
Nonlinear dynamics and statistical physics of DNA.

Michel Peyrard
Laboratoire de Physique, Ecole Normale Supérieure de Lyon,

46 allée d’Italie, 69364 Lyon Cedex 07, France.
(Dated: January 16, 2004)

DNA is not only an essential object of study for biologists. it raises very interesting questions
for physicists. This paper discuss its nonlinear dynamics, its statistical mechanics, and one of
the experiments that one can now perform at the level of a single molecule and which leads to a
non-equilibrium transition at the molecular scale.

After a review of experimental facts about DNA, we introduce simple models of the molecule and
show how they lead to nonlinear localization phenomena that could describe some of the experimen-
tal observations. In a second step we analyze the thermal denaturation of DNA, i.e. the separation
of the two strands using standard statistical physics tools as well as an analysis based on the prop-
erties of a single nonlinear excitation of the model. The last part discusses the mechanical opening
of the DNA double helix, performed in single molecule experiments. We show how transition state
theory combined with the knowledge of the equilibrium statistical physics of the system can be used
to analyze the results.

I. INTRODUCTION

The famous book of E. Schrödinger “What is life?” [1] was one of the first attempts to use the laws of physics
and chemistry to analyze the basic phenomena of life, and in particular the properties of DNA, the molecule that
encodes the information that organisms need to live and reproduce themselves. Fifty years after the discovery of its
double helix structure [2] DNA is still fascinating physicists, as well as the biologists, who try to unveil its remarkable
properties.
It is now well established that the static structure of biological molecules is not sufficient to explain their function.
This is particularly true for DNA which undergoes large conformational changes during transcription (i.e. the reading
of the genetic code) or replication. This is why it is important to study the dynamics of the molecule. Owing to
the large amplitude motions which are involved, its nonlinear aspect cannot be ignored, and this is what makes it
particularly interesting. However pure dynamical studies are not sufficient because the thermal fluctuations play a
major role in DNA functioning. Therefore they must be completed by statistical mechanics investigations to yield
useful results.
This paper, which emerged from a series of graduate lectures given in the university of Madrid does not attempt
to present a complete review of the numerous studies devoted to nonlinear dynamics of DNA, which is available in
the book Nonlinear physics of DNA [3]. Instead it focuses on a few nonlinear dynamical models for which non only
nonlinear dynamics but also statistical mechanics has been investigated, and it tries to motivate the models and their
parameters in order to allow the reader to build his/her own model and analysis.

II. DNA: STRUCTURE, FUNCTION AND DYNAMICS

A. DNA in biology

There are two major classes of biological molecules, proteins and nucleic acids. Proteins perform most of the functions
in a living organism. They are active machines that catalyze some chemical reactions, transport other molecules such
as oxygen (transported by hemoglobin), make controllable ion channels across membranes, self assemble to form
some rigid structures in a cell such as the cytoskeleton, act as molecular motors responsible for instance of muscle
contraction, and many other tasks.
The “map” to build these proteins is given by the genetic code stored within the structure of DNA, the Deoxyribose
Nucleic Acid. DNA makes up the genome of an organism and for instance the human genome is made of 46 pieces,
present in each cell, the chromosomes. Ingenious experiments have shown that each chromosome is made of a single
DNA molecule which is 4 to 10 cm long [4, 5]! Therefore the genome stored in each of our cells has a length of about
2 m. And humans do not have the privilege of the longest genome: the salamander has a genome of about 1 km. Of
course this very long genome has to be highly compacted to fit into a cell, into a very elaborate hierarchical structure
which is the subject of intense studies.
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1. The structure of DNA.

DNA is a polymer, or, more precisely a set of two entangled polymers. Its structure is presented in details in the
books of Saenger [6] and Calladine [7] and shown on fig. 1. Each of the monomers that make up these polymers is a

FIG. 1: The double helix structure of DNA shown in a full atomic representation (left) and schematically (right).

nucleotide which a compound of three elements: a phosphate group PO−
4 , a sugar ring, i.e. a five-atom cyclic group,

and a base which is a complex organic group that can have one or two cycles. Figure 2 shows a schematic view of
the chain of nucleotides. The backbone is formed by a sequence of phosphate groups and sugars, and it is oriented
because on one side of the sugar the phosphate group is linked to a carbon atom that does not belong to the sugar
ring while, on the other side, it is linked to a carbon atom which is part of the sugar ring.
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FIG. 2: (a) An example of a nucleotide of DNA. (b) Schematic view of the chain of nucleotides along one DNA strand.

The sugars and phosphates of all nucleotides are all the same but nucleotides differ by the bases which can be of
4 types, belonging to two categories, the purines Adenine (A) and Guanine (G) have two organic cycles and the
pyrimidines Cytosine (C) and Thymine (T), which are smaller because they only have one organic cycle.
One important observation that lead Watson and Crick to the famous discovery of the DNA double helix structure is
that the bases tend to assemble in pairs through hydrogen bonds, and that pairs formed by a purine and a pyrimidine
have almost the same size, so that such pairs give a very regular structure to the two chains of nucleotides linked by
the hydrogen bonds, as shown on figure 3.
To understand why these two linked nucleotide chains form a double helix, one must consider the interactions between
the groups that make up the nucleotides. The base pairs are large flat groups having the shape of big plateaux, attached
together by the sugar-phosphate strands which are fairly rigid. Many rotations around the bonds are possible within
each strand but the distance between consecutive attachment points of the bases is nevertheless well defined. The
interaction between the base plateaux is such that they tend to form a compact pile. This is due to the overlap of the
π electrons of the cycles of the bases, and to hydrophobic forces: if water penetrates between the bases, the energetic
cost is very high. The length of the strands is however too long to allow the plateaux to form a compact pile if they
are simply piled up parallel to each other, as shown on fig. 4. If one puts the plateaux on top of each other but rotated
with respect to each other by about 30◦, the strands become oblique and one can have the two plateaux in contact
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FIG. 3: Schematic view of the two nucleotide chains, assembled by hydrogen bonds (thick lines) forming DNA.

without compressing the length of the strands. Another possibility would be to create a skewed ladder, but a detailed
examination of the structure of the bases shows that it leads to unacceptably close contacts between the atoms.

(a) (b)
FIG. 4: Schematic view of the stacking of the base plateaux DNA, taking into account the fixed length of the strands: (a) if
the plateaux are parallel to each other, the strand is too long to allow a compact packing. (b) if the plateaux are rotated with
respect to each other, the same strand length allows a compact packing.

Therefore the basic topology of the groups, and their interactions, lead to the conclusion that the structure of DNA
should be helicoidal [7]. However these simple considerations are not sufficient to determine the details of the structure,
and in particular they to not decide whether the helix should be left-handed or right-handed. In fact both situations
can be found because DNA exists under different configurations, but the most common situation is a right-handed
helix, which exists in two slightly different forms, known as A form and B form of DNA, depending of the degree of
hydration of the molecule or the ionic strength of the solution. In cells, the typical form of DNA is the B form, where
the base plateaux are approximately perpendicular to the axis of the helix. The basic dimensions of the molecule
are illustrated on fig. 5. One should notice that the length of the molecule is always much greater than its diameter,
which justifies models in which the molecule is described as a simple deformable string when one is not concerned by
changes in its internal structure.

There are essentially two classes of forces that stabilize the double helix structure:

• hydrogen bonding between complementary bases. Only two types of base pairs are allowed by the Watson-Crick
pairing: A − T which are linked by 2 hydrogen bonds and G − C which are linked by 3 hydrogen bonds and
are therefore more robust. One should keep in mind that hydrogen bonds are weak with respect to the covalent
bonds that form the strands or the cycles of the sugar and bases. A typical covalent bond, such as C −C has a
length of 1.54 Å, a bond energy of 3.6 eV, and can be lengthened by 0.1 Å by spending an energy of 0.14 eV.
On the contrary a typical hydrogen bond, such as one linking two oxygens on an O−H · · ·O bond, has a length
of 2.75 Å, an energy of only 0.13 to 0.26 eV, and can be extended by 0.1 Å by spending only 0.004 eV.

• stacking interactions of the base-pair plateaux. As mentioned above these interactions have a complex origin,
coming partly from the overlap of the π electrons of the bases and partly from hydrophobic interactions. They
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FIG. 5: The basic dimensions of a DNA molecule.

impose a well defined distance between the bases along the axis of the helix, giving rise to a high rigidity of the
molecules along the axis. Bases can however be pulled out of the stack by sliding on each other, perpendicular
to the axis. The stacking energies depend highly on the base sequence [6]. For instance quantum chemistry
calculations give the following energies for different stacked base pairs:

.................

A − T

eV eV

A − T
C − G
G − C

0.23 0.63 

A − T
T − A

0.14 eV

2. Reading the genetic code.

The sequence of base pairs in DNA codes the information for the synthesis of proteins, which are polymers made of 20
different amino-acids. Because there are only 4 possible bases in DNA, one base cannot code for one amino-acid. The
code uses three consecutive “letters” on the DNA “ribbon” to indicate a given amino-acid. For instance the series
CTT codes for the amino-acid Leucine. With three letters per amino-acid, the code is redundant, and for instance
CTC also codes for Leucine. Moreover some specific sequences are not used to code for an amino-acid, such as the
“stop codon” TAA which marks the end of a gene coding for one particular protein.
In addition to the genes DNA contains non-coding regions, the role of which is not yet fully understood. Some of
them could be simply reminiscent of the evolution of the organisms.

Reading the genetic code is a complex operation because, as shown in fig. 1, the bases, which contain the information,
are buried within the double helix, and not readily available for chemical reaction. Therefore the access to the
code requires large distortions of the structure of DNA which expose the bases outside of the stack. During the
replication of DNA, that occurs during cell division for instance, the full molecule is copied by opening it like a zipper.
The transcription of DNA is the reading of a single gene to synthesize a protein, which occurs much more often than
replication. It is performed under the control of an enzyme, the RNA polymerase, which scans the long DNA molecule
to find the initiation site, i.e. the beginning of the gene. Then it unwinds the double helix on a length of about 20
base pairs as schematized on fig. 6. The bases which are exposed are copied into an RNA molecule that will be the
template for the synthesis of the protein, and the “transcription bubble” then moves along DNA, together with the
enzyme, closing the base pairs which have been read and opening new ones, until the end of the gene is reached.

The process of transcription involves distortions of the molecule which are so large that they necessarily probe the
nonlinear character of the forces linking the various groups. Due to the presence of the enzyme, which is itself a very
complex molecule, it is presently beyond a physical description, but, as discussed below, DNA thermal denaturation,
which has some similarities with the transcription can be described from a physical point of view. These studies can
be viewed as a first step toward modeling transcription.

