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Abstract. Non-smooth systems are abundant in nature being usually related to physical systems with dry friction, impact and

backlash. These systems operate in different modes, and the transition from one mode to another can often be idealized as

an instantaneous or discrete transition. Since the time scale of this transition is much smaller than the scale of the individual

modes dynamics, its mathematical modeling can be lead as non-smooth. This contribution uses a smoothened switch model to

analyze non-smooth systems. The procedure seems to be effective to deal with this kind of system, presenting advantages for the

numerical implementation. As an application of the general formulation, a single-degree of freedom oscillator with discontinuous

support is analyzed. System dynamical behavior shows a rich response, presenting dynamical jumps, bifurcations and chaos.
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1. Introduction

Non-smooth nonlinearity is abundant in nature being usually related to either the friction phenomenon or the

discontinuous characteristics as intermittent contacts of some system components. Therefore, physical systems with

dry friction, impact and backlash operate in different modes, and the transition from one mode to another can often

be idealized as an instantaneous or discrete transition. Since the time scale of this transition is much smaller than

the scale of the individual mode dynamics their modeling results in non-smooth systems.

Non-smooth systems appear in many kinds of engineering systems and also in everyday life. Examples may be

mentioned by the stick-slip oscillations of a violin string or grating brakes [4]. Some related phenomena as chatter

and squeal causes serious problems in many industrial applications and, in general, these forms of vibrations are

undesirable because of their detrimental effects on the operation and performance of mechanical systems. They can

cause excessive wear of components, surface damage, fatigue failure and noise [1].

The mathematical modeling and numerical simulations of non-smooth systems present many difficulties, which

turn their description unusually complex. Moreover, the dynamical behavior of these systems is complex,presenting a

rich response. Therefore, non-smooth systems present scientific as well as technological interests that are motivating

different researches related to them.

Literature presents many reports dealing with non-smooth systems, concerning the mathematical modeling, the

proposition of proper numerical algorithms to treat these systems, and also experimental approaches employed to

verify the obtained results. In all these works, it should be pointed out a complex dynamical response. The idea that

non-smooth systems can be considered as continuous in a finite number of continuous subspaces and also that the

system parameters do not change in an abrupt manner, inspires some authors to try to describe non-smooth systems
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Fig. 1. Non-smooth system with discontinuous support.

by a smoothened form. Wiercigroch [15], Leine [9], Leine et al. [8], Leine and van Campen [5–7] are some efforts

where interesting approaches are proposed in order to deal with mathematical discontinuity.

The objective of this contribution is the nonlinear dynamics analysis of non-smooth systems. As an application, a

single-degree of freedom system with discontinuous support is of concern. Despite the deceiving simplicity of this

problem, its nonlinear dynamics is very rich. The mathematical model uses a smoothened switch model, proposed

by Leine [9] on the study of stick-slip vibrations. Basically, the switch model treats non-smooth systems defining

different sets of ordinary differential equations. Each set is related to a subspace of the physical system. The

innovative idea is the definition of transition regions that governs the dynamical response during the transition from

one set to another. Therefore, each subspace has its own ordinary differential equation. Besides, each transition

region also has its governing equation, defined in order to smooth the system dynamics. The use of this approach

smoothes the discontinuities and allows the use of classical numerical procedures. Numerical investigations of the

single-degree of freedom system with a discontinuous support show efficiency and allow one to analyze many aspects

related to the non-smooth system dynamics.

2. Discontinuous support model

This contribution analyzes the dynamical response of a single-degree of freedom system with discontinuous

support, shown in Fig. 1. The oscillator is harmonically excited being composed by a mass m, connected with a

linear spring with stiffness k and a linear damping with coefficient c. Moreover, the support is massless, having a

linear spring with stiffness ks and a linear damping with coefficient cs. The displacement of the mass is denoted

by x, relative to the equilibrium position, while the displacement of the support is denoted by y (y � 0). A gap g
defines the distance between the mass and the support. Therefore, the system has two possible modes, represented

by a situation where the mass presents contact with the support and other situation when there is no contact. Calling

fs as the contact force between the mass and the support, these two situations may be represented as follows:
{

x < g and fs = 0 , without contact.

