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ABSTRACT

This review provides a summary of the work completed to

date on the nonlinear dynamics of resonant micro- and nano-

electromechanical systems (MEMS/NEMS). This research area,

which has been active for approximately a decade, involves the

study of nonlinear behaviors arising in small scale, vibratory,

mechanical devices that are typically integrated with electronics

for use in signal processing, actuation, and sensing applications.

The inherent nature of these devices, which includes low damp-

ing, desired resonant operation, and the presence of nonlinear

potential fields, sets an ideal stage for the appearance of nonlin-

ear behavior, and this allows engineers to beneficially leverage

nonlinear dynamics in the course of device design. This work

provides an overview of the fundamental research on nonlinear

behaviors arising in micro/nanoresonators, including direct and

parametric resonances, parametric amplification, impacts, self-

excited oscillations, and collective behaviors, such as localiza-

tion and synchronization, which arise in coupled resonator ar-

rays. In addition, the work describes the active exploitation of

nonlinear dynamics in the development of resonant mass sen-

sors, inertial sensors, and electromechanical signal processing

systems. The paper closes with some brief remarks about impor-

tant ongoing developments in the field.

INTRODUCTION

This paper describes past developments, ongoing work, and

a vision of future topics for a research area with a relatively

short history – the application and exploitation of nonlinear dy-

namic behavior in micro- and nanoelectromechanical systems

∗Address all correspondence to this author.

(MEMS/NEMS). In the 1950s, Richard Feynman presented a

prescient paper entitled,“There’s Plenty of Room at the Bottom”

(reprinted in [1]), and a follow-up paper “Infinitesimal Machin-

ery” (reprinted in [2]), in which he outlined a vision for build-

ing very small devices that had the potential to revolutionize a

wide range of technologies. These ideas lay essentially dormant

for many years, awaiting the means of manufacturing mechan-

ical devices on very small scales. The first notable progress in

the area of microresonators was the work of Nathanson and co-

workers on resonant gate transistors [3, 4]. The driving force

that made the fabrication of such devices possible came from the

electronics industry, specifically the production of miniaturized

integrated circuits (ICs). In 1982, Kurt Peterson described the

next step in the development towards MEMS with his provoca-

tive paper, “Silicon as a Mechanical Material” [5], in which it

was demonstrated how one could use IC manufacturing tech-

niques to build small mechanical devices with movable compo-

nents. The field has accelerated rapidly since that time, and the

community is well on its way to at least partially fulfilling Feyn-

man’s vision of miniature machines. Applications abound and

are having an impact in a wide variety of fields including com-

munications, sensing, basic physics, and biotechnology.

Another research area that has seen a similar growth in in-

terest and applications over the past few decades is nonlinear dy-

namics. While the history of this field dates to Newton’s so-

lution of the two-body problem and Poincare’s classical work

on celestial mechanics (described from a modern point of view

by Holmes [6]), the field accelerated significantly in the 1980s,

building on a number of developments from the 1960s, includ-

ing Lorenz’s discovery of chaos in a simple model for convec-

tive fluid flow [7] and Smale’s work on the topology underlying
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chaos (recounted in [8]). The technology that drove this field

was the wide availability of computers, which brought to life the

mathematical ideas from dynamical systems. This has produced

a thriving community which spans mathematics, physics, engi-

neering, operations research, and biology.

This paper focuses on a class of problems that lie at the

intersection of the two topical areas detailed above. Thus, of

the various types of MEMS and NEMS, those of interest here

utilize a resonant mode of operation and exhibit nonlinear be-

havior, either intentionally or otherwise (Note that detailed re-

views of linear micro/nanoresonators can be found in [9–11]).

Such devices are used in a wide variety of applications, includ-

ing sensing, signal processing, switching, and timing. Many of

these applications are driven by the recognition that some purely-

electrical components can be advantageously replaced by elec-

tromechanical analogs. The benefits of such an approach include

smaller size, lower damping, and improved performance metrics.

These devices also offer the desirable feature of being easily in-

tegrated with solid-state circuits, thus enabling the development

of IC chips with integrated mechanical and electrical functional-

ity. It is important to note that the transition to electromechan-

ical components requires that analysts and designers deal with

dynamic behavior resulting from classical forces acting on the

mechanical components, as well as multi-physics interactions,

many of which do not have counterparts in purely-electrical or

macroscale mechanical systems. Accordingly, the vast expe-

rience developed for the analysis and design of electrical cir-

cuits and (independently) for mechanical structures are not, in

themselves, sufficient for understanding the behavior of resonant

micro/nanosystems. This has, in turn, opened a new realm of

system design. Some of the unique aspects of MEMS/NEMS

present difficulties for device realization, but they also can be

exploited to achieve some interesting device designs. From a

nonlinear dynamics point of view, MEMS/NEMS offer greater

flexibility in terms of designing for specific types of nonlinear

behavior, and thus provide fertile ground for designs that actively

exploit the rich behavior of nonlinear systems.

Given that the field of interest is relatively new, this work

provides a quite thorough overview of previous and ongoing re-

search, and includes a quite comprehensive review of the lit-

erature.1 However, one area that falls under the umbrella of

nonlinear dynamics in MEMS/NEMS, which is covered only

briefly here is atomic force microscopy (AFM) and other forms

of probe-based microscopy which utilize micro/nanoresonators.

These technologies, which typically use individual or uncoupled

arrays of microbeams to characterize the surface properties of

materials, often using a vibratory mode of operation, are com-

mercially available and widely used in industry, yet also remain

the subject of interesting research investigations. Accordingly,

this line of work is deserving of an independent review, such as

that provided by Garcia and Perez or Raman, et al., which detail

the modeling and analysis of nonlinear effects in atomic force

1As is always the case, there are undoubtedly papers of which the authors are

not aware – the authors apologize for such oversights.

microscopes (AFMs) [12, 13].

It should be noted that a recent review by Lifshitz and Cross

[14] covers some of the same ground as this paper. Specifi-

cally, the work includes a detailed description of the modeling

and analysis of the near-resonant behavior of isolated and cou-

pled micro/nanoresonators with quadratic and cubic nonlineari-

ties. In contrast, the aim of the present work is to provide an

engineering perspective of nonlinear micro/nanoresonators and

a more comprehensive summary of the current literature, albeit

with markedly less analytical detail.

The paper is organized into the following sections: the ba-

sics of modeling, the phenomenon of pull-in, systems with di-

rect excitation, systems with parametric excitation, systems with

combined direct and parametric excitation, self-excited systems,

vibro-impact systems, single-element systems with a few degrees

of freedom, and coupled resonator arrays. The focus in all but the

latter two sections is on systems that are accurately described by

single-degree-of-freedom (SDOF) models. The work closes with

some thoughts about the potential for further progress in this field

and some areas of research that will become increasingly impor-

tant as the area advances.

MODELING

Resonant MEMS/NEMS are miniature machines, designed

for specific functionality and fabricated using a wide variety of

additive and subtractive methods adopted from classical IC fab-

rication. MEMS/NEMS are quite simple in terms of mechan-

ical design and typically consist of a few common elements

such as beams, lumped masses, etc. Many of the forces that

act on these elements are the same as those encountered at the

macroscale, such as those arising from elastic, magnetic, elec-

tromagnetic, and aerodynamic sources. However, due to the

length scales involved, additional forces also come into play,

or have a more significant role, including van der Waals, adhe-

sion, Casimir, and electrostatic forces. In addition, actuation of

these devices can be achieved through the forces noted above,

as well as through base excitation and induced stresses, both of

which are commonly generated by piezoelectric elements. It is

the combination of these effects, and the fact that the mechani-

cal device is often integrated directly with electronics, that pro-

vides both challenges and opportunities for the design of dy-

namic MEMS/NEMS. This section focuses on electrostatic ef-

fects, since these are widely used for the actuation, sensing, and

tuning of micro/nanoresonators.

The resonators of interest here range in overall size from

101 − 104 µm (often with feature sizes on the order of a few

nanometers) and have been designed with natural frequencies in

the range of 104 − 109 Hz and dissipation corresponding to Q

values in the range 100 −105. They are prime candidates for ex-

periencing nonlinear behavior, since they are often very lightly

damped, and are driven at or near resonance and thus can experi-

ence relatively large amplitudes. These devices are large enough

that one can use continuum approaches as the starting point for
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the modeling of inertial and material effects. Typical devices are

designed to behave in a predictable manner, and thus are config-

ured to look like lumped-mass elements, beams, plates, or other

well-understood structures. In this regard, one does not need

any special tools for modeling their inertia and elastic restoring

forces, whether linear or nonlinear, as the required methodolo-

gies are quite standard and finite element techniques are widely

accessible for MEMS/NEMS design. Most common amongst

the various nonlinear elastic effects are those attributable to fi-

nite displacements, such as mid-plane stretching in fixed-fixed

beams. In contrast, as is the case with macroscale vibratory sys-

tems, the issue of energy dissipation often requires special treat-

ment (see, for example, [15–27]).

Accurate models are essential for the prediction of device

behavior, and are becoming increasingly more important for res-

onant MEMS/NEMS as designers push devices into new operat-

ing regimes. For most microscale devices Newtonian mechanics

is sufficient for model development, while for certain nanoscale

devices that are coupled to components such as single-electron

transistors, some quantum-level modeling is required. In addi-

tion, many devices utilize feedback, which provides additional

possibilities for interactions. In all cases, the devices involve

physics from multiple fields, and this, along with the fact that

they are fabricated from a variety of materials using a wide range

of techniques, makes the field inherently multi-disciplinary. This

section outlines some of the basic features of models developed

for resonant micro/nanosystems, paying particular attention to

their nonlinear mechanical and electrostatic aspects. A number

of computational modeling tools have been developed for these

purposes, including SUGAR [28] and CoventorWareT M . These

focus primarily on mechanical-electrostatic interactions, and al-

low for nonlinear designs to be considered. Reviews of sys-

tem modeling in the presence mechanical and electrostatic in-

teractions, incorporating quite extensive reference lists, can be

found in [29, 30]. De and Aluru [31] describe a systematic La-

grangian approach to modeling electromechanical devices with

dynamic interactions. These types of computational methods

provide a detailed description of system behavior, as required

for refined designs. However, many devices, especially those

built for “proof-of-concept” purposes do not require such thor-

ough analysis, and often lumped-mass models suffice for initial

designs. Reviews of modeling from the structural mechanics

community include those of Lin and Wang [32] on structural

dynamics and Wittwer et al. [33], which addresses the impor-

tant problem of modeling nonlinear static structural elements in

the face of uncertainties. More specific to the development of

reduced-order models that capture the qualitative behavior of

micro/nanoscale devices with nonlinear characteristics are the

works of Gabbay, Mehner, and Senturia [34, 35], which uti-

lize computer-generated, reduced-order macromodels; Younis et

al. [36] and Xie et al. [37], which utilize expansion methods;

Hung and Senturia [38] and Liang et al. [39], which use proper-

orthogonal decomposition techniques; and Nayfeh et al. [40],

which compares domain and point-wise expansion techniques,

concluding that domain methods provide better results, provided

that the basis functions are judiciously selected. The books of

Senturia [41], Pelesko and Bernstein [42], Lobontiu [43], and

Cleland [44] also provide systematic views of MEMS/NEMS

modeling from first principles.

The present discussion specifically focuses on simple

lumped-mass models for uncoupled resonators, from which one

can build models of systems with additional degrees-of-freedom,

such as coupled resonator arrays. The reader should keep in

mind, however, that these models are typically the result of a

more detailed modeling approach, which begins with partial dif-

ferential equations or finite element models and subsequently

employs model reduction techniques. When using lumped-mass

models for experimental work, as opposed to designing for mass

production, the dynamics involve only a few degrees of freedom

and it is often sufficient to build a device and carry out some form

of system identification in order to determine pertinent parame-

ters, such as frequencies, quality factors, and nonlinear charac-

teristics, that describe the behavior of the device.