3. DNA is a dynamical entity.

The famous discovery of the double helix structure of DNA put forward the notion that “form is function”, but we
have seen that the reading of genetic code requires large conformational changes. Such motions are observed even in
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FIG. 6: Schematic picture of the replication and transcription of DNA.

the absence of enzymes. DNA is a highly dynamical entity and its structure is not frozen. The “breathing” of DNA
has been known from biologists for decades. It consists in the temporary opening of the base pairs. This is attested
by proton-deuterium exchange experiments. DNA is put in solution in deuterated water, and one observes that the
imino-protons, which are the protons forming hydrogen bonds between two bases in a base pair, are exchanged with
deuterium coming from the solvent. As these protons are deeply buried in the DNA structure, the exchange indicates
that bases can open, at least temporarily, to expose the imino protons to the solvent [8]. The determination of the
lifetime of a base pair, i.e. the time during which it stays closed, has been the subject of some controversy [9] because
the rate limiting step in the exchange may be either the rate at which base pairs open, or the time necessary for the
exchange. Accurate experiments, using NMR to detect the exchange, showed that the lifetime of a base pair is of the
order of 10 ms. These experiments also show that the protons of one particular base pair can be exchanged while
those of a base pair next to it are not exchanged. This indicates that the large conformational changes that lead to
base pair opening in DNA are highly localized, which means that the coupling between successive bases along the
DNA helix is weak enough to allow consecutive bases to move almost independently from each other.

B. Physical experiments on DNA.

To model the nonlinear dynamics of DNA, one needs precise data to establish a meaningful model. They are provided
by various physical experiments. Many data have been obtained by standard methods of condensed matter physics,
but, in the last few years, powerful new methods appeared, based on single molecule experiments.

1. Experiments based on standard methods of solid state physics.

The static structure of DNA is obtained by standard X-ray or neutron diffraction. It is the earlier X-ray investigations
of Rosalind Franklin, showing patterns characteristic of a helix, that put Watson and Crick on the track leading to
their discovery of the double helix structure. Since then the accuracy of the determinations have been considerably
improved and the structure of DNA is known to a high precision [6].
Dynamical data can be obtained by infra-red or Raman vibrational spectroscopy [10, 11], or by quasi-elastic or inelastic
neutron scattering which allow a complete exploration of the dispersion curves of the small vibrational modes of DNA
[12].
The main difficulty in all these experiments is to obtain oriented samples. DNA segments of a few tens of base pairs
can form small crystals. Neutron diffraction need much larger samples, which can be obtained by a rather remarkable
method [12]: using natural DNA molecules a few micron long, the addition of alcohol leads to the precipitation of
DNA fibers. A spinning method can be used to get a “DNA wire” from these fibers. The “wire” is rolled around a
cylinder, leading to a sheet of parallel DNA fibers. Many of these sheets can then be mounted in a sample holder to
give a sufficient volume of oriented DNA molecule. This technique is remarkable by its ability to manipulate molecules,
but it also raises interesting theoretical questions. The precipitation of DNA into fibers is due to electrostatic forces
but it is not fully understood presently [13].
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FIG. 7: Denaturation curve of an homopolymer of DNA having only G − C base pairs. (Figure adapted from Ref. [14])

Another class of experiments which give useful data for modeling are the studies of DNA thermal denaturation, i.e. the
separation of the two strands by heating, which is also called “DNA melting”. It is easy to monitor the denaturation
experimentally because the breaking of the base pairs is accompanied of a large increase of the absorbance of UV
light at 260 nm. Experiments have been performed on artificial DNAs which are homopolymers, i.e. have only one
type of base pairs. In this case they detect a sharp transition between the double helix and the separated strands
as shown in fig. 7, showing that the “melting appears as a genuine phase transition. Natural DNA molecules show a
denaturation that occurs in multiple steps and is highly sensitive to the details of the sequence [15]. The observation
of DNA molecules under denaturation, using cryomicroscopy, shows that denaturation starts by local openings, called
“denaturation bubbles” that grow with temperature and invade the whole molecule at the denaturation temperature,
causing the separation of the two strands, as schematically plotted on Fig. 8

Temperature

FIG. 8: Schematic picture of the thermal denaturation of DNA, showing that it starts locally by “denaturation bubbles”.

Besides thermal denaturation, it has recently been possible to study the fluctuational opening of DNA hairpins, which
are single strands of DNA which have at their two ends groups of base pairs which are complementary of one another.
As a result these two groups tend to form a double helix, i.e. attach to each other, causing a folding of the strand
which takes the shape of a hairpin. Such folded molecules show some temporary openings, which can be monitored
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very accurately. For this purpose one attaches a fluorescent molecule to one end of the strand and a quencher, i.e. a
molecule that inhibits the fluorescence, at the other end. When the hairpin is formed the fluorophore and the quencher
are close to each other, and the DNA molecule is not fluorescent. But when the hairpin opens, the fluorophore and the
quencher are far apart and the DNA becomes fluorescent. Using confocal microscopy one can observe the fluctuations
of the fluorescence of a single molecule, which give a direct information of the large amplitude motions associated to
the opening and closing of the DNA hairpin [16]

2. Single molecule experiments.

Standard physical methods operate on a huge number of molecules and therefore they can only measure average
properties. In the last few years a new class of investigations appeared. They are performed on a single molecule.
Such experiments are possible for three reasons:

• as already mentioned DNA is a very long molecule so that its manipulation is possible,

• physicists can use methods developed by biologists. For instance it is possible to use natural enzymes to perform
reactions on a specific site of DNA, allowing for instance the chemical attachment of one particular point of the
DNA molecule to a glass bead which can be manipulated.

• in the line of the methods developed for scanning microscopy, the technical progress allows micromanipulations
and observation of very small objects, although the experiments remain real “tours de force”.

Figure 9 shows the result of such an experiment, the force–extension curve of a single DNA molecule, obtained for the
first time in 1992 [17] and repeated with a higher accuracy by several groups a few years later [18, 19] Such a curve

FIG. 9: Force extension curve of a single DNA molecule (Figure from Ref. [18]).

is extremely rich of informations on the molecule. Three different regions appear on the diagram.

• weak forces (f / 5 pN). In this domain the force is essentially balancing the fluctuations of the molecule and the
elasticity of DNA is due to entropic effects. It can be analyzed with a simple model, known as the “Worm Like Chain”
(WLC) model [20, 21]. The comparison between the theory and the experiment gives the persistence length of the
DNA molecule, or its bending rigidity.

• intermediate forces (5 pN < f < 60 pN). When the force exceeds 5 pN one observes a systematic deviation from
the WLC model which is due to the purely elastic contribution associated to a stretching of the double helix along its
axis. This part of the curve allows the determination of the Young modulus of the molecule. Moreover measurements
in which DNA is attached to a magnetic bead which can be rotated can also provide the torsional rigidity of the
molecule.

• large forces (f ' 65 pN). When the force becomes very large the molecule extends by a large amount (85 to 110 %)
almost at constant force. This is associated to a structural change induced by mechanical stress. Molecular modeling
have attempted to determine the structure of the extended phase [22] but this is still an open question.
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Another mechanical experiment which raises interesting questions is the mechanical unzipping of DNA, which will be
discussed in Sec. VII.

III. A SIMPLE MODEL FOR DNA

Our aim in this section is to examine to what extend one can understand theoretically some of the properties of
DNA. Can we establish a mathematical model of the molecule which has solutions and properties in agreement with
experimental observations?

The first question that one has to answer to establish such a model is to select the appropriate scale, which depends
on the properties one is interested in. For instance, in order to analyze the force–extension curve of DNA, a model
that ignores all the internal details of the molecule and simply describes it as a flexible string works very well.
In this paper we would like to focus our attention on properties of the molecule which are really characteristic of
DNA and probe its nonlinear dynamics. The fluctuations of the molecule described by the WLC model does not
meet these criteria because other polymers show similar features. Going to a much smaller scale, one could think
of describing the dynamics of the molecule at the atomistic scale. However, besides the complexity of such a model
which would confine the study to numerical simulations, this would not be a choice meeting our criteria because the
small amplitude motions of DNA are only weakly anharmonic, and moreover they are not fundamentally different
from the motions of many other large molecules.

The specificity of DNA lies in its ability to store the genetic information, and to the large amplitude highly nonlinear
motions which are necessary to read it. Thus we want to establish a model which can describe these properties, and
therefore it must be at the scale of the basic entity that encodes the information in DNA, i.e. the base pair. One could
think that a model at the atomic scale would be better since it would also describe the dynamics of groups of atoms
(the bases for instance) and would be more accurate than a model at the scale of the bases. This would however not
be practical, even if one accepts to use only numerical simulations. We have seen that transcription involves an open
region that extends over 20 base pairs. Therefore, to study it with a model, one has to include at least 100 base pairs.
To study a phase transition such as thermal denaturation of DNA, the model has to extend over hundreds of base
pairs because the denaturation is a collective effect. Currently molecular dynamics can simulate 10 to 20 base pairs,
only for time scales of a few nanoseconds, and such simulations are huge calculations. Increasing this by a few orders
of magnitude is currently out of reach. Even if it were possible such a calculation might be inappropriate because it
would produce a huge amount of data, from which it would be very difficult to extract mesoscopic quantities such as
the fraction of open base pairs at a given temperature, which can be compared with experiments.

This is why models at intermediate scales are useful. The fact that these models are less precise does not imply that
their development is simpler. In fact it can even be more difficult because one cannot rely on the first principles
to establish the models and determine their parameters. For instance the interaction potentials between individual
atoms are now rather well known. But this is not the case for the interaction potentials between complex groups such
as the bases of DNA. Such potentials involve many atoms, but also solvent molecules or ions, so that they are hard
to evaluate. This is why it is very important to check the validity of the models and to calibrate their parameters by
comparison with well controlled experiments.

A. The simplest model: the Ising model.

At the scale of a base pair, the simplest model that one can think of is the Ising model. The state of a base pair is
simply described by a two-state variable, equal to 0 if the base is closed and 1 if it is open.
Such models have been proposed and successfully used to study the thermal denaturation of DNA (see Ref. [23] and
references therein). The drawbacks for our purpose are the following

• they contain a large number of parameters which cannot be obtained (or even estimated) from basic physical
laws. For instance the energy to open a base pair can be evaluated, but, to describe collective effects one also
needs parameters such as the probability that a base pair opens if a neighboring one is open, or if it is closed.
They can only be obtained by fitting denaturation curves.

• As the model uses a two-state variable to describe the status of a base pair, it cannot represent the nonlinear
dynamics of opening or closing, that requires the description of a continuum of intermediate states.
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B. A simple model for nonlinear DNA dynamics.

The next step is to keep only one degree of freedom per base pair, but use a real variable that describes the stretching
of the bond linking the bases instead of the discrete 0/1 variable of the Ising model. Let us denote by yn the stretching
of the nth base pair. The value yn = 0 corresponds to a closed base pair as in the Ising model, but now yn can increase
continuously to infinity if the two bases separate completely as in DNA denaturation. The variable yn can even take
negative values, corresponding to a compression of the bond linking the bases with respect to its equilibrium length.
Large negative values will be forbidden by steric hindrance, which is introduced in the model by the potential linking
the bases in a pair.

n n+1n-1

V(y  )
n W(y  ,  y      )

n n-1

y

V (y) = D
ş
e−ay

− 1
ť 2

V(y)

0 y

FIG. 10: The simple dynamical model for DNA nonlinear dynamics, described by hamiltionian (1).

The model is shown on fig. 10 and it is defined by its hamiltonian

H =
∑

n

p2
n

2m
+ W (yn, yn−1) + V (yn), with pn = m

dyn

dt
, (1)

where m is the reduced mass of the bases. At this stage we do not explicitely include the genetic code and all base
pairs are considered to be the same.