x � g and fs = − (ksy + csẏ) < 0, with contact.
(1)

The support relaxes to the equilibrium state when there is no contact between the mass and the support. By

assuming that the relaxation time of the support is much smaller than the time between two contact events, the

dynamics of the support can be neglected. This assumption reduces the system dynamics to a second-order differential

equation associated with the mass-spring-dashpot dynamics. Therefore, the system governing equations may be

defined by two different equations. One for situations without contact and the other with contact:
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{

mẍ + kx + cẋ = f0 cos(ωt) , without contact.

mẍ + kx + ks(x − g) + (c + cs)ẋ = f0 cos(ωt) , with contact.
(2)

By defining a non-dimensional variable X = x/g and also,

ω2
0 = k/m; ω2

s = ks/m; ξ = c/m; ξs = cs/m; F0 = f0/mg (3)

the equations of motion are rewritten as follows,
{

Ẍ + ω2
0X + ξẊ = F0 cos(ωt) , without contact.

Ẍ + ω2
0X + ω2

s(X − 1) + (ξ + ξs)Ẋ = F0 cos(ωt) , with contact.
(4)

According to the Filippov theory [3,9], the state space of a system u̇ = f̃(u), u = (X, Ẋ) may be split into two

subspaces Γ̃
−

and Γ̃+, separated by a hyper-surface Σ̃, which is defined by a scalar indicator function h(u).

u̇ = f̃(u, t) =

{

f̃
−

, u ∈ Γ̃
−

f̃+ , u ∈ Γ̃+

(5)

where the subspaces Γ̃
−

and Γ̃+, and the hyper-surface Σ̃, are defined as follows:

Γ̃
−

= {u ∈ Rn/h(u) < 0}

Σ̃ = {u ∈ Rn/h(u) = 0} (6)

Γ̃+ = {u ∈ Rn/h(u) > 0

The use of Filippov theory in the oscillator with discontinuous support imposes a correct description of the

transitions. The contact between the mass and the support occurs if the displacement becomes equal to the

gap g. On the other hand, the mass loses contact with the support when the contact force vanishes, i.e., if

fs = − [ks(x − g) + csẋ] = 0 , or in non-dimensional terms, Fs = −
[

ω2
s(X − 1) + ξsẊ

]

= 0 . Therefore, there

are two subspaces with two different transition situations. The subspaces are defined by two indicator functions:

hα(x, ẋ) = X − 1
(7)

hβ(x, ẋ) = −(X − 1) −
ξs

ω2
s

Ẋ

Now, it is possible to describe the mass motion, considering that there is no contact with the support if the state

vector u ∈ Γ̃
−

. On the other hand, there is contact between the mass and the support if u ∈ Γ̃+. These situations

are represented by:

Γ̃
−

= {u ∈ R2/hα(u) < 0 or hβ(u) > 0} (8a)

Γ̃+ = {u ∈ R2/hα(u) > 0 and hβ(u) < 0} (8b)

The transitions are related to hyper-surface Σ̃, which consists of the conjunction of two surfaces Σ̃α and Σ̃β . The

hyper-surface Σ̃α defines the transition from Γ̃
−

to Γ̃+, representing situations where the contact is caused when u
becomes greater than g. On the other hand, the hyper-surface Σ̃β defines the transition from Γ̃+ to Γ̃

−
as the contact

is lost when the support force vanishes. Therefore,

Σ̃α = {u ∈ R2/hα(u) = 0 and hβ(u) � 0} (9a)

Σ̃β = {u ∈ R2/hα(u) > 0 and hβ(u) = 0} (9b)

This non-smooth system may be smoothened redefining the subspaces and the transition hyper-surfaces, assuming

that the transition has a linear variation from f̃
−

to f̃+ (or from f̃+ to f̃
−
) in a thin space define by a narrow band



318 S. Divenyi et al. / Nonlinear dynamics and chaos in systems with discontinuous support

Fig. 2. Subspaces related to the system dynamics.

