating from a nozzle at
high speed. Now one considers a sinusoidal perturbation
of wavelength l on the cylinder. For example, any ran-
dom perturbation on the jet may be decomposed into a
linear superposition of such Fourier modes. In a linear
approximation all the modes evolve independently, and
one may consider just a single sinusoidal perturbation.
In most practical applications, however, perturbations of
a given wavelength are produced at the nozzle and are
convected down the jet. As argued in Sec. II, for large
Weber numbers b2

5rr0v j
2/g this results in periodic dis-

turbances, which are practically uniform in space.
In cylindrical coordinates r ,w ,z the surface shape can

be written as r(w ,z). It is convenient to measure the
axial coordinate z and deviations from the cylindrical
shape r(w ,z)5r0 in units of r0:

z5z/r0 (21)

and

r~w ,z !/r0511h~w ,z !. (22)

In addition to the sinusoidal perturbation of the radius,
we also allow for small departures from the circular
cross section. This is taken care of by an additional azi-
muthal dependence of the initial perturbation:

h~w ,z !5e cos~nw !cos~xz !,

x5kr0 .

The dynamical constraint is that the volume

V/r0
3
5

1

2
E

0<z<2p/x
~11h !2dwdz

5

2p2

x H 11e2/2 n50

11e2/4 n51,2, . . .

per wavelength is kept constant as e evolves in time.
This means h must also contain another contribution
which ensures conservation of mass, and thus

h~w ,z !5e cos~nw !cos~xz !2e2~11dn0!/81O~e4!.
(23)

On the other hand, the surface area is

FIG. 12. Frontal collision of two drops at We-
ber number b2

520 and Reynolds number Re
=250, based on the relative velocity of the
drops (Gueyffier and Zaleski, 1997). First a
toroidal structure is formed, which then col-
lapses and forms a cylinder. This cylinder
breaks up as required by the Rayleigh insta-
bility.
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A/r0
2
5E

0<z<2p/x
F11~]zh !2

1S ]wh

11h D 2G1/2

3~11h !dwdz

5

~2p !2

x H 11

e2

8
~11dn0!~x2

1n2
21 !J . (24)

Hence with growing disturbance amplitude e the surface
area decreases only if disturbances are axisymmetric
(n50) and x,1. In other words, the wavelength of a
perturbation must be greater than p times the diameter
of the jet for it to be unstable. This famous result is due
to Plateau (1849). From this it may seem as if distur-
bances of very long wavelength, i.e., small x , are the
most rapidly growing ones, as they reduce the surface
area the most. But this leaves out the dynamics of the
problem, which we have not considered yet. In fact, sur-
face tension has to overcome both inertia and viscous
dissipation. The problem first treated by Rayleigh
(1879a) is that of a low-viscosity fluid like water, for
which inviscid theory applies.

Following Rayleigh, we shall calculate the optimal or
fastest growing mode xR , 0,xR,1. If a jet is disturbed
randomly by external noise, this will usually be the
mode that sets the size of drops, as it will soon dominate
all the other excited modes. We shall consider only axi-
symmetric perturbations here, since all nonaxisymmetric
perturbations only create more surface area and are
therefore stable. For most of this subsection, we shall be
looking at inviscid irrotational flow, so the velocity field
has a potential f(r ,z ,t), and Eqs. (10), (12), and (13) for
an ideal fluid apply.

The velocity potential is nondimensionalized using the
initial jet radius r0 and the time scale t05(rr0

3/g)1/2,
which implies a balance of surface tension and inertial
forces. Hence

f̂~r ,z ,t !5

t0

r0
2 f~r ,z ,t !, (25)

where

r5r/r0 , z5z/r0 , and t5t/t0 . (26)

No confusion of the variable r with the density should
arise here. The nondimensional equations of motion are
thus

Df̂50,

]th5]rf̂2~]zf̂ !~]zh !ur511h , (27)

]tf̂512

1

2
@~]rf̂ !2

1~]zf̂ !2#

2

1

A11~]zh !2F 1

11h
2

]z
2h

11~]zh !2GU
r511h

.

The initial conditions are

h~z ,0!5e cos~xz !2e2/41O~e4!, (28)

]th~z ,0!50.

Since the initial surface displacement is assumed to be
proportional to some small parameter e , the velocity will
also be small, so we try the expansion

f̂~r ,z ,t !5ef1~r ,z ,t !1O~e2!, (29)

h~r ,z ,t !5eh1~r ,z ,t !1O~e2!.

To first order in e , the equations of motion (27) become

S ]r
2
1

]r

r
1]z

2Df150, (30a)

]th15]rf1ur51 , (30b)

]tf15h11]z
2h1ur51 . (30c)

Looking for solutions of the form

h15A1~t !cos~xz !, (31)

f15B1~t !f~r !cos~xz !,

we find from Eq. (30a)

f91f8/r2x2f50.

The only solution that is regular for r50 is
f(r)5I0(xr), where I0 is a modified Bessel function of
the first kind. Substituting this into the boundary condi-
tions (30b) and (30c) gives

]tA15B1xI1~x ! and ]tB1I0~x !5A1~12x2!.

The solution of this set of equations with the initial con-
ditions (28), namely, A1(0)51, ]tA1(0)50, is

A1~t !5cosh~v̄ t !, B1~t !5

v̄

xI1~x !
sinh~v̄ t !, (32)

with

v̄ 2
5

xI1~x !

I0~x !
~12x2!. (33)

Frequencies are measured in units of the inverse time
scale v05(g/(rr0

3))1/2. The dimensionless growth rate
v̄ 5v/v0 is real for x,1, so perturbations grow expo-
nentially, making the jet unstable against arbitrarily
small perturbations. For x.1, on the other hand, the
interface performs oscillations, which will eventually be
damped by viscosity. The inviscid dispersion relation
(33) is plotted in Fig. 13. The most unstable mode, cor-
responding to the largest v̄ , occurs at xR50.697. This is
the famous Rayleigh mode, which has a wavelength
lR59.01r0.

This result can be checked directly against the obser-
vations by Savart (1833). If a jet is excited at the nozzle
of a reservoir, it will break with the same frequency with
which it is excited. If the impact of the resulting drops
on another container is fed back into the reservoir
through a mechanical coupling, the original perturbation
will be amplified. This amplification is greatest for the
most unstable wave numbers, and strong enough for a
musical note to sound. Savart measured the pitch of the
sound, and from this observation Plateau (1849) inferred
a wavelength of 4.38 times the diameter of the jet. Using
his concept of maximum instability, Rayleigh (1879b)
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was finally able to interpret this result and found it to be
remarkably close to the prediction of his theory.

The first accurate measurement of the complete dis-
persion relation was done by Donelly and Glaberson
(1966). They excited a water jet with a loudspeaker and
observed photographically how perturbations grow from
one wave crest to the next. Knowing the jet velocity,
they could obtain the temporal growth rate of the per-
turbations. Instead of measuring the height of the crests
with respect to r0, it is more convenient to take the dif-

ference between nodes and crests, which Donelly and
Glaberson found to exhibit exponential growth up to
one wavelength from the breakup point. This may be
due in part to a cancellation of nonlinear effects, as
claimed by Yuen (1968) and confirmed by Goedde and
Yuen (1970). That is, when one takes the difference be-
tween crests and valleys, the contribution from second-
order perturbation theory drops out. Both Donelly and
Glaberson (1966) and Goedde and Yuen (1970) found
excellent agreement with Rayleigh’s dispersion relation
to within experimental scatter. The experimental points
have been included in Fig. 13. It should be mentioned
that an earlier investigation (Crane, Birch, and McCor-
mack, 1964) had found deviations from linear theory
based on both the breakup length and direct analysis of
photographs. The authors attributed this to the large dis-
turbance amplitude used in their experiment, making
linear theory inapplicable.

It was first pointed out by Plateau (1873) that viscosity
might considerably alter the above results. As one
comes closer and closer to a quasistatic Stokes descrip-
tion, inertia becomes less and less important, and the
most unstable wavelength becomes longer, correspond-
ing to the greatest reduction in surface area. Rayleigh
himself analyzed the case of very large viscosities (Ray-
leigh, 1892), assuming that the fluid is described by the
Stokes equation. The full problem, using the Navier-
Stokes equation, was first treated in the monograph by
Chandrasekhar (1961). The result for v̄ is a complicated
implicit equation, which offers little insight in itself, so it

is not reproduced here. Instead, we give the result that
comes from expanding Chandrasekhar’s formula for
small x5kr0. It is

v5v0H F1

2
x2~12x2!1

9

4
Re22x4G1/2

2

3

2
Re21x2J .

(34)

This equation was first obtained by Weber (1931), who
analyzed the motion of thin slices of fluid. Surprisingly,
it turns out to be a uniformly good approximation for all
wavelengths and viscosities. For zero viscosity, it is off
by 7% at most, and becomes increasingly accurate for
higher viscosities. According to Eq. (34), the fastest-
growing mode is

xR
2

5

1

21A18/Re
, (35)

which gets smaller with growing viscosity.
As the Reynolds number decreases, the growth rate is

eventually determined by a balance of surface tension
and viscous forces alone, rather than inertial forces. The
dispersion relation (34) gives, in the limit of small Rey-
nolds number,

v5vn

1

6
~12x2!, (36)

where vn5g/(r0rn) is a viscous growth rate. The vis-
cous dispersion relation has been tested by Donelly and
Glaberson (1966) and Goedde and Yuen (1970), who
both found good agreement with Chandrasekhar’s
(1961) results. A typical dispersion relation is shown in
Fig. 14 for Re51.73.

Since Rayleigh’s pioneering work, linear stability of
liquid cylinders has been applied to many other physical
situations. Tomotika (1935) generalized Rayleigh’s
(1892) analysis of a highly viscous column to include an
outer fluid of finite viscosity and density. Both fluids are
described by Stokes’ equation. It was found that the
most unstable wavelength varied with the ratio of the
two viscosities. A simple formula describing the case of
two equal viscosities has been given by Stone and Bren-
ner (1996). We shall come back to the problem of
breakup of one fluid in another in Sec. VIII.A.

The influence of a surrounding gas of low density was
studied by Weber (1931), Lin and Kang (1987), and

FIG. 13. The dimensionless growth rate of sinusoidal pertur-
bations on a cylinder as a function of the dimensionless wave
number. The solid line represents Rayleigh’s theory for invis-
cid flow, the squares are data from Donnelly and Glaberson
(1966), triangles are from Goedde and Yuen (1970).

FIG. 14. Growth rates for the decay of a viscous cylinder,
comparing data from Goedde and Yuen (1970) with Chan-
drasekhar’s theory. The Reynolds number is Re=1.73.
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Yang (1992). This is of interest for understanding atomi-
zation of liquid jets. The influence of surface charges is
included in the work of Schneider et al. (1967) and of
Grossmann and Müller (1984). The latter authors also
looked at the case of a compressible liquid (Müller and
Grossmann, 1985). In an extending liquid column, the
axial velocity field is not uniform, but the basic flow has
linearly increasing velocity. This case was treated for an
inviscid fluid by Frankel and Weihs (1985). Finally,
Berger (1988) noted that a general disturbance on a jet
has a continuous spectrum of Fourier modes, rather then
just a superposition of discrete modes. This alters the
evolution of a perturbation for early times, making it
deviate from a purely exponential time dependence.

B. Spatial instability

As we have seen, the temporal instability analyzed in
the previous subsection is different from the spatial in-
stability occurring in real jet experiments. So far the per-
turbation had been assumed to be uniform in space
while its temporal growth was observed. In a jet experi-
ment, there is a pointwise disturbance at the nozzle,
which grows downstream as it is convected by the mean
flow. Thus at a given point in space the size of the per-
turbation will remain finite, if the convection is fast
enough to sweep disturbances away before they can
grow. If, however, one considers the frame of reference
in which the jet is stationary, it is convected with the
disturbances and one observes unlimited growth. This is
called ‘‘convective instability,’’ as opposed to the case of
‘‘absolute instability,’’ where perturbations even grow at
a fixed point in space (Landau and Lifshitz, 1984a). Ab-
solute instability implies that no stationary state exists
within the realm of linear theory, as any perturbation
eventually will grow so much as to make the linear ap-
proximation inapplicable.

There are two different physical effects at work which
differentiate the spatial from the temporal instability.
First, the spatial structure far away from the nozzle is
different, as in the former case swells grow from one
wave crest to the next. Thus perturbations are described
by a superposition of plane waves,

h~z ,t !5expi~kz2vt !,

where the wave number k is now allowed to be imagi-
nary, while in Rayleigh’s theory it was prescribed to be
real. The second difference is that the spatial theory is
formulated in the half-space z.0, with proper boundary
conditions at the nozzle opening z50. Usually the jet
radius is prescribed to be constant, while the velocity is
v j with a small sinusoidal perturbation superimposed on
it.

The problem was first studied in a doubly infinite do-
main by Keller, Rubinow, and Tu (1973). It can be
solved by transforming the problem into a coordinate
system that moves with the fluid. The plane-wave ansatz
in a coordinate system tied to the nozzle is

h~z ,t !5Ae i~xz2v̄ t !, (37)

f~r ,z ,t !5Be i~xz2v̄ t !I0~xr !1bz ,

where b , defined by Eq. (6), is the dimensionless jet
velocity. The transformation z5z*1bt moves the coor-
dinate system such that the jet is at rest, which is the
physical situation of the previous subsection. Hence if
we write

e i~xz2v̄ t !
5e i~xz*2v*t !,

v*5v̄ 2bx has to replace v̄ in the dispersion relation
(33).

This means that the new dispersion relation, trans-
formed back to the stationary coordinate system, is

b2~V2x !2I0~x !5xI1~x !~x2
21 !, (38)

where V5v̄ /b is the experimentally prescribed pertur-
bation frequency at the nozzle, multiplied by 2pt0.
Hence Eq. (38) has to be solved for the complex wave
number x , which represents the resulting spatial struc-
ture.

To relate to the temporal analysis, we analyze Eq.
(38) for large b . Thus we put x5V1b21x11O(b22),
where the first term describes convection with velocity
b . Comparing powers of b one finds

x5V6

1

b
@VI1~V !~V2

21 !/I0~V !#1/2
1O~b22!. (39)

Hence up to terms of higher order in b21 we recover an
expression analogous to Rayleigh’s dispersion relation
(33), which was to be expected on the grounds of our
earlier arguments. For V,1, the second term becomes
complex, corresponding to an exponentially growing
spatial instability. In typical experiments, b is larger
than 10, so that terms of higher order in b are negligible
and Rayleigh’s formula can safely be applied. For lower
jet velocities corrections eventually become important,
but then gravity also becomes relevant and has to be
included in the description.

Apart from the roots of Eq. (39) the dispersion rela-
tion (38) has an infinite sequence of other roots, already
noted by Keller, Rubinow, and Tu (1973), which do not
correspond to Rayleigh’s solution. To understand their
significance, one has to consider the full problem in half-
space, with boundary conditions at the nozzle. This was
attempted in a series of papers (Pimbley, 1976; Bogy
1978a, 1978b, 1979b), which correctly analyzed the prob-
lem for large Weber numbers. However, the authors
failed to notice the absolute instability later found by
Leib and Goldstein (1986) for small b .

Apart from the precise form of the radial velocity pro-
file, which is irrelevant to the qualitative features of the
problem, there are two boundary conditions to be satis-
fied at the nozzle. These are the constant jet diameter
and a harmonic time dependence of the velocity field,
which excites the jet. Both can be satisfied by superim-
posing just two traveling waves (37), corresponding to
two solutions of Eq. (38). At the other end of the jet, no
boundary conditions are available, because the linear
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approximation will eventually break down as distur-
bances grow. They have to be replaced by physical con-
ditions on the propagation properties of outgoing solu-
tions. One condition is that for a particular branch of
solutions the wave number must go to zero as V→0,
which is obviously the case for the solutions of Eq. (39).
This requirement simply means that in a steady state a
time-independent boundary condition cannot produce a
spatial structure. Expansion of Eq. (38) for small V
shows that precisely two such solutions exist for V→0,
so one ends up with the correct number of boundary
conditions at the nozzle.

However, following the two physical branches to large
V , one finds that they correspond to disturbances with
diverging speeds of propagation ]V/]Re( x̄ ) as V→` .
This would mean that energy is transported at arbitrarily
high speeds, which is also excluded on physical grounds.
Only for b>bc51.77 does each solution intersect with
another branch of solutions of Eq. (38), which has the
correct physical behavior for V→` . Thus steady-state
solutions of the linear problem exist for b>bc . On the
other hand, no steady state solution exists for b,bc ,
the region of absolute instability found by Leib and
Goldstein (1986).

Bogy (1978a) advanced similar arguments, but used
the existence of a positive group velocity as a criterion
to select physical branches. However, Leib and Gold-
stein (1986) have shown that negative group velocities in
fact do exist even in the stationary state. These authors
solved the linear problem directly by studying the nozzle
problem in much greater detail. In particular, they
looked at the influence of different velocity profiles at
the nozzle lip, which typically is a Hagen-Poiseuille pro-
file, as opposed to the plug profile analyzed above. For
the Hagen-Poiseuille profile the critical jet velocity is
even lower, so the issue of absolute instability in jet de-
cay will probably remain an interesting, albeit somewhat
academic problem, as gravity will always interfere.

C. Higher-order perturbative analysis

Starting from the result of linear theory, the simplest
way to explore nonlinear effects is to extend Rayleigh’s
analysis to higher order in the small-amplitude e . The
first such analysis was due to Bohr (1909), who studied
the stable oscillations a jet performs around its equilib-
rium shape if it is released from an orifice with a noncir-
cular cross section. In the following, we are going to
concentrate on the axisymmetric case, which is much
more difficult, for both stable and unstable ranges of
wave numbers exist. As a result, the expansions cannot
be expected to be uniformly valid for all wave numbers.

For short-wavelength perturbations, against which the
interface is stable, perturbation theory is the obvious
way to include nonlinear effects, as the perturbations
remain bounded. Hence one can expect to obtain solu-
tions that are uniformly valid in time. For unstable per-
turbations, however, the perturbation solutions are valid
only for short times, because higher-order terms have
increasingly fast growth rates. This is not very surprising,

as the time scale t05(rr0
3/g)1/2, on which the linear so-

lution is evolving is of the same order as the breakup
time. But obviously the dynamics close to the equilib-
rium solution do not know about the behavior near
breakup, so the solution breaks down when the pertur-
bation is of the same order as the radius itself. So for a
description of drop formation other methods are
needed. However, there is some hope that as long as the
perturbations are small, the nonlinear analysis might de-
scribe the growth of higher-order harmonics, which are
automatically excited through the nonlinear interaction.
If the perturbation expansion is carried out to third or-
der, it will give some indication of the nonuniform
breakup of a liquid jet, which produces smaller satellite
drops in between the main drops.

The first such theory was attempted by Yuen (1968).
The primary prediction of his work is that the boundary
between stable and unstable wave numbers is shifted to
larger values, as compared to Plateau’s result kr051, if
the perturbations have finite amplitude. Thus perturba-
tions that are linearly stable may be unstable because of
nonlinear effects. To find this stability boundary, it is
sufficient to treat the case of stable oscillations. In the
region of unstable wave numbers, the perturbation ex-
pansions are far from rigorous. In particular, the coeffi-
cients have singularities at ‘‘resonant’’ wave numbers of
kr051/2 and possibly others, which are not understood.
For that reason, we shall focus on the issue of the non-
linear stability boundary, which is a highly nontrivial
problem in itself and has been the subject of some con-
troversy.

Nayfeh (1970) showed that Yuen’s treatment of the
stability boundary was incorrect, predicting an even
lower cutoff wave number. Subsequently, Lafrance
(1975) published a theory that predicted no shift in the
cutoff at all. This apparent discrepancy was later traced
back to an error in his algebra (Chaudhary and Rede-
kopp, 1980). Since the origin of these discrepancies have
never been satisfactorily cleared up, we shall give an
exposition of the essential features of the theory. Below
we show that Nayfeh’s (1970) result xc5113e2/4 for the
stability boundary is recovered by modifying Yuen’s
(1968) original analysis. In the next section this result
will also be tested by computer simulation on a one-
dimensional simplified model (Eggers, 1995b).

To proceed, one writes the velocity potential and the
surface deformation as a power series in e :

f̂~r ,z ,t !5(
i51

`

e if i~r ,z ,t !,

(40)

h~z ,t !5(
i51

`

e ih i~z ,t !.

Plugging this into the equations of motion (27) and com-
paring powers in e , one generates a closed system of
equations at each order. The boundary terms are evalu-

ated by expanding f̂ and h around r51. Thus the equa-
tions at nth order have the structure

883Jens Eggers: Nonlinear dynamics and breakup of free-surface flows

Rev. Mod. Phys., Vol. 69, No. 3, July 1997



S ]r
2
1

]r

r
1]z

2Dfn50,

]thn5]rfn1F$f1 ,h1 , . . . ,fn21 ,hn21%ur51 , (41)

]tfn5hn1]z
2hn1G$f1 ,h1 , . . . ,fn21 ,hn21%ur51 ,

where F and G are complicated, but calculable, nonlin-
ear functions of the lower-order terms. This allows one
to calculate f i and h i recursively to any order.

Owing to the nonlinear interactions between modes,
increasingly higher harmonics of cos(xz) will be gener-
ated, up to cos(nxz) at nth order. Following Yuen
(1968), we shall pursue this procedure to third order,
which is where the first corrections to the linear stability
boundary come in. Corrections of typographical errors
in Yuen’s original work are given in Rutland and Jame-
son (1971) and Taub (1976).

The structure of the second- and third-order terms is

h2~h ,t !5A22~t !cos~2xz !1A20~t !, (42)

f2~r ,h ,t !5B22~t !I0~2xr !cos~2xz !1B20~t !,

and

h3~h ,t !5A33~t !cos~3xz !1A31~t !cos~xz !, (43)

f3~r ,h ,t !5B33~t !I0~3xr !cos~3xz !

1B31~t !I0~xz !cos~xz !,

where the coefficients A ij and B ij are complicated func-
tions of time and the reduced wave number x (Yuen,
1968; Rutland and Jameson, 1971; Taub, 1976). At nth
order, they contain terms cosh(nv̄ t) and sinh(nv̄ t), so
the corresponding perturbation is proportional to
enexp(nv̄ t). Thus for unstable wave numbers x,1 the
expansion is valid only for times t!2log(e/v̄ ). If the
leading-order perturbation is of order one, which is the
case near breakup, all other contributions will be of or-
der one as well. Note also that the coefficients contain
singularities at subharmonic values of the cutoff wave
number. For example, A22(t) has a pole at x51/2.

But even for x.1 the expansion is not uniformly valid
in time, even though for e→0 the solution should be
stable and all coefficients should be bounded. In fact,
A31(t) contains so-called secular terms, which grow lin-
early in time and thus invalidate the solution for t*e .
The reason is that the third-order solution is convected
and stretched by the first-order contribution. This con-
dition cannot be represented by harmonics of finite or-
der, but rather one needs contributions from all orders
of the perturbation expansion.