The potential V (y) describes the interaction between the two bases in a pair. We use a Morse potential

V (y) = D
(

e−ay − 1
)2

, (2)

where D is the dissociation energy of the pair and a a parameter, homogeneous to the inverse of a length, which sets
the spatial scale of the potential. This expression has been chosen because it is a standard expression for chemical
bonds and, moreover, it has the appropriate qualitative shape

• it includes a strong repulsive part for y < 0, corresponding to the sterical hindrance mentioned above,

• it has a minimum at the equilibrium position y = 0,

• it becomes flat for large y, giving a force between the bases that tend to vanish, as expected when the bases are
very far apart; this feature allows a complete dissociation of the base pair, which would be forbidden if we had
chosen a simple harmonic potential.

The potential W (yn, yn−1) describes the interaction between adjacent bases along the DNA molecule. It has several
physical origins:

• the presence of the sugar-phosphate strand, which is rather rigid and connects the bases. Pulling a base out of
the stack in a translational motion tends to pull the neighbors due to this link. One should notice however that
we have not specified the three dimensional motion of the bases in this simple model. An increase of the base
pair stretching could also be obtained by rotating the bases out of the stack, around an axis parallel to the helix
axis and passing through the attachment point between a base and the sugar–phosphate strand. Such a motion
would not couple the bases through the strands. The potential W (yn, yn−1) is an effective potential which can
be viewed as averaging over the different possibilities to displace the bases.
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• the direct interaction between the base pair plateaux, which is due to an overlap of the π-electron orbitals of
the organic rings that make up the bases.

In a first stage, we shall use for W (yn, yn−1) the simplest expression, i.e. the expansion of the potential around its
minimum which is reached when yn = yn−1

W (yn, yn−1) =
1

2
K(yn − yn−1)

2 . (3)

Such an harmonic approximation would be good if the stacking interaction were strong enough to keep yn close to
yn−1 at all times. This is not true for DNA, but the harmonic approximation allows easier calculations, and it is
sufficient to get some interesting results which agree with some experimental observations. However we shall see that
the expression of W has to be improved to provide a correct description of the thermal denaturation.

The choice of the potential parameters is a very difficult question because, as discussed above, the potentials entering in
the model are effective potentials, which combine many actual interactions. For instance V (y) includes the hydrogen
bonds between the bases but also the repulsion between the charged phosphate groups, which is partly screened by
the ions which are in solutions.
The parameter that we use have been calibrated by comparison with experiments, in particular the thermal denatu-
ration as discussed in Sec. VI, but they are not accurately known. The parameters for V (y) are D = 0.03 eV, which
is slightly above kBT at room temperature (kB being the Boltzmann constant) and a = 4.5 Å−1. For a stretching of
the base pair distance of 0.1 Å, these parameters give a variation of energy of 0.006 eV, which is consistent with the
values that we listed for hydrogen bonds in Sec. II. The value chosen for K is K = 0.06 eV/Å2, which corresponds to
a weak coupling between the bases, as attested by the experimental results showing that proton-deuterium exchange
can occur on one base pair without affecting the neighbors. The average mass of the nucleotides is 300 atomic mass
units.

The values of the constants have been given with a systems of units adapted to the scale of the problem: lengths in
units of ℓ = 1 Å, energies in units of e = 1 eV, mass in units of m0 = 1 atomic mass unit. This defines a natural
time unit t0 through e = m0 ℓ2 t−2

0 , which is equal to t0 = 1.018 10−14 s, which is of the order of magnitude of the
period of the vibrational motions of the base pairs.

Although actual units are important to compare the results with experiments, for theoretical calculations, it is very
useful to express the problem in terms of dimensionless quantities. It is natural to introduce the dimensionless
stretching of the base pairs as Y = ay. If we measure the energies in units of the depth D of the Morse potential, the
dimensionless hamiltonian is H ′ = H/D, and defining the dimensionless quantity S = K/(Da2), and a dimensionless

time τ =
√

Da2/mt , we obtain the hamiltonian H ′ only in terms of dimensionless quantities under the form

H ′ =
∑

n

1

2
P 2

n +
1

2
S(Yn − Yn−1)

2 +
(

e−Yn − 1
)2

with Pn =
dYn

dτ
, (4)

from which one can derive dimensionless equations of motion, which depend on a single parameter S which is equal
to S = 0.0976 with our potential parameters.

IV. OBSERVING THE DYNAMICS OF THE DNA MODEL.

A simple method to evaluate the ability of this model to describe DNA is to observe its dynamics and compare it
with the experimental properties of DNA. Numerical simulations can be used, but for meaningful comparisons with
with actual properties of the molecule, they must take into account thermal fluctuations.

A. Methods for molecular dynamics at constant temperature.

Simulating a thermal bath is not a simple task, but several methods have been designed to satisfactorily approximate
the thermal fluctuations. A simple one is to add to the equations of motions a fluctuating force and a damping term,
related by the fluctuation dissipation theorem, leading to a set of coupled Langevin equations. A more efficient way
has been developed by Nosé [24] and improved by Martyna et al. [25]. The idea is to simulate an extended system
which includes not only the physical system of interest but a few additional dynamical variables corresponding to
a chain of “thermostats”. One of the thermostats is coupled to all the degrees of freedom of the physical system,
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according to the method proposed by Nosé that leads to exact canonical properties for the physical system, and the
others contribute to properly randomize the first thermostat in order to ensure a proper exploration of the phase
space of the system. This approach leads to a faster thermalization than Langevin simulations and one can control
that, not only the average kinetic energy corresponds to the expected temperature, but also the fluctuations of the
kinetic energy have the value N(kBT )2 expected for a one dimensional canonical system with N degrees of freedom.

B. Dynamics of the thermalized nonlinear DNA model.

Figure 11 shows two typical results of the numerical simulation of the dynamics of a 256-base-pair segment of the
DNA model in contact with a thermal bath.
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FIG. 11: Numerical simulations of the dynamics of the DNA model in contact with a thermal bath simulated according to
the method of Martyna et al. [25]. The model has 256 base pairs. The amplitude of the base pair stretching is shown by a
gray scale ranging from white (base pair fully closed) to black (base pair completely open). The horizontal axis extends along
the molecule and the vertical axis corresponds to time (and temperature when we use a temperature ramp). (a) Simulation at
constant temperature T = 340 K. (b) Simulation performed with a linear temperature ramp, corresponding to a denaturation
experiment where temperature is continuously raised from low T to a temperature beyond denaturation.

Fig. 11.a shows a case where the model is kept at constant temperature T = 340 K, which is slightly below the
denaturation temperature. It displays two types of characteristic patterns. The most apparent are large black spots,
which correspond to regions where the base pair stretching is very large over a few tens of consecutive bases for a
limited time. Such regions correspond to the “denaturation bubbles” observed in the experiments. Another noticeable
feature is the presence of vertical dotted lines, i.e. successions of black and white regions involving a few base pairs,
located in one particular place of DNA. Such patterns are created by very large amplitude localized vibrational modes
of the molecule, and could correspond to the “breathing of DNA” observed in experiments.
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The simulation also points out an interesting feature of the model, which is an actual DNA property: the existence of
localized large amplitude motions appears as a temporary breaking of energy equipartition in the system, although it
is in equilibrium. Figure 11.a clearly shows regions where the displacements are large separated by narrower “cold”
regions where the fluctuations of the base pairs are much smaller. Of course energy equipartition is indeed obeyed,
but to observe it one must follow the dynamics on very long time scales. On times which can be as large as thousands
of periods of the small amplitude vibrations of the bases, one finds “hot regions” coexisting with “cold regions”, but,
on even longer times, the amplitude of the fluctuations in some hot regions will decrease while they grow in some
other regions. A true uniformity in the fluctuations is never achieved but the inhomogeneities move from place to
place. This phenomenon is reminiscent of turbulence, where pressure in a fluid shows large local fluctuations although
an average pressure can be well defined. And a quantitative analysis of the properties of a lattice of coupled nonlinear
oscillators shows that the relationship with turbulence may go well beyond a simple qualitative analogy [26].

Figure 11.b shows the results of a simulation that mimics an actual denaturation experiment: the temperature is
raised in a linear manner from a low value to a value slightly beyond the denaturation temperature. Such a numerical
experiment can only give a crude picture of the denaturation process because, in order to keep the simulation within
the times accessible to molecular dynamics, the heating has to be achieved in a few nanoseconds, which means that the
system is strongly out of equilibrium. However such a calculation gives an idea of the actual denaturation process and
it shows that the model gives results which are in good agreement with the observations (see Fig. 8): the denaturation
is preceeded by the formation of large open regions, that grow quickly when the denaturation temperature approaches,
until they invade the whole sample, causing the separation of the strands. Moreover the simulation shows that the
localized modes described above appear as the precursors of the formation of the bubbles.

V. NONLINEAR EXCITATIONS IN DNA: BREATHERS AND DOMAIN WALLS.

Let us now try to get some analytical understanding of the numerical observations discussed in the previous section.

A. Derivation of a nonlinear equation for the model

The starting point is the equations of motions of the model that derive from hamiltonian (4)

d2Yn

dτ2
= S(Yn+1 + Yn−1 − 2Yn) + 2 e−Yn

(

e−Yn − 1
)

= 0 . (5)

They form a set of coupled nonlinear differential equations which cannot be solved exactly. The simulations show
that, even at low temperature, the stretching of the base pairs can become large in some regions and therefore an
harmonic approximation has to be ruled out. We can however introduce a small amplitude expansion that keeps the
first nonlinearities by defining

Yn = εφn avec ε ¿ 1 , (6)

and keeping only the leading terms in the expansion

d2φn

dτ2
= S(φn+1 + φn−1 − 2φn) − 2

(

φn − 3

2
εφ2

n +
7

6
ε2φ3

n

)

= 0 . (7)

One can look for a solution of this set of equations, which extends the simple plane wave solution that we would get
in a linear approximation, under the form

φn(τ) =
(

Fneiθn + F ⋆
ne−iθn

)

+ ε
(

Gn + Hne2iθn + H⋆
ne−2iθn

)

, (8)

with θn = qn−ωt. The choice of the additional terms will be justified more precisely later but it is easy to understand
their origin: as the equations contain a term εφ2

n, the presence of the dominant term in solution (8) proportional to
exp(±iθn) will naturally generate terms similar to the factor ε in the solution, i.e. without ann exponential contribution
or depending on exp(±2iθn). Moreover, as the solution (8) appears as a modulated plane wave, which, in the harmonic
limit would keep a fixed amplitude, it is natural to assume that the coefficients Fn, Gn, Hn will only have a smooth
spatial dependence when nonlinearity is included. These functions are assumed to depend only on “slow” variables
X1 = εx, X2 = ε2x, T1 = ετ , T2 = ε2τ , and their spatial dependence is then rather well described by a continuum
limit approximation, which amounts to replacing the functions at sites n ± 1 by their Taylor expansion

Fn±1 = F ± ε
∂F

∂X1
± ε2

∂F

∂X2
+

ε2

2

∂2F

∂X2
1

. (9)
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The time derivatives of these functions are of the form

∂Fn

∂τ
= ε

∂F

∂T1
+ ε2

∂F

∂T2
, (10)

with similar equations for G and H. Putting these expressions in the equations of motion, at order ε0 the cancellation
of terms in exp(±iθn) shows that the equations are satisfied if ω and q are linked by the dispersion relation that one
gets for plane waves the harmonic limit

ω2 = 2 + 4S sin2 q

2
. (11)

Notice that this dispersion relation corresponds to the discrete lattice, i.e. in spite of the continuum limit approximation
performed for the envelope functions F , G, H, the calculation preserves some discreteness, which is important for
DNA. This is why this approximation is called the semi-discrete approximation [27].