η = η̂/g around the hyper-surface of discontinuity. Figure 2 shows either the subspaces or the hyper-surfaces related

to the single-degree of freedom dynamics, considering both non-smooth and smoothened systems.

Assuming a transition through a narrow band with thickness η, system can be written as follows [9],

u̇ = f(u, t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f
−

, u ∈ Γ
−

fα, u ∈ Σα

fβ , u ∈ Σβ

f+, u ∈ Γ+

(10)

where,

f
−

(u, t) =

{

Ẋ

−ω2
0X − ξẊ + F0 cos(ωt)

}

(11a)

f+(u, t) =

{

Ẋ

−ω2
0X − ω2

s(X − 1) − (ξ + ξs)Ẋ + F0 cos(ωt)

}

(11b)

The definition of the transitions associated with hyper-surfaces
∑

α and
∑

β , is defined by assuming that,

fα = (1 − q) f
−

+ q f+, q = (X − 1 + η)/2η (12a)

fβ = (1 − q) f+ + q f
−

, q = [−X + 1 + η − (ξs/ω2
s)Ẋ ]/2η (12b)

Notice that 0 � q � 1. Under these assumptions, there is a time instant ta where q = 0, the input limit of region
∑

α , and also a time instant tb where q = 1, the output limit of region
∑

α . The proposed expression considers

a linear approximation through the transition region, from f
−
(ta) to f+(tb). In an analogous form, there is a time

instant tc where q = 0, the input limit of region
∑

β , and also a time instant td where q = 1, the output limit of region
∑

β . Again, it is assumed a linear approximation through the transition region, from f +(tc) to f
−

(td). Therefore,

the transitions are defined as follows:

fα =

⎧

⎨

⎩

Ẋ

−ω2
0X − (ξ + ξs)Ẋ + F0 cos(ωt) −

1

2
ω2

s(X − 1 + η) + ξsẊa

(

1 −
X − 1 + η

2η

)

⎫

⎬

⎭

(13a)

fβ =

{

Ẋ

−ω2
0X − ξẊ + F0 cos(ωt) −

1

2
ω2

s(X − 1 + η) −
1

2
ξsẊ

}

(13b)

The subspaces and transitions hyper-surfaces are now defined by:
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Table 1

System parameters

ω0 (rad/s) ωs (rad/s) ξ (s−1) ξs (s−1) F0 (s−2) ω (rad/s)

4.5 38.0 1.04 0.72 144.9 5

Fig. 3. Analysis of system evolution through the subspaces.

Γ
−

=
{

u ∈ R2/ hα(u) � −η or hβ(u) � η
}

(14a)

Γ+ =
{

u ∈ R2/ hα(u) � η and hβ(u) � −η
}

(14b)

Σα =
{

u ∈ R2/ − η < hα(u) < +η and hβ(u) � −hα(u)
}

(14c)

Σβ = {u ∈ R2/ hα(u) > −hβ(u) and − η < hβ(u) < +η} (14d)

This approach allows one to deal with non-smooth systems employing a smoothened system. The thickness

parameter of the narrow band η need to be appropriated chose for each physical problem. This switch model is

introduced as an appropriate procedure to perform mathematical modeling allowing an efficient numerical procedure

to describe non-smooth systems.

3. Numerical simulations

This section considers a numerical investigation of the system with discontinuous support. The proposed math-

ematical formulation is integrated with the aid of the Runge-Kutta-Fehlberg method. At first, it is considered an

analysis related to the mathematical and numerical procedure here proposed. With this purpose, it is assumed

parameters presented in Table 1. Figure 3 shows an example where the transition parameter η = 7.14 × 10 −3 and

a numerical integration tolerance of 10−8 are considered. Under this condition, the system presents an evolution

where part of the movement occurs without contact and the other part occurs with contact. Therefore, the system

needs to pass for all subspaces previously defined. It is worthwhile to observe that, for this set of parameters, the

system passes in all regions, i.e., the subspaces Γ
−

and Γ+, and the hyper-surfaces
∑

α and
∑

β .