One way around this problem is to reparametrize time
and space coordinates according to

t̄ 5nt , (44)

z̄ 5kcz ,

where n511e2n21••• and kc511e2k21••• both
have expansions in e itself. This procedure, called the
method of strained coordinates (van Dyke, 1975), was
first used by Yuen (1968) in the context of the present

problem. Organizing the perturbation expansion in the

new variables t̄ and z̄ means one has to replace the dif-
ferential operators ]t and ]z by n]t¯5(11e2n21•••)]t¯

and kc]z¯5(11e2k21•••)]z¯ . By adjusting the free con-
stants n2 and k2, one hopes to remove secular terms at
third order. Effectively, one is resumming certain contri-
butions from all orders. It is, however, far from trivial
that this resummation procedure works at all orders. We
have to be content with the third-order results, but shall
check them against numerical simulations later.

If k2 is nonzero, this implies a shift in the cutoff wave

number, as cos(xz)5cos(x̄ z̄ ), with x̄ 5x/kc . Thus the
growth rate is now

v̄ 15F x̄ I1~ x̄ !

I0~ x̄ !
~12 x̄ 2!G 1/2

,

which is real for x̄ ,1 or

x,11e2k2 . (45)

In the strained coordinates the equation for A31 ,
which contains the secular term, is

]
t¯
2
A312v̄ 1

2A315P1~ x̄ !cosh(~v̄ 11v̄ 2!t̄ )

1P2~ x̄ !cosh(~v̄ 12v̄ 2!t̄ )

1P3~ x̄ !cosh~3v̄ 1t̄ !

1@P4~ x̄ !1v̄ 1
2P5~ x̄ !n2

1(v̄ 1
2P6~ x̄ !2 x̄ 4)k2#cosh~v̄ 1x̄ !, (46)

where

v̄ 2
2
52

I1~2 x̄ !

I0~2 x̄ !
x̄ ~124 x̄ 2!.

The particular solution coming from the last contribu-
tion contains the secular term

A315
t̄

2v̄ 1

@P4~ x̄ !1v̄ 1
2P5~ x̄ !n2

1(v̄ 1
2P6~ x̄ !2 x̄ 4)k2#sinh~v̄ 1x̄ !,

which grows with t̄ unless the terms in the angular
brackets cancel. Yuen used precisely this condition to
determine n2 and k2, setting

n252

1

v̄ 1
2P5~ x̄ !

$P4~ x̄ !1(v̄ 1
2P6~ x̄ !2 x̄ 4)k2%. (47)

Near the cutoff wave number x̄ 51, this expression has a
singularity, since v̄ 1→0. To cancel this singularity one
puts

k25P4~1 !5

9

16
,

which together with Eq. (45) is Yuen’s result for the
cutoff wave number.

Yuen overlooked the fact that the term
P3( x̄ )cosh(3v̄ 1t) in Eq. (46) produces additional secular
terms as v̄ 1→0. That is, since P3(1)53/16, Eq. (46) be-
comes at x̄ 51
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] t̄
2
A315(P1~1 !1P2~1 !)cosh~v̄ 2t̄ !1

3

4
2k2 .

This means A315(3/42k2) t̄ 2 up to oscillatory terms.
Thus to cancel the secular terms in the cutoff region one
has to put k253/4, and the correct cutoff wave number
becomes

xc511

3

4
e2. (48)

This result was first found by Nayfeh (1970), using the
method of multiple time scales (Bender and Orszag,
1978).

It should be mentioned that the shift predicted by Eq.
(48) is extremely small, so that an experimental verifica-
tion has not yet been possible. If the perturbation am-
plitude is 10% of the radius, the wave number must be
known to within one percent. Even simulations have not
led to a significant confirmation (Ashgriz and Mashayek,
1995). Therefore we shall test Eq. (48) in the next sec-
tion within the framework of one-dimensional models,
for which the perturbation theory is virtually identical,
except for some differences in the coefficients. The cut-
off wave number comes out to be the same.

Away from the cutoff wave number in the unstable
region, the growth of higher-order harmonics has been
measured by Taub (1976), using a highly sensitive sur-
face probe. Treating the Weber number as a free param-
eter, he found good agreement with Yuen’s theory. Ash-
griz and Mashayek (1995) also investigated stable
oscillations for x.xc , plotting the time dependence of
various harmonics of the fundamental perturbation. No
quantitative comparison with nonlinear theories was at-
tempted. This welcome test of their validity remains a
worthwhile objective. Chaudhary and Redekopp’s
(1980) work differed in two ways from previous investi-
gations: first, they considered an initial perturbation of
the velocity field instead of one of the surface. This was
to mimic the true excitations of a jet at the nozzle, which
couples to the velocity field. Their treatment of the cut-
off region was the same as Yuen’s, which means they
also did not properly take into account the fact that v̄ 1

goes to zero as the cutoff is approached. Therefore their
treatment of the cutoff is subject to the same criticism,
and it would be a worthwhile problem to redo their
analysis. The second aspect of their work was to con-
sider the influence of higher-order harmonics in the
driving, which to some extent had also been done by
Cline and Anthony (1978). Owing to nonlinearities the
two inputs interact at higher orders and change the evo-
lution of the jet. We shall discuss this in greater detail in
Sec. VII.C on satellite formation.

Finally, we mention the work of Wang (1968), who
studied the effect of finite amplitudes on the most un-
stable wave number. He obtained a correction to Ray-
leigh’s result xR50.697 which depends on the amplitude.

V. ONE-DIMENSIONAL APPROXIMATIONS

It seems obvious that the three-dimensional equations
describing the nonlinear motion of free-surface flow are

hopelessly complicated if analytical solutions are to be
obtained. Perturbation theory cannot be extended to the
regime close to breakup. One is therefore interested in
generating simplified equations that still capture the es-
sential nonlinear physics of the problem. This is possible
in situations where the fluid thread is long and thin, so
that the fluid flow is directed mostly along the axis and
the velocity field is effectively one-dimensional. In par-
ticular, this so-called slenderness assumption turns out
to be generically valid close to breakup and becomes
exact asymptotically close to pinchoff (Eggers, 1993).

Our strategy is to expand the velocity field in the ra-
dial direction, whose lowest-order terms should be suf-
ficient to describe the radial motion. Equations of mo-
tion are then derived for the expansion coefficients,
which depend only on the axial variable z . The idea
behind this goes back to Reynolds (1886) and is often
called the ‘‘lubrication approximation.’’ This is because
it is traditionally applied to flows in a narrow channel,
for instance between two moving mechanical parts. In
the direction perpendicular to the surface the velocity
field will be parabolic, leaving an equation for the am-
plitude as a function of the position in the channel.

The situation of free-surface flow, however, is much
more complicated. First, the smallness of the expansion
parameter will depend on the solution itself, essentially
on whether the typical surface height is really small com-
pared to a typical longitudinal extension. Second, it is
not obvious which forces in the equations have to be
taken into account. In the example of lubrication flow,
viscous forces will be balanced by pressure forces, while
inertia is not important. But in our case the relative im-
portance of inertial, viscous, or surface-tension forces
will depend on the problem considered. Nevertheless,
the lubrication approximation for radially symmetric
free-surface flow by now has some history of its own,
inspired partly by the theory of shallow-water waves,
summarized by Peregrine (1972). A broad perspective
on approximations for axisymmetric flows is given in
Middleman’s (1995) book. The beautiful discussion of
flows includes jets, waves, drop dynamics, and thin-film
flow. Unfortunately, the lubrication equations for a thin
jet, to be derived below, are not given correctly.

Matovich and Pearson (1969), as well as Pearson and
Matovich (1969) and Schultz and Davis (1982) derived
equations for the steady motion of viscous threads in
order to study fiber spinning. In a pioneering work, Lee
(1974) studied the dynamics of an inviscid liquid jet, in-
cluding a fully nonlinear numerical computation. This
allowed him to look at the nonuniformity of breakup
and to estimate the size of satellite drops. Lee’s equa-
tions were further investigated (Pimbley, 1976; Pimbley
and Lee, 1977) to study satellite behavior. The funda-
mental problem with Lee’s equations is, however, that
viscosity will become important in the process of pinch-
ing, regardless of how small. We shall investigate the
spurious singularities of the inviscid equations later in
much greater detail (Brenner et al., 1997).

This problem was fixed by Green (1976), who derived
equations that included viscosity. His approach was dif-
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ferent from Lee’s, as he did not start from the equations
of motion, but rather from an inherently one-
dimensional description, endowed with the correct sym-
metry properties (Green and Laws, 1966). We shall see
below that these so-called Cosserat equations can in fact
be obtained from the Navier-Stokes equation by averag-
ing over appropriate slices of the fluid (Dupont, 1993).
Again, the Cosserat equations were used in a series of
papers (Bogy, 1978a, 1978b, 1979a, 1979b) focusing on
linear stability, and in numerical simulations (Bogy,
Shine, and Talke, 1980; Shield, Bogy, and Talke, 1986).
The same equations were also used extensively in the
context of liquid bridges (Meseguer, 1983; Meseguer and
Sanz, 1985; Perales and Meseguer, 1992).

But it was not until recently that a systematic deriva-
tion of viscous one-dimensional equations was carried
out starting from the Navier-Stokes equation. Bechtel,
Forest, and Lin (1992) used a perturbative approach to
obtain one-dimensional equations to arbitrarily high or-
der, which we shall explain in Sec. V.A. Independently,
Eggers and Dupont (1994) and Garcia and Castellanos
(1994) gave essentially the same leading-order equa-
tions. At higher orders, different approaches are pos-
sible. In Sec. V.B we shall explain how the one-
dimensional Cosserat equations are obtained from the
Navier-Stokes equation.

A. Radial expansion method

We want to find approximate solutions to the equa-
tions of motion in a situation where the typical thickness
l r of the fluid neck is small compared with a typical
axial scale l z . This means the problem contains a small
parameter e which relates the two scales

l r5el z . (49)

In addition to the length scales l r and l z the problem is
characterized by a time scale t . These scales can now be
used to estimate the order of magnitude of the different
terms in the equations of motion. We begin by saying
that the axial component of the velocity field is approxi-
mated by vz'l z /t , which may also be viewed as the
definition of t . By continuity, we have ]zvz']rvr , and
hence vr'el z /t . The motion is driven by surface ten-
sion, so the main contribution to the pressure comes
from the mean curvature, p/r'(g/r)k . For an almost
flat interface, k is dominated by the radius of curvature
perpendicular to the axis, and hence k'1/l r and
p/r'(g/r)/l r . From the Navier-Stokes equation we
have ] tvz']zp/r , implying that g/r'l rl z

2/t2
5el z

3/t2.
So, if surface tension has this order of magnitude, sur-
face tension and inertial forces are balanced.

We have already mentioned that the inviscid equa-
tions develop singularities in finite time, so surface ten-
sion and inertial forces must also be balanced by viscos-
ity for a consistent theory. We expect vz to have the
greatest variations in the z direction, so the dominant
viscous term is n]z

2
vz'n/(l zt). Equating n/(l zt) with

] tvz we find that n'l z
2/t is the viscosity at which vis-

cous forces are balanced by inertia.

For a given problem, n and g/r are of course given
numbers, so physically speaking the scales l r , l z , and
t of a particular solution adjust themselves to make vari-
ous terms in the equations balance. For example, to
avoid an inviscid singularity, l z and t will come out to

ensure n'l z
2/t . From the constancy of the physical pa-

rameters n and g/r we can therefore deduce that

l z
2'nt and l r'gt/(rn), so we get l z'(n2r/g)e ,

l r'(n2r/g)e2, and t'(n3r2/g2)e2. If the typical scales
of a solution behave in this way, surface-tension, inertial,
and viscous forces will be balanced during the entire
evolution of this solution.

Having estimated the typical size of all terms, it is
useful to choose the scales l z , l r , and t such that

l z5el n , l r5e2
l n , and t5e2tn , (50)

with

l n5

n2r

g
, tn5

n3r2

g2 . (51)

These are the unique length and time scales that can be
formed from the material parameters. When we use
l z , l r , and t to nondimensionalize all variables accord-
ing to

r5l rr̃ , z5l zz̃ , t5t t̃ ,

vr5

l r

t
ṽ r , vz5

l z

t
ṽ z , p/r5

l z
2

t2 p̃ , (52)

h5l rh̃ ,

all material parameters drop out of the problem and the
rescaled equations of motion become

] t˜ṽ r1 ṽ r] r̃ ṽ r1 ṽ z] z̃ ṽ r52

1

e2 ] r̃ p̃ 1

1

e2 ] r̃
2
ṽ r1] z̃

2
ṽ r

1

1

e2 ] r̃ ṽ r / r̃ 2

1

e2 ṽ r / r̃ 2,

(53)

] t˜ṽ z1 ṽ r] r̃ ṽ z1 ṽ z] z̃ ṽ z52] z̃ p̃ 1

1

e2 ~] r̃
2
ṽ z1] r̃ ṽ z / r̃ !

1] z̃
2
ṽ z .

The equation of continuity is

] r̃ ṽ r1] z̃ ṽ z1 ṽ r / r̃ 50, (54)

and the tangential and normal force balances read

p̃ 2

2

11e2~] z̃ h̃ !2
@] r̃ ṽ r1e2] z̃ ṽ z~] z̃ h̃ !2

2~] r̃ ṽ z1e2] z̃ ṽ r!] z̃ h̃ #5k̃ u r̃ 5h˜ , (55)

2e2~] r̃ ṽ r2] z̃ ṽ z!] z̃ h̃ 1~] r̃ ṽ z1e2] z̃ ṽ r!(12e2~] z̃ h̃ !2)

50u r̃ 5h˜ .

Finally, the kinematic boundary condition is

] t˜h̃ 1 ṽ z] z̃ h̃ 5 ṽ ru r̃ 5h˜ . (56)
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We now write the two components of the velocity
field and the pressure field as a power series:

ṽ z~ r̃ , z̃ , t̃ !5 ṽ 0~ z̃ , t̃ !1 ṽ 2~ z̃ , t̃ !~e r̃ !2
1••• ,

ṽ r~ r̃ , z̃ , t̃ !52 ṽ 08~ z̃ , t̃ !
e r̃

2
2 ṽ 28~ z̃ , t̃ !

~e r̃ !3

4
2••• , (57)

p̃ ~ r̃ , z̃ , t̃ !5p̃ 0~ z̃ , t̃ !1p̃ 2~ z̃ , t̃ !~e r̃ !2
1••• .

In Eq. (57), ṽ r has already been chosen to make the
velocity field incompressible. The prime refers to differ-
entiation with respect to z̃ . Inserting the expansions into
the equations of motion (53), we find

] t˜ṽ 01 ṽ 0ṽ 0852p̃ 081~4 ṽ 21 ṽ 09!1O~e2! (58)

from the vz equation, while the equation for vr is satis-
fied identically to leading order e21. The two boundary
conditions (55) give

p̃ 05k̃ 2 ṽ 081O~e2! and

23 ṽ 08h̃ 82

1

2
ṽ 09h̃ 12 ṽ 2h̃ 1O~e2!50,

which can be read as an equation for p̃ 0 and ṽ 2, resulting
in

] t˜ṽ 01 ṽ 0ṽ 0852k̃ 813
~ ṽ 08h̃ 2!8

h̃ 2
(59)

to leading order. The factor of 3 in front of the viscous
term is typical for elongational flows, and 3n is often
called the Trouton viscosity (Trouton, 1906). The equa-

tion of motion (56) for h̃ immediately gives

] t˜h̃ 1 ṽ 0h̃ 852

1

2
h̃ ṽ 08 . (60)

The mean curvature k̃ appearing in Eq. (59) is

k̃ 5

1

h̃ ~11e2h̃ 8
2!1/2

2e2
h̃ 9

~11e2h̃ 8
2!3/2

, (61)

and thus to leading order

k̃ 5

1

h̃
1O~e2!. (62)

The system (59), (60), and (62) constitutes the desired
lubrication approximation to leading order. Remark-
ably, it turns out to be a closed system for the one-

dimensional velocity field ṽ 0( z̃ , t̃ ) and the height

h̃ ( z̃ , t̃ ). Besides reducing the number of dimensions by
one, this eliminates the free-surface boundary conditions
from the problem. For e→0, it is an exact representation
of the full Navier-Stokes dynamics and will be central to
our subsequent discussion.

The leading-order equations are part of a perturba-
tion expansion that can be extended to arbitrarily high
order in e (Bechtel et al. 1995; Bechtel, Carlson, and

Forest, 1995). To this end the expansions (57) are in-
serted into the equation of motion and contributions of
the same power in r are collected. For example, the next
contribution to the axial momentum equation following
(58) is of order r2, giving

] t˜ṽ 21 ṽ 0ṽ 2852p̃ 281~16ṽ 41 ṽ 29!. (63)

To obtain a closed system, one uses the boundary equa-
tions (55) and (56) and solves to each order in e . Unfor-

tunately, this leads to closure only if h̃ and the Taylor
coefficients ṽ i of the velocity field are expanded as well
(Bechtel et al., 1995):

ṽ i~ z̃ , t̃ !5(
j50

`

ṽ i
~ j !~ z̃ , t̃ !e j, (64)

h̃ ~ z̃ , t̃ !5(
j50

`

h̃ ~ j !~ z̃ , t̃ !e j.

Comparing powers of e in each of the boundary equa-
tions (55), (56) and in the momentum equations up to
order r i, one obtains a closed system for the coefficients

ṽ i
(j) and h̃ (j) at any order in e . This double-expansion

strategy thus leads to quadratic growth in the number of
equations with order. We refer the reader to Bechtel,
Carlson, and Forest (1995) for the explicit equations at
higher orders.

Solutions to these systems are obtained in the follow-
ing manner: First one has to solve the leading-order sys-
tem, Eqs. (59), (60), with appropriate boundary and ini-
tial conditions. The solutions of the leading-order
equations are then plugged into the equations at the
next order, which again can be integrated to compute a
correction to the leading-order solution. This process
can be continued to obtain solutions up to any given
order. The problem with this approach is that one is
confined to situations in which the leading-order equa-
tions already give a uniformly valid approximation of
the problem, since perturbation theory can only describe
small corrections to the leading behavior.

By contrast, Garcia and Castellanos (1994) derive a
nonlinear system of equations for the expansion coeffi-
cients of the velocity field, which are solved simulta-
neously. Thus the more accurate description of the ra-
dial dependence of the velocity field feeds back into the
leading-order amplitudes. While the resulting systems of
equations get more and more complicated at higher or-
ders, the method is tremendously powerful computa-
tionally. Indeed, one expects the results to be uniformly
valid as long as the radial dependence of the expansion
is fine enough to describe a given flow structure accu-
rately. For example, at the next-to-leading order the z
component of the velocity field is written as

ṽ z~ r̃ , z̃ , t̃ !5 ṽ 0~ z̃ , t̃ !1 ṽ 2~ z̃ , t̃ !~e r̃ !2

1 ṽ 4~ z̃ , t̃ !~e r̃ !4
1••• .

Equations (58), (63), and the corresponding radial mo-
mentum equations form a coupled set of equations,
which are solved simultaneously. Boundary-force bal-
ance is used to eliminate ṽ 4 and p̃ 2, resulting in a

coupled system of three equations for ṽ 0, ṽ 2, and h̃ 0.
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B. Averaging method: Cosserat equations

In this subsection, we describe an entirely different
approach to obtaining one-dimensional approximations,
based on integrating the equations of motion over a slice
of the fluid. Interestingly, the leading-order versions of
this procedure lead to a set of equations well known as
the Cosserat equations (Green, 1976). In an approach
borrowed from solid mechanics (Green and Laws, 1966),
one starts from a system of one-dimensional fields,
called ‘‘directors.’’ The equations of motion are then de-
rived from symmetry considerations and conservation
properties and they coincide with the equations derived
from the Navier-Stokes equation by integrating over
slices. Ultimately, this is not surprising, as the momen-
tum over a slice of the fluid must inherit the correct
symmetry properties from the full equations of motion.
The obvious advantage of this derivation (Dupont,
1993), presented here for the first time, is that there is a
clear connection to the three-dimensional equations of
motion. Therefore the error made at a given order of the
approximation can be estimated and can be systemati-
cally improved by going to a higher order of the ap-
proximation. Methods that are very similar in spirit, but
lead to a coupled set of integro-differential equations,
have been developed by Entov and Yarin starting from
the early 1980s (Yarin, 1993) and by Dewynne, Howell,
and Wilmott (1994). They are more general in that they
allow for an arbitrary position of the centerline of the jet
as well as noncircular cross sections.

Dupont’s procedure is essentially a Galerkin approxi-
mation of the equations of motion, which means the ve-
locity is represented by a superposition of a finite num-
ber of basis functions. Equations of motion for the
coefficients are obtained by projecting the Navier-
Stokes equation onto each of the basis functions. Again,
a coupled system of equations results, which should rep-
resent the velocity field more and more accurately at
higher orders.

The basis functions used represent slices of the fluid,

w~2i , z̄ !~r ,z !5S 2

r2i11

2i12
d8~z2 z̄ !

r2id~z2 z̄ !

D , (65)

which are divergence free, with a discrete index i and a
continuous index z̄ representing the position of the slice.
The main deficiency of the functions (65) is that they are
not orthogonal for different i , which is the price one has
to pay for their being both perfectly localized in space
and divergence free. Using Eq. (65), we can write any
incompressible velocity field as a unique superposition
of basis functions:

v~r ,z ,t !5(
i50

`

E
2`

`

v
~2i !~ z̄ ,t !w~2i , z̄ !~r ,z !dz̄ . (66)

Now one has to plug Eq. (66), truncated at some or-
der i5n , into the Navier-Stokes equation and the kine-
matic boundary condition and project it onto the corre-

sponding n11 basis functions w(2i , z̄ )(r ,z),i50, . . . ,n .

This yields a coupled set of (n12) equations for the
amplitudes v

(0)( z̄ ,t), . . . ,v(2n)( z̄ ,t), and h( z̄ ,t). To
project the Navier-Stokes equation onto an arbitrary in-
compressible vector field w(r ,z), we write it in the form

r(] tv1~v¹!v)5“•s, (67)

where the stress tensor is given by

s ij52pd ij12hD ij~v! (68)

and

D ij~v!5

1

2
~] jv i1] iv j! (69)

is the deformation tensor. We multiply the Navier-
Stokes equation by w(r ,z) and integrate over the vol-
ume of the fluid, 0<r<h(z). The result can be written
symbolically as

rIr5Is ,

where

Ir5E
V

@] tv1~v¹!v#wd3x and

Is5E
V

~¹s!wd3x . (70)

On integrating by parts, Is can be written as

Is5E
V

] is ijw jd
3x52E

V
s ij] iw jd

3x

1E
]V

n is ijw jd
2s .

In the first integral on the right the pressure does not
contribute, since ] iw i50. For the second integral we use
the force balance at the boundary,

n is ij52gkn j .

Thus after some manipulations we obtain

Is522hIh2gIg ,

where

Ih5E
V

D ij~v!D ij~w!d3x , Ig5E
]V

k~nw!d2s ,

and the desired projection of the Navier-Stokes equa-
tion is in full

rE
V

@] tv1~v¹!v#wd3x52gE
]V

k~nw!d2s

22hE
V

D ij~v!D ij~w!d3x .