The small scales involved here give rise to effects that are

insignificant at the macroscale, and this is the most interesting

aspect of modeling these systems. A particularly important class

of forces are those arising from electrostatic effects. If two ele-

ments of a system experience a voltage difference between them,

attractive Coulomb forces arise. The simplest model for this ef-

fect is to consider a parallel-plate capacitor with gap g, which

generates an attractive force between the plates of the form

Fe =
εAV 2

2g2
, (1)

where ε is the permittivity of the space, A is the area of the elec-

trodes, and V is the voltage difference between the plates (this

simple expression ignores fringe field effects). It is important to

note that Fe will, for any non-zero voltage, possess a DC term.

Furthermore, if the voltage is composed of DC and AC terms,

V (t) = VDC +VAC cos(ωt), (2)

then Fe is composed of a DC component as well as harmonic

components with frequencies ω and 2ω. In fact, the DC com-

ponent of the electrostatic force depends on VAC as well as VDC.

These facts have some interesting consequences on the behavior

of systems as one sweeps through the excitation parameters VAC

and ω. This form also allows for tuning of the excitation, through

independent manipulation of VDC and VAC.

Perhaps the simplest nonlinear model for a mi-

cro/nanoelectromechanical system can be developed by

considering a two-plate capacitor with one plate mechanically

fixed and the other, of mass m, flexibly suspended such that

it can move relative to the fixed plate. Ignoring gravity, let y

denote the inertially-measured displacement of the movable

element such that y = 0 is the equilibrium of the system for zero
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voltage, that is, for V = 0 (Fe = 0). Also, let go denote the gap

corresponding to y = 0. In this case the equation of motion for

the suspended mass m can be expressed as

mÿ = Fm(y)+Fe(y, t)+Fd(y, ẏ)+Fa(t), (3)

where Fm(y) = −Fm(−y) is the (assumed symmetric) conser-

vative mechanical restoring force provided by the suspension,

Fd accounts for dissipative effects [with Fd(y,0) = 0], and Fa

accounts for time-dependent, externally-applied excitations. In

the case of no external excitation (Fa = 0) and no AC voltage

(VAC = 0), the equilibrium position is given by solving

Fm(ȳ)+
εAV 2

DC

2(go − ȳ)2
= 0, (4)

that is, by balancing the mechanical and electrostatic forces that

result from the DC voltage. At this stage one can already un-

cover some interesting nonlinear behavior related to this equi-

librium condition, namely, the pull-in instability, which will be

considered in a subsequent section. In terms of dynamics, one

can develop a generic model that captures much of the important

nonlinear behavior by defining the local coordinate x = y− ȳ, and

expanding the equation of motion out to cubic order in x and its

derivatives, resulting in,

mẍ+(c1 + c3x2)ẋ+

{

k1 +3k3ȳ2 −
2γ [VDC +VAC cos(ωt)]2

(go − ȳ)3

}

x

+

{

3k3ȳ−
3γ [VDC +VAC cos(ωt)]2

(go − ȳ)4

}

x2

+

{

k3 −
4γ [VDC +VAC cos(ωt)]2

(go − ȳ)5

}

x3

= Fa(t)+
γ
[

2VDCVAC cos(ωt)+V 2
AC cos2(ωt)

]

(go − ȳ)2
,

(5)

where γ is a coefficient which accounts for the permittivity of the

surrounding medium and the area of the electrodes, k1 and k3 are

linear and cubic nonlinear mechanical stiffness coefficients, and

c1 and c3 are linear and nonlinear damping terms used to cap-

ture important dissipative effects [14]. Note that the form of the

voltage excitation renders a number of interesting effects. First,

it generates both direct and parametric excitations, and, in par-

ticular, leads to a parametric excitation that acts on the entire

restoring force, including its linear and nonlinear components.

In fact, when one drives the system near resonance, that is, when

ω is close to the natural frequency, there also exists parametric

driving terms at 2ω, which are capable of inducing parametric

instabilities. Therefore, one cannot apply a resonant excitation

to such a system without at least the possibility of these addi-

tional resonant interactions. In addition, the AC voltage leads to

shifts in the time-invariant linear and nonlinear coefficients, since

cos2(ωt) = 1
2
[1+ cos(2ωt)] results in a DC term. This implies

that the linear natural frequency and the strength of the nonlin-

earities (which cause shifts in the frequencies of oscillation) both

depend on the amplitude of the excitation. This does not occur in

most macroscale mechanical systems, wherein one can view the

excitation to be applied to a system with a fixed natural frequency

and nonlinearity.

In some cases it is desirable to have a simpler form for the

excitation. Accordingly, one can utilize a voltage of the form

V (t) = Vo

√

1+αcos(ωt) with |α| ≤ 1, which renders a single

frequency AC component of amplitude αV 2
o and frequency ω, in

addition to the DC component V 2
o (see, for example, [45]). In

this case the AC voltage (captured by the parameter α) has only

an ω harmonic, but the other effects described above are present.

The key to this excitation is that one can independently drive the

system into primary or parametric resonance, without interfer-

ence. If one drives the system with ω near the natural frequency,

direct excitation is achieved (in this case the parametric terms

are non-resonant). Similarly, by driving ω near twice the natu-

ral frequency parametric resonance is obtained (here the direct

excitation term is non-resonant).

A particularly important embodiment of electrostatic effects

occurs in comb drives. These components use arrays of fingers,

as shown in Fig. 1, to allow for an effectively large area over

which voltage differences can act. In the more common case of

interdigitated comb fingers, shown in Fig. 1a, two sets of combs

move relative to one another in such a manner that the change

in area generates a change in capacitance, which results in an

electrostatic force of the form

Fic =
bV 2

g
, (6)

where b is a coefficient that depends on the permittivity of the

space, the geometric particulars of the combs, and the number of

comb fingers, g is the gap between adjacent fingers, and V is the

voltage applied across the fingers. This arrangement is used to

induce direct excitation forces which act along the longitudinal

axes of the comb fingers. This arrangement can also be used to

capacitively sense the motion of a given device. Another, less

traditional, arrangement exists in non-interdigitated comb drives

(shown in Fig. 1b). Here the combs move perpendicular to the

finger axes, and the forces are generated by fringe field effects.

The most interesting feature of this arrangement is that when the

fingers are aligned directly across from one another, or evenly

staggered, zero net force is generated. If this configuration corre-

sponds to the mechanical static equilibrium of the device, forces

arise only when the symmetry of the finger alignment is broken.

A general form for the force in this situation, in terms of the dis-
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Figure 1. (a) AN INTERDIGITATED ELECTROSTATIC COMB DRIVE.

(b) A NON-INTERDIGITATED ELECTROSTATIC COMB DRIVE. NOTE

THAT THE INCLUDED ARROWS INDICATE THE DIRECTION OF DOM-

INANT MOTION FOR THE MOVEABLE PART OF THE DEVICE. THE

OTHER BANKS OF COMB FINGERS ARE FIXED (PICTURE COUR-

TESY OF B. DEMARTINI).

placement x from the symmetric alignment position, is

Fnic = f (x)V 2, (7)

where V is the voltage across the combs and f (x) describes the

displacement-dependent nature of the force, which depends on

a number of geometric factors [46]. Note that in the symmetric

cases f (0) = 0, and that if there are a large number of fingers

(such that end effects are essentially negligible), f (x) is essen-

tially periodic, that is, f (x + s) = f (x), where s is the spacing

between fingers. Locally near the equilibrium position, the elec-

trostatic force can be linearly or nonlinearly hardening or soften-

ing [46]. Note that this arrangement is a convenient way to gen-

erate parametric excitation in MEMS, and is utilized extensively

in the works described in the later section on Parametrically-

Excited Systems. It should also be noted that though one gen-

erally restricts the movement of non-interdigitated devices such

that x << s, interesting dynamics, including chaos, can arise for

larger motions [47]. In summary, comb drives lead to equations

of motion of the general form given above in Eq. (5), albeit with

different forms for the coefficients. Perhaps the most important

aspect of these components is that one can design them to pro-

duce desired linear and nonlinear forces, and, in fact, tune these

forces by adjusting the amplitude of DC and AC excitation volt-

ages [46, 48], or even the comb-finger geometry [49].

The particular details of Eq. (5) are not as important as its

general form, which is encountered in a number of situations in-

volving electrostatic, and in some cases piezoelectric or electro-

magnetic, actuation. For example, it is found in the modeling of

electrostatically-actuated torsional devices, which are mounted

by mechanical supports with torsional flexibility and actuated by

placing electrodes away from the axis of rotation, thereby gen-

erating driving torques. Likewise, these effects arise in multi-

degree-of-freedom systems, in which the voltage differences be-

tween adjacent resonators produce coupling effects. With this in

mind, the essential features of the systems of interest are those

of lightly-damped nonlinear resonators (or a set of coupled res-

onators) which are subjected to periodic excitations, either direct,

parametric, or combined in nature. Arguably the most unique

feature of these systems is the manner in which the excitation

and parameter coefficients are intertwined, and the fact that one

can use a variety of actuators to tune devices and achieve com-

plex, yet tailored, dynamic behaviors.

Before closing this section on modeling, it is worth men-

tioning some of the other types of forces that arise at small

scales, and are thus not important in macroscale resonators. The

first of these are the van der Waals forces, which arise from

atomic-level interactions. These forces are very weak except at

close distances (approximately 1-10 nm), and become increas-

ingly attractive at shorter interaction lengths. At very close dis-

tances, however, these forces become repulsive, since electron

orbitals cannot overlap. This effect is very strong at extremely

close interaction distances, and in fact, becomes essentially un-

bounded near contact (to avoid penetration). These combined

attraction and repulsion effects, which are particularly important

in probe-based microscopy applications, are conveniently mod-

eled by Lennard-Jones potentials, which capture the qualitative

nature of the interactions. Another small-scale force, which is

entirely non-classical and is very strong at scales of ∼10 nm, is

the Casimir-Polder force [50, 51]. This is a purely quantum ef-

fect and arises from zero-point fluctuations of the quantum field

of the empty space between two uncharged conductors separated

by a distance g. This is an attractive force that scales like g−4

for simple geometries. Basic notions from harmonically-forced

nonlinear oscillations were instrumental in providing some of the

first experimental evidence of these forces [50].
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PULL-IN

The competition between elastic restoring forces and attrac-

tive electrostatic or van der Waals forces acting on a mechanical

structure leads to a situation in which an instability can occur,

essentially a form of buckling. In fact, the most commonly used

model to demonstrate nonlinear behavior in MEMS is a mass

suspended by a linear spring with a DC voltage applied between

the mass and a fixed electrode. For small voltages there ex-

ists two stable static equilibrium for this system, one near the

purely-mechanical equilibrium and another associated with con-

tact, which have an additional unstable equilibrium in-between.

As the DC voltage is increased (or, for example, the zero-voltage

gap between electrodes is decreased) the original, non-trivial sta-

ble equilibrium and the unstable equilibrium move towards one

another. At a critical voltage these two equilibria coalesce in

a saddle-node bifurcation, leaving only the stable contact equi-

librium, and so-called “jump to contact” occurs. This overall

behavior is referred to as “pull-in”. Likewise, the critical saddle-

node point is known as the “pull-in instability”. As a rule of

thumb, if the mechanical spring is linear, this instability will oc-

cur if the system experiences an amplitude of about 1/3 of the

initial zero voltage gap [52]. A number of studies have consid-

ered the effects of more complicated geometries and flexibility in

the mechanical structure. See, for example, the works of Krylov

et al. [53–56].