Now, different narrow band thicknesses, η, are contemplated in order to highlight the previous conclusion. For

this simulation, it is used the same parameters of Table 1 except F0 = 76.24 s−2 and ω = 9.55 rad/s, which is related

to a chaotic response. The conclusions about this kind of motion are assured by experimental tests [13]. Figure 4
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Fig. 4. Analysis of different narrow band thickness. (a) η = 2.8× 10−1; (b) η = 2.8× 10−2; (c) η = 2.8 × 10−3; (d) η = 2.8 × 10−4.

shows numerical simulations for η = 2.8 × 10−1 , η = 2.8 × 10−2, η = 2.8 × 10−3 and η = 2.8 × 10−4. Notice

that different qualitative responses are obtained due to the improper choice of the parameter η. When, η = 2.8 ×
10−1, the system does not pass to the region Γ+ since this value is not small enough. The decrease for a value

η = 2.8 × 10−2, still presenting numerical problems due to the same reason (observe the enlargement of this region

showing an orbit that does not reach the region Γ+). On the other hand, when the thickness of the narrow band

is smaller than η = 2.8 × 10−3, the system passes for all four regions, obtaining the expected result. Figure 4

presents simulations for η =2.8 × 10−3 and η = 2.8 × 10−4 showing the same result. Based on this conclusion, it



S. Divenyi et al. / Nonlinear dynamics and chaos in systems with discontinuous support 321

Table 2

System parameters

ω0 (rad/s) ξ (s−1) ξs (s−1) F0 (s−2) ω (rad/s)

1 0.05 0.30 0.125 1

Fig. 5. Response for different support stiffness.

is assumed η̂ = ηg = 10−5 as a reference value for all simulations. Actually, this value shown to be effective for all

simulations here performed.

At this point, it is carried out an analysis of different kinds of support that may be related to distinct physical

problems. Therefore, it is interesting to observe if the numerical procedure here proposed is able to analyze systems

with high values of stiffness. This kind of response may be related to impact problems, for example. With this aim,

it is assumed the system parameters presented in Table 2, and also η = 2.5 × 10−6. Figure 5 shows system response

for different values of support stiffness. Notice that the numerical procedure does not present problems even when

high values of support stiffness are considered.

Frequency domain analysis is now in focus considering the resonance curve of the system with discontinuous

support (Fig. 6). These results are obtained by considering two different values of the support stiffness: ω s =
3.16 rad/s (Fig. 6a) and ωs = 7.07 rad/s (Fig. 6b). The resonance curve has a typical characteristic of nonlinear

systems, presenting dynamical jumps. Besides, it presents a discontinuity related to the contact with the support,

caused by the hardening when contact occurs. Observing these curves, it is noticeable the frequency ω a that is

related to the contact event, and also the frequencies ω b and ωc, which are associated with jumps. Notice that the

hardening increase, associated with great support stiffness (Fig. 6b), tends to enlarge the effect of dynamical jumps.

In order to analyze dynamical jumps, different situations are now considered. When ω b < ω < ωc a bifurcation is

observed and three periodic solution or attractors may coexist: two stable solutions and an unstable one [5,6]. The

analysis of basins of attraction can be useful to observe this attractors coexistence. Figure 7 shows the evolution

of the basins of attraction for ωs = 3.16 rad/s under increasing frequency ω. In each case, it is observed two

stable coexisting periodic attractors, represented by two different colors (dark and light). In Fig. 7(a), the excitation

frequency is ω = 1.10 rad/s, while in Fig. 7(b) is ω = 1.18 rad/s. The light color basin of attraction represents a

behavior without contact, while the dark basin of attraction is associated with a behavior with contact. Each one

of these behaviors can be observed in the phase space presented in Fig. 8, obtained for ω = 1.10 rad/s. Initially,

when ω = ωb, all initial conditions lead to non-impact attractor (dark color). After that, the light attractor increases
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Table 3

System parameters

ω0 (rad/s) ωs (rad/s) ξ (s−1) ξs (s−1) F0 (s−2)

1 17.32 0.05 0.60 0.3125

Table 4

System parameters

ω0 (rad/s) ωs (rad/s) ξ (s−1) ξ (s−1) ω (rad/s)

1 31.6 0.05 0.60 0.9

Fig. 6. Frequency domain analysis.