(71)

To be more explicit, we compute the leading-order
approximation, so
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w~r ,z !:5w~0,z̄ !~r ,z !5S 2

r

2
d8~z2 z̄ !

d~z2 z̄ !

D (72)

and

v~r ,z ,t !5S 2

r

2
v08~z ,t !

v0~z ,t !

D . (73)

For the integrals we find

1

p
Ir5h2

v̇02

1

8
~h4

v̇08!81h2
v0v081

1

16
~h4

v08
2!8

2

1

8
~h4

v0v09!8

and

1

p
Ih52

3

2
~h2

v08!81

1

16
~h4

v09!9,

where the dot represents a time derivative.
The surface integral Ig is most conveniently evaluated

using Gauss’ theorem. To do this, we formally define k
over the total volume: k(r ,z)5k(z), hence

Ig5E
V

] i~kw i!d3x5E
V

~] ik !w id
3x

5E
V

~]zk !wzd3x .

We end up with the equation

rFh2
v̇02

1

8
~h4

v̇08!81h2
v0v081

1

16
~h4

v08
2!82

1

8
~h4

v0v09!8G
52gh2k81hF3~h2

v08!82

1

8
~h4

v09!9G . (74)

Plugging the velocity field (73) into the kinematic
boundary condition, one obtains

ḣ1v0h852

1

2
v08h , (75)

which is the corresponding equation for h . Equations
(74) and (75) are precisely the Cosserat equations as
given by Bogy (1979b). One immediately notices that for
a slender jet, for which h is of order e , one recovers the
leading-order equations (59), (60). This is the first a time
a connection between the Navier-Stokes equations and
the Cosserat equations has been established. Bousfield
et al. (1986) miss some of the inertial and the viscous
terms. Perales and Meseguer (1992) selectively take
some higher-order terms into account, starting from a
radial expansion. Schulkes (1993) treats only the inviscid
case.

The next step in the expansion is to approximate the
velocity field as

v~r ,z ,t !5S 2

r

2
v08~z ,t !2

r3

4
v28~z ,t !

v0~z ,t !1r2
v2~z ,t !

D . (76)

Evaluating the projection (71) with the two basis func-
tions

w~0,z̄ !~r ,z !5S 2

r

2
d8~z2 z̄ !

d~z2 z̄ !

D ,

w~2,z̄ !~r ,z !5S 2

r3

4
d8~z2 z̄ !

r2d~z2 z̄ !

D , (77)

one obtains a coupled system for v0 and v2, while the
equation for h is now

ḣ1v0h1v2h3
52

h

2
v082

h3

4
v28 . (78)

This represents the analogue of the coupled set of equa-
tions derived by Garcia and Castellanos (1994).

Note, however, that we did not make any assumption
about h’s being small, but used only an expansion of the
velocity field. In particular, one gets to keep the full
curvature term k coming from the surface forces even at
leading order; see Eq. (74). In the radial expansion
method, h had to be of order e , so k is approximated by
1/h as in Eq. (62). There are good reasons for keeping
the full curvature term even in Eq. (59) (Eggers and
Dupont, 1994; Garcia and Castellanos, 1994), but only
the Galerkin method offers a consistent rationale for
doing so.

C. Basic properties and simulations

Since we shall be dealing mostly with the leading-
order system (59), (60), we shall repeat it here in dimen-
sional form in order to make the origin of the different
terms more apparent. Thus

] tv1vv852p8/r13n
~h2

v8!8

h2 , (79)

] th1vh852v8h/2, (80)

where v is the leading-order expansion coefficient of
vz . The ‘‘pressure’’ p(z ,t) here is just its contribution
coming from the mean curvature, whose leading-order
contribution is

p5g
1

h
. (81)

Although the greatest significance of the system (79)–
(81) lies in the asymptotic limit close to breakup, it has
also been successfully used for simulations away from
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breakup (Eggers and Dupont, 1994; Brenner, Shi, and
Nagel, 1994). The key to this success lies in a modifica-
tion of Eq. (81) to include the complete expression for
the mean curvature,

p5gS 1

h~11h8
2!1/2 2

h9

~11h8
2!3/2D . (82)

This procedure was already adopted by Lee (1974), and
has subsequently been used by many other authors (Me-
seguer, 1983; Johnson et al., 1991; Garcia and Castell-
anos, 1994). The best rationale for doing so is offered by
the Galerkin procedure of the previous subsection, but
Eq. (79) has the advantage of much greater mathemati-
cal simplicity over Eq. (74). The complete curvature on
the right-hand side of Eq. (82) is of course also repre-
sented as an infinite sequence of terms in the equations
of the radial expansion. It would be extremely desirable
to develop a general and consistent method to ‘‘resum’’
all the relevant terms of the expansion, such that Eq.
(82) is included even at leading order. Perturbative re-
summation like this is customary in quantum field
theory (Amit, 1978), but has not yet been explored in
the context of nonlinear partial differential equations.

The system (79),(80) has to be supplemented with
boundary conditions

h~z6 ,t !5h6~ t !, (83)

v~z6 ,t !5v6~ t !,

where the two boundary points z1 , z2 may themselves
be time dependent. In a liquid-bridge experiment, for
example, z6 represent the position of the two rings
holding the bridge.

The two most important conservation laws are conser-
vation of mass and energy,

] tV5ph2
vu

z5z
2

z
1 , (84)

with the volume being

V5pE
z

2

z
1

h2dz , (85)

expressing conservation of mass. The kinetic energy is

Ekin5

p

2
rE

z
2

z
1

h2
v

2dz , (86)

while the potential energy is g times the total surface
area:

Epot52pgE
z

2

z
1

h~11h8
2!1/2dz . (87)

Thus the sum obeys the balance equation

] t~Ekin1Epot!5D1boundary terms, (88)

where D is the rate of energy dissipation,

D523pnrE
z

2

z
1

~hv8!2dz . (89)

This means that apart from driving through boundary
terms, the total energy of the system can only decrease,

and a drop eventually has to reach some static equilib-
rium shape, corresponding to a minimum of the poten-
tial energy. Since the potential energy (87) is the same as
in the full equations, the physical equilibrium states such
as those of a drop hanging from a faucet (Michael and
Williams, 1976), will also be reproduced exactly. For re-
producing the equilibrium states it is of course crucial to
keep the full curvature term as in Eq. (82).

Another important benefit of the ‘‘resummed’’ form
of the pressure, Eq. (82), emerges when considering the
linear stability around a cylindrical surface h5r0. In
analogy to the three-dimensional case [cf. Eq. (31)], we
write

h~z ,t !5r0@11e cosh~vt !cos~kz !# , (90)

v~z ,t !5ev0 sinh~vt !sin~kz !

and linearize in e . A calculation analogous to that of the
full problem leads to the dispersion relation (34). As we
have mentioned before, this dispersion relation accu-
rately approximates the true growth rates for all v . Even
more important, the stability boundary is at kr051, the
same as for the full equations. This means short-
wavelength perturbations will not grow, in contrast to
the leading-order equation (81), which produces infinite
growth rates for the inviscid problem and still produces
finite growth rates in the limit k→` for finite viscosity
(Forest and Wang, 1990). Thus the leading-order system
is unstable against very-short-wavelength ‘‘noise,’’ mak-
ing it ill suited for numerical purposes. If one includes
higher-order terms perturbatively (Bechtel, Carlson, and
Forest, 1995) the problem is not mended, since the
leading-order equations are unaffected by higher-order
ones.

Linear stability has also been investigated for various
higher-order models such as the Cosserat equations
(Bogy, 1979b) and the parabolic approximation (Garcia
and Castellanos, 1994). The dispersion relation of these
models still improves the comparison with Rayleigh’s
formula. For example, for the Cosserat equation the
relative error in the growth rate is less than 0.25% for all
unstable wave numbers.

Even using a system that is linearly stable against
short-wavelength perturbations, numerical simulations
of the fully nonlinear behavior are by no means trivial.
This is true in particular in the neighborhood of the
pinch point, which is characterized by very small length
and time scales, and a blowup of the velocity. The
asymptotic behavior near pinchoff described in the next
subsection sets in only when hmin&l n/205n2r/(20g).
Therefore, to simulate the motion of a drop of water
falling from a 1 cm nozzle, one needs to resolve 8 orders
of magnitude in the minimum height. Moreover, low-
viscosity fluids are characterized by steep gradients,
which have to be resolved carefully and are likely to
cause numerical instabilities.

One can only hope to reach sufficient spatial resolu-
tion when the grid is locally refined near the singularity.
Since the singularity moves in space and resolution re-
quirements cannot be foreseen, the grid has to be ad-
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justed to meet certain accuracy requirements. To ensure
sufficient temporal resolution, the time step has to be
dynamically adjusted as well. Finally, a solution that in-
corporates spatial and temporal scales over many orders
of magnitude, will also be prone to numerical instabili-
ties. These have to be dealt with using implicit methods
(Press et al., 1992).

The first fully nonlinear calculation is due to Lee
(1974), who integrated the lubrication equations (79),
(80), and (82) with zero viscosity and using periodic
boundary conditions. A more extensive numerical study
of the Cosserat equations (74), (75) in the inviscid and
the viscous case was performed by Bogy, Shine, and
Talke (1980). Like Lee, they used finite-difference equa-
tions, studied explicit as well as implicit methods, and
discussed their stability. By contrast, Schulkes (1993)
used finite-element methods to compare various inviscid
models, namely, the full potential-flow equations (9)–
(11), the inviscid Cosserat equations, and Lee’s model.
He found considerable differences between the three
cases, probably due to the fact that inviscid models be-
come inconsistent even before breakup occurs, as shown
by Eggers and Dupont (1994).

The first quantitative comparison of a one-
dimensional model with experiment was carried out by
Eggers and Dupont (1994), who also included a detailed
analysis of the pinch singularity. To do that, they used a
second-order finite-difference scheme with a highly non-
uniform mesh, which was adapted to the solution. The
time integration was a fully implicit second-order
scheme with adaptive step size control. It forced them to
solve a nonlinear system of equations at each time step,
which they did using Newton’s method. A fully implicit
scheme was found to be essential in order to control
numerical instabilities. Figure 15 shows a comparison of
the numerical computations by Eggers and Dupont with
a drop of water at the bifurcation point. The photograph
is the same as Fig. 10, in which the comparison is with a
potential flow simulation.

The lubrication model correctly predicts the global
shape, as it does the drop size, the length of the neck,
and the profile near the bifurcation point. This only be-
comes possible if one goes beyond the asymptotic
model, Eqs. (79)–(81), and includes the higher-order
corrections, [Eq. (82)] in the curvature, such that spheri-
cal drops become an equilibrium shape. The model de-
veloped by Eggers and Dupont (1994) has also been
used in an extensive study of the nonlinear evolution of
a liquid bridge (Zhang, Padgett, and Basaran, 1996).
Again, excellent agreement with experiment was found.

The numerical code originally developed by Eggers
and Dupont has been subsequently refined in several
directions. Shi, Brenner, and Nagel (1994) used a dy-
namically evolving grid, which introduced local refine-
ment once specified conditions on the solution are met.
In the case of low viscosities, treated by Brenner et al.
(1997), special care had to be taken, since lack of viscous
damping made the solution sensitive to perturbations.
Moreover, steep gradients of the height and the velocity
field occured even before hmin went to zero. These had

to be dealt with by introducing additional refinement in
regions of large gradients. The sensitivity to noise was
accounted for by introducing a smooth mesh, whose grid
sizes were continuously varied, as opposed to the grad-
ing in steps of two used by Eggers and Dupont. Through
a combination of all of the above precautions, Brenner
et al. (1997) dealt with a Reynolds number correspond-
ing to a fluid 1/10 of the viscosity of water, falling from a
1 cm nozzle. To fully resolve this problem, the solution
had to be followed through 10 orders of magnitude in
the minimum height, while the slope reached a maxi-
mum of 2000.

To be able to follow up on the evolution after
breakup, Brenner et al. (1997) also developed a numeri-
cal scheme to cut the computational domain into two
halves. Once some minimum thickness was reached,
typically 1023 times the initial thickness, the interface
was extrapolated to a spherical cap on either side and
additional grid points were introduced up to their tips.
The two parts of the solution then evolved indepen-

FIG. 15. The same photograph as in Fig. 10, compared with
the lubrication equations of this section (Eggers and Dupont,
1994). The lines represent the profile at time distances of

0.4(r0
3r/g)1/2 and at the time of pinchoff.
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dently. By using different threshold thicknesses, they
were able to confirm that the subsequent evolution was
not affected by the details of the breakup on scales
larger than the threshold thickness. Brenner et al. (1997)
also tested the validity of the lubrication equations after
breakup, by comparing numerical and experimental pro-
files before and after the bifurcation of a drop of water
falling from a faucet. They found that excellent agree-
ment persisted to times after breakup.

By using the high-resolution numerical codes, it is also
interesting to repeat the nonlinear stability analysis of
Sec. IV.C for the one-dimensional equations (Eggers,
1995b). The algebra is very similar, and in particular the
nonlinear stability boundary (48) comes out to the same
value, at least up to third order in perturbation theory.
To test it numerically, a cylindrical column of fluid with
periodic boundary conditions was set up, with a small
sinusoidal perturbation imposed on it. As usual, all
lengths were measured in units of the unperturbed ra-
dius. Thus the initial conditions were

h~z ,0!5R2e cos~xz !, (91)

R5~12e2/2!1/2,

which conserves volume independent of e . The total
length of the column was 0<z<2p/x , corresponding to
one wavelength. The velocity was zero initially. Since
Eq. (48) is only valid for inviscid flow, we applied the
extremely large Reynolds number Re510 000, so viscos-
ity could be neglected. The perturbation amplitude was
chosen to be between 0.01 and 0.1, to make perturbation
theory applicable. The resolution of 50 000 grid points
was selected to safely resolve wave numbers to 0.01%.

Figure 16 shows the largest unstable wave number as

diamonds and the smallest stable one as crosses. The
resolution is so high that they cannot be distinguished on
the scale of the plot. The full line is the prediction of
Nayfeh’s (1970) theory, the dashed line represents
Yuen’s (1968) theory. Lafrance’s (1975) work would
predict no shift in the critical wave number. Clearly, the
validity of Nayfeh’s theory near the cutoff is confirmed
spectacularly. For e*0.05 theory systematically underes-
timates the cutoff value, a result, presumably, of higher-
order effects in e .

D. Inviscid theory and conservation laws

In this subsection we shall discuss the fascinating con-
nections of the one-dimensional equations with the
theory of integrable systems (Hoppe, 1992). These con-
nections are found most elegantly if the equations are
transformed to a Langrangian frame of reference. Let b
be the position of a particle at time t50 or, alterna-
tively, and of a slice of fluid of width db . Because the
motion is one dimensional and volume is conserved, the
same slice, after being convected to a position z(b ,t),
will have the thickness (h2(b ,0)/h2(z ,t))db . Thus we
obtain

zb5

h2~b ,0!

h2(z~b ,t !,t)
, (92)

where z(b ,t) is the position at time t of the particle
originally at b . Subscripts refer to differentiation with
respect to the variable. By changing the labeling accord-
ing to da5h2(b ,0)db , we can write Eq. (92) as

za5h22(z~a ,t !,t), (93)

where da is the volume of the slice a . Equation (93) is
thus a direct consequence of the volume of fluid ele-
ments being conserved. From the definition of z we have

z t5v(z~a ,t !,t). (94)

Making use of the transformation ]z5za
21]a , Eqs. (93)

and (94) allow us to rewrite the equation of motion, Eq.
(79), in terms of z(a ,t) alone:

z tt52

1

r

]ap(z~a ,t !)

za
13nzaS z ta

za
D

a

. (95)

The equation for h , Eq. (80), is automatically satisfied
owing to the definition of z(a ,t). If p is replaced by its
leading-order estimate (81), we have simply

z tt52

g

2r

zaa

za
3/2 13nS z ta

za
2 D

a

. (96)

Thus the coupled set of equations (79), (80) has been
condensed into a single equation for z(a ,t), which is of
second order in time. If one leaves out the dissipation
term, the equation becomes particularly simple:

z tt2~za
21/2!a50, (97)

where the constant g/r has been absorbed by a rescaling
of variables. The same system has been studied exten-
sively in a paper by Ting and Keller (1990), but in its
original form [Eqs. (79)–(81)], with n set equal to zero.

FIG. 16. Comparison between a numerical simulation of the
one-dimensional lubrication equations and nonlinear stability
theory. The stability boundary xc in the reduced wave number
is plotted against the perturbation amplitude e . The numerical
simulations clearly confirm Nayfeh’s (1970) theory.
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We stress that Eq. (97) is unphysical as it stands. As
we shall see in Sec. VII.B, the inviscid equations display
singularities even before breakup occurs. Still, certain
invariance properties of the inviscid system could reveal
themselves even in the presence of a small amount of
viscosity. In fact, we shall see below that Eq. (97) has an
infinite sequence of independent conservation laws,
apart from the obvious candidates of energy and mass.
In the same vein, the Euler equation has been the sub-
ject of intense scrutiny (Majda, 1991), although it is be-
lieved to exhibit unphysical singularities of the vorticity
(Grauer and Sideris, 1991; Pumir and Siggia, 1992). One
hopes that the study of these singularities will yield in-
formation about high-Reynolds-number turbulence, in
particular the mechanisms behind the energy cascade of
eddies. Geometrical invariants of the Euler equation
(Tur and Yanovsky, 1993) are expected to act as con-
straints for the almost inviscid motion of turbulent flow.

It is readily seen that Eq. (97) is generated by the
Lagrangian density

L~za ,z t!5z t
2/212za

1/2 . (98)

The canonical momentum variable is p5z t , so one finds
for the Hamiltonian

H5E Fp2

2
1V~za!Gda , (99)

where in our case we have

V~za!52za
1/2 . (100)

We have written the Hamiltonian in the general form
(99), since the potential

V~za!52A
za

12g

12g
(101)

corresponds to the equations of one-dimensional com-
pressible gas dynamics (Landau and Lifshitz, 1984a).
These equations are usually written in the form

] tv1vv81

p8~r !

r
r850,

(102)
] tr1~vr !850,

where p(r)5Arg is the pressure and r the density of
the gas. For the system to be stable one needs Ag.0, so
that the pressure increases with density. A comparison
between Eqs. (100) and (101) shows that A521 and
g51/2, so the pinching problem corresponds to a new
class of unstable systems, not considered in the realm of
gas dynamics.

From among the many remarkable results (Olver and
Nutku, 1988) that can be derived for Eq. (97), we men-
tion that it can be linearized by means of the Legendre
transformation

F~za ,z t!5z2aza2tz t ,
(103)

u5za , v5z t .

This is also known as a Hodograph transformation
(Manwell, 1971). A straightforward calculation shows
that Eq. (97) is now equivalent to the linear equation

Fuu1

1

2

F
vv

u3/2 50, (104)

which has an infinite sequence of exact solutions, as
shown below (Olver and Nutku, 1988). So one possible
approach is to transform the initial conditions of the
original problem, Eq. (97), to the Hodograph plane
(u ,v) and to solve Eq. (104) there.

Another, completely unexpected property of Eq.
(104) is the following: Let Q(u ,v) be a solution of Eq.
(104). Then Q(za ,p) is a conserved density of the equa-
tions of motion. Conversely, all conserved quantities
correspond to solutions of Eq. (104). For example, one
can easily check that the Hamiltonian density

H~u ,v !5Q2~u ,v !5v
2/212u1/2

is a solution of the Hodograph equation (104). If one
succeeds in finding other solutions of Eq. (104), other
conservation laws in addition to the obvious ones of en-
ergy and momentum conservation will be generated. An
infinite number of solutions are produced by the recur-
sion relation (Hoppe, 1995)

]
v
Qn115nQn ,

(105)

da~]uQn11!5nFva]uQn2

ua

2u3/2 ]
v
QnG .

Starting from Q1
2

5uv and Q1
1

5v one generates two in-
dependent hierarchies of conservation laws, whose first
members are

Q1
1

5v ,

Q2
1

5v
2/212u1/2,

(106)
Q3

1
5v

3/314vu1/2,

Q4
1

5v
4/416v

2u1/2
26u lnu ,

and

Q1
2

5uv ,

Q2
2

5v
2u/222u3/2/3,

(107)
Q3

2
5v

3u/324vu3/2/3,

Q4
2

5v
4u/422v

2u3/2
1u2.

All the conserved quantities

Qi
6

5E Qi
6da

are independent, i.e., they Poisson commute:

$Qi
6 ,Qj

6%50. (108)

Note the emergence of logarithmic terms in Eq. (106),
which appear in the fourth step of the hierarchy. This
implies that the scale invariance

Qi
1~a4u ,av !5a iQi

1~u ,v !

of Qi
1 is broken for i>4. The same is thus true for the

corresponding solutions z(a ,t), since by virtue of the
Hodograph transformation (103) each of the quantities
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Qi
6 generates an exact solution of the nonlinear equa-

tion (97). For example, Q2
1 corresponds to the solution

z~a ,t !5z02t2/221/a . (109)

In contrast to Eq. (109), the solution derived from Q4
1

will no longer be scale invariant but contains logarithmic
terms, which is a telltale sign of anomalous scaling
(Amit, 1978). Unfortunately, Eq. (109) results in a
height h(z ,t) which has a singularity at a finite z for all
times. In fact, it is a remarkable consequence of the in-
finite sequence of conservation laws, Eqs. (106), (107),
that no localized pinching solution of the inviscid equa-
tions can exist. As we shall explain in more detail in Sec.
VII.B, a conserved quantity of sufficiently high order
would always diverge during pinching, which is inconsis-
tent with regular initial data. Thus it is of fundamental
importance to work in the effect of small amounts of
viscosity, which will eventually destroy the rigorous con-
servation properties. On large scales, on the other hand,
the motion is still subject to the constraints imposed by
Eqs. (106), (107), as viscosity is not yet important. The
limit of small viscosities has also been used to study
shock-wave solutions of inviscid equations, for example
in the case of the equations of one-dimensional elasticity
(Dafermos, 1987). It is likely that Eq. (97) would de-
velop infinitely sharp gradients as well.

VI. SIMILARITY SOLUTIONS AND BREAKUP

A. Local similarity form

Experimental observations have revealed that free-
surface shapes of a given fluid are remarkably similar
near the pinch point, independent of initial conditions.
For example, jet breakup at different wavelengths (Fig.
4) and under the influence of gravity (Fig. 6) all show a
conical tip attached to a sharp front if the fluid is water.
For high viscosities (Figs. 5 and 7) the solutions turn out
to be threads. So while the outer dimension L of the
experimental setup (say the radius of the nozzle) hardly
seems to matter, there is a strong dependence on viscos-
ity. In fact, if L does not enter the description near
breakup, the only other scale the solution can depend on
is the ‘‘inner’’ length scale l n5n2r/g and the corre-
sponding time scale tn5n3r2/g2. Thus, when doubling
the viscosity, breakup should look similar when viewed
on length scales four times as large and time scales eight
times as long as already noted by Haenlein (1931).