Of interest here is the dynamic version of pull-in. Specif-

ically, it is of interest to know how a system behaves near the

pull-in instability described above. The simplest model is for a

SDOF system of the type described above, whose global dynam-

ics can be described by a relatively simple phase plane. In the

bistable situation it has a classic form with two stable equilib-

ria and a saddle point, and the basins of attraction for the sta-

ble equilibria are separated by the stable manifold of the saddle

point (one of the stable equilibria is at a boundary in the phase

plane, imposed by the constraint of the fixed electrode, but this

does not alter the qualitative picture). As the parameter is var-

ied a saddle-node bifurcations occurs in which the saddle point

coalesces with the stable equilibrium at a critical value of the

DC voltage. This model for the dynamics is well understood,

and can also be derived for continuous systems with distributed

electrostatic forces, so long as the mechanical system response

is dominated by a single mode [57]. A systematic investigation

of this situation, involving experimentation and comparison with

a mathematical model for a microbeam, is described by Krylov

and Maimon [58]. They consider a three-mode beam model with

an attached lumped mass, and also include the effects of nonlin-

ear squeeze film damping, which plays an important role in the

dynamics near the instability point. They consider the system re-

sponse to step inputs starting from the non-contact equilibrium,

and examine condition that lead to jump to contact. Experimen-

tal measurements of this transient behavior are remarkably well

described by the model. Krylov [59] has also demonstrated that

Lyapunov exponents provide a reliable indicator of the beam re-

sponse for these systems, indicating whether or not jump to con-

tact will occur. Such results are of practical importance in ap-

plications such as switches, where the instability is repeatedly

encountered. Krylov et al. [60] have also carried out a system-

atic analytical and experimental investigation of systems which

experience both buckling and electrostatic instability, and have

examined the interplay between these effects.

More subtle is the situation when periodic excitation is

added to the system. In this case the situation is ripe for com-

plicated dynamics, including fractal basin boundaries and chaos,

as is known to occur when periodic excitation is imposed on sys-

tems with multiple equilibria [61]. Ashab and co-workers were

the first to consider this problem from a modern dynamical sys-

tems point of view [62–64] . The authors used a global analysis

approach, including Melnikov’s method, to address the problem

of chaos and fractal basin boundaries between the non-contact

and contact steady-states in a system where the attractive force is

van der Waals. Similarly, Luo and Wang [65] considered global

dynamics in electrostatically-actuated systems with periodically

time-varying capacitance. Lenci and Rega [66] have shown that

one can manipulate the appearance of fractal basin boundaries,

and thus the subsequent appearance of chaos, by judiciously

adding higher harmonic components to the excitation. A num-

ber of analytical studies have been carried out that make use of

the amplitudes of steady-state responses in relation to the pull-

in response amplitude in order to develop approximate dynamic

pull-in threshold criteria [67–69]. Some studies have shown that

one can actually drive these systems with combined AC and DC

voltage amplitudes VDC +VAC that exceed the pull-in value of

VDC, which implies a type of dynamic stabilization against pull-

in. For example, Ai and Pelesko [70] have carried out a detailed

mathematical analysis of the existence of periodic responses for

a simple SDOF model with parallel-plate capacitive actuation,

including the limiting cases of damping dominated (for which in-

ertia is ignored) and zero damping. They mathematically prove

that in the zero damping case there exist frequency values for

which the AC amplitude can exceed the DC pull-in value with-

out experiencing the instability. Fargas-Marques et al. [52] have

experimentally demonstrated this effect and offer another analyt-

ical predictive approach using energy methods. Likewise, Krylov

and collaborators have demonstrated stabilization against pull-in

using parametric excitation [71].

SYSTEMS WITH DIRECT EXCITATION: PRIMARY RES-

ONANCE

Of the numerous investigations of nonlinearity in mi-

cro/nanoelectromechanical resonators, the earliest, and certainly

most prevalent, are those focusing on systems with Duffing, or

Duffing-like, characteristics (note that the term is used in its loos-

est sense here in an attempt to accommodate systems with asym-

metric potential functions), which arise from Taylor Series ex-

pansions of elastic restoring forces and/or electrostatic, electro-

magnetic, or piezoelectric effects. The present section summa-

rizes the various research investigations of these systems when
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they are subjected to direct (as opposed to parametric) excita-

tion, and the primary resonance is excited. These works begin

with largely-observational studies published in the late-1980s

and early-1990s, and then continue with the more mature an-

alytical and experimental investigations of the late-1990s and

2000s. The section concludes with a review of directly-excited

nanoscale resonators, a brief discussion of application-specific

literature, and an overview of recent efforts emphasizing dy-

namic transitions between bistable states.

To the best of the authors’ knowledge, the earliest re-

port of nonlinearity in a resonant microsystem appeared in the

1987 work of Andres, Foulds, and Tudor [72]. In this ef-

fort, the authors utilized a silicon microbeam, driven by an ad-

jacent piezoelectric element, to recover a frequency response

with distinct hardening characteristics. Though not explicitly

detailed within the work, the observed nonlinearity appears to

arise from large-amplitude effects, induced by driving the res-

onator with a hard excitation in a low-pressure environment

(Q = 21,000). Subsequent to the publication of Andres et al.’s

work, a number of research papers reported observations of

nonlinear frequency responses, attributable to Duffing-like ef-

fects, in alternative contexts. Ikeda, Tilmans, and their respec-

tive collaborators, for example, reported hardening responses

in resonant strain gauges undergoing large elastic deformations

[73–75]. Likewise, Nguyen, Legtenberg, Bourouina, Piekarski,

and their respective collaborators, noted hardening responses in

electrostatically-actuated, and subsequently electromagnetically-

and piezoelectrically-actuated, devices [76–80]. These latter

works are of particular note, as they drew attention to the fact

that nonlinearities in resonant microsystems can arise from mul-

tiple sources. Specifically, the authors noted the potential for

interplay between nonlinearities arising from mechanical mech-

anisms, which are often hardening in the first mode, and trans-

duction effects, which are often softening. This observation pro-

vided an important research framework for the efforts that would

follow.

Building upon the works detailed above, Ayela and Fournier

[81] reported in 1998 what is believed to be the first mi-

croresonator frequency response with softening characteris-

tics. Though there appears to be some discrepancy regard-

ing the source of the softening response, the authors stated

that it arose from mechanical sources. In 2000, Camon

and Larnaudie [82] observed softening response characteris-

tics in an electrostatically-actuated micromirror excited by a

comparatively-large actuation voltage. Though not directly ad-

dressed in the paper, the softening nature of the recovered re-

sponse was almost certainly due to the dominance of softening

electrostatic nonlinearities, especially in light of the large angles

of deflection that were reported.

In 2002, Abdel-Rahman, Nayfeh, and Younis presented the

first of several early, purely-theoretical works detailing the non-

linear behavior of electrostatically-actuated microbeams [83–

87]. These works, which approached microsystems analysis

from a classical dynamical systems perspective, emphasized the

Figure 2. A REPRESENTATIVE PIEZOELECTRICALLY-ACTUATED MI-

CROBEAM RESONATOR – A VEECO DMASP PROBE.

development, and subsequent reduction, of robust, distributed-

parameter models, incorporating both mechanical and electro-

static nonlinear effects. The authors subsequently utilized these

models in conjunction with multiple-scales and numerical analy-

ses in order to identify the various nonlinear behaviors that could

be recovered with a capacitively-driven microbeam. These non-

linear behaviors included not only the classical, hysteretic re-

sponses associated with direct excitations applied in the presence

of Duffing-like nonlinearities, but also super- and sub-harmonic

resonances, internal resonances, and limit cycles.

From 2002 onward, analytical and experimental investiga-

tions of directly-excited microresonators flourished. Amongst

the various analytical and experimental efforts focusing on

electrostatically-actuated systems, for example, were: (i) the

2004 effort of Kaajakari et al. [88], which examined the non-

linear response of silicon, bulk acoustic wave (BAW) resonators,

demonstrating that these systems, in comparison to their flexural

counterparts, had appreciably-higher energy storage capabilities;

(ii) the 2005 work of Jeong and Ha [89], which developed a pre-

dictive model for the linear displacement limits of comb-driven

resonant actuators; (iii) the 2007 and 2008 efforts of Agarwal et

al. [90,91], which detailed the modeling, analysis, and optimiza-

tion of double-ended-tuning-fork resonators simultaneously ac-

tuated by two, variable-gap electrostatic forces; and finally, (iv)

the 2008 investigation of Shao et al. [92], which thoroughly de-

tailed the nonlinear response of free-free microbeam resonators.

Apart from the aforementioned investigations of

electrostatically-actuated microresonators, a number of works

addressed Duffing-like behaviors that arise in directly-excited

piezoelectrically-actuated devices. Foremost amongst these

are the works of Li, Dick, Mahmoodi, and their respective

collaborators [93–96]. The first of these [94], by Li et al.,

detailed the modeling and analysis of the clamped-clamped,

piezoelectrically-actuated microstructure previously described

in [80]. In this work the authors utilized composite beam

theory to develop a distributed parameter representation of their

nonlinear system. This model was subsequently reduced to a
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100 μm

Figure 3. AN ELECTROSTATICALLY-ACTUATED NANORESONATOR

(PICTURE COURTESY OF E. BUKS).

lumped-mass analog, and used to characterize the free and forced

responses of the device in its post-buckled configuration. The

work of Dick et al. [93] extended this effort, demonstrating that

parametric identification techniques could be used to extrapolate

pertinent model parameters, which, in turn, facilitated predictive

design. The later works of Mahmoodi et al. [95, 96] detailed the

nonlinear characteristics of a silicon microcantilever actuated by

a ZnO patch. In these works the authors utilized the constitutive

relationships of the piezoelectric material and Euler-Bernoulli

beam theory to develop a distributed-parameter representation

of their system. This model was subsequently reduced, using

Galerkin methods, and experimentally validated through the

use of a Veeco DMASP probe, such as that shown in Fig. 2.

Somewhat surprisingly, the acquired analytical and experimental

frequency responses depicted a distinct softening nonlinearity,

which softened further with increasing voltage. This was

attributed to the dominance of material nonlinearities.

As nanofabrication techniques matured, there was a re-birth

of largely-observational reports of Duffing-like nonlinearities,

this time in directly-excited nanosystems. In 1999, for exam-

ple Evoy et al. reported the existence of hardening frequency re-

sponse characteristics in nanofabricated paddle resonators [97].

This would be followed by subsequent reports of hardening re-

sponses in suspended, electrostatically-actuated carbon nanotube

resonators [98], magnetomotively-excited SiC resonators [99],

platinum and silicon nanowires [100, 101], and electrostatically-

actuated nanobeams [102, 103], an example of which is shown

in Fig. 3. A key distinction between these reports and earlier

reports of Duffing-like behaviors at the microscale was that the

nonlinear responses arising in nanoresonators appeared to be en-
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THE DEVICE DEPICTED IN FIG. 3. NOTE THAT BECAUSE THESE RE-

SPONSES WERE OBTAINED SOLELY THROUGH UP-SWEEPS, HYS-

TERESIS IS NOT EVIDENT (PICTURE COURTESY OF E. BUKS).

demic to the devices. This was rectified by the work Postma et

al. [104] in 2005, which demonstrated that many nanoscale res-

onators exhibit a severely-diminished dynamic range, and, thus,

when driven above the thermomechanical noise floor, can transi-

tion into a nonlinear response regime rather quickly.