At order ε1, the cancellation of terms in exp(±iθn) gives

∂F

∂T1
+ vg

∂F

∂X1
= 0 where vg =

S sin q

ω
, (12)

is the group velocity of the waves having the dispersion relation (11). At the same order, terms without an exponential
dependence and terms in exp(2iθn) give

G = 3F F ⋆ H = −1

2

F 2

1 + (8S/3) sin4 (q/2)
. (13)

One can notice that the G and H terms in solution (8) are necessary to allow the cancellation of the terms of order
ε1 in the equations of motion.

The most interesting equation is obtained from the cancellation of the exp(iθn) terms at order ε2. In the frame mobile
at speed vg it reduces to the familiar NLS equation

i
∂F

∂τ2
+ P

∂2F

∂ξ2
1

+ Q|F |2 = 0 , (14)

where the P and Q coefficients depend on the wavevector q of the carrier wave according to

P =
Sω2 cos q − S2 sin2 q

2ω3
Q =

1

2ω

(

11 − 9

3 + 8S sin4(q/2)

)

. (15)

The PQ product is positive for all q < π/2 so that one can expect localized solutions when the carrier wave has a
small wavevector.

B. Breathers and nonlinear energy localization

Using the soliton solution of NLS and computing F and G from (13), one obtains for Yn = εφn the solution

Yn(t) = 2a0 sech
[

a0

√

Q

2P
(n − vgt − Uet)

]

cos(q′n − ω′t)

+ a2
0 sech2

[

a0

√

Q

2P
(n − vgt − Uet)

]

{3 − cos[2(q′n − ω′t)]} , (16)

where a0 and Ue are two parameters that characterize the NLS soliton and ω′ and q′ are corrected expressions for the
frequency and wavevector of the carrier wave

ω′ = ω +
vgUe

2P
+

U2
e

4P
− Qa2

0

2
, q′ = q +

Ue

2P
. (17)

This solution is only approximate, but numerical simulations show that it is a good, stable, solution provided ω′ does
not belong to the band of the allowed frequencies of the linearized lattice model, which is the case when ω is taken
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near the bottom of the allowed frequencies of the lattice, i.e. ω =
√

2. It corresponds to a large amplitude, localized
oscillatory mode, very similar to the localized oscillations observed on Fig. 11.a. The “breather” of NLS appears
as a good explanation of the “breathing” of DNA and it is interesting that these names were given independently
by applied mathematicians and biologists. However to make sure that the nonlinear solution (16) of the equations
of motion is meaningful for actual DNA, one must make sure that it can be spontaneously formed, and does not
appear only when the appropriate initial condition is introduced in the system. This is the case for two reasons. First
extended solutions are unstable in such a system. They tend to spontaneously self modulate, leading to localized
solitonlike modes [28]. These solutions may still have a moderate amplitude but, when they interact in collisions,
the largest ones tend to grow at the expense of the smallest [29]. These combined effects lead to the formation of
large amplitude modes, that can even emerge from the thermal fluctuations, as in the simulation of Fig. 11. The
remarkable stability and the spontaneous formation of these breathers is due to the discreteness of the lattice [30].
But discreteness has another role: when the amplitude of the excitations become very large, they tend to get narrower
and narrower because the localizing effect of nonlinearity gets stronger. Their width can fall down to a few lattice
spacing, and they strongly feel the discreteness of the lattice. They are no longer invariant by translation and they
tend to be pinned to the lattice. This explains why the dotted lines on Fig. 11, corresponding to breathers, are
vertical, i.e. correspond to an oscillatory mode which is always sitting at the same place. This extreme discreteness
of DNA breathing is consistent with the experimental observations that show that imino proton exchange can occur
at one site and not at the neighboring sites as discussed above [8].

C. Domain wall between open and closed regions.

In the continuum limit, the dynamical equation resulting from hamiltonian (4),

∂2Y

∂t2
− S

∂2Y

∂x2
+

∂V (Y )

∂Y
= 0 with V (Y ) =

(

e−Y − 1
)2

, (18)

has an exact static solution, which is completely different from the breather, but also has a meaning for the physics
of DNA. Looking for a solution that does not depend on time, one obtains

−S
d2Y

dx2
+

∂V (Y )

∂Y
= 0 with V (Y ) =

(

e−Y − 1
)2

, (19)

which is easily solved by quadrature. After multiplication by dY/dx an integration gives

−1

2
S

(

dY

dx

)2

+ V (Y ) = C , (20)

where C is a constant determined by the boundary conditions. Imposing that the base pairs are in their equilibrium
position Y = 0 for x → −∞, one gets C = 0. Therefore Eq. (20) gives

dY eY

eY − 1
=

√

S

2
dx leading to ln

(

eY − 1
)

=

√

S

2
(x − x0) , (21)

i.e.

Y (x) = ln
[

1 + e
√

S/2 (x−x0)
]

, (22)

where x0 is an integration constant that determines the position of the solution.
This solution describes a configuration where one part of the molecule (x < x0) is closed, while for x À x0 the base
pair separation grows linearly with space and the molecule is fully denaturated. It corresponds to a domain wall
between two states of the DNA molecule.
Let us evaluate the energy of this solution for a finite chain of N base pairs. Sites with an index smaller than x0 are
such that Y ≃ 0. The Morse potential and the coupling energy between adjacent sites vanish. For sites with an index
larger than x0, Y À 1 and the Morse potential takes the value +1 while dY/dx ≃

√

2/S corresponds to a coupling

energy 1
2S(

√

2/S)2 = 1. Therefore each site with an index larger than x0 contributes to the energy by e = 2. As a
result the energy of the domain wall is

E+
P = 2 (N − x0) + O(N0) , (23)
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where the term O(N0) corresponds to the core of the wall (x ≃ x0) where Y evolves smoothly from the bottom of
the Morse potential toward the plateau. In the limit N → ∞ the energy of the domain wall becomes infinite.
For finite N , one can notice that the energy of the wall gets smaller if x0 increases, i.e. if the closed region of the
molecule extends. The solution (22) is thus instable. It tends to move in the direction that closes the base pairs.
However this result ignores the thermal fluctuations so that it is not surprising to find that the stable state of the
DNA molecule is the closed state, i.e. the double helix. We shall see below that, when thermal effects are included,
the analysis of the stability of the domain wall can be used to investigate the thermal denaturation of DNA.

VI. STATISTICAL PHYSICS OF DNA THERMAL DENATURATION.

Up to now the analytical studies have been devoted to the mechanics of DNA. Getting solutions for the nonlinear
excitations of the model may be a nice result in nonlinear dynamics, but it is of little physical significance because
these exact solutions never exist as such in the molecule due to the thermal fluctuations. This is why it is important
to introduce temperature effects in the theoretical studies as we did in the simulations. Instead of working with the
energy (or the hamiltonian) one has to work with the free energy F which, for a system in contact with a thermal
bath at temperature T , can be derived from the partition function Z. For the simple DNA models that we have
introduced it can be obtained analytically [31] with standard methods of statistical physics.

A. The partition function of the simple DNA model.

In the canonical ensemble the partition function of the model is related to the hamiltonian by

Z =

∫

∏

n

dpn dyn e−βH(pn,yn) (24)

with β = 1/(kBT ). To compute the integral one can consider a finite chain of N base pairs and chose periodic
boundary conditions, which amounts to adding a fictitious base pair with index 0 which has the same dynamics as
base pair N . Taking into account the expression of the hamiltonian, one has to compute

Z =

∫ ∫ N
∏

n=1

dpn

N
∏

n=0

dyn exp

{

−β

[

N
∑

n=1

p2
n

2m
+

1

2
K(yn − yn−1)

2 + V (yn)

]}

δ(yN − y0) , (25)

where the delta function enforces the periodic boundary conditions. The integrals over pn are decoupled gaussian
integral which can be easily calculated to give

Z =
(

√

2πmkBT
)N

Zy , (26)

and due to the one dimensional character of the model, the configurational part Zy, is a product of terms that couple
two consecutive yns

Zy =

∫ N
∏

n=0

dyn

[

N
∏

n=1

e−βf(yn,yn−1)
]

δ(yN − y0) , (27)

with f(yn, yn−1) = (1/2)K(yn−yn−1)
2 +V (yn). Therefore calculation of Zy can be performed by the transfer integral

method. Let us define the transfer integral (TI) operator yn−1 → yn and its eigenfunctions φi by:

∫

dyn−1 exp−β
{

f(yn, yn−1)
}

× φi(yn−1) = e−βεiφi(yn) (28)

The δ function of Zy can be expanded on the base of the eigenfunctions of the TI operator as δ(yN − y0) =
∑

i φ∗
i (yN )φi(y0). Performing successively the integrals over y0, y1, y2, . . . , yN−1 one gets

Zy =
∑

i

e−βNεi

∫

dyN |φi(yN )|2 =
∑

i

e−βNεi because φi is normalized. (29)
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In the thermodynamics limit (N → ∞) the result is dominated by the term having the smallest value of εi that we
denote by ε0. The free energy per site is therefore

f = −kBT

N
lnZ = ε0 −

kBT

2
ln

(

2πmkBT
)

, (30)

and similar calculations give the mean value of the base pair stretching 〈y〉 in terms of the eigenfunction φ0associated
to ε0 as

σ = 〈y〉 =

∫ +∞

−∞

dy y |φ0(y)|2 , (31)

or the correlation function

C(n) = 〈(yn − σ)(y0 − σ)〉 =

+∞
∑

i=1

|〈φi|y|φ0〉|2e−β(εi−ε0)|n| (32)

The problem is therefore to find the eigenfunctions and eigenvalues of the transfer operator. The calculation can be
made analytically in the limit of strong coupling between sites. It is a rough approximation for DNA but it is useful
for a qualitative understanding of the melting transition. We want to solve

∫ +∞

−∞

dx e
−β

[

1

2
K(y−x)2+V (y)

]

φ(x) = e−βεφ(y) , (33)

where we denote by x the base-pair stretching at site n − 1 and by y the stretching at site n. For large K, when y
differs significantly from x, the term K(y − x)2 grows rapidly, so that the integral is dominated by the values of x
which are close to y. Let us define z by x = y + z and expand φ(y + z) in powers of z

∫ +∞

−∞

dz e
−β

[

1

2
Kz2

]

[

φ(y) + zφ′(y) +
1

2
z2φ′′(y)

]

= e−β[ε−V (y)]φ(y) . (34)

Then we perform the Gaussian integrals in z. The odd one vanishes and we get

√

2π

βK

[

φ(y) +
1

2βK
φ′′(y)

]

= e−β[ε−V (y)]φ(y) . (35)

The prefactor can be integrated in the exponent of the r.h.s. to give

[

φ(y) +
1

2βK
φ′′(y)

]

= exp
{

− β
[

ε +
1

2β
ln(2π/βK) − V (y)

]

}

φ(y) . (36)

Let us define ε̃ = ε + 1
2β ln(2π/βK). For positive y (corresponding to the separation of the strands that we are

investigating) the Morse potential is bounded by D. If βD < 1 one can expand the exponential to get

[

φ(y) +
1

2βK
φ′′(y)

]

≈
[

1 + βV (y) − βε̃
]

φ(y) . (37)

Therefore we arrive at an equation which is formally identical to the Schrödinger equation for a particle in the Morse
potential

− 1

2K

d2φ(y)

dy2
+ β2V (y)φ(y) = β2ε̃φ(y) , (38)

which has been solved by Morse himself.
One can get a qualitative understanding of the DNA denaturation transition from our basic knowledge of quantum
mechanics. Such a potential well generally has a spectrum containing one or more localized states for β2ε̃ < D and a
continuous spectrum for β2ε̃ > D, but, contrary to the case of potentials bounded on both sides, the localized ground
state only exists when the potential is deep enough. This leads to the following scenario for the transition:

• At low temperature, the depth of the potential, equal to β2D is large and equation (38) has at least one localized
state φ0. As a result 〈y〉 =

∫

y |φ0|2dy is finite. The DNA molecule is not denaturated.
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• When temperature increases, the depth of the potential decreases and, for a critical temperature Tc the localized
state merges into the continuum. The ground state is a non-localized eigenfunction of the continuum and 〈y〉
diverges. DNA is denaturated.