Some values of l n and tn are shown in Table I for

three common Newtonian fluids. Variations in l n and
tn are huge, which is an asset for experiments: just by
choosing different fluids, one can explore a wide range
of different scaling behaviors. For water, l n is almost on
molecular scales, while for glycerol it is about the same
as typical outer scales. Since the relevant scale of pinch-
ing solutions is set by l n and tn , none of the asymptotics
can be seen in the experiments with water, at least at the
present state of spatial and temporal resolution. It is
rather the long and skinny threads observed in high-
viscosity experiments that are characteristic of the final
stages of pinching.

The solutions close to the pinch point, which we as-
sume to be at z0 and at a time t0, depend only on l n and
tn . Thus the height and the velocity should be represent-
able as

h~z ,t !5l nhs~z8,t8!,

v~z ,t !5

l n

tn
vs~z8,t8!, (110)

where z85(z2z0)/l n and t85(t02t)/tn measure the
distance from the singularity and hs , vs are universal
functions. This universality was verified numerically us-
ing the lubrication equations (79), (80), and (82) for dif-
ferent viscosities and initial conditions (Eggers and Du-
pont, 1994).

Near a singularity the flow lacks a typical scale, so
self-similarity is a natural concept. Indeed, a self-similar
solution of a flow leading to a singularity was already
given by Guderley (1942) in the case of a spherical
shock wave. Constantin et al. (1993) and Bertozzi et al.
(1994) studied the breakup of a fluid drop between two
closely spaced glass plates using similarity solutions. In
the context of the present problem, Ting and Keller
(1990) studied singular solutions of an inviscid version of
the lubrication equations (79)–(81). Similarity solutions
of the viscous equations were found by Eggers (1993).

The existence of self-similar solutions of the pinching
problem is in fact already implicit in the scaling analysis
of Sec. V.A. Equation (50) means that the balance of
inertial, surface-tension, and viscous forces is indepen-
dent of the parameter e , which measures the minimum
thickness of the thread. Thus the leading-order equa-
tions (59), (60), and (62) must allow for scale-invariant
solutions that obey Eq. (50). If t of Sec. V.A is identified
as the time distance to the singularity, there exist solu-
tions of the form

TABLE I. The fluid parameters for water, glycerol, and mercury. The values are quoted from Weast
(1978). The internal scales l n and tn are calculated from the kinematic viscosity n and from the ratio
of surface tension g and density r .

Mercury Water Glycerol

n [cm 2/s] 0.0012 0.01 11.8

g/r [cm 3/s2] fluid-air interface 34.7 72.9 50.3

l n5n2r/g [cm] 4.231028 1.3831026 2.79

tn5n3r2/g2 [s] 1.4310212 1.91310210 0.652
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hs~z8,t8!5ut8uf~j !,

vs~z8,t8!5ut8u21/2c~j !, (111)

j5z8/ut8u1/2.

The scaling ansatz (111) implies that the typical radius of
the fluid scales like t , and the axial extension like t1/2,
just as is required by Eq. (50). The coordinates z8 and
t8 have been nondimensionalized with l n and tn . If
ut8u!1, this means that e is small according to Eq. (50),
so one is in the asymptotic limit where higher-order cor-
rections to the leading-order equations can be neglected.
In this sense l n and tn measure the size of the region
where asymptotic self-similarity can be expected.

Plugging the ansatz (111) into the leading-order equa-
tions, one confirms that it is a solution, provided the
similarity functions f and c obey the ordinary differen-
tial equations

6~c/21jc8/2!1cc85f8/f2
13~c8f2!8/f2, (112)

6~2f1jf8/2!1cf852c8f/2. (113)

The plus sign refers to the time before breakup, where
t,t0, while the minus sign refers to the time after
breakup. For this solution, forces blow up like ut8u23/2, so
any constant external force such as gravity, becomes
negligible. Other higher-order corrections to Eq. (111)
coming from the Navier-Stokes equation are smaller by
at least a factor of ut8u, so they vanish in the limit of
t8→0. It follows that near the pinch point the complete
Navier-Stokes problem can be reduced enormously and
simplified to a pair of ordinary differential equations.
The main task is to solve Eqs. (112) and (113) before
and after the singularity, and to investigate how these
solutions can be matched onto the outer solution far
away from breakup.

B. Before breakup

Before breakup t is smaller than t0, and the 1 in Eqs.
(112) and (113) applies. At first it seems as if there
would be a plethora of possible solutions, since the sys-
tem (112), (113) is of third order, so the manifold of
solutions is three dimensional. But looking back at Eq.
(111) one discovers that the asymptotic behavior of f
and c for large j is severely restricted, since hs and vs

must remain finite at any fixed distance from the singu-
larity as t8→0. Otherwise one would have to move a
finite amount of fluid with arbitrarily high speed. Since
any finite z8 expands to infinity in similarity variables,
this translates into a condition on f and c at infinity: for
j→6` one must have

f~j !/j2→a0
6 ,

(114)
c~j !j→b0

6 ,

where a0
6 and b0

6 are constants. The condition (114) is a
particular example of a ‘‘matching condition,’’ which
guarantees that the ‘‘inner solution’’ close to z0 ,t0 is
consistent with an ‘‘outer solution’’ that moves on much
longer length and time scales. In most cases, such as the

Blasius boundary layer (Landau and Lifshitz, 1984a), the

inner solution will depend on constants such as a0
6 and

b0
6 . They are set by solving the outer problem with

proper regard of the boundary conditions. Remarkably,
in the present problem the situation is reversed: the con-
stants are determined by the inner problem, and the
outer solution must be matched onto it. On the other
hand, a certain freedom is hidden in the way of repre-
senting the inner solution. The coordinates z0 ,t0 will of
course depend on the outer solution, and can only be
found a priori by solving the complete problem includ-
ing boundary conditions.

To investigate the limit j→6` in more detail, we try
an asymptotic expansion of f and c consistent with
(114):

f~j !5j2(
i50

`

a ij
22i,

(115)

c~j !5

1

j (
i50

`

b ij
22i.

By inserting Eq. (115) into (112), (113), one finds all the
coefficients recursively in terms of a0 and b0 (Eggers,
1995a). This is surprising at first, because Eqs. (112),
(113) are a third-order system, so one would expect
three free parameters in the expansion instead of just
a0 and b0. This indicates that Eq. (115) represents only a
certain submanifold of solutions. What the other solu-
tions look like, at least in the neighborhood of Eq. (115),
can be found by perturbing around (115). Thus we write

f~j !5f0~j !1e1~j !,
(116)

c~j !5c0~j !1e2~j !,

where f0 ,c0 is a solution of the form (115), and linear-
ize Eqs. (112) and (113) in e1 and e2. One obtains a
linear system with nonconstant coefficients, whose solu-
tion can be found by a WKB-type analysis (Ting and
Keller, 1990). This means one writes e1 ,e2 in the form

e1~j !5exp@x~j !#(
i50

`

f ij
n22i,

(117)

e2~j !5exp@x~j !#(
i50

`

g ij
m22i.

Upon inserting this ansatz into the linearized equations
one can determine the free exponents n and m and in
particular the exponential

x~j !5j2/12.

Thus solutions close to the two-dimensional manifold
(115) deviate exponentially from it as one integrates
outward to plus or minus infinity. Given a0 and b0, there
is one more free coefficient f0 contained in Eq. (117); all
the other f i and g i are determined from it recursively.
Thus f0 carries the missing third degree of freedom not
contained in Eq. (115).

The important point to keep in mind from this analy-
sis is that for a solution to be consistent with the

895Jens Eggers: Nonlinear dynamics and breakup of free-surface flows

Rev. Mod. Phys., Vol. 69, No. 3, July 1997



asymptotic behavior, Eq. (114), it must lie on a two-
dimensional submanifold parametrized by a0

1 ,b0
1 for

j→` and by a0
2 ,b0

2 for j→2` . All other solutions de-
viate exponentially from the correct behavior. Thus,
even without specifying a0

6 and b0
6 , the asymptotic be-

havior (114) amounts to one algebraic constraint on the
solution at 1` and one at 2` . There is only a one-
dimensional manifold of solutions consistent with this.
The remaining degree of freedom is eliminated by con-
sidering the structure of singularities in the interior of
the domain. Rewriting Eq. (113) in the form

f85f
12c8/2

c1j/2
,

one discovers that there must be a point j0 with

c~j0!1j0/250. (118)

Thus the interface will have a singularity unless the con-
dition

c8~j0!52 (119)

is also met. A closer analysis reveals that this is a mov-
able singularity with a simple pole in c and an algebraic
branch point in f , which disappears with the condition
(119). Clearly, the velocity cannot be infinite at finite
t8, so one has to restrict oneself to a regular expansion ,

f~j !5(
i50

`

f i~j2j0! i,

(120)

c~j !5(
i50

`

c i~j2j0! i.

Except for j0, the only free parameter in this expansion
is f05f(j0); all other f i and c i follow from it (Eggers,
1995a). Analyzing the higher orders of this expansion,

one finds a finite radius of convergence. Thus the proce-
dure for finding a solution consistent with all the condi-
tions is the following: One starts with a pair of values
(j0 ,f0), from which the solution can be integrated out-
wards to 1` and 2` . Generically the solution will not
be consistent with Eq. (114), but only a one-dimensional
submanifold of (j0 ,f0) will lead to the correct
asymptotic behavior at 1` and 2` , respectively. The
points where they cross correspond to physical solutions
of Eqs. (112), (113). Such a solution was found by Egg-
ers (1993) and compared with numerical simulations
(Eggers and Dupont, 1994). The corresponding similar-
ity functions are plotted in Fig. 17, and some character-
istic parameters are given in Table II. Recently, addi-
tional solutions consistent with the physical conditions
were discovered (Brenner, Lister, and Stone, 1996). One
of these additional solutions, which probably form an
infinite sequence, is also listed in Table II. All corre-
spond to much smaller f0, and thus to thinner threads
than the solution of Fig. 17. Using the stability analysis
of the next subsection, Brenner, Lister, and Stone (1996)
have shown that the additional solutions are extremely

FIG. 17. The similarity functions f1 and c1 before breakup. Note the strong asymmetry.

TABLE II. Some characteristics of the similarity functions
f1,c1 before breakup. The first row corresponds to the func-
tions represented in Fig. 17, the second row to the most stable
of the additional solutions found by Brenner, Lister, and Stone
(1996). The symbol j0 stands for the position of the stagnation
point, where the fluid is at rest in the frame of reference of the
interface. The minimum value of f1 is fmin . The function

c1 reaches a maximum value of cmax . The numbers a0
6 stand

for the limits limj→6`f1(j)/j2. All numbers are accurate to
the decimal places shown.

j0 fmin cmax a0
1 a0

2

21.5699 0.030426 23.066 4.635 6.04731024

21.8140 0.010785 24.698 52.75 '5.31024
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unstable, so the only one of physical relevance is the one
with the largest f0, originally found by Eggers (1993).

Note that using this pair of similarity functions, the
full solution near the pinch point can be predicted with-
out adjustable parameters. For example, at a given time
t02t5tnut8u away from the singularity, the minimum di-
ameter of the fluid thread is 0.06l nut8u. So if t02t is
measured experimentally, the entire profile close to the
singularity can be predicted without adjustable param-
eters. This was done in a recent series of jet experiments
with high-viscosity fluids (Kowalewski, 1996).

Figure 18 shows a closeup of the pinch region for a jet
consisting of a mixture of glycerol and alcohol at times
350, 198, and 46 ms before breakup, which corresponds
to the reduced times ut8u50.56, 0.32, and 0.073. The jet
diameter at the nozzle is 0.397 mm, which is about a
third of the image width. When considering the thin
thread, one is looking at a part of the solution that is
moving on scales very different from the one set by the
undisturbed jet. The experimental pictures have been
superimposed with the theoretical prediction. Since t8 is
known, there is no adjustable parameter in this compari-
son. The theoretical prediction for the position of the
minimum is marked by an arrow, which is seen to move
toward the drop adjacent to the thread. In (a), the solu-
tion has only started to converge on its left, so there is
some discrepancy in the position of the minimum. As
time goes on, the range of validity of the similarity solu-
tion expands.

One immediately notices the asymmetry of the solu-
tion, which is already apparent from the scaling func-
tions (see Fig. 17). The flatness of the neck is much ex-
aggerated by the scaling of Eq. (111), which expands
axial scales relative to the radius. As the slope becomes
of order one near the drop, the similarity solution no
longer applies. To extend the prediction beyond the
range of validity of the similarity solution, one would
have to find an outer solution that described the drop

and to match it onto the inner solution. In so doing, one
has to remember that the outer solution will depend on
all the experimental details such as the nozzle diameter,
the fluid parameters, and the driving mechanism. On the
other hand, the pinching solution is independent of
these details, as confirmed by Kowalewski (1996) when
he performed experiments with different nozzle diam-
eters and fluid viscosities.

However, as the thread becomes thinner, a new and
unexpected behavior sets in, shown in Fig. 19 for a fluid
of higher viscosity. The interface assumes an irregular
appearance with bulges on its surface. Apparently, the
similarity solution has become unstable in its interior.
This instability was first described experimentally by Shi,
Brenner, and Nagel (1994), who offered a theoretical
explanation in Brenner, Shi, and Nagel (1994). This
work will be presented in the next subsection.

C. Stability and the influence of noise

It is apparent from Fig. 19 that the similarity solution
is prone to the growth of localized perturbations or
‘‘bumps.’’ It seems as if this should be expected from the
stability analysis of a liquid cylinder, which the solution
very much resembles as it is becoming thinner. In fact,
it follows from the high-viscosity limits (35) and (36)
that the typical wavelength of a bump will be
lbump;r0(l n /r0)1/4, while the time scale over which it
grows is tbump;tnr0 /l n , so it is localized on the scale of
the thread length and grows over the same time scale on
which the solution is evolving. The reason the similarity
solution is still observed is that the flow in the thread has
a stabilizing effect: perturbations are both stretched and
convected out of the pinch region, where they no longer
grow. Only perturbations that are sufficiently large ini-
tially will affect the similarity solution. This leads to a
nonlinear instability, quite similar to the fingering insta-

FIG. 18. A sequence of close-
ups of a highly viscous jet
(l n5274.5 mm, tn5627.9 ms)
350 ms, 198 ms, and 46 ms away
from breakup. The frame width
corresponds to 1 mm. The full
line is the prediction of the scal-
ing theory of Eq. (111) with
scaling function f1 of Fig. 17.
Each frame has been cut at top
and bottom, so only a small
portion of the drop forming on
the right is seen. The pictures
are from the series of experi-
ments GLY1 (see Table 1 of
Kowalewski, 1996).

897Jens Eggers: Nonlinear dynamics and breakup of free-surface flows

Rev. Mod. Phys., Vol. 69, No. 3, July 1997



bility in Hele-Shaw flow (Bensimon et al., 1986), or den-
dritic growth (Kessler et al., 1988).

For an analytical study of the stability problem, such
as was presented by Brenner, Shi, and Nagel (1994), one
takes advantage of the perturbations being localized.
Thus it is sufficient to keep track of the center of mass
and the characteristic width of a localized wave packet.
Close to the similarity solution one can work within the
framework of the asymptotic equations (79), (80). How-
ever, one has to keep some of the higher-order terms in
the mean curvature in Eq. (82), since they are respon-
sible for selecting the characteristic size of the bump. By
rewriting the equations in terms of the logarithmic time
distance s5lnut8u from the singularity and the similarity
variable j , one is working on the scale of the similarity

solution. This leads to the ansatz

hs~z8,t8!5ut8u(f~j !1f̄ ~j ,s !),
(121)

vs~z8,t8!5ut8u21/2(c~j !1c̄ ~j ,s !),

where f(j) and c(j) are the solutions to the similarity

equation described in the previous subsection, and f̄ ,

c̄ are small perturbations to it. Using a prime to indicate
differentiation with respect to j , one has the linearized
equations of motion

]sf̄ ~j ,s !5f̄ 2S c1

j

2 D f̄ 82f8c̄ 2

c8

2
f̄ 2

f

2
c̄ 8,

(122)

]sc̄ ~j ,s !52

c̄

2
2S c1

j

2 D c̄ 82c8c̄ 1

f̄ 8

f2 22
f8

f3f̄

13c̄ 916
f8

f
c̄ 816

c8

f
f̄ 826

c8f8

f2 f̄ 1t8f̄ -.

From the higher-order terms of the mean curvature we
have included only the highest derivative of the pertur-
bation, since it is the one which limits the wavelength
from below.

Solutions of the linear problem (122) have the form

S f̄

c̄ D 5S cosq

sinq D exp$S~z ,j ,s !%, (123)

where the exponential describes the growth of perturba-
tions. By having S depend on j and z5j/e , one sepa-
rates the short-wavelength perturbation, which moves
on the scale of z , from the slowly varying ‘‘background’’
of the similarity solution. The ansatz

S~z ,j ,s !5

1

e
b0(k~s !,j)s1ik~s !z1b1(k~s !,j)s (124)

describes a perturbation of wavelength e/k(s), which is
convected with velocity b0 /k(s) in similarity variables,
and whose amplitude grows with rate b1. Indeed, plug-
ging Eqs. (123), (124) into the linearized equations, one
find to leading order e21

b052ik~s !~c1j/2! (125)

and

]sk52k~s !S c81

1

2 D . (126)

This means a bump is convected with the interfacial ve-
locity

c i5c1j/2,

which is the velocity of the fluid in the frame of refer-
ence of the surface. At the stagnation point j0 [see Eq.
(118)], the bump always remains on the same point of
the surface. At the same time, the bump is stretched
with rate 2(c811/2), which is negative in the neck re-
gion (see Fig. 17). Hence the wavelength increases, mak-
ing the disturbance more benign.

The temporal growth rate is

FIG. 19. The same experiment as in Fig. 18, but with a fluid of
higher viscosity, (l n52 mm, tn512.8 ms, series GLY3 of Kow-
alewski, 1996). The height of the frame corresponds to 2 mm.
Just before breakup, the thin thread has become unstable and
produced several ‘‘bumps.’’ The moment of breakup shows
irregular breakup at several places.
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b1~k ,j !511

c8

2
1

1

6fF12t8S f
k

e D 2G (127)

which can be translated into a spatial growth rate by
c i ,

]jA

A~j !
5

b1

c i

, (128)

where A(j) is the amplitude of a bump at j . If

A05A( j̄ ) is the initial amplitude at a reference point

j̄ , Eq. (128) can be solved to give

A~j !

A0
5expH E

j¯

jb1~j8!

c i~j8!
dj8J . (129)

From this it seems as if arbitrary growth could be ob-

tained for j̄ 5j0, leaving a bump at the same point for-
ever. But that would require an arbitrarily sharp spike,
while a bump with positive growth rate must have ap-
proximate size t81/2 according to Eq. (127). Thus

j̄ 't81/2 should be taken as the lower limit in Eq. (129).
On the other hand, an analysis of Eq. (129) for large
uju reveals, using f5a0

6j2 and c5b0
6j21, that a bump

no longer grows for j→6` . Such a bump, which is fro-
zen in on the time scale of the singularity, has been
called a ‘‘blob.’’ When one uses the parameters of the
similarity solution, any bump that gets convected to
j2'210 or j1'1.5 meets such a fate.

This completes the input necessary to estimate the

critical amplitude that makes the similarity solution un-
stable. The amplitude A(j) has to grow to the same size
as the similarity solution itself before it reaches j2 or

j1 , starting from j̄ 't81/2. Using this condition, Brenner,
Shi, and Nagel (1994) estimated the critical amplitude
for surface perturbations to be

Ac5231025t81.495 (130)

in units of the minimum thickness. In real space this
means that for a thread of radius h0 one needs a surface
perturbation of size

hc53.831023h0S h0

l n
D 1.495

(131)

to render the interface unstable. Thus in the late stages
of singularity formation, for which h0!l n , the solution
becomes more and more vulnerable to external pertur-
bations, in qualitative agreement with experiment. Fig-
ure 20 shows a picture of a mixture of glycerol and water
falling from a nozzle. Part (b) is a magnification of the
thin thread in (a), which is close to the similarity solu-
tion, 2 ms away from breakup. In part (c) this solution
has undergone an instability, and a smaller neck has
grown on it, which is again well approximated by a simi-
larity solution, 200 ms away from breakup.

This conclusion is amplified by a series of numerical
simulations of the asymptotic model (79), (80), and (82)
with some stochastic noise added to it. Figure 21 shows a

FIG. 20. A photograph of a glycerol in water mixture (85 w%) (Shi, Brenner, and Nagel, 1994). Part (a) is an overall view showing
a tiny microthread growing out of the initial neck, (b) is a magnified view of the ‘‘micro-thread,’’ which is close to a similarity
solution 231023 s away from breakup. Image (c) shows the same neck as in (b), but at a later time. One observes an even smaller
neck growing out of the original micro-thread, which is again a similarity solution with the estimated breakup time of 231024 s.
Reprinted with permission. © American Association for the Advancement of Science.
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simulation with the same parameters as in the experi-
ment (see Fig. 20). The first picture (a) shows the same
thread as was in the experimental picture. Without
noise, it evolves according to the similarity solution up
to breakup. However, once noise is added, one observes
[see Fig. 21(b)] tiny necks growing on the original simi-
larity solution, similar to Fig. 20(c). In the simulation
one can follow up on this solution, and observe still an-
other neck growing on that of the previous stage. Inter-
estingly, one confirms that each of those necks repre-
sents another similarity solution, but with a different
value of z0 and t0. If numerical resolution is increased,
this cascade of similarity solutions can be followed
through an arbitrary number of instabilities, Fig. 21(c),
going down to the stage of the seventh neck. The above
stability analysis has been repeated by Brenner, Lister,
and Stone (1996) for the additional similarity solutions
found by them, one of which is listed in Table II. For
these solutions, the analogue of the critical amplitude
(130) is much smaller, so they immediately go unstable
and converge to the similarity solution described above,
even if care is taken to reduce the noise as much as
possible.

The main open problem is the source of the noise that
causes the instability. A possibility discussed by Bren-
ner, Shi, and Nagel (1994) is thermal capillary waves,
whose amplitude can be estimated using the theory of
hydrodynamic fluctuations (Landau and Lifshitz, 1984a).
The result is that thermal fluctuations become important
when the minimum radius becomes of the order of

h thres55l nS l T

l n
D 0.401

, (132)

where

l T5~kBT/g !1/2

is the thermal length scale. For the fluid of Fig. 20, this

gives h thres51 mm, which rather underestimates the
scale where irregular behavior is observed in experi-
ment. On the other hand, in the jet experiment of Fig. 18
one finds h thres510 mm, while the smallest radius in Fig.
18 is about 1 mm. Clearly, more carefully controlled ex-
periments are needed to quantitatively identify possible
sources of the noise.

Finally, we mention that a comparison with the stabil-
ity analysis of Sec. IV.A implies that the axisymmetric
singularity will be stable against nonaxisymmetric distur-
bances. Strictly speaking, the singularity could still be
nonaxisymmetric if the initial condition deviates greatly
from axisymmetry. On the other hand, a spherical cross
section corresponds to a global minimum in surface
area, with oscillations strongly damped by viscosity, so it
is hard to see how nonaxisymmetry could persist. An-
other possible departure from the proposed universal
solution could lie in a nonzero azimuthal velocity field,
driven through the nonlinear coupling of the Navier-
Stokes equation. Both possibilities are worthwhile sub-
jects of theoretical and experimental research.