While the majority of studies detailed above approached the

investigation of nonlinear behaviors from a largely application-

independent perspective, a number of works over the past decade

have addressed these nonlinear behaviors within the context of

very specific applications. Amongst these various works are

efforts focusing on electromechanical signal processing, signal

amplification, resonant mass sensing, and magnetic field detec-

tion, as briefly highlighted below.

One of the earliest efforts emphasizing electromechanical

signal processing in a directly-excited system with Duffing-like

nonlinearities is that of Erbe and collaborators from 2000 [105].

In this work, the authors reported the ability to mechanically

mix two direct excitation signals with a magnetomotively-driven

nanoresonator. Specifically, the authors demonstrated that by

driving the nanomechanical resonator with two hard excitation

signals, one slightly detuned in frequency from the other, they

could recover a mechanical output with distinct, tunable side-

bands. In 2005 and 2006, Alastalo and Kaajakari investigated

the impact of electrostatic and mechanical nonlinearities on

capacitively-coupled filters [106, 107]. The first of these efforts

utilized a lumped-mass model of the electrostatically-actuated

system to characterize the filter’s third-order intermodulation and

intercept points. The latter effort built upon this work, incor-

porating out-of-band distortion mechanisms and developing a
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closed-form expression for the filter’s signal-to-interference ra-

tio. Building upon the success of prior nonlinear electrome-

chanical signal processing efforts, Koskenvuori and Tittonen re-

cently reported the development of a micromechanical down-

converter [108]. This work demonstrated, for the first time, that

amplitude-modulated signals in the GHz frequency range could

be converted into MHz-range signals through the use of a double-

ended-tuning-fork resonator. As noted in [109], these positive

results could potentially stimulate the development of MEMS-

based radios.

Apart from the investigations of directly-excited mi-

cro/nanoresonators detailed above, a series of works by Almog

and collaborators have investigated the potential of Duffing-like

nonlinearities in signal amplification and noise squeezing appli-

cations [110, 111]. The first of these works, which appeared

in 2006, utilized signal mixing techniques, similar to those de-

scribed above in relation to the work of Erbe et al. [105], to

realize a signal amplifier capable of yielding high intermodula-

tion gains. In particular, the authors demonstrated that by excit-

ing an electrostatically-actuated microresonator with two direct

excitation signals – a weak carrier signal and an intense pump,

driven in the proximity of the system’s saddle-node bifurcation

– amplifier gains approaching 15 dB could be recovered. The

latter work, appearing in 2007, adopted similar methods, in con-

junction with a homodyne detection scheme, to realize phase-

sensitive signal amplification and noise squeezing in a nanome-

chanical resonator. Similar principles to those utilized in this

latter work were also proposed for use in resonant mass sensing

applications by Buks and Yurke in 2006 [112].

Though application-specific investigations of nonlinear,

directly-excited micro/nanoresonators with Duffing-like nonlin-

earities have primarily emphasized signal amplification and sig-

nal processing applications, a handful of works, in addition to the

work of Buks and Yurke detailed above, have highlighted alter-

native uses. The 2005 work of Greywall [113], for example, pro-

posed the development of a sensitive magnetometer based on a

Duffing-like resonator embedded in an oscillator circuit. This de-

vice utilized magnetic-field-induced changes in damping to alter

the resonant amplitude of a current-carrying, clamped-clamped

beam. This approach resulted in a sensor design theoretically

capable of detecting ppm changes in the Earth’s magnetic field.

It should be noted that a recent effort by Choi et al. proposed

a similar technical approach [114]. The recent work of Liu et

al. examined the impact of Duffing-like nonlinearities in an al-

ternative context, namely MEMS microphones. In this effort,

the authors detailed the lumped-mass modeling, analysis, and

experimental validation of a dual-backplate system. Particular

emphasis was placed on system identification, within the paper,

as a well-defined system model was deemed essential to future

closed-loop, force-feedback studies. Another novel use of pri-

mary resonance in nonlinear systems is the work of Chan et

al. [50], which used nonlinear resonance measurements of a mi-

croscale torsional resonator to verify the existence of the Casimir

force, a purely-quantum effect.

Though the notion of nonlinear tuning in micro/nanoscale

resonators can be traced to the works of Adams et al. [46],

amongst others, a series of works have recently re-visited the

issue within the context of directly-excited resonators. The

works of Agarwal et al. [115, 116], for example, detailed how,

with proper tuning and the effective cancelation of nonlinearity,

at least to first order, improved power handling characteristics

could be recovered. Specifically, the authors demonstrated how

second-order and third-order electrostatic effects could be lever-

aged against third-order mechanical hardening nonlinearities to

‘straighten’ the nonlinear backbone. Similar results are detailed

in the recent work of Shao et al. [117]. Kozinsky and collab-

orators subsequently extended the approach to the nanoscale in

their investigation of fixed-fixed nanoresonator actuated through

magnetomotive and electrostatic effects [118]. In this work the

authors demonstrated the feasibility of bi-directional linear fre-

quency tuning and nonlinear reduction. The latter method proved

highly-advantageous to dynamic range enhancement, with the

authors reporting more than 6 dB of dynamic range improvement

in their initial work.

Despite the present section’s emphasis on conventional, hys-

teretic behaviors, it is important to note that a number of research

efforts have identified or predicted the occurrence of more-

complex dynamical behaviors, including chaos, in directly-

excited micro/nanoresonators with Duffing-like nonlinearities.

In 2002, for example, Scheible and collaborators noted the ex-

istence of chaos in a ‘clapper’ nanoresonator – a free-free beam

resonator suspended by intermediate point – excited through

magnetomotive and electrostatic effects [119]. Specifically, the

authors demonstrated, through experiment, that in applications

like signal mixing, where multiple frequencies are present, there

is some degree of likelihood for the emergence of chaos, princi-

pally arising through the Ruelle-Takens route. This observation

would be further addressed by Gottlieb et al. [120] in 2007. In

contrast to the works of Scheible and Gottlieb, Liu and collab-

orators in 2004 predicted, using simulation, the emergence of

chaos in closed-loop, electrostatically-actuated microcantilevers

through period-doubling routes [121]. Similar results were re-

ported in the analytical investigations of De and Aluru [122,123].

In 2008, Park et al. [124] noted the potential for chaos control

in micro/nanoscale systems. Specifically, the authors demon-

strated, through simulation, that by adopting an appropriate feed-

back rule chaotic solution trajectories could be effectively con-

verted into periodic responses. This was shown to not only in-

crease the operating range of the electrostatically-actuated mi-

croresonator of interest, but also increase its effective power out-

put.

While the bulk of efforts described above emphasize steady-

state behaviors, transient responses are of distinct interest, as

well. The utility of transitional behaviors in resonant mi-

cro/nanosystems was first addressed by Aldridge and Cleland in

2005 [125]. In this work, the authors demonstrated that noise-

induced transitions between bistable states in a nanomechani-

cal, Duffing resonator could be used to extrapolate the system’s
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resonant frequency and cubic nonlinearity with a degree of ac-

curacy unobtainable in a linear system. This, as the authors

noted, facilitates highly-sensitive parametric sensing. Building

upon Aldridge and Cleland’s work, Stambaugh and Chan char-

acterized noise-activated switching in a torsional micromechan-

ical resonator with softening characteristics [126, 127]. Though

the premise of these latter works were quite similar to their pre-

decessor, it should be noted that an alternative activation en-

ergy scaling was reported. The latter works’ conclusions were

recently confirmed in the work of Kozinsky and collaborators

[128], which provided experimentally-measured basins of attrac-

tion in the bistable region.

While the investigations of transient behaviors in bistable

micro/nanomechanical resonators are still in their infancy, a

number of practical applications have been reported. In 2004, for

example, Badzey et al. detailed the development of a controllable

switch based on a Duffing-like response [129]. In this work the

authors applied a square-wave modulation signal to a clamped-

clamped nanobeam driven near resonance to induce dynamic

transitions between the resonator’s bistable states. The binary

nature of the resulting time response was viewed as an ideal plat-

form for primitive memory elements. Subsequent investigations

furthered this work by addressing the temperature-dependence

of the dynamic switching event, as well as phase-modulation-

induced switching [130, 131]. In 2006, Chan and Stambaugh,

applied their previous investigations of noise-induced switch-

ing to micromechanical mixing, demonstrating that can be used

to facilitate frequency down-conversion [132]. Almog and col-

laborators extended this approach for signal amplification pur-

poses [133].

PARAMETRICALLY-EXCITED SYSTEMS

Systems which experience time-varying parameters are said

to be parametrically excited. This form of forcing arises in many

macroscale systems, the prototype being the simple pendulum

with vertical base excitation. Of interest here are MEMS/NEMS

with periodic parametric excitation. This arises very naturally

in the devices of interest, as one can see from an examination

of the prototypical model developed in the preceding section on

Modeling, in which time-varying voltages provide both direct

and parametric excitation. The most basic model for this class of

systems is the linear Mathieu equation,

ẍ+
2

Q
ẋ+[ω0 +βcos(ωt)]x = 0, (8)

which is a simple oscillator with a time-varying stiffness term.

The Mathieu equation has been widely studied, and governs the

forced motion of a swing, the stability of ships, Faraday surface

wave patterns on water, and the behavior of parametric amplifiers

based on electronic or superconducting devices. A linear stabil-

ity analysis predicts that parametric resonances occur at drive fre-

quencies that satisfy ω = 2ω0/n where ω0 is the system’s natural

Figure 5. A PARAMETRICALLY-EXCITED TORSIONAL MICRORES-

ONATOR DRIVEN THROUGH THE USE OF NON-INTERDIGITATED

COMB DRIVES.

frequency and n is an integer greater than or equal to unity [134].

When instability occurs, the steady-state response is governed

by nonlinear effects, such as those described in the section on

Modeling. It is worth noting that damping does not have a strong

effect on the resulting steady-state amplitude, in contrast with the

resonant response of directly-forced linear systems.

In macroscopic systems only the first instability region (n =
1) is typically observed, due to the levels of damping and the

exponential narrowing of the regions with increasing n. How-

ever, in microsystems, the internal damping in resonators is small

(when compared with macroscale systems), and the aerodynam-

ics damping is rather predictable (and can be made very small

by operating in vacuum). This leads to a condition wherein the

parametric resonance effects are significantly more visible, and

can be utilized in many applications. In 1997, Turner et al. [45]

verified the existence of five such instability regions in a micro-

electromechanical torsional oscillator. This oscillator, which is

shown in Fig. 5, was an electrostatically-driven torsional device

developed for data storage applications. An out-of-plane fring-

ing field actuator gave this device its unique properties, wherein

the electrostatic torque is non-zero only for non-zero angles of

rotation. Following this initial demonstration at the microscale,

this phenomena was seen in other torsional microresonators

[135,136], resonant microscanners [137–140], piezoelectrically-

actuated micro/nanoresonators [141, 142], laser-heated nanores-

onators [143], and nanowires [144–146].

Nonlinearity (from mechanical and/or electrostatic sources)

proves to significantly impact key aspects of the behavior of

parametrically-resonant micro/nanosystems. In 2002, Zhang et

al., showed the effects of tuning on parametrically-excited mi-
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ACTERISTICS REPORTED HERE ARE YET TO BE OBSERVED IN A
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croresonators [147–149]. By designing a device which had fring-

ing field actuators for both tuning and excitation, they were able

to independently tune the linear and nonlinear stiffness coef-

ficients of their device, thereby changing the shape of the in-

stability region. Through this tuning, the device performance

could be quantitatively and qualitatively adjusted merely by ma-

nipulating the amplitudes of the AC and DC excitation signals.