This scenario is independent of the exact expression of the potential, provided it is qualitatively similar to the Morse
potential. This is an important feature because, as we have discussed above, the potential is not exactly known.
For the Morse potential, the calculation shows that

Tc =
2
√

2KD

akB
. (39)

B. Comparison with experiments: improving the model.

As the theoretical calculation gives 〈y〉 versus T , one can also evaluate the fraction of base pairs that stay bound at a
given temperature. This is a quantity that is not explicitely part of the model but one can define a threshold for the
stretching above which a base pair is considered as broken. Choosing y0 = 2 Å is a reasonable value because hydrogen
bonds are very sensitive to bond length and, for such a stretching, they are always broken. Moreover the value of the
fraction of broken base pairs is only very weakly sensitive to the value of y0.

FIG. 12: Theoretical result for the fraction of closed base pairs versus temperature (probability P (y < 2 Å) ) for a model with
harmonic coupling (triangles) or nonlinear coupling (diamonds). Inset: variation of the entropy versus temperature for the two
models.

Figure 12 shows the temperature evolution of this fraction. It evolves very smoothly from almost 1 at a temperature
equal to half the denaturation temperature to 0 at Tc. Qualitatively this is satisfactory because the simple model
that we have introduced does show a denaturation transition at a given temperature Tc, but quantitatively the simple
model is not satisfactory because, for DNA the denaturation is very sharp as shown by Fig. 7. Choosing appropriate
model parameters allows us to adjust the value of Tc to a value in quantitative agreement with the experiments, but
this is not enough to get a good agreement for the full denaturation curve. The model has to be improved.

This can be done by improving the description of the stacking interaction. The harmonic expression W (yn, yn−1) =
1
2K(yn − yn−1)

2 resulted from an expansion of the interaction potential around its minimum. But, as previously
mentioned, in DNA one base pair can be open while its neighbors are not, which implies large values of the difference
(yn − yn−1). A small amplitude expansion is too rough.
To derive a more appropriate potential one has to think at its physical origin. A large contribution to the stacking
interaction comes from the overlap of the π electrons of the base plateaux. When a base moves out of the stack, the
overlap decreases and its interaction with the neighboring bases weakens. The redistribution of the π electron which
occurs when hydrogen bonds are brocken also contributes to this effect. This specificity of the stacking interaction
can be described by an improved potential

W (yn, yn−1) =
1

2
K

(

1 + ρe−α(yn+yn−1)
)

(yn − yn−1)
2 . (40)
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It is important to notice the plus sign in the exponential term, which is very important. As soon as either one of the
two interacting base pairs is open (an not necessarily both simultaneously) the effective coupling constant drops from
K ′ ≈ K(1 + ρ) down to K ′ = K.

The calculations performed with the harmonic stacking interaction in order to reduce the determination of the eigen-
functions of the transfer operator to a pseudo-Schrödinger equation are no longer valid because the coupling term is
no longer a function of the difference (y − x). Equation (28) has to be solved numerically. Discretizing space, the
problem is turned into the diagonalization of a matrix. The accuracy of the calculation can be improved by using
integration schemes such as Gauss-Hermite quadratures [32] and a finite scaling analysis [33] can be used to take care
of the finiteness of the integration domain.
Figure 12 shows that the nonlinear stacking interaction drastically modifies the character of the denaturation transition
of the model. It becomes very sharp, first-order like, in good agreement with the experimental observations [34]. A
careful study shows that the transition is not infinitely sharp (first order). It occurs smoothly but within a very
narrow temperature domain, the width of which is controlled by the value of the parameter α. The entropy almost
shows a jump at the transition, as shown in Fig. 12, which corresponds to an effective latent heat. The role of the
nonlinear stacking to modify the character of the transition can be understood from simple qualitative arguments.
Above denaturation, the stacking gets weaker, reducing the rigidity of the DNA strands, i.e. increasing their entropy.
Although there is a energetic cost to open the base pairs, if the entropy gain is large enough, the opening may thus
bring a gain in free energy F = U −TS, where U is the internal energy of the system and S its entropy. The nonlinear
stacking leads to a kind of “self-amplification process” in the transition: when the transition proceeds, the extra
flexibility of the strands makes it easier, which sustains the denaturation that becomes very sharp.

C. Another view of the transition: stability of the thermalized domain wall.

We have seen that the equation of motion of the DNA model has a domain wall solution (22) which separates an open
and a closed region. In the absence of thermal fluctuations the domain wall is unstable and it tends to move in the
direction that closes the open region to reduce its energy. Let us now investigate the properties of the domain wall in
the presence of thermal fluctuations and calculate its free energy.
In order to analyze the fluctuations around the domain wall, let us look for a solution of Eq. (18) of the form
Y (x, t) = YDW (x) + f(x, t), where YDW (x) is the domain wall solution (22) centered at position x0, and assume that
f(x, t) is small enough, which allows us to linearize the equation in f . Putting Y (x, t) in Eq. (18) and linearizing in
f , one gets

∂2f

∂t2
− S

∂2f

∂x2
+ V(x)f(x, t) = 0 , (41)

where

V(x) =

(

∂2V [Y = YDW (x)]

∂Y 2

)

= −2
ez − 1

(1 + ez)2
with z =

√

2

S
(x − x0) . (42)

If we look for a solution under the form f(x, t) = e−iωt g(x) we get for g(x) a Schrödinger-like equation

−S
∂2g

dx2
+ V(x) g(x) = ω2g(x) . (43)

The eigenvalues ω2 associated to the effective potential V(x) determine the spectrum of the small amplitude oscillations
around the domain wall. Far from the center of the wall, the effective potential V(x) tends to 0 on the open side and
to 2 on the closed side of the wall. It is such that it has no bound states, but we can predict the existence of two
kinds of extended states:

• For ω2 < 2 the states will only extend in the region x > x0.

• For ω2 > 2 the states are extended on both sides of the wall, but the dispersion relation of the waves is different
for x < x0 and x > x0.

The potential V(x) is such that Eq. (43) can be solved exactly [31], but to compute the free energy of the wall, it is
sufficient to assume that the domain wall is sharp because the contribution of the heart of the wall becomes negligible
in the thermodynamics limit. Let us consider the domain wall shown on Fig. 14, which is a simplified for of Fig. 13
showing the actual wall and the associated effective potential that it creates for small amplitude fluctuations.
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2

FIG. 13: The domain wall of the DNA model for x0 = 0 (dash line), the effective potential Veff = V(x) that it creates for
small amplitude fluctuations, and schematic view of the vibrational modes around the wall on both sides of the wall.
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FIG. 14: Simplified shape of the domain wall (dash line) and the effective potential that it creates for small amplitude
fluctuations (full line), in a DNA segment of N base pairs.

The base pair of index n with n 6= x0 are assumed to be closed. In this domain, the dispersion relation of the small
amplitude fluctuations is obtained by assuming V(x) = 2. The fluctuations are solutions of −Sd2g/dx2 + 2g = ω2g.
The solutions g(x) = exp(iqx) have therefore the dispersion relation ω2 = 2 + Sq2.
For n 6= x0 the base pairs are open, i.e. Y has a value corresponding to the plateau of the Morse potential. In this
range the effective potential is V(x) = 0 and the dispersion relation of the fluctuations around the wall is ω =

√
S q.

The free energy of the DNA chain with a domain wall at position x0 consists of two contributions

F = FWall + FFluctuations . (44)

The first term FWall is the free energy of the wall at a given position x0. It is simply equal to its energy because, as
the position is imposed, there is no entropy term. Each open base pair contributes for an energy e = 2 so that

FWall = 2(N − x0) . (45)

The second term FFluctuations is the free energy associated to the vibrational modes around the wall. These modes
are obtained in the harmonic limit and therefore their energies are energies of independent harmonic oscillators of
frequencies ω(q), i.e. E(q) = nq~ω(q), where nq is the number of quanta excited for an oscillator (note that we do not
introduce the zero point energy because we will be interested in the classical limit of our result). For a single mode,
i.e., one of the frequencies ω(q), the partition function is the sum over all the possible states of excitation, which is
easy to calculate as we have to sum a geometric series

Zq =

∞
∑

nq=0

exp
(

− β~ω(q)nq

)

=
1

1 − exp
(

− β~ω(q)
) , (46)
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which gives the usual Bose-Einstein expression. In the classical limit ~ω(q) ¿ kBT one can replace the exponential
by its lowest order expansion exp(−β~ω(q)) ≃ 1 − β~ω(q) so that one gets

Zq =
1

β~ω(q)
. (47)

One can notice that, for the dynamics of DNA base pairs, the classical limit is perfectly justified. Typical oscillation
frequencies for the bases, which are big chemical groups, are 5 1011 Hz, giving ~ω ≈ 2 10−3 eV while kBT ≈ 0.025 eV
at room temperature.

The partition function of the set of independent modes, which gives the number of states of the set of modes, is the
product of the partition functions for each mode

Z = Πq
1

β~ω(q)
(48)

giving the free energy of the fluctuations

Ffluctuations = −kBT lnZ = kBT
∑

q

ln
(

β~ω(q)
)

. (49)

This discrete sum is not easy to calculate but we can replace it with an integral as the number of modes is very large.
For a lattice of p particles, the possible wavevectors are qi = iπ/p (i = 0, . . . , p− 1 ), so that the variation of q for one
mode to the next is ∆q = π/p, which gives a density of states 1/∆q = p/π. Using this density of states, one obtains

∑

q

f [ω(q)] ≃ 1

∆q

∫

dq f [ω(q)] , (50)

where f [ω(q)] is an arbitrary function of ω(q).