D. After breakup

Having investigated the structure of solutions up to
the point of breakup, one finds it natural to ask what the
behavior will be after breakup. At a scale l micro the in-
terface will be broken by some microscopic mechanism,
whose nature cannot be investigated within the frame-
work of hydrodynamics. One possible guess is that this
scale is on the order of intermolecular distances. In the
molecular dynamics calculations of Koplik and Banavar
(1993), pinching of threads ten molecules in diameter
was observed. Although the behavior was reminiscent of
hydrodynamic behavior, no quantitative comparison was
attempted, so the questions of mechanisms of rupture
and up to what scale to apply hydrodynamics are really
open in the case of free surfaces. At high viscosities, the
instability described in the previous subsection will
make the interface look ‘‘fuzzy’’ and ever more suscep-
tible to (multiple) breakings. The scale at which a drop
breaks can expected to be much larger than molecular
distances if the viscosity is large. Whatever the scale may
be, the fundamental problem is whether the subsequent
evolution depends on the microscopic aspects of the
breaking on scales much larger than l micro . If it is inde-
pendent, the mathematical equivalent is that there is a
unique prescription to continue the equations of motion
beyond the singularity.

Questions of this type have been investigated exten-
sively on a mathematical level (Altschuler, Angenent,
and Giga, 1995). This was done mostly for geometrical
evolution problems like that of mean curvature flow
(Huisken, 1991; Deckelnick, 1997), but also for the non-
linear Schrödinger equation (Giga and Kohn, 1989;
Merle, 1992), for which the continuation is not unique.
The reason is that the complex wave function can pick
up an arbitrary phase after breakup. The problem of a
liquid bridge is very different because it includes inertia.
This prevents fluid away from the breakup point from

FIG. 21. Simulation of a drop of viscous fluid for the same
physical parameters as in Fig. 20 (Shi, Brenner, and Nagel,
1994). The left frame (a) shows the same view as in Fig. 20(a),
while (b) is an enlargement of the micro-thread region, simu-
lated in the presence of noise. In addition to the neck seen in
Fig. 20(c), which has grown out of the original micro-thread,
one sees another stage of the sequence of instabilities. Part (c)
suggests that this sequence of instabilities goes on indefinitely,
by showing further enlargements of the unstable region.
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moving much on the time scale of the breaking, which
indicates that the solution (now consisting of two parts)
should indeed be independent of the mechanisms of
breakup. The most direct way to show this is, of course,
to construct explicitly a solution in a similar vein to that
in which similarity solutions were found before breakup.
Similarity solutions that correspond to a unique continu-
ation through a singular point in time were constructed
for the porous-medium equation by Grundy (1983), and
for the shallow-water equations by Grundy and Bell
(1993). Keller and Miksis (1983) have constructed simi-
larity solutions of an inviscid wedge of fluid after
breakup. The asymptotics far away from the point of
breakup enter the solution as a free parameter. In our
case the asymptotic behavior is already known: it should
coincide with the solution before breakup, so the param-
eters are uniquely determined.

Figure 22 shows a schematic view of a receding neck
after breakup. The same asymptotic equations as before
breakup apply, since shortly after breakup the solution
will still be a thin thread. However, the situation is dif-
ferent in the immediate neighborhood of the tip, where
h8 diverges and thus renders Eqs. (79) and (80) inappli-
cable. In fact, as h→0 and h8→` near the tip, both the
viscous term (h2

v8)8/h2 and the asymptotic form of the
pressure gradient 2h8/h2 diverge. Thus one is faced
with a boundary-layer problem: the thin tip region obeys
a different type of scaling than the outer region, and
therefore other equations apply. Both inner and outer
solutions have to be accommodated by matching condi-
tions. To establish the proper scaling, one observes that
in the frame of reference of the receding tip the end is
almost static, so it will approach a spherical equilibrium
shape on a microscopic time scale. This means the size
of the tip region l tip is the same as its radial extension.
Since the tip has to be matched onto the outer solution,
both radial scales must coincide, and we have
l tip'l nut8u, using the scaling of the outer solution. This
means that in the scaling limit t8→0 the size of the tip

region goes to zero even in similarity variables. Hence
the similarity equations (112), (113) can be applied up to
the position of the tip

j tip5z tip8 ut8u1/2

in the limit t8→0.
In his early study of inviscid receding threads Keller

(1983) went beyond this asymptotic limit. There and in
the somewhat more explicit treatment by Keller, King,
and Ting (1995) both parts of the solution were consid-
ered, which scale differently. Using mass and momen-
tum balances, as well as matching conditions, approxi-
mate solutions for the tip region and the neck were
found. By contrast, Eggers (1995a), using the full viscous
theory, considered only the limit t8→0 in which the tip
region shrinks to zero. In that case, a unique answer for
the shape of the neck was obtained. The only property
of the tip solution needed was that all terms of the equa-
tion remain finite as one approached the tip, the under-
lying assumption being that the exact form of the tip
solution does not matter.

The idea behind the solution proposed by Eggers
(1995a) was to supplement the asymptotic equations
(79)–(81) with higher-order terms, which remove the
singularity at the tip. The solution of the regularized
equations is thus valid at the tip and can be analyzed in
the limit ut8u→0. This leads to a unique answer for the
asymptotic form of the tip, independent of the regular-
ization chosen. To produce a regular tip, one can gener-
alize the equations to the form (Constantin, 1992)

] th1vh852

v8h

2
, (133)

] tv1vv852p8/r1

~v8D2!8

h2 , (134)

where

p5

1

2h
F]E

]h
2S ]E

]h8
D 8G .

Here E(h ,h8) is a surface energy and D(h ,h8) a dissi-
pation kernel. Equation (134) can also be rewritten in
the form

] tv1vv85

1

h2 @2G/r1v8D2# ,8 (135)

where

G~h ,h8!5h2p1h8
]E

]h8
2E . (136)

From this one immediately derives the energy conserva-
tion equation

] t@h2
v

2/21E~h ,h8!#52~v8D !2
1boundary terms,

which motivates the nomenclature for E and D . As far
as the asymptotic analysis is concerned, the only infor-
mation needed from G and D appearing in Eq. (135) is
that they vanish at the tip. This is a direct consequence

FIG. 22. A cartoon of a receding tip after breakup. The size of
the tip region l tip is the same as the typical width of the neck.
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of the pressure gradient and the dissipation term’s being
finite near a regular tip h;(z2z tip)1/2.

The equations of motion (133) and (135) need only be
analyzed in a small region of size l tip , where the fluid
has to move with the receding tip. Therefore, in coordi-
nates moving with the tip position, the inertial terms
drop out. In terms of similarity variables, the transfor-
mation to the comoving frame reads

f̄ ~ j̄ !5f~ j̄ 1j tip!,

c̄ ~ j̄ !5c~ j̄ 1j tip!2j tip/2, (137)

j̄ 5j2j tip .

Plugging the similarity ansatz (111) into the equations of
motion, one finds the similarity equations

f̄ 52c̄ 8f̄ /2, (138)

@2Ḡ 1c̄ 8D̄ 2#850 (139)

in the tip region of size j̄ 'ut8u1/2. As remarked above,

Ḡ and D̄ are zero at the tip, so Eq. (139) can actually be
written

Ḡ 5c̄ 8D̄ 2. (140)

At j̄ 'ut8u1/2, the asymptotic form of the equations be-
come valid, and comparing Eqs. (139) and (112) we can
write

Ḡ asymp52f̄ , D̄ asymp5A3f̄ . (141)

Thus from Eqs. (138), (140), and (141) one finds that

f̄ 51/6, so the correct boundary condition for f at the
tip is

f~j tip!51/6. (142)

Now we can solve the similarity equations (112), (113)

with the boundary condition (142). Note that after the
singularity the minus sign applies. The solution near the
tip has the expansion

f51/61f1~j2j tip!2/5
1••• , (143)

c5j tip/222~j2j tip!1e0~j2j tip!7/5
1••• .

All the coefficients can be calculated from the two pa-
rameters f1 and j tip , which still need to be determined.
Because of the change of sign in the equations, one now
has exponential convergence onto the solutions with the
asymptotics (114), as one integrates outwards to
j→6` . The constants a0, b0 are open and depend on
f1, j tip . The solution is thus uniquely fixed by requiring
that the constants a0 ,b0 before and after the singularity
coincide. This is because the solution far outside the sin-
gularity is unaffected by the breaking. The resulting
similarity functions are plotted in Fig. 23, while some of
the characteristic parameters are given in Table III. The
solution now consists of two parts, one representing a
receding thread, the other just a small perturbation of a
drop. Although obtained by the same procedure, they
look very different, as the constants a0 and b0 are very
different to the left and right of the singularity.

Figure 24 shows a particular example of how the so-
lution before breakup is uniquely continued. After

FIG. 23. The similarity functions f2 and c2. The asymptotic behavior for j→6` is the same as before breakup. On the left side
is the rapidly receding ‘‘neck’’ part of the solution, on the other side is the drop. The points jneck and jdrop , from where the
interface is plane, are marked by diamonds.

TABLE III. Characteristics of the similarity functions f2,c2

after breakup. The tip position of the left-hand, or neck side is
jneck , and the expansion coefficient f1 [cf. Eq. (143)], is
fneck . Correspondingly, jdrop and fdrop uniquely determine the

‘‘drop’’ side of f2 and c2. The values of a0
6 and b0

6 are the
same as before breakup (see Table II).

jneck fneck jdrop fdrop

17.452 0.06183 0.4476 0.6180
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breakup, one part of the solution consists of a rapidly
receding thread, the position of the tip being

z tip2z05l njneckt81/2.

Thus the tip velocity goes like ut8u21/2, making it slower
as t8 gets larger. The other part of the solution is visible
as a small protuberance, which rapidly heals off to an
almost flat interface.

Detailed comparisons of the similarity solution after
breakup with numerical simulations of Eqs. (133) and
(134) are reported in Eggers (1995a). This is docu-
mented in Fig. 25, which shows the approach of the simi-
larity solution by a sequence of profiles calculated from
Eqs. (133), (134), immediately after the interface had
been cut. It was verified in (Eggers, 1995a) that this simi-
larity solution is independent of the particular regular-
ization used in Eq. (133). Thus the continuation indeed
turns out to be unique, independent of the detail of the
dynamics near the tip.

As far as comparison with experiment is concerned,
the situation is less fortunate. Figure 26 shows the con-
tinuation of the series of pictures presented in Fig. 18.
Qualitatively, the solution looks as predicted. But while
the comparison with similarity theory is fully quantita-
tive before breakup, two problems arise after breakup:
First, there is some residue left between the two parts of
the solution, which is seen as two tiny drops. This is
because there is some unsteadiness in the solution be-
fore breakup, as can be seen in Fig. 26(a), which makes
the thread break in more than one place. Second, the
retraction speed is slower than is predicted by theory. In
Fig. 26(b) we have estimated the time distance from

breakup to be 6.7 ms, based on the position of the tip
according to the similarity theory. The drop part of the
solution is well represented by the similarity solution,
while at the end of the thread some additional fluid has
accumulated, probably a result of blobs formed in the
irregular breakup. The distance the tip has retracted in
Fig. 26(c) is only 80% of that predicted by theory on the
basis of the timing of Fig. 26(b). The reason is probably
the air drag on the tiny thread, which according to the
similarity solution should have a speed of 37 m/s and a
thickness of 0.6 mm in Fig. 26(b). While slender-body
theory predicts the force due to air drag to be almost
independent of the thread radius (Happel and Brenner,
1983), the force of retraction diminishes with the cross
section. Thus the thread is very sensitive at small diam-
eters. Close to breakup one therefore expects the tip to
speed up rather than to slow down. Examples of this
behavior have been observed by Kowalewski (1996), us-
ing the ‘‘frame-transfer’’ technique. Observations in
qualitative agreement with Kowalewski’s have also been
made by Henderson, Pritchard, and Smolka (1997). To
be able to make a quantitative comparison one must
consider two possible approaches: The first is to include
the outer fluid. Such a theory is being developed by
Lister and Stone (1996). The other approach is to reduce
the air drag as much as possible in order to observe
directly the similarity solution. Some experiments in this
direction were performed by Kowalewski (1996) in an
evacuated chamber, using an oil of high vapor pressure.
However, a comparison with theory is difficult since the
breakup was quite unsteady in this particular series of
experiments. It would be preferable to work with fluids

FIG. 24. The breakup of a mixture of glycerol in four parts of
ethanol, as calculated from the similarity solutions. Part (a)
shows three profiles before breakup, in time distances of 46
ms, corresponding to ut8u51, 0.55, and 0.1. In part (b) the same
is shown after breakup.

FIG. 25. The approach of the similarity function f2 by the
solution of Eqs. (133) and (134) in the jet geometry, trans-
formed to similarity variables. The fluid neck is severed at
ut8u51024 before breakup. The full line is f2, the dotted line
the solution before breakup. The dot-dashed and the dashed
lines show the simulation at ut8u50.006 and ut8u50.06, respec-
tively.
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of somewhat lower viscosity, making the solution less
sensitive to noise.

VII. AWAY FROM BREAKUP

A. High viscosity—threads

A familiar feature of the breakup of high-viscosity liq-
uids is their tendency to produce very long and thin
threads. As seen in the previous section, threads always
occur in the last stages of pinching. But the most dra-
matic effects occur when the Reynolds number is al-
ready small, based on the initial extension and velocity
of the fluid, and when threads are drawn by some exter-
nal pull. This way, mm diameter threads can easily be
extended to the length of several cm. This is known not
only from breakfast table experiments, but also from im-
portant industrial processes like fiber spinning. An ex-
ample is shown in Fig. 27, in which gravitational pull is
responsible for producing a thread of glycerol approxi-
mately 2 cm long.

According to Rayleigh’s theory, the time scale on
which disturbances grow increases with viscosity, but
this can by no means account for the persistence of
threads at such small diameters. In fact, the time scale
over which a thread should become unstable is
tn5r0rn/g . Even for a fluid of such high viscosity as
glycerol, but with a thread radius of 10 mm, the time
scale is tn5230 ms, which is much shorter than the time
over which the thread is pulled out in Fig. 27. So, clearly,
the flow inside the thread has to be taken into account,
just as it was in the stability analysis of the Sec. VI.C. So
far, a quantitative explanation for the stability of threads
in these more general circumstances has not been of-
fered. Pearson and Matovich (1969) looked at the stabil-
ity of an extending liquid thread, but did not include
surface tension, which is the source of the potentially

most dangerous instability. By analogy to the analysis of
the previous section, both convection and a positive
stretching rate will be important. Disturbances are con-
vected out of regions where the thread is thinnest, and
stretching pulls disturbances apart, lowering their ampli-
tude. Most likely, the conditions under which a thread is
stable are much more general than the specific case of a
similarity solution. This remains an extremely interest-
ing problem to be studied in more detail.

FIG. 26. Continuation of the
sequence of Fig. 18, 6.7 ms be-
fore breakup, as well as 6.7 ms
and 22 ms after breakup. The
full line is the prediction of the
similarity theory. The timing of
(b) was estimated on the basis
of this solution.

FIG. 27. A drop of glycerol falling from a nozzle 1.5 mm in
diameter, pulling out a very long thread (Shi, Brenner, and
Nagel, 1994). Reprinted with permission. © American Asso-
ciation for the Advancement of Science.
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Even without gravitational pull, threads can extend to
the size of the external scale if the Reynolds number is
sufficiently small. Evidence is provided by the pictures
of jets and liquid bridges at high viscosities (see Figs. 5
and 8). Here it is surface tension itself that pulls out the
threads and collects all the fluid in drops. The length of
the thread is set by the wavelength of the perturbation
and, as we shall see below, it thins almost uniformly if
the Reynolds number is sufficiently low. We shall con-
centrate on this case for our discussion of threads, since
recently a new type of similarity solution has been found
that describes the thinning of jets at very high viscosities
(Papageorgiou, 1995). If the Reynolds number is small
initially, the evolution is governed by the Stokes equa-
tion (16). Going through the same thin filament analysis
as was developed for the case of the Navier–Stokes
equation, one effectively drops the inertial terms
] tv1vv8 in the lubrication equation for the axial veloc-
ity (79). Since surface tension and viscous forces are now
the only forces to be balanced, there is additional scaling
freedom in the equations. As a result, singular solutions
can have the form

hs~z8,t8!5ut8ufSt~j !,

vs~z8,t8!5ut8ub21cSt~j !, (144)

j5z8/ut8ub,

where the exponent b is to be determined. The scaling
(111) is recovered for b51/2. Although Eq. (144) sug-
gests the existence of a solution for any b , a particular
b is selected by the dynamics, as Papageorgiou showed.
The value is close to b50.175, which means that the
axial scale of this solution contracts at a much slower
rate than it does for the asymptotic solution (111). Plug-
ging Eq. (144) into the full equations (79), one finds that
the surface tension and the viscous terms scale like
ut8u212b'ut8u21.18, while the inertial terms are propor-
tional to ut8u221b'ut8u21.83. This means that in the sin-
gular limit the terms neglected in the Stokes approxima-
tion become larger than those retained. Hence, for
t8→0 the Stokes solution is no longer consistent but
must give way to the asymptotic solution, in which all
forces are balanced. Note that Papageorgiou (1995)
makes an erroneous statement to the contrary.

To derive the Stokes solution, we shall use a presen-
tation somewhat different from Papageorgiou’s, using
the Lagrangian description of Sec. V.D. This allows one
to do almost all calculations analytically. Dropping the
inertial term z tt from Eq. (96), one finds

05

g

r
~za

21/2!a13nS z ta

za
2 D

a

, (145)

which can be integrated to give

C~ t !5

g

r
H26nH tH , (146)

where H(a ,t)5za
21/2(a ,t) is the height of the interface

in Lagrangian coordinates and C(t) is independent of
a . This description was first given by Renardy (1994).

What is remarkable about Eq. (146) is that all spatial
derivatives have dropped out. Hence spatial informa-
tion, for example the characteristic width of the modu-
lation, can only enter through the initial conditions.

We now look for the singular contribution to H , rela-
tive to the singular point a0 ,t0, in units of l n ,tn :

H~a ,t !5l nHs~a8,t8!,

a85~a2a0!/l n
3 , (147)

t85~ t02t !/tn .

Then the self-similar ansatz equivalent to Eq. (144) is

Hs~a8,t8!5ut8ux~z !,
(148)

z5a8/ut8u21b.

Plugging this into the equations of motion (146), one
finds the similarity equation

C̄ 5x16x2
26~21b !zx8x , (149)

where C̄ is a constant. Remembering that
H22(a ,t)5za(a ,t), and therefore x22

5Fz for a suit-
able F , one finds that

C̄ 5

E
2`

`

x23~z !dz

E
2`

`

x24~z !dz

. (150)

Thus the additional constraint (150) is a direct conse-
quence of volume conservation, as expressed by Eq.
(93). Equations (149) and (150) can be used to compute

the constants C̄ and b . First, Eq. (149) can be integrated
to give

lnU z

z0
U56~21b !E

x0

x z8dz8

6z8
2
1z82C̄

. (151)

From the symmetry of the similarity equations one con-
cludes that x(z) is symmetric and takes its minimum at
z050: x05x(0). The expansion of x around the mini-
mum looks like

x~z !5x01z2
1x4z4

1••• , (152)

where the quadratic coefficient was normalized to one.
By demanding that the singularities in Eq. (151) cancel
as z0→0, one finds that

x05

1

12~11b !
, (153)

C̄ 5

312b

24~11b !2 . (154)

When one does the integral in Eq. (151), the explicit
expression for the inverse of x is

z5S 6~11b !

21b D ~312b !/2Fx1

312b

12~11b !
G ~312b !/2

3~x2x0!1/2. (155)

Now Eq. (150) can be used to derive an eigenvalue re-
lation for b , using the transformation dz5x8

21dx :
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312b

24~11b !2 5

E
x0

`

~dx/x8x3!

E
x0

`

~dx/x8x4!

.

Employing both Eqs. (149) and (155), the integrals lead
to hypergeometric functions F , so one finally has (Grad-
shteyn and Ryzhik, 1980)

~12b !~312b !

~11b !~322b !
5

F~21/22b ,12b ,3/22b ,2322b !

F~21/22b ,22b ,5/22b ,2322b !
,

(156)

which is the desired equation for b . Incidentally, the
particular ratio of hypergeometric functions appearing
in Eq. (156) can be evaluated very efficiently in a
continued-fraction representation (Bender and Orszag,
1978, p. 396), giving

b50.17487 . . . , (157)

in agreement with Papageorgiou’s result. Brenner,
Lister, and Stone (1996) have shown that the solution
thus found is not the only one, but again there is an
infinite sequence of solutions. They correspond to the
first nonvanishing term in the expansion of x being not
of second order, as in Eq. (152), but of higher-order.
Again, the higher order solutions are much more un-
stable than the one corresponding to Eq. (157). But this
is not all. By a combination of asymptotic analysis and
numerics, Renardy (1995) has shown that singularities
with power laws different from (144) may occur, de-
pending on initial conditions. In particular, the exponent
with which the local radius goes to zero as a function of
ut8u may vary continuously between 1/2 and the value 1
of Eq. (144). In the case of slowly varying initial data,
however, the present Stokes solution is expected to oc-
cur.

Finally, to transform back from Lagrangian coordi-
nates to real space, one has to integrate the relation

z85E
0

a

H22~ ā ,t !dā .

In similarity variables, this amounts to

j

j̄
5E

1

fSt~j !/x0 ~x1312b !~112b !/2

x~x21 !1/2 dx , (158)

where the integral can be done numerically without

great fuss. The normalization length j̄ is arbitrary and
depends on initial conditions. For practical purposes one
will have to fit it to experiment. Both scaling functions
fSt and cSt in the Stokes case are plotted in Fig. 28. The
scaling function cSt of the velocity is found from

cSt~j !5E
0

j 6x0
2
1x02fSt~ j̄ !

3fSt
2 ~ j̄ !

d j̄ . (159)

A straightforward analysis of the asymptotics for large
uju reveals that

fSt~j !;uju1/b,
(160)

cSt~j !;uju~b21 !/b,

as is required for a proper matching onto a static outer
solution.

Figure 29 shows the middle portion of the neck
between two drops in a jet experiment at high viscosity,
Re=0.32 (Kowalewski, 1996). As required by the simi-
larity solution of the Stokes equation, the solution is
symmetric, with the singular point in the middle. In Fig.
29(a) we have fitted a similarity solution (144) with
ut8u50.22 to the neck by adjusting the axial scale. The
minimum thickness of the neck, by contrast, is predicted
without adjustable parameters and agrees well with ex-
periment. This thickness has more than twice the value
one would have expected from the asymptotic similarity
solution, which includes inertia. Part (b) of Fig. 29 shows
the same neck at a later stage, ut8u50.12, compared with

FIG. 28. Scaling functions of the Stokes similarity solution, fSt and cSt .
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the same similarity solution, so here there is no adjust-
able parameter. There is some mismatch in the thick-
ness, indicating that the Stokes approximation ceases to
be valid, in spite of the low initial Reynolds number.
Since the exponent b is quite small, the length of the
neck has hardly changed, although its thickness has
halved.