This proved to be essential in expanding the application space

of parametrically-excited micro/nanoresonators. Napoli and col-

laborators extended this result to include resonant microbeams,

and verified the existence of nonlinear parametric instabilities in

capacitively-actuated cantilevers [150, 151]. As detailed in later

sections, the combined excitation of electrostatically-actuated

microbeams has been studied more recently by Zhang and Meng

[152, 153].

The accurate modeling of parametrically-excited mi-

cro/nanoresonators is essential to the effective design of de-

vices with practical application. Rhoads, DeMartini, and col-

laborators [48, 69, 155, 156] improved on prior modeling efforts,

and more comprehensively analyzed parametrically-excited mi-

croresonators, in order to determine the achievable parameter

space, effectively explaining in greater detail previously obtained

results [157]. Building upon this result, Rhoads et al. created a

filter utilizing two coupled MEMS devices [149, 158]. One was

tuned to be hardening, one was tuned to be softening, and when

combined they created a bandpass filter. Although the frequen-

cies were relatively low, as the devices were large, the stage was

set for the later creation of logic elements using nonlinear tun-

able MEMS oscillators [48]. In addition, Rhoads et al. analyzed a

model in which the parametric excitation acted on both linear and

nonlinear stiffness terms in order to explain certain unique re-

sponse characteristics, including the mixed hardening/softening

behavior shown in Fig. 6 [154].

In parametric resonance the boundary between stability and

instability is extremely sharp, and leads to a very dramatic jump

in amplitude on the subcritical side of the parametric resonance

zone (the frequency step in the original Turner result is 0.001 Hz

[45]). In addition, in an unstable region, the amplitude achieved

is determined not by the damping, as in a directly-forced lin-

ear oscillator, but by the nonlinearity in the system. Therefore,

parametrically-forced systems are capable of significant ampli-

tudes while operating in the unstable region. By tracking this

stability boundary in parameter space, a very precise sensing

mechanism can be exploited. This has been used with varying

degrees of success in mass sensing, non-contact atomic force mi-

croscopy, and microgyroscopes.

The parametrically-forced mass sensor was the first mi-

crosensor to demonstrate the benefits of such a mechanism. Early

attempts at parametric resonance-based mass sensing were com-

pleted by Zhang et al. [148, 159]. The sensitivity of this phe-

nomena compares favorably to linear micro-oscillators, showing

itself to be ∼1-2 orders of magnitude more sensitive in air oper-

ation. In this work, Zhang and collaborators detected humidity

changes by measuring the mass of condensed water on a planar

device. This device utilized a fringing-field, in-plane actuator of

the type described in Adams et al. [46, 160]. This was followed

up with a nanoscale investigation by Yu and collaborators [144],

who considered mass-loaded nanowires. Furthering the work

of Zhang et al. [161], Requa and Turner [162, 163] built a self-

sensing mass sensor based on parametric resonance (see Fig. 7).

This sensor was much smaller and more sensitive, and utilized

Lorentz force sensing and actuation. Noise imposes limits on the

resolution of these sensors, as described by Cleland [164], and

as experimentally investigated by Requa and Turner [165]. Tran-

sitions to chaos are also possible in parametrically-excited non-

linear systems, and this was investigated in a MEMS resonator

by DeMartini et al., both experimentally and by using Melnikov

analysis on a system model [47]. This effort built upon the earlier

work of Wang and collaborators [166].

Parametric resonance has also been applied to the design

of microscale gyroscopes. The resonant Coriolis force sensor

has been long-studied for rate measurement and inertial tracking

(see, for example, [168]). Contrary to accelerometers, though,

the Coriolis rate sensor requires at least two degrees of freedom.

In its most straightforward application, the Coriolis force gener-

ated by external rotation couples two perpendicular modes, one

for drive and the other for sensing. Ideally, in order to achieve

full amplification the two modes are tuned to the same resonance

frequency. However, in practice this is very difficult to achieve,

and significant amplification gains are lost. Oropeza-Ramos et

al. [169, 170] utilized the broadband response of parametric res-

onance to achieve robust amplification in a Coriolis force sensor
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Figure 7. AN ELECTROMAGNETICALLY-ACTUATED MICROBEAM

RESONATOR DRIVEN BY LORENTZ FORCES (FROM [167], PICTURE

COURTESY OF K. (LUKES) MORAN).

Figure 8. A PARAMETRICALLY-EXCITED GYROSCOPE (ADAPTED

FROM [170], PICTURE COURTESY OF L. OROPEZA-RAMOS.).

(see Fig. 8). The sensor operation is similar to the linear types

of rate sensor in that it is a single mass, electrostatically-driven

in one axis, and electrostatically-sensed along a perpendicular

axis. Here, however, the device is driven into its first paramet-

ric instability. This band of excitation is typically broader than

a high-Q resonance mode, and is limited in amplitude only by

nonlinearity. This allows for full sense mode amplification, even

in the presence of fabrication-induced irregularities. The device

can be driven at the frequency producing the maximum sense

direction amplification, without the need for tuning. Although

this early device was not optimized, the proof of concept is com-

pelling. Subsequent analytical studies by Miller et al. using per-

turbation techniques have shown that these nonlinear devices can

be tuned to achieve nearly-linear sense response in the rotation

rate [171, 172].

The discussion above focuses on steady-state behavior re-

sulting from harmonic, deterministic excitation. However, in-

vestigations of transient types of excitation, including frequency

sweeps and noise, and combinations of these, are also of interest.

The work of Requa and Turner [165] considers the effects of fre-

quency sweep rates on the response of a parametrically-excited

microbeam. Here there is a tradeoff, since faster sweeps lead to

better sensor performance (in terms of response time), but pay

a price in terms of precision, since the ability to precisely lo-

cate a subharmonic instability depends on this rate. Noise can

also play an important role in these system. Chan and Stam-

baugh [173,174] have carried out an analytical and experimental

study of noise-induced switching between different steady-states

in parametrically-excited microsystems. The effects of noise and

sweep rates and their interplay, will be an increasingly important

consideration as devices are reduced in scale.

SYSTEMS WITH COMBINED EXCITATIONS

Though the majority of micro- and nanoresonators indepen-

dently utilize direct or parametric excitation, a number of reso-

nant micro/nanosystems exploit the excitations simultaneously,

using the combined result to render beneficial response charac-

teristics. While there exists a fairly large number of combined

excitation studies in the MEMS/NEMS literature, the vast ma-

jority of works published to date can be classified into two dis-

tinct groups: (i) efforts focusing on parametric amplification, and

(ii) efforts focusing on nonlinear phenomena induced through

combined excitations, which arise from Taylor Series expansions

of electrostatic or electromagnetic forces. The current section

details literature from each of these groups, placing particular

emphasis on works that exploit dynamical phenomena that arise

solely in the presence of a combined excitation. Works that ex-

hibit combined excitation, yet appear to utilize direct or paramet-

ric phenomena independently, have been included in alternate

sections.

The most prevalent investigations of combined excitation at

the micro/nanoscale are those emphasizing low-noise paramet-

ric amplification – the process of amplifying a harmonic, exter-

nal drive signal through the use of a parametric pump. While

macroscale investigations of this linear phenomenon first ap-

peared in the literature nearly fifty years ago [175–177], mi-

croscale implementations have garnered attention only since the

early-1990s. In their now-seminal effort of 1991 [178], Rugar

and Grütter demonstrated that the resonant response of a mi-

crocantilever, base-excited by a piezoelectric bimorph actuator,

could be amplified by pumping the system with a parallel-plate

electrostatic drive. In this work, the author’s specifically uti-

lized the degenerate form of parametric amplification – a phase-

dependent variant, wherein the parametric pump is locked at

twice the frequency of the resonant, direct excitation signal – to

drive the system’s resonant amplitude to approximately twenty

times its unpumped state. This was achieved by exciting the sys-

tem with a constant-amplitude harmonic signal and introducing

a parametric excitation that was very near, but above, the Arnold

tongue (i.e., the wedge of instability) associated with the onset
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of parametric resonance. By exploiting the phase-dependent na-

ture of the degenerate amplifier’s gain, the authors demonstrated

that resonant amplitude reduction, subsequently termed paramet-

ric attenuation, could be readily obtained, as well.

In subsequent years, a number of works would build upon

Rugar and Grütter’s efforts by examining the feasibility of both

degenerate and non-degenerate (where the parametric pump is

locked at a frequency distinct from twice that of the exter-

nal signal) parametric amplification in torsional microresonators

[135, 157], optically-excited micromechanical oscillators [143],

micro ring gyroscopes [179,180], MEMS diaphragms [181], mi-

cromechanical mixers [182,182], and resonant micro/nanobeams

[183, 184, 184–186]. Of particular note amongst these latter ef-

forts is the work of Olkhovets and collaborators, which demon-

strated experimental gains in excess of 40 dB in a non-degenerate

parametric amplifier based on two electrostatically-coupled tor-

sional microresonators [136], and the work of Roukes and col-

laborators, which demonstrated experimental gains in excess of

65 dB in a degenerate amplifier based on a stiffness-modulated,

fixed-fixed nanobeam [184].

Though the works noted above considered parametric ampli-

fication from a largely linear perspective, recent efforts have con-

sidered the effects of nonlinearity on parametric amplifiers [14,

187]. These largely analytical efforts were motivated by the dis-

crepancies between analytically-predicted and experimentally-

recovered gains reported in many of the works cited above. In

an attempt to address these gain deficits, each of the efforts ap-

pended geometric nonlinearities to conventional, linear paramet-

ric amplifier models and quantified the resulting impact on am-

plifier gain. Not surprisingly, the works concluded that nonlin-

earity not only severely limits the gain of a parametric amplifier,

but also renders frequency-response behaviors that are apprecia-

ble more complicated than those predicted by linear theory, due

largely to the possible co-existence of resonances.

While the majority of works on combined excitations in

MEMS and NEMS emphasize linear, parametric amplification,

a handful of works have considered various nonlinear behaviors

that arise in the presence of combined excitations resulting from

a Taylor Series expansion of an electromagnetic or variable-gap,

electrostatic force. The work of Zhang and Meng [152, 153], for

example, considers the nonlinear response of an electrostatically-

actuated microcantilever, driven by a combined excitation, oper-

ating in the presence of quadratic and cubic electrostatic nonlin-

earities and squeeze-film damping. This effort adopts harmonic

balance methods, in addition to numerical techniques, in an at-

tempt to identify regions of periodic, quasiperiodic, and chaotic

response. Other notable efforts include those of Abdel-Rahman

et al. (see, for example, [86]), which for the sake of categoriza-

tion have been detailed above.

SELF-EXCITED SYSTEMS

As with macroscale systems, a number of MEMS/NEMS

can experience self-excited oscillations. These are typically os-

cillatory system responses generated by an instability of an oth-

erwise stable equilibrium, specifically, from a Hopf bifurcation.

Such systems require an energy source coupled to an oscillator,

with classical examples including aeroelastic flutter and wheel

shimmy. In MEMS/NEMS applications self-excited behavior

has been observed in optically-heated mechanical resonators,

systems that emit particles, and systems that utilize feedback to

generate limit-cycle behaviors.