For a DNA molecule of N base pairs, having a domain wall at the base pair of index x0, we have x0 base pairs with

the dispersion relation ω(q) =
√

2 + Sq2 and N − x0 pairs with the dispersion relation ω(q) =
√

S q. Therefore one
gets

Ffluctuations = kBT
x0

π

∫ ∞

0

dq lnβ~

√

2 + Sq2 + kBT
N − x0

π

∫ ∞

0

dq lnβ~

√
S q , (51)

where the integrals over q have been extended to infinity, which is consistent with the continuum limit. Setting apart
the terms that depend on the position x0 of the wall, one gets

Ffluctuations =
kBT

π
x0

∫ ∞

0

dq ln

(

√

2 + Sq2

√
S q

)

+ F1 , (52)

where F1 is a quantity that does not depend on x0. The integral of Eq. (52), that we denote by I, can be calculated
using

I =

∫ ∞

0

dq ln

√

2

Sq2
+ 1 =

1

2

∫ ∞

0

dq ln 1 +
2

Sq2
(53)

with the help of
∫ ∞

0

du
ln(1 + u2)

u2
= π , (54)

and setting u =
√

2/S q. One gets

Ffluctuations = kBT
x0

2

√

2

S
+ F1 . (55)

If one collects the results (45) and (55), one gets the following expression of the free energy of the DNA model with
a domain wall at site x0

F = x0

[

kBT

2

√

2

S
− 2

]

+ F ′
1 , (56)

where F ′
1 does not depend on x0.
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• For small T (or for T = 0), the expression within the brackets is negative. The DNA segment car reduce its free
energy by increasing x0, which tends to close the open base pairs, as we already noticed.

• On the contrary, for large T the term within the brackets becomes positive and the DNA segment can reduce
its free energy by decreasing x0, i.e. by opening the base pairs that were closed.

• For (kBT/2)
√

2/S = 2, i.e.

T = Tc =
2

kB

√
2S (57)

the free energy of the DNA segment is independent of the position of the domain wall. Therefore this temperature
appears as the transition temperature at which the molecule changes from the double helix to the denaturated
state.

It is important to notice that, if one comes back to variables with dimensions by replacing S by its value S = K/(Da2),
and taking into account that energies such as kBT must be multiplied by D to recover the true energy, one obtains
Tc = 2

√
2KD/(akB), which is exactly the denaturation temperature given by the Transfer Integral method (Eq. (39) ).

This calculation shows that, in addition to the standard approach to the denaturation transition, the calculation of
the partition function using the Transfer Integral operator, one can also study the transition by investigating the
free energy of a nonlinear excitation, the domain wall. This method illustrates the interest of nonlinear science, and
moreover it turns out to be better than the conventional method because it provides an easy method to take into
account the effect of the discreteness of the lattice, which, for DNA are not negligible since S = 0.099 [31].

D. Discussion: Is a one-dimensional phase transition possible?

In statistical physics, it is often stated that there are no phase transitions in one dimensional systems with short
range interactions. We have described above a simple system that does have such a phase transition. There is
no contradiction because the “theorem” that forbids phase transitions in one-dimensional systems relies on some
hypothesis:

• it is valid if the interactions are pair interactions, i.e. only depend on the difference of consecutive variables,
such as (yn − yn−1). This is not true for the DNA model due to the term V (yn) coming from the interaction
between the two strands of DNA. This term plays the same role as an external field on a magnetic system for
instance.

• it also requires that the domain walls between two regions have a finite energy. When this is the case, a simple
argument due to Landau can show that, for instance, a spin lattice is never in an ordered state. The reason is
that the cost of making a domain wall between a spin up region and a spin down one is finite and, contrary
to higher dimensions, in one dimension it does not grow with the system size so that it becomes negligible in
the thermodynamic limit with respect to the total interaction energy in the system. Therefore the spin lattice
can create many domains, increasing its entropy and breaking the order. This is no true for the DNA model
because, in the thermodynamic limit, i.e. for an infinite chain, the energy of a domain wall separating an open
from a closed region is infinite.

VII. MODELING THE MECHANICAL DENATURATION OF DNA.

As mentioned in Sec. II B 2 it is now possible to manipulate single molecules of DNA. It is therefore tempting to try
to use this possibility to mechanically determine the sequence of DNA because a GC base pair, with three hydrogen
bonds, is expected to be harder to break than an A − T base pair with only two bonds. Some experiments on
the micromechanical denaturation of DNA have been performed. Figure 15 shows a schematic view of the actual
experiment [35]. The DNA molecule to open is attached on one side to a DNA linker, itself attached to a glass plate
providing a fixed reference point. On the other hand, one of the strands is attached to a glass bead, which is pulled
by a glass micro-needle. The necessary attachments are provided by the “biological glue” biotine–streptavidine, two
molecules that bind strongly to each other. It is possible to buy glass beads coated with spectravidine, and biological
techniques are used to chemically link biotine to the desired position of DNA. This experiments illustrates the power
of the combination of physical techniques to biological methods that can take advantage of the specificity of biological
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FIG. 15: Schematic picture of the micromechanical denaturation experiment of DNA.

reactions which are now well known and controlled, even if their mechanism is not yet fully understood at the molecular
level. The micro-needle, moved at constant speed pulls the glass bead, leading to the mechanical denaturation of the
DNA segment under study, but, in addition its elastic deformation which is recordered provides a measure of the force
which is necessary to break the base pairs.
In fact a simple analysis shows that such an experiment is not able to distinguish a single base pair. The piece of
DNA strand which is already open and the needle are equivalent to an elastic spring of rigidity k1. When a base
pair breaks, a length ∆ℓ = 7.5 Å is freed on each strand. As a result this spring shortens by 2∆ℓ = 15 Å. The force
that it exerts on DNA decreases, but the decrease of the elastic energy stored in the spring is very small, well below
kBT and the denaturation does not stop immediately after the first mechanical denaturation has occurred. Assisted
by thermal fluctuations, it goes on, along at least a few tens of base pairs, releasing the elastic stress sufficiently for
the elastic force to fall well below the critical force that denaturates a base pair. Therefore the experiment observes
the breaking of groups of base pairs and cannot be used for a mechanical sequencing of DNA. However, on a scale of
100 bases the experiment shows a good correlation between the G − C content and the force necessary to open the
molecule [35], showing that mechanical denaturation can give some information on the sequence at low resolution. In
order to analyze this information it is however necessary to examine the results of the experiment in details because
the relation between the measured force and the sequence is not trivial.

A. Numerical observation for a homopolymer.

The simplest case that one can consider is the case of an artificial DNA molecule having a single type of base pairs,
such as the homopolymer that was used in some thermal denaturation experiments [14]. Actual single-molecule
experiments on such systems have not yet been performed because it is hard to make long enough homopolymers. Let
us examine the results of numerical simulations performed with the DNA model that we have introduced in Sec. III.

M

N

A

FB FA

�
�
�
�
�
�
�
�
�
�
�
�
�

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁

C0

FIG. 16: Extension of the one-dimensional DNA model to describe micromechanical denaturation experiments. FA is the force
pulling the glass bead, i.e. the force measured by the experiment. FB is the force exerted by the strand which is already
denaturated at the level of base pair of index M , which is the next to break.

For such a study the model has to be slightly extended as shown on Fig. 16. As we have only one variable per base
pair, the stretching of the bases, the overall translation of the base pairs is not considered and, instead of the linker
DNA, one can consider that one side of each base pair is attached to a fixed point. The elastic string, composed of the
linker DNA (which is very rigid and plays a little role, and the micro-needle, is represented by a spring of constant c0

which is attached to the base pair of index 1. One end of this spring (point A on the figure, whose position is denoted
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by yA) is pulled at constant velocity v. The extension of the spring provides a measure of the force FA that pulls on
the DNA strand according to FA = c0(yA − y1), where yA = vt.
The hamiltonian of this extended system is

HM =
1

2
c0(yA − y1)

2+
p2
1

2m
+ V (y1)

+

N
∑

n=2

1

2
m

(

dyn

dt

)2

+ W (yn, yn−1) + V (yn) ,

where, as before V is the on-site Morse potential and W the stacking interaction between the bases.
Numerical simulations are performed at controlled temperature T using a chain of Nose thermostats coupled to the
variables y1 . . . yN but not to yA which is constrained (and in practice attached to a macroscopic object, the glass
bead and the micro-needle, itself connected to a micromanipulator). Figure 17 shows typical results of a simulation.
In the experiments the driving velocity is of 20 to 40 nm/s, i.e. 20 to 40 base pairs break per second. Even with a

(a) (b)

FIG. 17: Results of the numerical simulations of the mechanical denaturation of a DNA segment of 512 base pairs at T = 250 K
and a stretching velocity v = 0.0025 Å/time unit. (a) Variation of the force FA (full line) and of the time derivative dM/dt
of the number of broken base pairs (dash line). The unit of force in these simulations is 1 eV/Å= 1.6 10−9 N = 1600 pN. (b)
Stretching of the base pairs versus time on a scale ranging from white (fully closed) to back (fully open). The horizontal axis
extends along the molecule and the vertical axis is the time axis.

simple model, simulations up to one second are not possible as they would require 1014 time steps. Simulations have
been performed on time scales of the order of a ns, up to 0.5 µs for the longest. The driving speeds are therefore much
higher than in the experiments as they are typically of 2 1011 nm/s, down to 108 nm/s for the longest simulation.
This is considerably larger than in experiments, but the main point is that one must pull slowly enough to be in a
regime where the speed does not affect the results. This is not true for velocities of 2 1011 nm/s because typical force
for breaking are then approximately 64 pN, while they decrease to 16 pN for v = 108 nm/s. In this last case the
forces no longer depend on v, so that one can consider that one can consider that v = 108 nm/s is low enough to get
meaningful results.
The average breaking force obtained in the simulation is 16 pN, while experiments give about 13 pN. This provides an
additional test for the model parameters beyond the thermal denaturation, and confirm that they are correct because,
which such a simple model, one cannot expect to reproduce experimental results with less than a 20% error.

The main result is that, although we are working with a homopolymer, the breaking force shows very large oscillations,
associated to the variation of the speed at which the breaking propagates. We have to understand this point, and
the theoretical analysis of the model will provide the clue. Moreover simulations show that the breaking does not
occur one base pair at a time. The propagation events involve 30 to 50 bases at once. This is in agreement with the
experiments and provides a further test of the validity of the model.
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B. Analysis: kinetics of the denaturation.

1. Why does the molecule open?

Of course it is because we are pulling on it, but is it the only reason? The maximum of the slope of the Morse
potential, its slope at the inflexion point, gives the value of the maximum force that the potential can oppose to
the breaking force, Fmax = aD/2, which, with our model parameters is equal to 216 pN. Therefore the breaking is
observed for forces which are well below the strength of the Morse potential.
Let us now consider the lifetime of a closed base pair. Simulations shows that 300 bases are broken in 2 105 t.u., i.e.
approximately 660 t.u. are required to break a single base pair (and much more in actual experiments). This has to

be compared with the periods of oscillation at the bottom of the Morse potential tMorse = 2π/
√

2Da2/m = 98.7 t.u.,
which shows that the base pairs can perform several oscillations (very many in the actual experiments) in the bottom
of the Morse potential before the breaking.
In the presence of a pulling force FB , the effective potential linking the bases becomes V ′(y) = V (y) − FB y. For
a force that exceeds the maximum strength that the Morse potential can sustain, V ′(y) would loose its minimum,
leading to a pure mechanical breaking. For the forces used in the experiments and in the simulations, V ′(y) still has

1
Y

FIG. 18: The effective potential acting on a base pair under the action of a pulling force.

a minimum separated from the dissociative state by a maximum for y = Y1 (Fig. 18). Therefore the stable state is
the unbroken base pair, and, if the breaking occurs, it is because it is thermally activated, i.e. it is assisted by the
thermal fluctuations. Understanding the breaking amounts to understanding the escape from a potential well due to
thermal fluctuations. This is a standard problem of chemical kinetics, similar to the dissociation of a molecule in a
metastable state. It can be analyzed by the transition state theory.