Eventually, however, the symmetric similarity solu-
tion must give way to a highly asymmetric asymptotic
solution. When this happens depends very much on the
viscosity as well as on the initial condition. The transi-
tion to the asymptotic solution has been described by
Kowalewski (1996) as the formation of a ‘‘micro-
thread,’’ while he called the original neck between the
drops a ‘‘macro-thread.’’ A typical example is shown in
Fig. 30. Note that near the drop the macro-thread
shrinks at a much faster rate, as required by the dimin-
ished thickness of the asymptotic solution.

The newly formed micro-thread is highly asymmetric
and grows at the expense of the original thread. It is to
one of these micro-threads that the asymptotic solution
was fitted in Fig. 18. The micro-thread gets longer with
increasing viscosity, and in Fig. 18 eventually takes up
the entire field of vision. A similar formation of a micro-
thread can also be seen in the case of a falling drop in
Fig. 20(a).

B. Low viscosity—cones

The limit complementary to that of the previous sec-
tion is that of very large Reynolds number
Re5(L/l n)1/2. The simplest guess is that in this case
viscosity is negligible and the pinching process is de-
scribed by inviscid dynamics, as long as the minimum
radius remains much larger than l n . It was for the sake

FIG. 29. Two pictures of the thread in between drops for a highly viscous fluid, l n=2 mm [series GLY3 of Kowalewski, 1996],
which is also the width of the frame. In (a), 2.8 ms away from the singularity, a Stokes similarity solution, represented by the solid
line, was fitted by adjusting the axial scale. Part (b), 1.5 ms away from the singularity, contains no adjustable parameter.

FIG. 30. A sequence of pictures showing the development of a micro-thread out of a macro-thread. The micro-thread represents
an asymptotic similarity solution, which has a smaller radius than the Stokes solution at a given time away from breakup (from
series MIXD of Kowalewski, 1996).
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of this argument, in fact, that Peregrine et al. (1990) first
introduced the scale l n . Hence one eliminates the vis-
cous contribution in Eq. (79), ending up with an equa-
tion first studied in detail by Ting and Keller (1990).
Analogous to the low-Reynolds-number limit of the pre-
vious subsection, this amounts to an additional scaling
freedom of possible pinching solutions, which now have
the general form

hs~z8,t8!5ut8u222afEu~j !,

vs~z8,t8!5ut8ua21cEu~j !, (161)

j5z8/ut8ua.

Since on the scales considered here l n and tn are as-
sumed to be effectively zero, the distance from the sin-
gularity z8,t8 must be measured in units of the outer
scale L and the corresponding time T5(rL3/g)1/2.
Hence the radial and axial length scales of the solution
(161) are

l r5L(~ t02t !/T)222a,
(162)

l z5L(~ t02t !/T)a.

For the rest of this subsection, we shall conveniently
nondimensionalize all quantities with L and T . As long
as a,3/2, the slenderness assumption l r!l z is valid,
and Eq. (161) is an asymptotic solution to the full
Navier-Stokes equation (17)–(19) with zero viscosity,
usually called the Euler equation. If, moreover, a,1/2,
the approximation of zero viscosity is self-consistent in
the sense that the viscous contribution nv9 becomes as-
ymptotically irrelevant as t8→0. As shown by Ting and
Keller, there exist solutions of the similarity equations
consistent with proper boundary conditions at infinity
for any a , each having two free parameters. So, unlike
the viscous case, there is no known mechanism that se-
lects a specific solution.

In Sec. V.D we looked at the inviscid lubrication
equations and recast them in the form (97). Some exact
solutions other than Eq. (161) have been found, but do
not correspond to pinching solutions with the local ra-
dius going to zero. In fact, the existence of the infinite
sequence of conservation laws (106) and (107) poses a
subtle problem: Pinching solutions require that a,1,
which also implies that the velocity goes to infinity at the
pinch point. Thus, regardless of how fast the axial exten-
sion of the pinch region shrinks, conserved quantities
Q i

6 of sufficiently high order, as given by the densities
(106) and (107), will diverge. This means the pinching
solutions (161) are inconsistent with finite initial condi-
tions unless higher-order terms are taken into account in
the equations which might destroy some of the conser-
vation laws.

Of particular importance among the exponents a is
the case a53/2, which also marks the borderline of the
validity of the slenderness assumption. This value is spe-
cial because the dependence on the outer scale L drops
out in Eq. (162) and both radial and axial scales are
given by

l r5l z5l KM5t82/3. (163)

Thus, in the absence of any viscous length scale, a52/3
is the only exponent that leads to a solution independent
of external scales, like the nozzle radius r0. This was first
noticed by Keller and Miksis (1983), who also observed
that for this scaling similarity solutions of the full invis-
cid equations exist, without resorting to any slenderness
assumption. Using this, they computed similarity solu-
tions of the equations (9)–(11) for inviscid, irrotational
flow in the case of a receding wedge after breakup. Later
Peregrine et al. (1990) applied this idea to the axisym-
metric breakup problem before and after the singularity.
They noticed that the cone-shaped surface profiles ob-
served in low-viscosity fluids are in qualitative agree-
ment with a scaling law, Eq. (163), which predicts h to
have a linear behavior away from the singularity. How-
ever, no quantitative test of these ideas was performed.
Subsequently, Eggers and Dupont (1994) questioned the
validity of the scaling law (163) on the basis of their
simulations of the viscous lubrication equations (79) and
(80) with the full pressure term (82).

First, Eggers and Dupont (1994) noted that this
simple approximation performs remarkably well in re-
producing the experiments of Peregrine et al. before
breakup. But using detailed simulations of the lubrica-
tion equations, Eggers and Dupont then noted severe
departures from the scaling law (163), even when
hmin@l n . The reason is a very sharp increase in the
gradients of h and v before hmin goes to zero, which they
interpreted as a singularity of the inviscid equations,
which is stopped only by viscosity. This singularity
makes the viscosity become important while hmin@l n ,
and thus contradicts the assumptions implicit in Eqs.
(161) and (163). In particular, this implies that the invis-
cid equations become inconsistent before hmin goes to
zero and therefore are not able to describe pinching.
The analysis of the behavior at small viscosities has re-
cently been refined by Brenner et al. (1997) and aug-
mented by quantitative experiments. Experiment and
simulation at smaller viscosities than those studied by
Eggers and Dupont show the scaling (163) of the mini-
mum height, but only over a small range of scales.

The experiments of Brenner et al. consist of a high-
speed motion picture of a drop of water falling from a
7-mm pipette. The time between frames is 23 ms. The
measured values of hmin are shown in Fig. 31. The data
are consistent with the 2/3 scaling (163) over 1 1/2 de-
cades in time, but a deviation begins to show at the
times closest to rupture. In Fig. 32 the full surface pro-
files have been collapsed according to Eq. (161) with
a52/3, thus

hs~z8,t8!5ut8u2/3fEu~z8/ut8u2/3!. (164)

The minimum of fEu , as well as the slope to its right,
remains constant, thus showing reasonable agreement
with Eq. (164). However, on the steep side to the left of
the minimum the slope of the profile increases sharply,
while Eq. (164) would predict it to remain constant.

These findings are corroborated by the numerical
simulations Brenner et al. performed for the same pa-
rameters, using the lubrication equations. However, an
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even more drastic departure from Eq. (164) occurs be-
low the experimentally resolved scales, corresponding to
a breakdown of dimensional scaling long before the
scale l n is reached. Figure 33 shows the minimum radius
from numerical simulations, whose resolution permits a
followup on the evolution of hmin to scales much smaller
than in experiments. Note that in units of the nozzle
radius, the viscous length l n is 1.231027—still more

than three orders of magnitude below the smallest
hmin . For times down to the experimentally resolved
ones, the 2/3 law is confirmed, in agreement with experi-
ment; see Fig. 31.

On scales slightly smaller, a drastic departure occurs
and hmin even increases, forming a dip in the time de-
pendence of hmin . This increase was not seen in the ear-
lier simulations at higher viscosities, where it was
smoothed out by viscosity. We also show in Fig. 33 the
maximum velocity, which should scale like t821/3 accord-
ing to the inviscid scaling law. Clearly, the observed scal-
ing of the velocity is not even close to this prediction.
The departure from 2/3 scaling in the minimum height
coincides with the slope’s reaching its maximum value at
t8'1023, as can also be seen in Fig. 33. Before that time,
starting from t8'1022, a rapid increase occurs. The
same increase is observed again in the rescaled profiles
of Fig. 34, which correspond to the experimental pic-
tures of Fig. 32. This suggests that the inviscid equations
have a singularity at finite time t02t away from breakup,

FIG. 31. Experimental measurements (shown as diamonds) of
the minimum radius hmin of a neck of water in units of the
nozzle radius versus the time distance t8 from breakup (Bren-
ner et al., 1997). A least-squares fit to the data gives the fit
hmin;t80.68, dimensional scaling is shown as the dotted line for
comparison. The solid line shows the result of a numerical
simulation, described below.

FIG. 32. The scaling function fEu as calculated from Eq. (164)
using the same experimental data as in Fig. 31. The slope to
the left of the minimum increases sharply in the time interval
shown.

FIG. 33. Numerical simulation of a dripping faucet, for the
same parameter values as in experiment (see Fig. 31). Shown
are the minimum radius, the maximum velocity, and the slope
at corresponding times. At t8'1023 a sharp dip occurs, which
corresponds to the slope’s saturating at its maximum value.
The dotted lines are the predictions of the inviscid theory.
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at which the maximum slope goes to infinity.
To test for the existence of this singularity in more

detail, a series of simulations with decreasing viscosity,
but for the same initial conditions, was performed by
Brenner et al. (1997). The result of these simulations for
the liquid bridge geometry without gravity is shown in
Fig. 35, which gives the maximum slope as a function of
the time distance from the pinching singularity. The
change in viscosity between the lowest and the highest
Reynolds number is four orders of magnitude. While the
initial evolution is almost unaffected by viscosity, the
maximum slope increases drastically with Reynolds
number. The time at which the maximum slope is

reached remains almost constant, since the rise gets
sharper. Extrapolating to zero viscosity one confirms
that the inviscid equations have a singularity at a finite
time away from breakup. As the viscosity is reduced, the
range of validity of the inviscid equations does not ex-
pand. Thus, at least within the framework of the lubri-
cation equations, the Keller-Miksis theory can at best be
valid over a small range of scales.

Recently, the structure of the inviscid singularity of
the lubrication equations with full curvature term has
been cleared up in more detail (Eggers, 1997). The so-
lution

h~ z̄ , t̄ !5H1 t̄ 1/2fS z̄ 1Vs t̄

t̄ 3/2 D ,

(165)

v~ z̄ , t̄ !5V1 t̄ 1/2gS z̄ 1Vs t̄

t̄ 3/2 D
explicitly incorporates the fact that both the height and
the velocity remain finite at the singularity. The spatial
and the temporal distances from this singularity, termed
‘‘curvature’’ singularity in Brenner et al. (1997), are
measured by

z̄ 5z2zc , t̄ 5tc2t . (166)

Since the power in the denominator of

h5

z̄ 1Vs t̄

t̄ 3/2
(167)

is greater than the power t̄ 1/2 in front of f and g , the
slope of h and v goes to infinity asymptotically and the
pressure is dominated by the highest derivatives in Eq.
(82).

When we analyze the similarity equations correspond-
ing to Eq. (165), an analytical solution for the derivative
f8 of the similarity function of the height can be found,
which has the form

f8~h !5S 2~Vs2V !2

H
D 1/3

f0F(f0
3/2~h2h0!). (168)

Here f0 and h0 are free constants and F is given implic-
itly by

j5

1

8F3/2 ~112F !~12F !1/2. (169)

The maximum of the function F , which is shown in Fig.
36 as the solid line, has been chosen to be at h50 with
the half-width normalized to one. In the same figure, the
analytical result (169) is compared with a simulation at
very high Reynolds number, which ensures that viscosity
is not yet important.

After the curvature singularity is regularized by vis-
cosity, the structure of the solution is more complicated:
there must be a thin layer around the position of maxi-
mum slope where viscosity is important. In other parts
of the solution, where the profile remains relatively flat,
the dynamics will be governed by inviscid equations. A
more detailed characterization of this boundary-layer
structure or its possible scaling properties remains an

FIG. 34. Rescaled profiles fEu from numerical simulations,
corresponding to the experimental data of Fig. 32. The long-
dashed line is for a time closer to breakup than shown experi-
mentally.

FIG. 35. Maximum slope as a function of time for various
Reynolds numbers in a simulation of the liquid-bridge geom-
etry. A singularity of the inviscid equations can be estimated to
occur at t8'1024.
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open problem. Likewise, the reason for the appearance
of the exponent a52/3, which seems to be selected over
some range of scales, has not been understood on a
deeper level.

C. Satellite drops

The understanding of satellite drops and their possible
control has been the driving force behind much of the
research on drop formation. It seems they were first ob-
served by Plateau (1849) in his experiments with an un-
stable cylinder of viscous fluid suspended in another (see
Fig. 37).

In air, where drops are not held in place by the outer
fluid, they are much harder to observe, but still did not
escape the attentive eyes of Guthrie (1864). He noticed
tiny drops being thrown upward towards the nozzle in a
dripping-faucet experiment and conjectured that they
resulted from the profile’s not being spherical at the
point of breakup. Rayleigh (1882), using stroboscopic
methods, saw small drops appearing between main
drops in jet experiments and called them ‘‘spherules.’’
For engineering purposes, jets are of particular impor-
tance, the ink-jet printer playing the role of a prototypi-
cal application (Pimbley and Lee, 1977; Chaudhary and
Maxworthy, 1980b). As the drops separate from the ink
jet, they are individually charged and deflected onto
their target by an electric field. The smaller satellites are
deflected differently, producing an undesirable ‘‘halo’’
around the intended point. So the goal is to avoid satel-
lite formation altogether or to avoid having the satellites
charged.

Under normal circumstances, satellite drops are a uni-
versal feature of breakup, quite independent of the ex-

perimental configuration. Qualitatively, they come
about through two properties of the pinching singularity:

(i) The singularity is localized, producing pinchoff at a
point. Since only a small amount of fluid is involved, it
acts on time scales much shorter than the growth of dis-
turbances on the jet, once it sets in.

(ii) The singularity is asymmetrical, so the only way it
can be matched onto an outer solution is by pinching
next to a drop, the steep part forming on the side of the
drop, the flat part merging into the flat neck.

Hence the neck is pinched off from either side and
eventually contracts into a satellite drop. By looking
back at the sequence of pictures in Fig. 6, one can see
this very clearly. Although the neck is initially thinnest
in its middle section, localized pinching sets in only at
the time of the last picture of the first row, after a well-
separated drop has begun to form. From this point to
breakup in the next picture the outer part of the solution
has hardly moved, illustrating the separation of time
scales. Before the neck can retract, it pinches on its up-
per end, and thus a satellite is formed. The same argu-
ments of course apply to jet decay, so within one period
two drops are produced, a main drop with volume Vd

and a satellite drop with a much smaller volume Vs . At
long wavelengths the neck becomes very long and is sub-
ject to secondary breakings, which we shall disregard
here. We are going to focus on flow at low viscosities,
but similar mechanisms are present at higher viscosities,
as can be seen in the pictures of ‘‘micro-threading’’ (Fig.
30).

The total volume of both main drop and satellite is
controlled by mass conservation. That is Vd1Vs is equal
to the volume of fluid leaving the orifice during one pe-
riod, and thus

FIG. 36. The similarity function (169) for the inviscid singular-
ity of the lubrication equations. Theory is compared with a
numerical simulation at Re553109, at a time when the maxi-
mum slope has reached 104. FIG. 37. The final stages of the breakup of a column of olive

oil in a mixture of alcohol and water, as observed by Plateau
(1849).
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S rd

r0
D 3

1S rs

r0
D 3

5

3p

2x
. (170)

Here rd and rs are the equilibrium radii of drop and
satellite, respectively. Measurements of rd and rs were
performed by Rutland and Jameson (1970) and
Lafrance (1975). As shown in Fig. 38, the volume of the
satellite drop decreases disproportionally as x is in-
creased. Very close to x51 measurements become less
controlled as one is approaching the regime of random
breakup. For x&0.2, satellite and main drops become
similar in size. Drop sizes are very robust, as no signifi-
cant dependence on the perturbation amplitude or the
Weber number has been reported. This statement is am-
plified by the fact that simulations with idealized bound-
ary conditions and even perturbation theory have been
quite successful in predicting the correct drop sizes. The
first comparison was carried out by Rutland and Jame-
son (1970), using Yuen’s (1968) theory. The third-order
theory was applied up to the point where the local ra-
dius first goes to zero—way beyond the range of appli-
cability of the theory. The other breaking point was ex-
trapolated from this profile. Mass conservation [Eq.
(170)] was usually valid to within 10%. The fact that this
crude theory gave qualitatively correct results indicates
that the drop volume is set early in the evolution of the
surface. Once some local minimum is produced, pinch-

ing sets in before the drop volumes can change appre-
ciably. Thus only the position of the initial indentations
are needed. An even better agreement between pertur-
bation theory and experiment was reported by Lafrance
(1975). However, as we discussed at length in Sec. IV.Ċ,
this solution is erroneous and we feel unable to judge
the significance of this agreement.

Simulations have been even more successful in pre-
dicting drop volumes. Mansour and Lundgren (1990)
employed a simulation of inviscid, irrotational flow,
while Ashgriz and Mashayek (1995) simulated the
Navier-Stokes equation at Re=200. The results of the
latter group are included as solid lines in Fig. 38 and can
be seen to agree with experiment to within experimental
scatter. Two significant simplifications were made in the
simulations: First, the perturbations were uniform and
did not grow in space. Second, the simulation did not
represent the stationary state of a decaying jet, whose
downstream side has a free-boundary condition. Both
simplifications considerably influenced the profiles, but
had little effect on the total volume within a neck. Note
also that Eq. (170) was obeyed exactly by the fully non-
linear calculation.

Apart from the volumes Vd and Vs , the most relevant
parameters are the velocities vd and vs of drop and sat-
ellite. They determine whether the satellite will merge
with the drop leading it (‘‘forward merge,’’ vs.vd) or
with the one following it (‘‘rear merge,’’ vs,vd). In the
limiting case vs5vd (‘‘no merge’’ or ‘‘infinity condi-
tion’’), the satellite will not merge at all, which is par-
ticularly undesirable, as satellite drops will persist far
downstream. Analogous to Eq. (170), there is an exact
relation involving vd and vs , which represents momen-
tum conservation. In it, the momentum r(vdVd1vsVs)
carried by the drop and the satellite equals the momen-
tum flux of the unperturbed jet, integrated over one pe-
riod. In addition to the momentum carried by the fluid,
there is a contribution coming from surface tension,
which pulls the fluid back towards the nozzle. In the case
of an unperturbed jet, this is just the excess pressure
2p52g/r0, integrated over the cross section of the jet.
Here we have assumed that the initial perturbations on
the jet are small. This leads to the second exact balance,

v j~rd
3
vd1rs

3
vs!5

3p

2x
S v j

2r0
3
2

g

r
r0

2D . (171)

As expected, the main drop will be slowed down relative
to the jet velocity. In fact, neglecting the contribution
from the satellite drop, one finds from Eqs. (170) and
(171) that

vd'v j2

g

r

1

r0v j

.

This result was also obtained by Schneider et al. (1967),
except that they had an erroneous factor of two in front
of the second term on the right. If this is corrected,
agreement with their measurements of the drop velocity
improves substantially.

FIG. 38. Radius of main and satellite drop as a function of the
reduced wave number. Experimental data by Rutland and
Jameson (1970, solid symbols) and Lafrance (1975, open sym-
bols). The lines represent the radius of the main and the sat-
ellite drop according to the simulations by Ashgriz and
Mashayek (1995).
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The velocity of the satellite, however, can vary greatly
owing to its small mass. Its value will depend on the
details of the breakup. The most extensive experimental
investigation of satellite formation has been performed
by Chaudhary and Maxworthy (1980a,1980b). Figure
39(a)–(c) shows their photographs of jets with varying
disturbance amplitudes. At low driving [Fig. 39(a)], the
neck breaks first on its front, while at the highest driving
[Fig. 39(c)] it breaks on its rear. The latter case means
that drop and satellite detach as a single unit, and only
later do the two separate. At intermediate driving am-
plitudes, there is a transition region where the pinching
becomes more and more symmetric, causing the
breakup in front and behind the neck to occur almost
simultaneously, as can be seen in Fig. 39(b). This
gradual transition can best be characterized by the time
distance t i between the two breakings, which has been
called the ‘‘satellite interaction time’’ by Pimbley and
Lee (1977). Its significance lies in the fact that it is a
measure of the momentum transferred between the two
breakings. In case (a), there is a strong backward pull on
the satellite, causing it to rear merge, while in (c) it
merges with the drop leading it. If t i is very small, as in
(b), the momentum transfer is also small and the total
momentum of the satellite is given mostly by the veloc-
ity distribution at the first breaking. Accordingly, it may
either rear merge or forward merge, as in Fig. 39(b), and
a prediction of the merging characteristics is difficult.

The focus of Pimbley and Lee’s (1977) and
Chaudhary and Maxworthy’s (1980b) work is on the de-
pendence of the breakup characteristics on the reduced
wave number x and on the driving amplitude. Their re-
sults agree only qualitatively in that (i) there is a transi-
tion from rear merging to forward merging as the driv-
ing amplitude is increased, corresponding to a transition

from separation in front of the neck to separation on its
rear, and (ii) the critical amplitude that corresponds to
the no-merge condition increases with wave number.
Left out of their investigation was the Weber number,
which has been shown by Vasallo and Ashgriz (1991) to
have a significant effect as well.

No accepted explanation exists of the observed tran-
sition from front to rear pinching. It was suggested by
Pimbley and Lee that the transition is connected to the
growth of the second harmonic component or octave
above the fundamental input, which they also tried to
confirm within a second-order perturbation calculation.
Indeed, if a component with a shorter wavelength has
had a chance to grow sufficiently with respect to the
fundamental, which will be the case at low driving, it will
produce an additional growth of surface perturbations
across the neck. Thus the neck will break first on its
front.

This idea was tested within the one-dimensional
model (79), (80), (82) by Eggers (1995c). The jet was
broken as described in more detail by Brenner et al.
(1997) whenever the radius reached a minimum height
of 1023r0. After a number of breakings (typically 50–
100), the jet reached a stationary state in which the en-
tire breaking process had the same periodicity T51/f as
the driving. This was the first time such a stationary state
had been established in a numerical simulation. Figure
40 shows stationary jet breakup at a reduced wave num-
ber x=0.4312 and at weak driving e50.04, which led to
breakup 16 wavelengths away from the nozzle, similar to
Fig. 39(a). The Reynolds and Weber numbers were the
same as in the experiment performed by Chaudhary and
Maxworthy. The neck formed symmetrically, causing it
to pinch at both ends at almost the same time. In dis-
agreement with experiment, the simulated breakup re-
mained almost identical as the driving amplitude was
increased. This was because the amplitude of harmonics
generated by the nonlinear interaction was very small,
so it could not affect the breakup.