Thermally-excited resonators have been considered in a

number of studies by Zehnder and co-workers [188–191], in

which a continuous wave (CW) laser provides a thermal input,

which is coupled to the vibratory response of the heated ele-

ment by thermoelastic effects. A particularly attractive feature

of these systems is that one can add a small pump input to them,

in the form of base excitation provided by a piezoelectric ele-

ment, at either the main resonance frequency ωn, or, by thermally

modulating the stiffness, at 2ωn. Doing so causes entrainment,

that is, self-sustained oscillations, over a much wider bandwidth

(by factors up to 400) than can be achieved using direct exci-

tation [191]. These devices have potential for high-frequency

signal processing and communications applications. The insta-

bility arises from the interaction of the disk with a continuous

power laser, in which the absorbed and reflected components of

the laser are modulated by the deflection of the disk via interfer-

ometric effects induced by the laser beam reflecting between the

vibrating structure and a substrate. It is observed that there is a

critical laser power above which the self-oscillations ensue, and

small harmonic pump signals are added at frequencies near ωn,

using base excitation, which provides direct resonant forcing, or

near 2ωn, by thermally modulated the stiffness using a second

laser. In both cases the response locks onto, or entrains, the in-

put signal, resulting in a periodic output at the pump frequency

over a relatively wide range of frequencies. Detailed numerical

simulations of the model introduced in [191] demonstrate that it

is sufficient to capture the experimentally-observed entrainment

behavior [192]. Aubin et al. [188] consider in detail the mathe-

matical model introduced in [191], compare it with experimental

results, and also provide a number of references on prior work

on optically self-excited microbeams. Their model, which fo-

cuses only on the self-excited behavior (and not the entrainment

problem) includes a SDOF nonlinear oscillator and a first-order

ODE for the thermal dynamics, which are coupled by the fact

that the stiffness of the resonator depends on the temperature via

thermoelastic effects, and the amount of power imparted to the

structure from the laser depends on the displacement of the me-

chanical resonator through interferometric effects, as described

above. This third-order, thermomechanical system has a number

of parameters that are estimated using first principles and used

to predict the onset of self-excited oscillations via a Hopf bifur-

cation. Good qualitative agreement is found between the theory

and experiments, and for some cases the laser power threshold

for self-excited responses can be accurately predicted. Pandey

et al. [189] carry out a detailed perturbation analysis of a model

that includes the direct base excitation and parametric excitation
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via thermal stiffness variation. The results show the underlying

resonance structures that lead to the experimentally observed be-

havior for both the direct and parametric excitation. Sahai and

Zehnder [190] carry out an analysis of entrainment and synchro-

nization for a pair of coupled dome resonators, showing con-

ditions for excitation and mistuning under which synchronous

entrainment will occur.

Self-excited resonance behavior can be generated by pro-

viding destabilizing feedback that generates limit-cycle behav-

ior. This has been carried out for a variety of MEMS, mostly

in the area of sensors. An example of such a device is that de-

scribed in Sung et al. [193, 194] who designed, fabricated, and

tested a navigation-grade MEMS accelerometer using such an

approach. In this system a self-excited oscillator is used to pre-

cisely track shifts in the accelerometer resonance frequency that

arise from accelerations. A describing function approach is used

to design a nonlinear feedback loop that results in good perfor-

mance in terms of sensitivity and robustness. Similarly, a reso-

nant chemical sensor based on a feedback-induced self-sustained

resonator is described by Bedair and Fedder [195]. A patch on

a cantilever beam is functionalized for the absorption of certain

chemical gases so that its resonance frequency changes due to the

added mass of the cantilever in the presence of the target chemi-

cal. Feedback circuitry is employed to generate a self-sustained

oscillation, and changes in the frequency of this oscillation are

successfully used for chemical detection.

Self-excited oscillations in a microresonator by alpha par-

ticle emission has been proposed and analyzed by Feng et al.

[196]. The idea is to use particle emission to provide a type of

follower force, akin to a fluid jet emitted from a pipe, although it

is admitted in the paper that it would be difficult to experimen-

tally achieve the forces required to generate self-oscillations.

In closing this section it should be noted that the term ”self-

excited” is not consistently used to designate limit-cycle behav-

ior in the MEMS/NEMS literature, and sometimes refers simply

to periodically-driven resonators.

VIBRO-IMPACT SYSTEMS

Vibro-impact problems arise in mechanical systems in

which components make intermittent contact with one another.

This type of interaction leads to a very severe nonlinear (hard-

ening) behavior that is commonly characterized using models in

which different smooth equations are valid in separate regions of

the system’s state space, and specific rules apply when the system

response crosses the regional boundaries (for example, the New-

tonian impact law). This field has been the subject of intense

study in recent years, under the label “non-smooth systems”,

which are covered extensively in the recent monograph by di

Bernardo et al. [197]. The area has a long history of investigation

in mechanical engineering and mechanics, with applications in

machinery dynamics and structural vibrations. The unique fea-

tures of these systems are that they can undergo changes in sys-

tem response that have no analogies in smooth system models.

These include discontinuity-induced bifurcations that arise when

responses interact in a particular manner with the boundaries that

separate distinct regions of the system phase space [197]. Mi-

croscale systems have provided additional applications of this

class of systems, most prominently in switching, positioning, and

tapping-mode atomic force microscopy.2 Of interest here are ap-

plications of micro- and nanoscale systems subjected to periodic

excitation that can experience impacts. It is well known that such

systems can experience a wide range of behavior, including all of

the standard phenomena of nonlinear systems, plus the rich pos-

sibilities of non-smooth systems. Attention is focused here on

positioning systems, switches, and bouncing mirrors.

Certain micro- and nanoscale positioning devices make use

of impacts between two components, generally a driver and a

slider, using impacts of the driver on the slider in order to over-

come friction and nudge the slider (or the entire actuator) along.

The use of small impact velocities allows for precise step-wise

positioning of the slider along a single direction, and can do so

over relatively large accumulated displacements. Such a device

was fabricated on the microscale and tested by Mita [198], and

it achieved incremental position resolution of ∼10 nm. In such

systems the driver is a resonator with nonlinearities due to im-

pacts (and possibly other effects), and the overall system is con-

veniently modeled by two lumped masses. Such a model was

considered by Zhao and collaborators [199–201], who carried

out a detailed analysis of the vibro-impact dynamics. They de-

termined the influence of various system and input parameters

using bifurcation analysis of a non-smooth system model. It was

found that a wide range of dynamic behavior is possible, much

of which, for example, chaos, is not suitable for precision po-

sitioning. It should be noted that this micro-positioning device

is just one of many that have been developed, but it is one that

has been examined with an eye towards understanding its non-

linear behavior in a systematic manner. The reader is referred

to Zhao et al. [199] for a more thorough background on micro-

positioning systems that utilize impacts. Studies such as those of

Zhao and co-workers should help guide future designs of vibro-

impact positioning devices by allowing for systematic investiga-

tions of how system and excitation parameters influence perfor-

mance. It is important to note that the dynamics must be studied

using nonlinear methods, since impact dynamics are inherently

nonlinear, and that brute-force simulation studies by themselves

may not be sufficient, since these models can experience subtle

transitions that are unique to non-smooth systems.

Switches form an important element in many IC devices,

so it is natural to consider the use of micromechanical switches

to replace their electrical counterparts. Mechanical vibro-

impacting microswitches are a promising technology for which

an understanding of nonlinear dynamics may play an important

role. These elements are essentially oscillators that experience

impacts in order to make electrical contact. They possess all of

the rich dynamic features of macroscale vibro-impact systems, as

2As noted in the introduction the authors do not undertake a review of AFM

dynamics here.
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well as all of the attendant difficulties. The main benefit of these

systems, in terms of nonlinear behavior, is that one can control

the bandwidth of the response by simply varying the input volt-

age amplitude. This can be imagined by considering an oscillator

whose amplitude is limited on either side by rigid stops placed

symmetrically about the equilibrium. When subjected to har-

monic excitation, the frequency response can be roughly viewed

as a usual linear resonance, except with an upper limit imposed

by the mechanical stops that limit the amplitude. As one raises

the forcing amplitude, the frequency range over which impacts

must occur becomes wider, roughly in a symmetric manner cen-

tered at the resonance frequency. The width of this band can

be estimated by a simple calculation using linear frequency re-

sponse analysis, as follows. For a normalized frequency response

of the form

|x| =
ω2

n
√

(ω2 −ω2
n)

2 +

(

ωωn

Q

)2
, (9)

where Q is the quality factor, setting f |x| = a, where f is the

force amplitude and a is the limiting amplitude, solving for the

resulting frequencies at which this amplitude condition is met,

and taking the difference provides the bandwidth. By assum-

ing Q >> 1 and a >> 1 the bandwidth is found to be approxi-

mated by the simple expression f ωn/a. Thus, it is seen that one

can control the bandwidth by simply varying the force ampli-

tude f , so long as impacts are maintained. Of course, impacts

are a severely hardening nonlinearity, which leads to impacting

steady-state motions that occur above the resonance, even co-

existing with the smaller amplitude non-resonant response in this

frequency range. It is also well known that the response of these

systems can experience various bifurcations leading to subhar-

monic responses and chaos [202, 203]. However, near the main

resonance the system is well behaved, undergoing motions that

impact both stops in a symmetric manner. Two basic types of

micro-vibro-impact switches have been considered to date, one

is the type described above, in which the oscillator experiences

impacts on both sides of equilibrium, and the other has its am-

plitude restricted on only one side. Ngyuen et al. [204] describe

a centrally supported disk resonator that oscillates in plane, res-

onantly forced by squeezing the disk with electrodes placed on

opposing sides of the device, say at 0 and 180 degrees. From

Poisson effects the resonator “breathes” in such a manner that

it simultaneously impacts electrical contacts placed at 90 and

270 degrees. Since the motion is dominated by the first in-plane

mode (it has two such modes, and one is strongly preferred by the

excitation), it behaves essentially like the SDOF impact oscilla-

tor described above. It is experimentally observed that the band-

width indeed increases as the force levels are increased and the

system experiences impacting responses further above the reso-

nance than predicted by simply limiting the linear response. It

should be noted that impacts generate high frequency vibrations

that may interfere with the switch operation, so there is a trade-

off between increasing the bandwidth and minimizing these con-

taminating vibrations. In general, the transfer of energy to higher

modes at impact can be included as part of an effective coef-

ficient of restitution in the single mode model, since these vi-

brations typically are of small amplitude and dissipate relatively

quickly. Zhang et al. [205] also considered two micro-switch

systems, one in the form of a lumped mass moving in plane and

striking a bumper, and the other a cantilever microbeam striking

a substrate. In these systems a piecewise nonlinear model was

employed, which showed some softening at amplitudes below

the impact threshold. This generated frequency response curves

that first bent slightly to lower frequencies as amplitudes were

increased, and then experienced the drastic hardening due to im-

pacts. Overall, the study showed that a simple SDOF model for

these systems was quite adequate to capture the behavior near

the main resonance.

A different class of applications is that of using impacts to

tailor the harmonics of a system response to meet specific needs.

An application of this is for video display technology, in which

an oscillating mirror is used to scan a video signal. In order to

generate a clean signal this scan should be of constant veloc-

ity in both directions of its motion during oscillation, resulting

in a triangle wave. Bucher et al. [206] describe a clever multi-

degree-of-freedom system based on linear behavior to achieve

such a response in a microsystem. In contrast, Krylov and Barnes

[207] have described an electrostatically-actuated tilting mirror

that experiences a bouncing mode of operation that generates a

triangular-wave response. Their model includes nonlinear effects

from both electrostatic actuation and the rebound of the mirror

against the bumpers, and is used to outline a systematic design

and analysis of the desired nonlinear response.