2. Introduction to the transition state theory.

The theories of chemical reaction rates have looked at this problem from many view points. Simplest approaches
say that molecular collisions are required to induce a reaction. Transition State Theory (TST) looks at the reaction
pathway more completely [36]. The basic idea is that reactions may be represented by a particle motion in a potential
hypersurface in configuration space (Fig. 19). The dimension of this configuration space is the number of degrees of
freedom in the system. Among all the degrees of freedom, one variable can be considered as representative of the
chemical reaction (for instance the stretching of a bond that will dissociate). It is called the reaction coordinate. In
this multidimensional space, the domain of reactants is the region where the parameters have values corresponding
to the initial stage of the reaction. The domain of products is associated to the final state. These two regions are
generally separated by a bottleneck in phase space, associated to a local maximum in energy. It is the transition state.
The reaction is the evolution from the reactant domain to the product domain, through the transition state.

The basis assumptions of the transition state theory are the following:

(i) Thermal equilibrium: all states of the system, whether they are stable or metastable states, are treated as if the
system was in equilibrium. Strictly speaking, this cannot be true because the system is undergoing a chemical
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FIG. 19: Schematic picture of the configuration space of the transition state theory. Left: the reaction coordinates links
reactants and products. Right: a typical trajectory between reactant and products, through a bottleneck corresponding to the
transition state.

reaction. Particles escape from the reactant region to go into the product one. However, if the pathway between
these two domains has to pass trough a bottleneck, this approximation is satisfactory. This is illustrated on
Fig. 19: the system will wander a very long time in the reactant region before finding the way to the products.
From a technical point of view, for the calculation, this assumption is equivalent to putting an infinite barrier at
the transition state. One lets the system equilibrate in the reactant region, and then the barrier is removed. The
systems flows through the bottleneck at a rate determined by its (equilibrium) state just before the removing
of the barrier.

This assumption of equilibrium seems wrong at a first glance since we are precisely interested in a non equilibrium
situation. However a closer examination shows that is is quite good because in this highly multidimensional
space, only very few trajectories correspond to the reaction, i.e. the bottleneck appears as a tiny hole in the
multidimensional boundary surface of the reactant zone.

(ii) No return assumption: the calculation assumes that, once a system has passed the barrier at the bottleneck, it
does not come back to the reactant region and always evolves towards the final state of the reaction. This as-
sumption is also related to the multidimensional aspect of the phase space and to the smallness of the bottleneck.
As the products are the stable final stage of the reaction the probability of return is even significantly smaller
than the probability of passing the bottleneck from reactants to products. This assumption, which is better
when the energy barrier at the bottleneck is sharp, leading the particle to quickly escape from the transition
region, implies that the TST gives an upper bound of the reaction rate.

It simplifies the analysis very much because one only needs to study the phase space trajectories in the reactant
domain to determine if a particle escapes.

With these assumptions, the rate at which particles evolve from reactants to products, equal to the inverse of the
lifetime τ of the reactants, is simply given by the flow of the trajectories in the phase space that pass through the
transition state

kTST =
1

τ
=

∫

dpdq δ(q − qTST) q̇ θ(q̇) exp
(

− βH(p, q)
)

∫

Reactants
dpdq exp

(

− βH(p, q)
) , (58)

where q is a notation for the coordinates in the phase space, p the corresponding momenta, qTST the coordinates at the
transition state, H(p, q) the hamiltonian of the system and θ the Heaviside step function equal to 1 when its argument
is positive and 0 otherwise. In this expression the denominator is simply the partition function of a system restricted
to be in the reactant region only. Its comes from assumption (i) above. In the numerator, the delta function means
that we consider only the point of the trajectory which is exactly at the transition state. And as q̇ is the velocity in
the configuration space, the integral weighted by the partition function of the denominator is the expression of the
average flow across the bottleneck, the θ function ensuring that only the flow from reactants to products is considered
(assumption (ii)).

3. Application of the Transition State Theory to the mechanical denaturation of DNA.

Let us consider the system at the edge of the breaking of the Mth base pair (Fig. 16). We denote by FB the force
exerted on this base pair by the denaturated strand. Note that FB is not equal to the external force FA applied to
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cause the mechanical denaturation due to the fluctuations of the part of the strand which is already denaturated.
The hamiltonian of the system composed of base pairs M to N (end of the molecule) is

H1 =

N
∑

j=M+1

1

2
m

(

dyj

dt

)2

+ W (yj , yj−1) + V (yj) +

[

1

2
m

(

dyM

dt

)2

+ V ′(yM )

]

(59)

where V ′(yM ) = D [exp(−αyM ) − 1]
2 −FB yM is an effective potential which has a metastable minimum for yM ≈ 0,

corresponding to the closed state of the M th base pair (Fig. 18) and a barrier at yM = Y1.
In the language of chemical kinetics, the reaction coordinate is yM and the transition state is obtained for yM = Y1.
According to the TST, the reaction rate, i.e. the inverse of the lifetime of the closed base pair is

kTST =
1

τ
=

〈δ(yM − Y1)ẏMθ(ẏM )〉
〈1 − θ(yM − Y1)〉

. (60)

The expression in the denominator ensures that the average is taken in the reactant domain, i.e. for yM ≤ Y1. The
brackets 〈. . .〉 denote statistical averages, which have to be calculated with the hamiltonian H1.
Let us first evaluate the numerator of Eq. (60)

Num =
1

Z

∫ pM=∞

pM=0

dpM
pM

m
e−βp2

M /(2m)

∫ +∞

−∞

N
∏

n=M+1

e−βp2

n/(2m) × Ny (61)

where we denote by Ny the contribution of the integrals over the coordinate positions yn (n = M . . . N), and Z is the
partition function of the system. The integral over pM = ẏM/m is restricted to positive pM due to the factor θ(ẏM )
which ensures that we are only counting the flow leaving the reactant domain in the phase space.
The denominator in Eq. (60) is of the form

Den =
1

Z

∫ pM=∞

pM=−∞

dpM e−βp2

M /(2m)

∫ +∞

−∞

N
∏

n=M+1

e−βp2

n/(2m) × Dy , (62)

where Dy is the part depending on the integrations over the coordinates. There is no restriction on the range of pM in
this case because the denominator describes the trajectories in the reactant domain and all fluctuations are allowed.
In Eqs.(61) and (62) the integrals over pn for n = M + 1 . . . N cancel in the numerator and denominator and the
integrals over pM are gaussian integrals which can be easily calculated to give

kTST = kBT
Ny

Dy
. (63)

The integrals over the ys can be evaluated by the transfer integral method, similarly to the calculation of the partition
function in Sec. VI A.

Let us define the eigenstates of the transfer operator by
∫

dyn exp
[

− β
(

W (yn, yn−1) + V (yn)
)

]

ϕℓ(yn) = exp
[

− βεℓ

]

ϕℓ(yn−1) . (64)

Notice that it is convenient to define them so that they decrease the index n by one unit. With definition (64) the
kernel is not symmetric. For numerical calculations it might be convenient to symmetrize it. The eigenvalues are not
changed but the eigenfunctions are modified by a factor exp[−βV (y)/2].
The expression of Ny is

Ny =

∫ +∞

yM=−∞

dyM δ(yM − Y1) exp
[

− βV ′(yM )
]

∫

dyM−1 exp
[

− β
(

W (yM , yM+1) + V (yM+1)
)

]

×
∫

dyM+2 . . . ×
∫

dyN−1 exp
[

− β
(

W (yN−1, yN−2) + V (yN−1)
)

]

×
∫

dyN exp
[

− β
(

W (yN , yN−1) + V (yN )
)

]

δ(yN ) .

The last factor, δ(yN ) assumes that the last base pair of the molecule is fixed. This is convenient for the calculation
but irrelevant for the final result on the lifetime of base pair M because we shall take the thermodynamics limit
N → ∞.
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The completeness relation for the eigenfunctions of the transfer operator give

δ(yN − 0) =
∑

ℓ

ϕ∗
ℓ (0)ϕℓ(yN ) . (65)

Putting this relation into Ny and performing successively the integrals over yN , yn−1, . . . , yM+1, we get

Ny =
∑

ℓ

ϕ∗
ℓ (0)

∫

dyM δ(yM − Y1) exp
[

− βV ′(yM )
]

ϕℓ(yM ) e−βεℓ(N−M) . (66)

Performing the integral over yM , which includes a δ function, simply gives

Ny =
∑

ℓ

ϕ∗
ℓ (0) ϕℓ(Y1) exp

[

− βV ′(Y1)
]

e−βεℓ(N−M) . (67)

In the thermodynamics limit N → ∞, the sum is dominated by the term having the lowest εℓ that we denote ε0

Ny = ϕ∗
0(0) ϕ0(Y1) exp

[

− βV ′(Y1)
]

e−βε0(N−M) (68)

The calculation of Dy proceeds along the same lines. Most of the integrals are the same as the ones that appear in
Ny. The only difference concerns the integral over yM that no longer includes a δ function and must be performed
for yM ≤ Y1 (in the reactant region). One gets

Dy = ϕ∗
0(0)

∫ Y1

−∞

dyM exp
[

− βV ′(yM )
]

ϕ0(yM ) e−βε0(N−M) (69)

Combining Eqs.(63), (67) and (69) one gets

kTST =
1

τ
= kBT

ϕ0(Y1) exp
[

− βV ′(Y1)
]

∫ Y1

−∞
dyM exp

[

− βV ′(yM )
]

ϕ0(yM )
. (70)

FIG. 20: Evolution of the eigenfunction ϕ0 of the transfer operator versus temperature in the range T = 100–460 K. The
function has a peaked shape at low temperatures and gets broad at high temperatures.

The result shows that the reaction rate kTST contains the Arrhenius term exp
[

−βV ′(Y1)
]

generally found for chemical

reactions because V ′(Y1) is the amplitude of the barrier that has to be overcome to break base pair M (Fig. 18). But
there is an other important factor, ϕ0(Y1). As discussed in the analysis of the thermal denaturation, the function
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ϕ0(y) gives the weighting factor for the calculation of 〈y〉 =
∫

y|ϕ0(y)|2dy. At low temperature it is strongly peaked
around the minimum of the Morse potential, and decays exponentially away from it. Therefore it is very small for
y = Y1 (unless the force is very close to the maximum force that the Morse potential can sustain so that Y1 gets closer
to 0; we have seen that it is not the case in the experiments.) On the contrary, when T increases, and particularly
when it approaches the denaturation temperature Tc, ϕ0(y) gets much broader, so that ϕ0(Y1) increases drastically.

Therefore ϕ0(Y1) appears as an amplification factor which increases the effect of temperature on the probability of
opening. As a result temperature inhomogeneities, due to nonlinear localization, play a very large role to determine
the lifetime of the base pairs under stretch. This explains why the propagation of the mechanical breaking is so
irregular, even for a homopolymer.