Fig. 7. Basins of attraction for different frequencies. (a) ω = 1.10 rad/s; (b) ω = 1.18 rad/s.

its size when excitation frequency is increased. The dynamical jump, when ω = ω c, is represented when all initial

conditions lead to an impact basin of attraction (light color).

The dynamical analysis of the discontinuous system here discussed shows that when the response has small

amplitudes, there is no contact, and therefore a linear response is expected. This linear response is represented by an

ellipse in the phase space. By changing the system forcing characteristics, the elliptical trajectory tends to grow until

it reaches the support, presenting contact. The situation where the phase space ellipse touches lightly the boundary,

is called grazing orbit. Under this condition, the mass grazes the support with zero velocity. Afterwards, a further
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Fig. 8. Coexisting periodic attractors.

Fig. 9. Bifurcation diagram.

incremental change to the excitation characteristics produces contact behavior that is not easily predicted. For some

combination of system parameters, the response may proceed abruptly into chaos. Higher-order periodic response

may interrupt the chaotic regime as the forcing characteristics continue to change. On the other hand, the grazing

orbit may be replaced directly by a stable periodic response. This unpredictability related to grazing bifurcations

constitutes a typical behavior of non-smooth systems that does not appear in smooth systems [2,10–12,14].

The single-degree of freedom reported in this article allows one to show the grazing phenomenon and also different

kinds of motion related to this. On this basis, it is considered parameters presented in Table 3, with η = 6.25 ×
10−6. Figure 9 shows bifurcation diagram where the control parameter is the excitation frequency. This diagram

gives an indication that the motion quickly moves into a chaotic region, characterizing a grazing contact. The phase

space related to ω = 0.91 rad/s, is shown in Fig. 10(a), where it can be observed a period-3 orbit, in the imminence

of grazing contact. By promoting a small increase in the forcing frequency, ω = 0.92 rad/s, the response becomes

chaotic, as shown in the Poincaré map of the Fig. 10(b). Notice that by promoting small increases in the frequency
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Fig. 10. Responses near the grazing orbit.

Fig. 11. Bifurcation diagram.

value near the grazing contact, the system reaches the support, presenting contact, and the response becomes irregular

over a range of excitation frequency.

Now, a different bifurcation diagram is focused on, considering the forcing amplitude F 0 as a control parameter
(Fig. 11). Table 4 presents the other parameters used on this analysis, together with η = 5 × 10−6. Notice that, after

a region related to periodic behaviors, chaotic regions appear. Once again, grazing orbit occurs just before the birth

of the chaotic attractor. Phase spaces and Poincaré map of period-4 (F0 = 0.225 s−2), chaotic (F0 = 0.350 s−2)
and period-2 (F0 = 0.400 s−2) are presented in Fig. 12(a,b,c), respectively.

4. Conclusions

The objective of this research effort is the numerical investigation of non-smooth systems from a smoothened

system. A single-degree of freedom oscillator with discontinuous support is analyzed as an application of this kind
of system. A smoothened switch model is employed to model the system as four different sets of ordinary differential

equations. Therefore, the state space is split into subspaces, and finite regions are used to define transitions among

them. This procedure is useful for numerical simulations and seems to be effective in order to perform the integration
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(a) (b)

(c)

Fig. 12. Responses near the grazing orbit. (a) Period-4 (F0 = 0.225 s−2); (b) Chaotic (F0 = 0.350 s−2); (c) Period-2 (F0 = 0.400 s−2).

of non-smooth systems. Numerical investigations are carried out allowing the analysis of different aspects related

to the system dynamics. In general, the smoothened method presents stable behavior being more efficient than the

direct integration of non-smooth system, allowing the use of larger time steps. Concerning the system behavior, its

dynamics is rich, presenting dynamical jumps, bifurcations and chaos. The grazing bifurcation that causes abruptly

changes in the system response reveals to be an important characteristic of this kind of system. Finally, the authors

believe that the proposed procedure may be useful for the analysis of other non-smooth systems.
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