SINGLE-ELEMENT SYSTEMS WITH MULTIPLE DE-

GREES OF FREEDOM

While most scientific investigations of uncoupled, mi-

cro/nanoresonators treat the devices as SDOF systems, a number

of recent works have demonstrated that the behavior of some mi-

cro/nanosystems, such as resonant micromirrors and suspended

carbon nanotube (CNT) resonators, cannot be adequately cap-

tured with a SDOF modeling approach [208–211]. Rather, these

studies suggest that multi-degree-of-freedom (MDOF) models

are required to accurately capture the salient features of these

representative systems’ response. The present section details the

investigations of the MDOF systems alluded to above, as well

as the recent efforts of Vyas et al., which suggest that internal

resonances arising in uncoupled, MDOF devices may prove ben-

eficial in signal mixing and resonant mass sensing [212, 213].

Note that other investigations of systems of this type, including

those related to pull-in and parametrically-excited gyroscopes,

for example, have been included in previous sections.

Amongst the various investigations of single-element non-

linear MDOF micro/nanoresonators, are a series of works fo-
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Figure 9. SCANNING ELECTRON MICROGRAPH OF A SUSPENDED,

SINGLE-WALL CARBON NANOTUBE RESONATOR (PICTURE COUR-

TESY OF S. MOHAMMADI).

cusing on the behavior of torsional micromirrors. The first of

these, by Zhao et al. [211], details the coupled bending/torsional

dynamics of an electrostatically-actuated device. In this work,

the authors employ lumped-mass modeling, simulation meth-

ods, and finite element techniques, to demonstrate that nonlin-

earity and modal coupling result in a number of distinct dy-

namic behaviors, which cannot be captured with a linear and/or

SDOF model. Recently, Daqaq, with collaborators, expanded

upon this work [209,210], by developing a distributed-parameter

representation of the 2-DOF micromirror, reducing this model

to a refined, lumped-mass analog, and characterizing the result

through the use of multiple-scales analyses. This analytical ap-

proach revealed that, over certain voltage excitation ranges, the

electrostatically-actuated micromirror was capable of exhibiting

hysteresis, quasiperiodic response, and 2:1 internal resonance,

all of which can be detrimental to device performance.

Another investigation of single-element MDOF mi-

cro/nanoresonators that has drawn recent interest is that of

Conley et al., which focuses on the dynamics of suspended nan-

otube and nanowire resonators, an example of which is shown

in Fig. 9 [208]. This work demonstrates that nanotubes and

nanowires, much like their macroscale counterparts (i.e. strings

or cables), feature no preferred plane of oscillation, and as

such, in the presence of nonlinearity, are capable of exhibiting

rather rich, planar and non-planar dynamic responses. Perhaps

the most intriguing of these responses is a whirling motion,

which arises, even at fairly low excitation voltages, through

a bifurcation on the resonator’s backbone curve. Since the

transition to this non-planar response is accompanied by a

significant reduction in current modulation, the authors note that

it, and other planar to non-planar response transitions, may have

Figure 10. SCANNING ELECTRON MICROGRAPH OF A PEDAL RES-

ONATOR UTILIZING 2:1 INTERNAL RESONANCE (PICTURE COUR-

TESY OF A. VYAS, D. PEROULIS, AND A. K. BAJAJ).

significant utility in switching and sensing applications.

Unlike the works detailed above, which emphasize largely-

inadvertent MDOF behaviors, the works of Vyas et al. focus on

the modeling, analysis, and design of microresonators with in-

tentional MDOF responses [212, 213]. Specifically, these works

detail the development of T-shaped microresonators, whose first

two modes are tailored, such that they interact through a 1:2 in-

ternal resonance. A sample of such a device is given in Fig. 10.

This arrangement proves beneficial, because by directly excit-

ing the higher-frequency flexural mode of their resonator, the au-

thors can autoparametrically-excite its lower-frequency counter-

part. Since the autoparametric-excitation of this lower-frequency

mode is a threshold phenomenon, similar to that seen in the

section on Parametrically-Excited Systems, the authors can ex-

ploit the transitions across this threshold as a tunable switching

event. This, as demonstrated in [161], facilitates highly-selective

mass sensing. Furthermore, since the nonlinear excitation of the

lower-frequency mode yields an output signal at half the fre-

quency of the excitation, the authors, in essence, have realized

a frequency divider or signal mixer.

ARRAYS OF COUPLED MICRO/NANORESONATORS

Though SDOF micro/nanoresonator implementations have

historically garnered the most research attention, arrays of cou-

pled resonators have elicited some level of interest since the

early-1990s. While the bulk of investigations in this area have

focused on linear device implementations, a number of recent

works have demonstrated the potential of coupled systems uti-

lizing nonlinear, resonant subsystems and/or nonlinear coupling.

The present section first reviews those research efforts related

to coupled linear systems in an attempt to provide some useful

background and context. The focus then shifts to recent inves-

tigations of coupled, nonlinear systems, utilizing dynamic phe-
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nomena ranging from synchronization to vibration localization,

which have built upon the aforementioned linear efforts.

In 1992, Lin et al. presented what is believed to be the first

use of coupled microresonators in their seminal work on band-

pass signal filters [214]. The premise of this work was to uti-

lize chains of planar, comb-driven resonators, coupled through

common elastic flexures, to mimic the behavior of LC ladder

filters and early mechanical analogs [215]. Specifically, the au-

thors exploited weakly-coupled micromechanical resonators to

recover frequency response functions with narrow, well-defined,

multi-resonance passbands. This approach proved to be an im-

mediate success, as it allowed access to relatively-high center

frequencies, without compromising effective quality (Q)-factor

and stopband rejection metrics. In subsequent years, Nguyen

and others would build upon the success of this initial work

by developing a variety of new devices incorporating alterna-

tive resonator geometries [216–224], alternative coupling mech-

anisms [225–229], higher-dimensional arrays [230–233], and

frequency-mistuned subsystems [230]. While these works un-

equivocally advanced MEMS-based filter technology, as well as

a number of parallel applications, including increased bandwidth

inertial sensors [234, 235], few, if any, utilized novel dynamical

phenomena.

Of particular note amongst the references included above is

the work of Judge et al. [230]. This work highlighted the impact

of structural impurity (mistuning) and its relationship to classi-

cal vibration localization – a mechanical analog of Anderson lo-

calization [236] that results in the spatial confinement of energy

in coupled systems with structural impurity (mistuning) – and

the electromechanical filter design problem. By adopting a rel-

atively broad research perspective, the work effectively bridged

the research gap that existed between filter designers from the

electrical engineering and mechanical engineering communities.

In recent years vibration localization has also been utilized

to render improved sensitivity and inherent signal processing in

elastically-coupled linear arrays. For example, in 2005, Splet-

zer et al. demonstrated that localized eigenmodes arising in ar-

rays of elastically-coupled microbeams could be exploited for

highly-sensitive mass detection [237–239]. Specifically, the

work showed that structural impurities (frequency mistunings)

induced through resonator-analyte interactions could be identi-

fied, with high selectivity, by examining distortions in the sys-

tem’s vibratory modes. In 2006, the authors of the present work

adopted a slightly different approach by utilizing localized eigen-

modes to reduce the input/output order of an elastically-coupled

microcantilever array [240–243]. This was achieved by attach-

ing a number of frequency-mistuned microbeams to a common

shuttle mass, tailoring the resulting system’s response to ensure

kinetic energy was largely confined to a single microbeam near

each of the sensor’s resonances, and tracking the composite sys-

tem’s behavior using solely the response of the shuttle resonator.

The net result was the first MEMS-based single-input, single-

output (SISO) sensor capable of uniquely identifying multiple

analytes within a gaseous mixture.

Another linear research effort of note is that of Bucher et

al. from 2004 [206], which is quite distinct from its counter-

parts due to clever use of Fourier decomposition and structural

optimization. This work specifically focused on the develop-

ment of a resonant micromirror capable of triangular-wave scan-

ning. Given the non-standard nature of this output, the authors

spectrally decomposed the desired triangular waveform into its

Fourier components. With these pertinent frequencies identified,

the authors proceeded to reconstruct a lumped mass representa-

tion of the multi-degree-of-freedom system using inverse meth-

ods. Continuous system models, tolerant to manufacturing im-

perfections, were then extrapolated from the lumped-mass repre-

sentation using structural optimization, and the resulting system

was fabricated and tested. Not surprisingly, given the robustness

of the analytical approach, excellent correlation between the de-

sired triangular output and the near-resonant, experimental wave-

form was obtained.

Aside from the aforementioned investigations of sensors, fil-

ters, and micromirrors, a number of efforts have considered the

response of coupled microsystems in a more generic setting. The

recent works of Porfiri and Zhu et al., for example, adopt a tra-

ditional dynamical system’s perspective and characterize the lin-

ear behavior of identical microbeam resonators coupled through

electrostatic interactions [244, 245]. Porfiri’s work specifically

focuses on the derivation of closed-form representations of the

coupled system’s resonant frequencies and mode shapes. Zhu

et al.’s work considers the impact of boundary conditions on

the system’s collective response. Along similar lines, the recent

works of Gaidarzhy et al. have examined chains of nanomechan-

ical resonators coupled to a common elastic backbone [246,247].

These efforts, much like those noted above, adopt analytical and

numerical methods to recover modal behaviors, but do so without

placing particular emphasis on a target application.

Though linear resonator arrays offer distinct utility, arrays of

nonlinear micro/nanoresonators have drawn increasing research

interest as MEMS/NEMS technologies have matured. While

numerous research efforts fall within the broad scope of this

topic, most, if not all, of the current literature on nonlinear mi-

cro/nanoresonator arrays can be categorized into three distinct

groups: (i) works focusing on nonlinear extensions of the linear

array technologies detailed above; (ii) works focusing on non-

linear arrays which exhibit intrinsic localized modes (ILMs), or

so-called discrete breathers; and (iii) works focusing on arrays

of nonlinear resonators, which synchronize during the course of

operation. Each of these categories is considered below.

To date, the traditional nonlinear dynamics community’s

contribution to nonlinear micro/nanoresonator array research has

primarily been through the modeling and analysis of nonlinear

variants of the linear array technologies detailed above. For ex-

ample, the works of Hammad et al. [248–251] detail the develop-

ment of refined nonlinear models for electrostatically-actuated,

elastically-coupled filters similar in design to those originally

proposed by Bannon et al. in 1996 [223]. These largely-

theoretical works utilize multi-physics, continuous-system mod-
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Figure 11. A 67-ELEMENT ARRAY OF ELECTROSTATICALLY-

COUPLED, FIXED-FIXED MICROBEAMS (ADAPTED FROM [252], PIC-

TURE COURTESY OF E. BUKS).

eling, model reduction, and perturbation analysis in an attempt to

more accurately characterize pertinent filter metrics, pull-in be-

havior, and the effects that manufacturing imperfections have on

a representative system’s dynamic response.