This situation changes if a small component of a har-
monic frequency is added to the driving. The existence
of higher harmonic components in the driving by real-
world nozzles has been recognized and measured before
(Taub, 1976; Chaudhary and Maxworthy, 1980b; Torpey,
1988). They are produced by nonlinearities of the pi-
ezocrystal and by the fact that the velocity profile com-
ing out of the nozzle is not constant, but is more or less
parabolic, depending on the length of the nozzle. This

FIG. 39. Photographs of satellite formation at three different
driving amplitudes, increasing from (a) to (c), at a reduced
wave number x=0.4312 (Chaudhary and Maxworthy, 1980b).
In (a) the satellite breaks first at its front and then at its rear.
In (b) the situation is the same, but the time in between the
two events is much shorter. In (c) the satellite breaks first at its
rear.

FIG. 40. Simulation of satellite formation in the stationary
state of a decaying jet. The dimensionless wave number is
x50.4312, the Reynolds number Re=39, and the Weber num-
ber b2

5239. The satellite first separates at its front, but almost
simultaneously at its rear.
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inevitably translates into nonsinusoidal modulations of
the jet. The effect of a nontrivial velocity profile on the
jet evolution has been studied directly in an interesting
paper by Razumovski� (1993).

The effect of the second harmonic with 1/10 of the
amplitude of the fundamental is shown in Fig. 41(a). At
a reduced wave number of 0.4312 the growth of the sec-
ond harmonic is faster than that of the fundamental ac-
cording to linear theory. Thus at low driving, when there
is sufficient time for the harmonic to grow, it may have
an appreciable effect. Indeed, the profiles look remark-
ably similar to the experimental ones of Fig. 39(a),
which are also at low driving. There is considerable
growth of surface perturbations across the neck, causing
it to separate at its front, while there is not much inden-
tation yet on its rear. Note that according to linear
theory the amplitude of the second harmonic should still
be 1/6 of the fundamental at breakup, so nonlinear ef-
fects must also play an important role. If the input is
stronger, but the amplitude ratio of the second harmonic
to the fundamental is kept constant [see Fig. 41(b)], the
harmonic has much less time to grow. Thus the breakup
resembles the one without higher harmonic driving (Fig.
40), being much more symmetric [see Fig. 41(b)]. This
transition to symmetric pinching with increased driving
amplitude is similar to experimental observation [see
Fig. 39(a),(b)]. Increasing the driving amplitude still fur-
ther does not produce any change in the simulations, as
the second harmonic has already become irrelevant. Ac-
cordingly, no breakup was found corresponding to Fig.
39(c), which represents the highest experimental driving
amplitude. It seems as if the jet profile is severely dis-
torted even two wavelengths before breakup, indicating
a strong increase in nonharmonic input, which was not
accounted for in the simulations.

Thus we have seen that even small changes in the

driving have a significant effect on breakup. Increasing
the driving amplitude leads to a transition to symmetric
pinching in both simulation and experiment. However,
too little is known about the actual experimental driving
to draw more definite conclusions.

VIII. RELATED PROBLEMS

For the last section we have selected three more gen-
eral problems, which stand out not only for their fasci-
nating physics, but also for their technological impor-
tance. The dynamics of two-fluid systems governs mixing
processes. Here the assumption of a free boundary is
abandoned. Shearing forces act on the piece of fluid
about to break up, and the dynamics of the outer fluid
have to be considered as well. Electrically driven jets are
being used for the production of sprays of very small
drops of uniform size, and of charged macromolecules in
the gas phase. These jets generically appear when a po-
larizable fluid is placed in a strong electric field. Finally,
liquids containing macromolecules are ubiquitous in in-
dustrial processing such as fiber spinning. Macromol-
ecules have long time scales associated with their distor-
tion and relaxation, which interfere with the time scales
relevant for breakup. This and their highly anisotropic
viscosity fundamentally alters the behavior near
breakup.

A. Two-fluid systems

Here we consider the dynamics and breakup of a drop
of fluid in another fluid, which is considered to be un-
bounded. In the case of breakup in air, both the viscosity
and the density of the gas are usually negligible, but for
fluids the dynamics change. First, the outer fluid has to
move with the inner fluid, and second it exerts a force
through its shear stresses. This is true even if the outer
fluid is at rest, but if in addition there is a nontrivial
outer flow, it acts as an external forcing that deforms the
drop.

The main interest in the subject comes from the prob-
lem of mixing. Figure 42 shows how a single drop is
quickly dispersed into a large number of small droplets,
which are distributed almost evenly throughout the con-
tainer. First the drop is stretched into a long filament.
Even though it becomes very thin, it remains remark-
ably stable against capillary instability. Owing to the
complicated structure of Lagrangian trajectories even in
simple flows, the filament is folded into an intricate
structure. In certain parts of the flow the filament finally
breaks up into drops under the action of surface tension,
and the container is soon filled with tiny drops.

It was G. I. Taylor’s idea to break up this extremely
complicated phenomenon into a number of simpler
ones, two of which he hoped would depend only on the
local properties of the flow field, namely, the deforma-
tion and stretching of drops and the breakup of long
filaments. Only the folding depends on the global struc-
ture of the flow, and indeed the chaotic motion of La-
grangian paths is a research subject in its own right, not

FIG. 41. Same as in Fig. 40, but with the second harmonic
component with 1/10 of the amplitude of the fundamental
added. Part (a) shows the case of low driving, (b) the case of
higher driving. A transition to almost symmetrical pinching is
observed.
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to be considered here. The fundamental approach in all
of the following is to look at a single drop or filament
and to assume its dimensions to be small compared with
the typical scale of the outer flow. Thus the outer flow
can be treated in a linear approximation

v5G•x5

1

2
v3x1D•x, (172)

where v is the vorticity, D the deformation tensor, and
G

T the velocity gradient tensor. Moreover, in almost all
of the work on the problem to date the drop is assumed
to be small enough for the Reynolds number to be small
in both fluids, so that the Stokes approximation is appli-
cable.

In his first two papers Taylor (1932, 1934) looked at
the stationary shape and the stability of drops in two
prototypical flows. One is a purely extensional flow with
zero vorticity, the other a simple shear flow. At a critical
flow rate, which depends on the viscosity ratio between
the two fluids, the stationary drop becomes unstable and
starts to stretch. This situation was investigated by To-
motika (1936), who explained the surprising stability of

cylindrical filaments in the process of stretching. When
the flow is turned off, or in the context of mixing, if the
filament is convected into a region of low strain rate, it is
prone to capillary instability, which was investigated in
an earlier paper (Tomotika, 1935). The capillary insta-
bility and the subsequent nonlinear evolution were in-
vestigated both experimentally and numerically by Leal
and co-workers, and are summarized in the review paper
by Stone (1994).

1. Stationary shapes

As suggested by Taylor, we are looking at the case of
a linear flow field, either two-dimensional extensional
flow

G5GF 1 0 0

0 21 0

0 0 0
G , (173)

or simple shear flow

FIG. 42. Dynamics of elongation, folding, and
breakup of a drop placed in the globally cha-
otic flow produced in a time-periodically
modulated eccentric journal bearing. The
drop is less viscous than the surrounding fluid
by a factor of l50.067 (Tjahjadi and Ottino,
1991). Reprinted with permission of Cam-
bridge University Press.
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If the undisturbed drop radius is a , then the static prob-
lem is governed by the viscosity contrast

l5

h8

h
, (175)

which measures the viscosity of the drop h8 relative to
that of the outer fluid h , and the capillary number

Ca5

Gha

g
, (176)

which measures the strength of the external shearing
forces relative to the surface tension forces. The Rey-
nolds number is assumed to be small and the drop fluid
is chosen to be neutrally buoyant, r85r .

For increasingly large capillary numbers, the drop de-
forms more and more, as measured by the ratio of the
half-widths, L/B . The outer flow stretches small distur-
bances on the surface, so the drop is stable against cap-
illary instability even if it is long and thin. The strain rate
at which drops can exist in equilibrium is limited rather
by the pressure, which builds up at the end of the drop.
Here, fluid is being pushed toward the tip, and a pres-
sure gradient maintains the necessary backflow. At some
critical capillary number the pressure at the end of the
drop overcomes capillary pressure, the drop becomes
unstable, and it starts to stretch with the flow. The
smaller the viscosity of the drop, the smaller the pres-
sure needed to maintain the backflow, and the more ex-
tended the drops become before they start to extend. In
extensional flow, for any viscosity ratio there is a critical
capillary number that breaks the drop. If vorticity is
present, as in the flow (174), drops of high viscosity be-
have in radically different ways, as discovered by Taylor
(1934). For l*4 the drop performs a solid-body rota-
tion, thus evading the shearing forces, and no longer
breaks up even at the highest capillary numbers. Thus a
drop of a high viscosity fluid must be mixed by entirely
different means from those of Fig. 42.

Figure 43 shows drops at the critical capillary number
for two different viscosity ratios in an extensional flow.
At the higher viscosity the drop is still close to spherical
at the point of instability, so it can be described in an
expansion around this shape. On the other hand, for
very long drops of low viscosity ratio, Taylor (1966) pro-
posed an expansion for small B/L , very similar to the
lubrication expansions of Sec. V. Taylor’s ideas were
subsequently developed into a fairly complete theory of
equilibrium shapes by A. Acrivos and his associates
(Barthès-Biesel and Acrivos, 1973; Acrivos and Lo,
1978; Rallison and Acrivos, 1978; Hinch and Acrivos,
1979, 1980).

Barthès-Biesel and Acrivos (1973) carried the expan-
sion for small deformation to second order and used it
to predict both drop shapes and critical capillary number
at large l . Buckmaster (1972) investigated the opposite

limit of an inviscid bubble and found a family of elon-
gated shapes with pointed ends by using slender-body
theory. Later, Acrivos and Lo (1978) singled out one
shape,

h~z !5

a

4Ca
F12S z

20aCa2D 2G , (177)

as the only stable solution. They also generalized the
previous results to viscous drops, which allowed them to
find the critical capillary number as a function of l!1:

Cacrl
1/6

50.148. (178)

In particular, this means that an inviscid drop never be-
comes unstable and can be stretched to arbitrary
lengths. Hinch and Acrivos (1979, 1980) removed the
simplifying assumption of axisymmetry in these calcula-
tions, but found the results to be fundamentally the
same. The theoretical results were checked against nu-
merical calculations by Rallison and Acrivos (1978) and
against experiments by Bentley and Leal (1986a, 1986b).
Good agreement was found both in the shapes and in
the critical capillary number, as long as the deformation
was either small or very large.

The major unsolved problem connected with the
theory of stationary shapes concerns the solution (177),
valid for very elongated and almost inviscid bubbles.
Equation (177) predicts a pointed conical tip at the end
of the bubble, in agreement with experiment (see Fig.
43). Thus one would have a singularity of the curvature
at the end. However, Buckmaster (1972) used a local
analysis to show that conical tips are in fact not a solu-
tion of the equations, so the expansion leading to Eq.
(177) has to break down near the tip. In light of our
analysis of a receding tip in Sec. VI.D this may not be
surprising, as lubrication equations should be expected
to break down near a tip. Buckmaster (1972) estimated
the size of the region where lubrication theory breaks
down to be of the order of exp@2Ca6#. In this break-
down lies a tantalizing analogy to two-dimensional
Stokes flow, which produces an apparent cusp of a free
surface (Joseph et al., 1991). Here the shear needed to
form the cusp is produced by two rollers submerged un-
der the surface of a tank of viscous fluid. An exact solu-

FIG. 43. Two examples of drops in an extensional flow at the
critical capillary number. The top picture shows a highly vis-
cous drop (l524.5), which is still ellipsoidal at the critical
capillary number of Cacr50.106. The bottom picture shows a
highly deformed drop with l51.0531023 at Cacr50.457. Note
the pointed ends. From Bentley and Leal, 1986b. Reprinted
with permission of Cambridge University Press.
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tion of a slightly idealized problem was found (Jeong
and Moffatt, 1992), which shows that the cusp singular-
ity is actually regularized by surface tension close to the
tip, forming a rounded end with a radius of curvature
exponentially small in the capillary number. The same
has been suspected by Sherwood (1981) to happen in the
present problem, but no solution has been found yet.

But the analogy does not stop here. As the capillary
number is increased in the two-roller apparatus, a thin
sheet of air emanates from the cusp (Moffatt, 1995), thus
entraining air into the fluid. A very similar phenomenon
had already been observed by Taylor (1934) in the axi-
symmetric case and goes by the name of ‘‘tip stream-
ing.’’ A thin jet of fluid is ejected from the tip, which
soon breaks up into droplets due to the Rayleigh insta-
bility, as can be seen in Fig. 44. A theoretical explana-
tion of this phenomenon does not exist. Sherwood
(1984) suggests that the tip is unstable owing to nonlin-
earities in the outer flow, and gives some very clear ex-
perimental pictures. de Bruijn (1993) experimentally in-
vestigates the influence of surfactants and finds that the
appearance of tip streaming crucially depends on the
type of fluid used. Most importantly, he finds that tip
streaming ceases after a certain period of time, possibly

after a surfactant is depleted from the tip. If the drop is
left at rest for a while, tip streaming commences. Adding
a surfactant provokes tip streaming in fluids that ordi-
narily show no tip streaming. de Bruijn also observes a
variety of hysteresis effects as the shear rate is varied.
From this it is clear that surfactants have an important if
not essential effect on tip streaming. However, it is not
obvious that they are really needed to explain the phe-
nomenon, or whether they just enhance the effect. For
example, without surfactant the jet might be too thin to
be observed or it only appears at much higher shear
rates. In any case, a more complete analysis of the tip
region even before the onset of tip streaming seems like
an obvious first step towards an understanding.

2. Breakup

As mentioned before, the growth of perturbations on
a fluid filament that stretches at a uniform rate was in-
vestigated by Tomotika (1936). As the filament is
stretched, the wavelength of the perturbation increases.
Its amplitude relative to the radius of the filament in-
creases by only a finite factor, even as the radius goes to
zero. However, this factor may be large if the perturba-
tion is introduced at a later stage of the stretching,
where the filament is already thinner. Thus, although the
relative growth remains finite in the linear approxima-
tion, this may be enough to break the filament. But only
when the flow is turned off or the flow rate is substan-
tially reduced does exponential growth set in (Tomotika,
1935; Mikami, Cox, and Mason, 1975). Growth rates and
maximum unstable wavelength depend on the viscosity
ratio l .

As the amplitude of perturbations increases, nonlin-
ear effects become important. They have been studied in
a series of papers (Stone, Bentley, and Leal, 1986; Stone
and Leal, 1989a, 1989b; Tjahjadi, Stone, and Ottino,
1992) experimentally and in parallel simulations. In ad-
dition to breakup driven by the Rayleigh instability, a
new type of breakup was observed, called ‘‘end pinch-
ing.’’ As depicted in Fig. 45, as the filament contracts,
two bulbous heads form at the end of the filament; they
then separate while the rest of the filament remains in-
tact. Only later does the filament break into many small
drops under the action of the Rayleigh instability. For
moderately extended filaments, L/a,20, end pinching is
in fact the dominant effect and the filament contracts to
a drop before capillary breakup sets in.

Therefore, to observe capillary breakup without inter-
ference from finite size effects, filaments have to be
stretched considerably. This was done by Tjahjadi,
Stone, and Ottino (1992) using a flow between two con-
centric cylinders. If the viscosity ratio l is high, then the
outer fluid can be neglected and one is back at the physi-
cal situation of the previous sections. The final state af-
ter the breakup of such a filament is shown in the bot-
tom picture of Fig. 46, with matching simulations of
Stokes flow. Note the agreement with Fig. 37, published
140 years earlier. Apart from the main satellite formed
by the bulbous neck, another much smaller satellite is

FIG. 44. Tip streaming in a Couette device at a shear rate of
19.5 s21. Shown is a drop of water in silicone oil which is 1000
times as viscous. To initiate tip streaming, 200 ppm of surfac-
tant has been added. The image width is 0.5 mm (Leonhard,
1996).
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found on either side of it. The reason is that as the fluid
pinches at the main drop, a conical neck is left behind.
As this neck retracts, it tends to form a bulbous part,
which again is prone to pinching.

As the viscosity ratio is decreased, the final structure
becomes ever more intricate, as can be seen by going
towards the top of Fig. 46. Even on very small scales, a
receding neck has a chance to form a bulbous section
before it can completely retract, and the process of
pinching becomes self-repeating. For the smallest l , sat-
ellite drops lie on an intricate fractal structure, the
smallest drops observed experimentally having a size of
10 mm. It seems likely that for finite l there is a cutoff
below which no further pinching takes place, but an es-
timate is not known.

Up to now we have considered only the nonlinear be-
havior away from the pinch point. As the neck becomes
thinner, one expects scale-invariant solutions to appear.
However, the force balance cannot be the same as in the
free boundary case, and new power laws appear. The
reason is that, in the case of a free boundary, viscous
stresses are given by hDv/l z

2 , where Dv is a typical ve-
locity scale and l z an axial scale. If an outer fluid is
present, there must be a boundary layer of the outer
fluid over which the velocity at the interface falls off to
zero. This is essentially a radial scale, so viscous stresses
are now h8Dv/l r

2 . Since in the asymptotic solutions
with free boundary l r goes to zero faster than l z , vis-
cous stresses due to the outer fluid will eventually domi-
nate, thus changing the force balance. Inevitably, the ex-
ponents describing this new solution will also be
different. Thus, strictly speaking, even for an outer fluid
with very small viscosity h8, the scaling laws will even-
tually cross over to this new type of scaling.

FIG. 45. Extension and subsequent relaxation of a drop at
l50.046. After the flow is stopped, the filament first under-
goes end pinching and then decays into equally spaced drops
corresponding to the most unstable wavelength (Stone, Bent-
ley, and Leal, 1986). Reprinted with permission of Cambridge
University Press.

FIG. 46. Breakup of a filament into satellite and subsatellite drops. As the viscosity ratio l is decreased, the final state of the
system has an increasingly complicated fractal structure (Tjahjadi, Stone, and Ottino, 1992). The pictures are, from top to bottom,
for l = 0.01, 0.067, 0.4, 1, and 2.8. Reprinted with permission of Cambridge University Press.
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The difficulty in setting up asymptotic equations of
motion for this problem lies in the fact that the flow is
unbounded. Therefore there is no obvious expansion in
a small parameter like the slenderness ratio of the
thread. Rather, further knowledge of the boundary layer
around the filament is required. One can expect, how-
ever, that close to the singularity the contribution from
the outer fluid is local as well, in that only flow from
close to the point of breaking has to be taken into ac-
count. In the case of Stokes flow, some steps have been
taken in the direction of ‘‘localizing’’ the contribution
from the outer flow (Lister and Stone, 1996; Lister,
Stone, and Brenner, 1997), but a self-similar description
of the singularity remains a challenging problem.

B. Electrically driven jets

When a dielectric drop is placed in an electric field, it
becomes polarized and the induced surface charges are
pulled apart. Thus a more elongated equilibrium shape
is reached, which depends on the field strength. Zeleny
(1914, 1915, 1917) discovered that when the electric field
strength is raised above a critical value, these shapes
become unstable and a conical tip appears at the end of
the drop, from which a tiny jet is ejected. Taylor (1964)
showed that a cone is a local equilibrium solution in
which surface tension and electric forces are balanced.
These cones, which have a definite opening angle of
98.6°, are known as Taylor cones. Thus, once more we
find a phenomenon in which a surface singularity is

formed under the influence of external forces and which
then gives birth to a jet or a channel. Similar stretching
of a drop and the formation of pointed spikes is ob-
served with ferrofluids in a magnetic field (Cowley and
Rosensweig, 1967; Bacri and Salin, 1982).

Two different experimental setups are commonly
used. In one, the dielectric fluid is released from a metal
capillary tube, which is placed opposite an electrode on
a fixed potential relative to the tube. This configuration
is used in engineering applications. Gravity can be com-
pensated by the pressure in the tube, and new fluid can
be introduced at will. This setup, which readily allows
for the formation of electrically driven jets, has gained
vast importance in the production of sprays (Bailey,
1988). Recently, the same technique has been used to
produce ions of macromolecules in the gas phase and
has revolutionized mass spectrometry of such molecules
(Fenn et al., 1989).

Despite its great importance, little is known theoreti-
cally about the formation of such electrically driven jets
or the parameters controlling its properties or stability.
For this reason, it is preferable to look at a simpler
setup, in which parameters like the geometry of the
metal tube, flow rates, or contact angles do not appear.
This second common experimental setup consists of an
isolated drop placed between two capacitor plates,
which produce a uniform electric field. Gravity is elimi-
nated either by using a neutrally buoyant drop (Taylor,
1964) or by placing the drop in a zero-gravity environ-
ment (Inculet and Floryan, 1990). Figure 47 shows a se-

FIG. 47. A drop of water, 1.5 cm in diameter, subject to a strong electric field of 6 kvolts/cm in a zero-gravity environment. In (a)
the free-floating drop is shown, while the other frames show the drop 3, 6, and 9 ms after the electric field has been turned on
(Inculet and Floryan, 1990).
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quence of pictures of a water drop in a zero-gravity en-
vironment. Frames (b) and (c) show the formation of a
Taylor cone after the field has been turned on. In (d)
tiny droplets are ejected from the drop, which are visible
at the lower end of the drop.

To outline a framework for a possible theoretical de-
scription, we set down the corresponding equations for
the simplest case of a perfectly conducting fluid, which
could serve as a starting point for a more complete dy-
namical description. Such a dynamic theory, however,
has yet to be worked out. For the case of a perfectly
conducting fluid, the electric field inside the drop is zero
and the outer field E has only a normal component En

on the surface; see Fig. 48. This leads to an additional
normal stress, so the boundary condition for the normal
component of the stress tensor is now (Landau and Lif-
shitz, 1984b)

2nsn5gS 1

R1
1

1

R2
D1

e0

2
En

2 , (179)

where n is the outward normal.
The difficulty of the problem resides in calculating the

electric field on the surface, which depends nonlocally
on the shape of the interface. In particular, using
Green’s representation theorem, the integral equation
for En is (Miksis, 1981)

2pz5E
]V
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r
FEn /E02

]z
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r
Dds ,

(180)

where E0 is the applied field strength. To calculate equi-
librium shapes, this equation has to be combined with
the condition of equilibrium from Eq. (179), namely,

p5gS 1

R1
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1

R2
D1

e0

2
En

2 , (181)

where p is the pressure in the fluid. Shapes can be cal-
culated by using the additional constraint that the vol-
ume of the fluid is conserved as En is increased:

pE
z

2

z
1

h2~z !dz5

4p

3
a3, (182)

where a is the radius without electric field and z6 de-
note the two ends of the drop.