Though elastically-coupled devices have been the tradi-

tional focus of nonlinear micro/nanoresonantor array research,

a number of recent efforts have considered the behavior of

comparatively-large arrays of microbeams coupled through elec-

trostatic interactions. While these works could be seen as natural

extensions of the investigations of Pourkamali, Zhu, Profiri, and

their collaborators [226, 227, 244, 245], many, in actuality, pre-

date these linear efforts. Representative amongst the nonlinear

investigations of electrostatically-coupled micro/nanoresonator

arrays are work of Napoli et al. [253], which examines the

response of parametrically-excited microcantilevers coupled

through both elastic and electrostatic interactions, and the col-

lective efforts of Buks, Roukes, Lifshitz, and Cross [14,252,254,

255]. The earliest paper in the latter series of works is an ex-

perimental endeavor by Buks and Roukes examining the collec-

tive behavior of a 67-element array of electrostatically-actuated,

doubly-clamped gold microbeams, driven near the principal

parametric resonance (see Fig. 11) [252]. In this work, the au-

thors utilize the microbeam array as a diffraction grating, and in-

tegrate it with an optical fiber light source and a photo diode de-

tector to recover real-time representations of the system’s modal

behavior under varying drive conditions. While some of the

relatively-complex behaviors reported in this work are left un-

explained, a series of subsequent works by Lifshitz and Cross

have addressed the observed collective response using both ana-

lytical and numerical techniques [14, 254, 255]. In [255], for ex-

ample, Lifshitz and Cross propose a nonlinear model for the mi-

crobeam array incorporating Duffing-like elastic nonlinearities,

in addition to linear electrostatic and nonlinear dissipative cou-

pling. The authors then utilize this model, in conjunction with

secular perturbation methods, to characterize the behavior of rep-

resentative, two- and three-degree-of-freedom systems. Not sur-

prisingly, relatively-rich frequency response behaviors are shown

to arise in even these comparatively-small arrays. The high di-

mension of Buks and Roukes’ 67-element array is prohibitive

to analytical investigation, but a purely-numerical investigation

in [255] nicely captures the mean response of this system. These

authors subsequently continued their work in Bromberg et al in

2006 [254], by approaching the 67-element array problem from

its continuous limit and transforming the spatially-discrete sys-

tem considered in [255] into a spatially-continuous analog. This

approach facilitated bifurcation analysis in the proximity of the

parametric resonance, and, in turn, opened the problem to pre-

dictive system design.

Relevant to the efforts noted above are the recent works of

Zhu et al. and Gutschmidt and Gottlieb [256–259]. The first of

these efforts, by Zhu et al., extends the work of Lifshitz and

Cross to incorporate the nonlinear, parametric interactions that

arise from higher-order approximations of the electrostatic force.

More specifically, the authors employ harmonic balance meth-

ods, in conjunction with numerical approaches, to characterize

the behavior of a three-resonator system wherein the outer res-

onators are fixed (in essence, the system represents a variant of

that considered in [69]). These results are subsequently used to

show that the inclusion of nonlinear electrostatic effects renders

higher-order sub-harmonic parametric resonances, which can-

not be captured with models incorporating only linear, electro-

static coupling. Along similar lines, the works of Gutschmidt

and Gottlieb extend the efforts of Lifshitz and Cross by adopting

a spatiotemporal modeling approach which captures a broader

range of excitation inputs [259]. These refined models are sub-

sequently used in conjunction with multiple time scale perturba-

tion methods and numerical continuation techniques to classify

the various internal and combinational resonances that arise in

two- and three-element arrays of electrostatically-coupled mi-

crobeams [257, 258]. These results capture a wider range of

dynamic behavior, although corroboration with experimental re-

sults remains incomplete.

A second category of literature emphasizing nonlinear be-

haviors which arise in coupled micro/nanoresonator arrays is that

focused on intrinsic localized modes (ILMs) or so-called discrete

breathers (DBs) – analogs of classical localized modes which

arise in the presence of strong nonlinearity, rather than struc-

tural impurity (mistuning) [260–269]. While the investigation

of ILMs dates to the earlier analyses of discrete lattice vibration,

ILMs were first reported to occur within microresonator arrays

by Sato et al. in 2003 [267]. In this defining effort, the authors

concluded that energy could be spatially confined in periodic ar-

rays of identical microresonators, provided a strong mechanical

nonlinearity and an appropriate drive mechanism were present.

To verify this, the authors fabricated a spatially-periodic, 248-

element array of alternating length, silicon nitride cantilevers,

which were strongly coupled through a common elastic over-

hang. This coupled system was then driven at the base using

18 Copyright © 2008 by ASME



a PZT element, and the resulting system response was recorded

using a one-dimensional CCD camera. By driving the system at

a frequency slightly below the maximum frequency of the array’s

‘optic’ band and subsequently chirping the drive to a slightly

higher frequency, the authors were able to observe a number

of interesting dynamical phenomena [264, 265, 267]. First, the

authors noted, throughout the duration of the chirp, the forma-

tion of multiple localized modes, well dispersed across the ar-

ray at seemingly random locations. These ILMs were observed

to ‘hop’ around the array, interacting with one another through-

out the interval of transient excitation. This validated, in part,

previous investigations of ILMs, which emphasized the indepen-

dence of intrinsic energy localization and structural impurity. As

the excitation reached a constant frequency state, those ILMs vi-

brating at the frequency of the excitation signal were observed

to persist, while those oscillating at alternative frequencies de-

cayed. The persistent modes would remain dominant until the

excitation was terminated, whereafter the localized oscillations

became ‘unpinnned’, ‘hopped’ to various sites within the array

interacting constructively and destructively with their counter-

parts, and subsequently decayed.

Following the success of their initial work, Sato and co-

workers proceeded to investigate various extensions of their ILM

research. Notable milestones from these latter works include:

(i) the realization of ILMs in microbeam arrays with softening

nonlinearities (acquired through electrostatic tuning) [266]; (ii) a

demonstration of ILMs within the acoustic spectrum – a feat pre-

viously deemed to be improbable due to the influence of higher-

frequency spectral components on localized responses [268];

and (iii) the manipulation of ILMs through the use of optically-

induced impurity [266]. Of these works, the last is of particular

note, as it demonstrated the ability to manipulate the location of

energy confinement within a spatially-periodic array through the

use of local, laser heating. Specifically, the work demonstrated

that reducing the linear natural frequency of a single resonator

near an existing ILM results in ILM repulsion, if the system is

operating in a hardening response regime, and ILM attraction, if

the system is operating in a softening response regime. Such spa-

tial control opens doors to a number of micro/nanoscale targeted

energy transfer applications.

Apart from the works of Sato et al., detailed above, there

have been a number of ILM-related research efforts that have ap-

proached the topic from alternative perspectives. Maniadis and

Flach, for example, utilized nonlinear invariant manifold theories

to predict the optimal operating conditions for ILM emergence,

and to predict that ILMs can be induced through paths other than

frequency modulation [263]. A recent effort by Chen, et al. ex-

tended this further by demonstrating that ILMs can be induced

through chaos [260]. Within the traditional nonlinear dynam-

ics community, recent works by Dick et al. have addressed the

existence of ILMs using the theory of nonlinear normal modes

[261,262]. This analytical approach, in comparison to those em-

ployed in prior works, facilitates the derivation of analytical ex-

pressions for ILM amplitude profiles, which should prove invalu-

able in future design efforts.

The final, well-defined class of literature emphasizing non-

linear behaviors which arise in coupled micro/nanoresonator ar-

rays is that concerned with the synchronization of coupled res-

onators. While macroscale investigations of this phenomenon

date to Huygen’s mid-1600s observations of weakly-coupled

pendulum clocks, investigations of synchronicity in microsys-

tems date only to the early-2000s [270, 271]. Earliest amongst

the various works on MEMS/NEMS synchronization is Hoppen-

steadt and Izhikevich’s speculative effort of 2001 [270], which

proposed the use of globally-coupled, limit-cycle oscillators as

the functional backbone of MEMS-based neurocomputers. This

work highlighted the distinct parallels between microelectrome-

chanical resonators driven via positive feedback loops, phase-

locked loops (PLLs), and lasers, and utilized theory the authors

had previously developed for the latter two systems to convey

the potential of MEMS-based autocorrelative associative mem-

ories. Cross and collaborators, building upon their earlier ef-

forts related to coupled micro/nanosystems, would further this

work, by considering, in appreciable depth, the synchronization

of globally-coupled, limit-cycle oscillators with distributed fre-

quencies [272, 273]. The latter efforts’ emphasis on frequency

mistunings is of particular note, as it addressed a common con-

cern associated with micro/nanoresonator technologies – the po-

tentially debilitating effects of process-induced variations.

While the works referenced above adopted a largely device-

independent approach to micro/nanoscale synchronization re-

search, two recent efforts have approached the problem with

specific devices in mind. The first of these [190], by Sahai

and Zehnder, considers the synchronization of elastically- and

electrothermally-coupled, self-excited dome oscillators similar

to those previously detailed in [274]. In this work, the authors

utilized numerical methods to investigate the various operating

conditions that result in the synchronization and entrainment of a

representative two-resonator system. The second effort [275], by

Shim et al., potentially represents the first experimental demon-

stration of synchronization in a micro/nanomechanical array. In

this work, the authors utilize a two-element array of elastically-

coupled, magnetomotively-excited resonators to show some de-

gree of frequency locking. While the acquired results are promis-

ing, their interpretation has been debated within the nonlinear

dynamics community.

CONCLUSION

With this review the authors have attempted to provide a

thorough, yet brief, account of the history and literature to date in

the area of nonlinear dynamics in micro/nanoresonators. The ex-

ploitation of nonlinearity has significant potential for improving

the performance of some devices, but thoughtful modeling and

analysis must be carried out in order to achieve such designs.

This is especially true in applications involving dynamic behav-

ior, where nonlinearity can lead to interesting results – or wreak

havoc, if one is not careful. It is still a challenge to convince
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device builders to consider designs based on nonlinear behavior,

since the goal for many decades has been to steer clear of non-

linearity. However, this trend is changing, and there are several

devices based on nonlinear dynamic behavior under development

that have real promise of reaching fruition.

Progress in this field is taking place on two broad, not unre-

lated, fronts. Engineering-oriented research is being carried out

with specific targeted applications in mind, such as mass sensors,

rate gyros, filters, etc. In this area one can use existing fabrication

techniques and basic knowledge of nonlinear dynamics to design

devices that have desired nonlinear behavior. Nonlinear design is

crucial here, but one still must face all the considerations inherent

in device design, such as fabrication tolerances, robustness, reli-

ability, etc. Also working in this area are nonlinear dynamicists,

who have found a number of interesting problems to consider,

and this has led to a number of studies in which the goal is sim-

ply to understand the dynamics of nonlinear models for these de-

vices. The other front is more physics-oriented and is geared to-

wards fundamental experimental research. One example of such

work is that of mesoscale vibration systems, that is, systems that

exhibit quantum effects even though they can be modeled as con-

tinua. A typical illustration of such an effect would be to measure

quantum energy levels in a nanobeam. Of course, this requires

that one isolates the beam as much as possible from the environ-

ment thermally, mechanically, and electronically (although, of

course, one must couple the beam to something in order to make

measurements). The driving force behind these developments is

the desire for devices that have unprecedented sensitivities, for

example, for the detection of gravity waves. This is a very ac-

tive area of research in physics, and the reader is referred to the

review of Blencowe [276] for more information.

As devices become smaller, and yet are required to operate

in ambient environments, the effects of noise will become an in-

creasingly important consideration. There are several sources of

noise, and these will limit the ultimate resolution of nanoscale

sensors [277]. There is also growing interest in so-called “bi-

furcation amplifiers” that make use of nonlinear response branch

jumping, as described at the end of the section on directly-excited

systems, for targeted types of detection, and it is interesting to

note that these systems actually require noise to function effec-

tively. Likewise, the non-stationary effects of controlled param-

eter variations, for example, frequency sweeps used in sensors,

is of interest, since sensor response specifications will depend

on the determination of reliable sweep rates. This general topic

has received considerable attention in the nonlinear vibrations

and physics communities under various subject names, including

“passage through resonance” and “non-stationary oscillations”,

and it has now found a new set of applications. The combina-

tion of these effects, namely nonlinearity, noise, and parameter

sweeps, is a class of challenging, fundamental problems that will

play an important role in the development of MEMS/NEMS res-

onators. It is encouraging that people working on these topics are

talking to one another and collaborating. This approach, which

brings together device engineers, physicists, and nonlinear dy-

namicists, will become increasingly important as devices shrink

to the nanoscale and beyond.
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