Equations (180)–(182) uniquely specify the equilib-
rium shape of the drop. Clearly this shape can depend
only on the electric capillary number

Ca ~el !
5

e0E0
2a

g
. (183)

Taylor (1964) approximately calculates the elongation of
the drop and the critical capillary number necessary to
destabilize it. His calculation is based on the approxima-
tion that the shape of the drop is spheroidal, in which
case the electric field can be calculated exactly. In the
opposite limit of strongly deformed drops, Sherwood
(1991) performed a slender-body analysis akin to the
one used for a drop in an extensional flow (Acrivos and
Lo, 1978). The aspect ratio can be calculated as a func-
tion of the electric field, but unfortunately the slender-
body approximation is still quite poor at an aspect ratio
of about 10 when compared with numerical simulations.
A more refined slender-body analysis has recently been
performed by Stone, Lister, and Brenner (1997).

Numerical solutions for drop shapes in an electric
field were first computed by Miksis (1981), who solved
the integral equation (180) numerically and found good
agreement with Taylor’s results for the elongation of the
drop. More recent numerical studies (Sherwood, 1988;
Harris and Basaran, 1993) have extended the numerical
analysis to higher field strengths, where pointed tips may
form. Sherwood (1988) also includes the dynamics of the
problem in the Stokes approximation. However, a major
drawback of the reported schemes is that they break
down close to the tip. Hence they are not able to distin-
guish reliably between rounded and pointed ends.

Taylor’s approach to the problem of a possible cone-
shaped solution was rather different in that it focused on
a local solution with such singular behavior. Regular so-
lutions of the Laplace equation near a cone of opening
angle 2(p2b) have the form, using spherical coordi-
nates (Jackson, 1975),

f5ArnPn~cosu !, (184)

where Pn is a Legendre function of order n (see Fig. 48).
From this potential, the tangential- and normal-field
components are

E t52nArn21Pn~cosb !, (185a)

En5Arn21sinuPn8~cosb !. (185b)

In a conducting fluid the tangential component must
vanish, implying Pn(cosb)50. At the same time, En

must balance surface-tension forces, and the singular
part of Eq. (181) becomes

2

g

r tanb
5

e0

2
En

2 , (186)

so that from Eq. (185b) we have n51/2. This means that
the condition of equilibrium becomes

P1/2~cosb !50, (187)

whose solution is b5130.71°.

FIG. 48. A cartoon of a fluid drop in a uniform electric field of
strength E0. At the end the geometry of a cone-shaped tip is
shown.
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Thus one ends up with a very definite answer, which
was confirmed by Taylor in his experiments with a con-
ducting fluid [see Fig. 49(a)], but using electrodes with a
shape adjusted to the form of the local solution. Indeed,
Eq. (186) requires a definite value of the electric field
strength at a given distance from the vertex, and it is not
clear under what conditions this local field is consistent
with the applied field E0 and the shape of the drop. A
first step to investigate this problem was taken by Li,
Halsey, and Lobkovsky (1994), who computed the en-
ergy of a drop with a trial shape, having two pointed
ends, in a homogeneous electric field and found it to be
lower than that of the corresponding ellipsoidal shape.
However, there is no reason to believe that their trial
shapes are actually solutions of the equations. The local
cone-shaped solutions were incorporated in a numerical
scheme for solving Eqs. (180)–(182) by Pantano, Gañ án-
Calvo, and Barrero (1994). Using the geometry of a cap-
illary tube facing a capacitor plate, they found stationary
solutions with pointed tips for a range of values of
Ca(el) and a .

Li, Halsey, and Lobkovsky (1994) also advance a
simple argument that a drop with pointed ends could not
correspond to a stable equilibrium. That is, a reduction
of the cone angle would increase the field strength, elon-
gating the end even more. Conversely, an increase of the
angle would reduce the field strength, so perturbations

of that sort would grow as well. This instability is con-
sistent with experimental observations, in which periodic
oscillations of the cone angle are observed, the tip being
more pointed than the static solution in one phase, and
more rounded in the other, see Fig. 49(b),(c). In the
pointed phase a jet is ejected from the tip, which is too
thin to be resolved in the photograph of Fig. 49.

For other fluids or field strengths, the combined sys-
tem of a cone and the jet issuing from its tip is stable.
Yet it is not known which parameters are controlling
this behavior and what dynamical mechanism is respon-
sible for the stability. It has been suggested that a finite
conductivity of the fluid is essential for stability (Hayati,
Bailey, and Tadros, 1986, 1987). A finite tangential elec-
tric field produces shear stresses on the surface that
drive a circulatory motion in the fluid, which might be
important for stability. Shear stresses on the surface
have also been discussed in connection with the stability
of the jet away from the apex of the cone (Mestel, 1994).
In fact it is another open question originally addressed
by Taylor (1969) why an electrically driven jet is far
more stable than estimates based on the Rayleigh insta-
bility would suggest. Taylor investigated the influence of
surface charges and found them to have stabilizing as
well as destabilizing effects, depending on wave number.
Thus the presence of surface charges alone cannot ac-
count for the observed stability.

So far it is not even known what sets the scale of the
jet radius. As conductivity increases, meaning that
charge relaxation becomes faster relative to the time
scale of the fluid motion, the radius of the jet decreases.
In the extreme case of liquid metals, the size of the jet
decreases to the point where single ions are emitted
(Gabovich, 1983). Some phenomenological theories, re-
lating, for example, the mass flux and the current
through an electrical jet, have been proposed by Fernán-
dez de la Mora and Loscertales (1994). The gas sur-
rounding the Taylor cone is also known to have an im-
portant effect (Aguirre-de-Carcer and Fernández de la
Mora, 1995).

Nevertheless, despite some advances, the understand-
ing of electrically driven jets remains quite rudimentary.
Given the success of one-dimensional models in the de-
scription of free jets, it seems promising to include an
outer electric field to formulate a minimal dynamic
model. Interesting questions are both the approach to
the Taylor cone in a strong electric field and the dynam-
ics of the cone-jet system. Again we restrict ourselves to
the case of a perfectly conducting fluid, where no model
for charge transport has to be considered. The electric
field is given solely by electrostatics. A comparison be-
tween Eqs. (179) and (19) shows that in that case the
pressure as given by Eq. (82) has to be replaced by

p5gS 1

h~11h8
2!1/2 2

h9

~11h8
2!3/2D1

e0

2
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The normal-field component has to be calculated from
Eq. (180). Thus in the resulting system (79), (80) all
points are nonlocally coupled. Even if this model proves
too simple to describe all the experimental effects, and

FIG. 49. Three successive frames (in intervals of 1/64 s) show-
ing a drop of water (which appears bright) forming a Taylor
cone surrounded by oil. The first frame shows a comparison
with the theoretical prediction of the cone angle; the other
frames show the drop in two phases of its oscillation around
this cone (Taylor, 1964). Reprinted with permission of the
Royal Society.

921Jens Eggers: Nonlinear dynamics and breakup of free-surface flows

Rev. Mod. Phys., Vol. 69, No. 3, July 1997



we have mentioned plenty of evidence for this, it will
provide a simple starting point for the exploration of the
dynamics. Numerical investigations of Eqs. (79), (80),
(180), and (188) are under way (Brenner, 1997).

C. Polymeric liquids

In this final subsection we turn to liquids that have
rheological properties different from the Newtonian flu-
ids described by the Navier-Stokes equation. This hap-
pens whenever the fluid contains macromolecules, even
if they are present in only minute concentrations. It goes
without saying that such fluids are ubiquitous in chemi-
cal processing, so it is essential to understand their non-
linear dynamics, which are fundamentally different from
those of the Newtonian fluids discussed before. Two
properties are responsible for this: First, polymers
change the viscosity of the suspension by changing their
shape depending on the type of flow. Second, polymers
have long relaxation times associated with them, which
are easily of the same order as the time scale of the flow
and allow the polymers to respond to the flow with a
corresponding time delay. Since the polymers are con-
vected with the flow, this makes the equations of motion
inherently nonlinear, even if the flow without polymer
would be described by linear laws.

The most significant effect in the context of filament
breaking is the dramatic increase in viscosity in an exten-
sional flow, which is the typical flow near a pinch singu-
larity, as fluid is pushed away to either side of the pinch
point. Specifically, polymers, which are random coils in
the absence of flow, are pulled apart and may increase
their length by three orders of magnitude in the direc-
tion of the extension (Spiegelberg and McKinley, 1996).
As a result, the suspension can sustain much greater
stresses, and pinching is stopped in regions where poly-
mers are stretched. This ‘‘extensional thickening’’ leads
to the characteristic ‘‘beads-on-a-string’’ shape of poly-
meric jets, as seen in Fig. 50. Some other experimental
pictures of polymeric jets are contained in Goldin et al.
(1969).

Phenomenological theories incorporating the influ-
ence of polymers have been ubiquitous since the early
1950s. In addition, microscopic interpretations and mod-
els have been supplied by calculations based on the

Boltzmann equation. Both developments are reviewed
extensively in the two-volume monograph by Bird,
Armstrong, and Hassager (1987). The validity of these
models has been verified in many circumstances of flow
regimes where linear approximations of the equations
are valid. However, their predictive power in strong
flows, where nonlinear effects produce corrections of the
same order as that of the basic flow, are a subject of
debate. The question is not easy to settle, since the
equations are usually very hard to solve even by numeri-
cal means, owing to the added nonlinearity and wide
range of time scales. Thus for free-surface flows, a quan-
titative comparison with experiment has never been per-
formed in a regime where the polymer time scale is
much longer than the time scale of the flow. The jet
flows that are the subject of this review are ideal in this
respect, because their extensional character selectively
probes the nonlinear properties, and their almost one-
dimensional behavior makes them both conceptually
and computationally simple. In fact, one-dimensional
models including viscoelastic effects have been devel-
oped in parallel to the Newtonian case (Renardy, 1982;
Forest and Wang, 1990, 1994). We shall directly use the
one-dimensional description to illustrate the new physics
that comes into play.

To this end we add a polymer contribution to Eq. (79)
for the velocity field:

] tv1vv852p8/r13ns
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Here sz and sr are the lowest-order coefficients in a
radial expansion of the diagonal elements of the stress
tensor. As the contribution from the solvent has been
included explicitly, sz and sr describe only the state of
the polymer. The dynamics of this state are accounted
for by the equations of motion (Bechtel, Bolinger, Cao,
and Forest, 1995),
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which describe polymers that contribute a Newtonian
viscosity np if the fluid moves very slowly. They respond
with a time delay of l to the motion of the liquid, as
represented by the relaxation term s/l on the right.

It should be noted that this assumption of a single
relaxation time l is grossly simplifying, even if the poly-
mers are monodisperse. Rather, one would expect a
long chain to have a continuous distribution of time
scales, corresponding to various subchains that compose
the polymer. In principle, there is no problem in incor-
porating such a distribution of time scales in the model,
but it would violate our fundamental desideratum of
simplicity. Usually, one chooses l to be some average of
those time scales, but perhaps it is more reasonable to

FIG. 50. Beads-on-a-string structure of a jet of 0.02% aqueous
polyoxyethylene WSR-301 solution. The unperturbed radius is
r050.027 cm. The theoretical calculation by Yarin (1) is com-
pared with the experiment (2) by A. V. Bazilevskii (Yarin,
1993). Reprinted with permission of Addison Wesley Long-
man Ltd.
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assume that strong flows will be dominated by the long-
est time scale of the system. Recently, other types of
viscoelastic fluids have been designed that well approxi-
mate the assumption of a single time scale (Rehage and
Hoffmann, 1991). Further testing of their properties in
strong flows seems highly desirable.

The crucial term in Eq. (190) for sz and sr is the third
on the left, which describes the stretching of the polymer
as the fluid element containing it elongates. In exten-
sional flow v8 is positive, so the stress in the axial direc-
tion grows, while it decays in the radial direction. Com-
paring the stretching term with the relaxation term, one
finds that exponential growth is possible if

v8.

1

2l
. (191)

The dimensionless quantity

De5lġ , (192)

where ġ is a typical strain rate of the system, is usually
called a Deborah number. Thus if De.1/2, viscoelastic
effects will become important, qualifying the problem as
a ‘‘strong flow.’’

The most controversial terms are the quadratic ones
on the right, whose physical meaning is to limit the poly-
meric viscosity as the polymer is stretched to its full
length. This particular nonlinearity was proposed by
Giesekus (1982), and the three-dimensional version of
Eqs. (189) and (190) is referred to as the Giesekus
model. Some nonlinear term is necessary to avoid the
unphysical assumption of polymers stretching to arbi-
trary lengths. In fact Renardy (1994) shows that the
model (189), (190), with a50 and in the absence of in-
ertia, will show no thread breakup at all, which is clearly
unphysical. The problem of the quadratic term is that it
gives polymer extensions proportional to the strain rate,
while in reality it should be limited by the chain length.
In the absence of an obvious better choice, we shall not
dwell on the subject here. Some other possibilities are
discussed by Hinch (1977). To demonstrate that these
one-dimensional models make sense, the experimental
picture (see Fig. 50) of a polymeric jet is compared with
a calculation by Yarin (1993). His one-dimensional
model is very similar to Eqs. (189) and (190), except that
the nonlinear terms in (190) are based on the theory by
Hinch (1977). The almost cylindrical portions of the jet
are quite well reproduced.

The mathematical properties of one-dimensional
models have been studied extensively (Forest and
Wang, 1990; Bechtel, Forest, and Lin, 1992; Renardy,
1994; Bechtel, Bolinger, Cao, and Forest, 1995) and
simulations under idealized conditions have been per-
formed as well (Forest and Wang, 1994; Renardy, 1995).
By using only the leading-order curvature contribution,
and for a5ns50, a linearization reveals that the model
may enter a regime where it is ill posed (Forest and
Wang, 1990). Since surface gradients become quite
large, this may well be the result of neglecting regular-
izing terms in the curvature (Renardy, 1995). The ab-

sence of a solvent and the infinite extensibility of the
polymer are also unphysical assumptions, which may
cause mathematical problems. Clearly there is a need for
a better understanding of the mathematical significance
of the different terms in Eq. (190). In a sense, there is no
reason why the one-dimensional approximation in itself
should be a cause for catastrophic instability, while no
problem occurs in the full equations.

Clearly, it is most desirable to perform some quanti-
tative test of viscoelastic models in strong flows. Sridhar
et al. (1991) report an experiment in the liquid-bridge
geometry described in Sec. II.C, where one plate moves
with a velocity increasing exponentially in time and
gravity points in the direction of the axis. This ensures a
constant strain rate, thus selectively probing polymer
stretching over a given time scale. However, the strain
rates were not high enough to qualify for a strong flow.
Shipman, Denn, and Keunings (1991) performed a
finite-element study of the same experiment, but used
only the minimum radius of the bridge for comparison.

Recently, the same experiment has been performed at
much higher Deborah numbers of up to 13 (Spiegelberg,
Ables, and McKinley, 1996). Figure 51 shows a compari-
son of a Newtonian liquid with a polymeric liquid at a
Deborah number of 3.6. At low shear rates, the proper-
ties of both fluids are the same. The viscosity is very
high, so that inertial effects and even surface tension
forces are small during most of the experiment. The
Hencky strain e shown below each frame is the natural
logarithm of the factor by which the plate spacing has
increased. Initially, the evolution of the profiles of both
liquids are very similar. But as the plate spacing in-
creases by more than a factor of 8, polymers are suffi-
ciently stretched to have a significant effect. As a result,
the profile of the polymeric fluid develops the typical
columnar shape already observed in the case of purely
surface-tension-driven breakup. At e54.5, the column is
resting on an almost flat surface, which has even devel-
oped a small dip. The last frame shows a new instability,
in which the fluid starts to break up into individual
threads.

This set of experiments is ideally suited for a compari-
son with the lubrication models explained above. The
fluids are well characterized and thus allow for a quan-
titative test of different viscoelastic models in the strong-
flow regime. Their simplicity nurtures hope for an un-
derstanding of the fundamental physics of viscoelastic
liquids, such as the columnar structure. A host of experi-
mental data are available, most notably the surface pro-
files and the force on the endplates. The latter is a mea-
sure of the stress supported by the polymers and thus
directly probes nonlinear terms in Eq. (190).

The elastic instability seen in the last frame of Fig. 51
is, of course, beyond the description possible with a one-
dimensional model. It has been studied in more detail by
Spiegelberg and McKinley (1996). Even the dip appear-
ing in the next-to-last frame signals trouble, as the
model proposed here is not able to describe overturning.
At best, the model will be able to describe the experi-
ment up to the point where the dip occurs. One should
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remember, however, that the polymer is subjected to
quite extreme conditions in this particular run. Never-
theless, it would be extremely desirable to extend lubri-
cation models so as to describe overturning. This is a
subject that has never been addressed in the literature,
in spite of its obvious significance. It remains one of the
most fundamental unresolved issues of the field.

IX. OUTLOOK

One-dimensional approximations of the Navier-
Stokes equation driven by surface tension have led to a
fairly complete description of the neighborhood of the
point of breakup. It is among the great surprises of this
research that the same simple models also yield quanti-
tatively correct predictions far away from breakup. The
potential of this observation has only begun to be ex-
plored, as it will make fine-scale detail of flow problems
accessible by numerical means, which are too compli-
cated to be computed from direct simulations of the
Navier-Stokes equation. However, to make full use of
the technological applications of one-dimensional mod-
eling, the theory has to be extended in several direc-
tions. One example is the inclusion of an outer fluid,
which will be important for jet atomization and mixing
processes. Non-Newtonian fluids and additional types of
forcing, like electric or magnetic fields, mentioned in the
previous section, are other examples.

In all applications, seemingly simple flow configura-
tions may occur in which the lubrication approach fails.
Such configurations occur in the neighborhood of points

where the surface profile is not unique or near tips,
where the slope becomes infinite. This remains one of
the most fundamental problems to be addressed by
theory, and it is of the greatest practical importance as
well. A possible solution lies in the choice of appropriate
coordinate systems, which adapt to the flow. In a slightly
different context, this idea has already been used by
Yarin (1993) to generalize the slender-jet approach to
nonaxisymmetric situations. The centerline of the jet is
allowed to be an arbitrary curve in space, around which
the slender jet expansion is performed. An equation of
motion for the position of the centerline closes the sys-
tem. Thus the jet may be bending in response to aero-
dynamic forces or buckling when it falls onto a flat sur-
face.

Complementary to further development of one-
dimensional models, one needs more accurate experi-
mental and numerical tests of their validity, in particular
regarding the flow field. Marschall’s (1985) snapshots of
material lines of the flow indicate that complicated cir-
cular motions may occur, while the surface hardly
changes. This suggests that it is more fruitful to think of
the velocity field in one-dimensional models as the aver-

age over the cross section, which is the point of view
adopted in Sec. V.B. In cases where more accurate in-
formation on the flow field is needed, one could com-
bine full Navier-Stokes simulations with lubrication ap-
proximations in regions where a full simulation is too
costly. As indicated in Sec. V, higher-order expansions
are available to improve on the error systematically.

FIG. 51. Two fluid filaments undergoing an exponential elongational stretch. Corresponding Hencky strains are shown. A New-
tonian polybutene oil (a) is compared to a polymeric fluid (b). The ratio of the polymeric time scale and the time scale of the flow
is De = 3.6.
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Very close to breakup, when the bridge between the
two halves of fluid is of the order of molecules, one
needs to go beyond the approximation of continuum
mechanics used throughout this review. If the viscosity is
high, fluctuations need to be included while the fluid
thread is still macroscopic, and breakup patterns be-
come very complicated. In either case molecular-
dynamics (MD) simulations may provide useful infor-
mation complementary to hydrodynamic calculations.
While in the case of wall-bounded flows layers of 10
molecules are sufficient for a fully quantitative compari-
son between MD simulations and hydrodynamics (Kop-
lik, Banavar, and Willemsen, 1989), the minimum num-
ber of molecules needed for hydrodynamics to apply is
not clear for free surfaces. Unfortunately, even the most
recent simulations (Koplik and Banavar, 1993) are not
quite large enough to show a complete transition from a
single cylinder of fluid to two separate pieces. Using
effective interactions between water molecules,
Greenspan (1993) shows pictures of the bifurcation of a
water drop falling from a ceiling under gravity. But
clearly, in view of rapidly developing computer capabili-
ties, the gap between MD simulations and hydrodynam-
ics of free surfaces will soon narrow considerably.

Although the problem of inviscid or almost inviscid
flow stood at the beginning of both the theoretical
(Keller and Miksis, 1983) and experimental (Peregrine,
Shoker, and Symon, 1990) study of the pinch singularity,
it remains the least understood. The reason lies in the
subtle interplay between the pinch singularity and an-
other singularity of the inviscid equations, which causes
infinitely steep gradients to occur, as explained in Sec.
VII.B. This makes viscosity become important even if it
is arbitrarily small, and may cause a breakdown of hy-
drodynamics before breakup occurs (Brenner et al.
1997). Only in the last stage of pinching, when the mini-
mum height is of the order of the viscous scale, does the
universal scaling solution set in, where viscous forces are
balanced by surface tension. Because of the practical im-
portance of low-viscosity fluids like water, a description
of the almost inviscid transient region is particularly de-
sirable, for example, to understand the formation of sat-
ellite drops. In view of its simplicity, low-viscosity pinch-
ing may also serve as a paradigm for other high-
Reynolds-number flows such as turbulence (Frisch,
1995), which generically show a great disparity between
the length scales on which they are driven and the scales
where the flow is smoothed out by viscosity. A particu-
larly interesting possibility is the emergence of anoma-
lous scaling exponents for pinching at low viscosities,
which replace the dimensional scaling (Barenblatt, 1996)
eventually observed on scales where viscosity becomes
dominant.

In many other problems of hydrodynamics singulari-
ties develop, and only a few of them have been under-
stood in detail. Examples are the tips of drops in electric
fields or in shear flows, mentioned in Sec. VIII. Singu-
larities of the three-dimensional Euler equation may be
regarded as the breakup of vortex lines or sheets
(Pomeau, 1994). In the case of two-dimensional

breakup, as in a Hele-Shaw cell, the form of the singu-
larity depends sensitively on the initial condition
(Almgren, Bertozzi, and Brenner, 1996). It is not known
under which circumstances a singularity is ‘‘universal,’’
as in the case of three-dimensional breakup, or when
large-scale information is still present at arbitrarily small
scales. What is needed most is a more unified descrip-
tion of these different types of singularities, of which the
subject of this review is only one example.

In the context of free-surface flows, another singular-
ity that has never been looked at occurs when two pieces
of fluids merge. Some experimental work (Bradley and
Stow, 1978) and numerical work (Greenspan and Heath,
1991; Koplik and Banavar, 1992; Lafaurie et al., 1994;
Nobari, Jan, and Tryggvason, 1996) provides some hints,
but the resolution is insufficient to observe much of the
extremely rapid motion after two surfaces touch. The
surface is singular initially, so everything is again domi-
nated by surface-tension forces, and the motion can be
expected to be universal. A solution of this problem
would complete the description of singularities of free-
surface flows, being able to separate a piece of fluid into
two and join the two pieces together again.
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Liquides Soumis aux Seules Forces Moléculaires (Gauthier
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