FIG. 21: Variation of y(x) in the DNA model at T = 250 K (for t0 = 4104 time units) and corresponding grey scale picture of
the displacements during the same time interval (using the same coding as in Fig. 17).

Another indication of the large effect of temperature inhomogeneities in the DNA model is the strong variation of
y(x) with space, where

y(x) =

∫ t0

0

y(x, t)dt , (71)

t0 being a time which is much larger than the period of oscillations of the bases in the Morse potential but nevertheless
finite (Fig. 21 shows the case of t0 = 4 104 time units, i.e. approximately 400 periods of oscillations of the bases).
For each value of y(x), one can determine the temperature Teff(x) that would give the same value for 〈y〉. For the
example shown in Fig. 21, the values of Teff(x) vary in the range 190–308 K, which should be compared with the mean
temperature in the simulation, equal to 250 K. These data can be used to evaluate theoretically the expected range
of the force fluctuations as the breaking propagates. In the experiment the lifetime of a base pair is imposed by the
speed v at which the DNA strand is pulled. It is equal to τ = 1/v. For each effective local temperature Teff , Eq. (70)
can be used to determine which force FB one should apply to get this lifetime, keeping in mind that FB enters in
the expression of the potential V ′(y). For the example of Fig. 21, one gets 0.024 < FB < 0.050 (corresponding to
38 < FB < 80 pN when one restores standard force units), in good agreement with the numerical simulations of
Fig. 17.
The order of magnitude of the forces correspond to values that are observable in actual experiments, but, one must
however keep in mind that the calculation only involves the force FB at the level of the base pair that will break
(Fig. 16. This is not the force FA, which is is the measured force, because, between the next base to break and
the place where the external force is applied, there is a segment of denaturated strand, which fluctuates due to the
brownian motion. The tension of this denaturated segment has fluctuations ∆F which are superimposed to the
fluctuations of FB that one would like to measure. To calculate ∆F , one could use the Worm Like Chain discussed
in Sec. II B 2. A rough estimate can be obtained with a model that considers the denaturated strand as a lattice
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of M springs, with a coupling constant K, attached to the spring of constant c0 used to measure the force. One
gets ∆F = c0

√

MkBT/K. The important point is that these fluctuations grow as
√

M because, as they appear
as an added noise on the force of interest, this imposes a fundamental limitation on the experiments which cannot
investigate the denaturation of a very long double helix.

Another fundamental limitation is the lifetime of the “hot” and “cold” regions in DNA. Figure 21 exhibits inhomo-
geneities in the thermal fluctuations of the model, which in turn determine the regions which open easily and the
regions which are hard to denaturate. But, indeed, equipartition of energy applies to DNA as it does to any physical
system. The lifetime of the thermal inhomogeneities is finite [38] , and if one averages over a very long time, such
inhomogeneities are no longer detectable. Therefore the speed at which the experiment is carried should affect the
possible observation of nonlinear localization in DNA. The experiments performed by pulling a glass bead with a
microneedle are very slow on the molecular time scale, and it is unlikely that they can detect the temporary thermal
inhomogeneities. This is why they can probe the sequence, or, at least the average sequence over a few tens of base
pairs. One can however notice that, when the experiments are carried 10 times faster than the original experiments
they show additional fast fluctuations which are not understood, and not related to the sequence [37].
In order to try to bridge the gap between the numerical simulations and the experiment, we carried simulations up
to t = 0.4 µs, with a pulling speed v = 10−5 Å/time unit. Figure 22 shows that the fluctuations in the speed at
which the denaturation processes are still present, and even larger than at larger speed. Sometimes the speed becomes
negative, i.e. a denaturated region of the molecule can close again, before reopening later. This gives rise to large force
oscillations. It is tempting to speculate on the fact that these fluctuations could explain the experimental fluctuations
observed in the fast experiments, but this is still an open question.

(a) (b)

FIG. 22: Results of the numerical simulations of the mechanical denaturation of a DNA segment of 1024 base pairs at T = 320 K
and a stretching velocity v = 10−5 Å/time unit. The total simulation time is 0.4 µs. (a) Stretching of the base pairs versus
time on a scale ranging from white (fully closed) to back (fully open). The horizontal axis extends along the molecule and the
vertical axis is the time axis. (b) Variation of the force leading to the denaturation. The unit of force in these simulations is 1
eV/Å= 1.6 10−9 N = 1600 pN. The rise corresponds to the first stage of the simulation, during which the spring extends until
its tension becomes large enough to begin to break the base pairs. Then the average force stays constant but one observes very
large fluctuations in the instantaneous value.

In order to reach a quantitative analysis of the experiments, there is another characteristic of DNA that should not
be neglected. It is its helicoidal character. By pulling on the two strands of an helix, it is easy to convince oneself
that the opening is accompanied by a torsional stress of the helix close to the open part. If the helix is short, the
part of the molecule which still in the helicoidal form, will rotate as a whole to release the stress. But for a long
DNA molecule, which moreover may be partly in a globular form instead of being straight, the rotation due to the
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twist = 0

FIG. 23: The coupling between opening and twist in DNA dynamics: (a) a local opening leads to a local untwisting of the
helix. (b) when the opening propagates, it produces some overtwisting upstream and some undertwist downstream.
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FIG. 24: Helicoidal model for DNA.

opening will lead to an accumulation of torsion. The build up of the torsional energy is likely to modify the speed of
the opening, and the force necessary to open.

VIII. THE ROLE OF THE HELICOIDAL GEOMETRY, ANOTHER STEP TOWARD REALISTIC
MODELS.

The helicity does not only play a role during a mechanical denaturation experiment. The geometry of the double
helix naturally leads to a coupling between the opening and the torsion, as shown in Fig. 23. The role of the helicity
is particularly important when dynamical effects are involved. The simple model introduced previously does not take
into account the helicoidal geometry, which can only described by a much more complex model, shown in Fig. 24
[39, 40]. It must include at least two degrees of freedom for base pair n, the distance rn between the two bases,
which plays the same role as the stretching yn of the simple model, and the angle φn of the bond linking the bases
with respect to a reference axis. The helical structure of DNA is introduced essentially by the competition between
a stacking interaction that tends to keep the base-pairs close to each other (given by the fixed distance h between
the base planes) and the length L0 > h of the backbone segment (described as an elastic rod of rest length L0) that
connects the attachment points of the bases along each strand. The ratio L0/h fixes the strand slant and therefore the
resulting helicity of the structure. This helicity is accounted for by the angle of rotation of a base-pair with respect
to the previous one, namely the equilibrium twist angle θ, equal to 2π/10.4 in B-DNA at room temperature. In the
model, bases are described as point-like particles of equal masses m joined by elastic rods along each strand. Bases
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lying on the same plane are coupled by hydrogen bonds leading to an attractive force that tends to maintain their
equilibrium distance equal to the DNA diameter 2R0. We assume that the two bases in each pair move symmetrically.
The lagrangian of the model is

L = m
∑

n

(

ṙ2
n + r2

nφ̇2
n

)

− D
∑

n

(

exp[−a(rn − R0)] − 1
)2

− K
∑

n

(ln,n−1 − L0)
2

− S
∑

n

(rn − rn−1)
2 exp[−b(rn + rn−1 − 2R0)] (72)

where L0 =
√

h2 + 4R2
0 sin2(θ/2) and ln,n−1 are respectively the equilibrium and the actual distance between the two

bases n and n − 1 along a strand,

ln,n−1 =
√

h2 + r2
n−1 + r2

n − 2rn−1rn cos(φn − φn−1) . (73)

The first term is the kinetic energy. The second describes the interaction between the two bases of a pair with the
same Morse potential as in the simple model. The third term describes the elastic energy of the strands, and the last
term corresponds to the stacking interaction between the bases. It is similar to the nonlinear stacking interaction
introduced in the simple one-component model (Eq. 40), without the purely harmonic part which is here replaced by
the elasticity of the strands.
The dynamics and statistical physics of this model are of course much more complex than for the one-component
model that we discussed above, but, although there are some differences introduced by geometrical effects, the major
results hold.

• The model sustains localized vibrational modes equivalent to the breathers in the one-component model [40, 41].
The opening is accompanied by a local decrease of the twist as expected from the geometrical constraint.

• The model shows a denaturation transition, which, in the presence of the nonlinear stacking term is very sharp,
first-oder like [42] although a more complete analysis shows that, in a very narrow range around Tc the nature
of the transition is in fact more complex, suggesting the presence of an underlying Kosterlitz-Thouless type
transition [43].

The coupling between opening and twist is particularly important for dynamical effects and, in addition to a central
peak also found in the one-component model, that can be attributed to the slow dynamics of the denaturation
“bubbles”, the dynamical structure factor of the helicoidal model shows additional features that are not yet fully
understood [43].

IX. DISCUSSION AND CONCLUSION.

Physics is more and more interested in “complex systems” where the interplay of many individual components lead to
new phenomena. Biological molecules provide fascinating examples of such complex systems and this is why they are
attracting the attention of a growing number of physicists. But, contrary to proteins, DNA can be viewed as a “simple
complex system” because it has a fairly ordered structure that E. Schrodinger called a “quasi-periodic crystal” [1].
A peculiarity of biological molecules is the very large conformational changes which they can undergo, and which are
often essential for their function. They are highly deformable, hence highly nonlinear objects, and DNA is not an
exception to this rule. Therefore, besides its fundamental interest for biology, it is a very rich system for nonlinear
science, perhaps even too rich because this lead physicists to speculate on the role of nonlinear excitations in DNA
without paying enough attention to experimental realities, triggering a strong rejection reaction by some biologists
[44]. As noticed by Frank-Kamenetkii, “there has hardly been a novelty or a vogue among solid-state physicists that
has not been applied to DNA”, and one cannot exclude that the idea of nonlinear localization, presented in this
review, may belong to this category.

Hopefully nonlinear localization may however have some reality in DNA although the “breathers” that we described
are unlikely to exist as perfectly periodic localized modes. What may be more relevant for DNA is the observation
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that nonlinearity facilitates the formation of localized motions, that can exist in many types of lattices and emerge
from thermal fluctuations. For natural DNA, which includes the genetic code, the inhomogeneity of the sequence
are certainly a first source for inhomogeneous fluctuations, similarly to what was observed in proteins [45], but
nonlinearity can greatly enhance this effect. The relevance of these effects to biology is not yet clearly established,
but there are however some recent studies which strongly suggest that the thermally-induced openings, which are
predicted by the one-component DNA model that we have described, agree with the experimental observations on
DNA opening detected by potassium permanganate footprinting, and, more importantly coincide with the location of
functionally relevant sites for transcription [46]. These observations were make on several sequences, and, moreover,
when a mutation is made to remove an initiation site, the model also detects that a region undergoing large thermal
fluctuations has been eliminated. Although these results are very preliminary and have to be confirmed by further
studies they may open the way for a dynamical analysis of the genome, based on a model suggested by nonlinear
science.

Another direction of research, which could well emerge as a major field in the next decade, is the use of DNA for
purely physical applications, in particular thanks to is remarkable ability to perform highly selective self-assembly.
We have shown that experiments can manipulate single DNA molecules. It is also remarkable that physical methods
can be used to control the conformation of a single DNA molecule. This has been achieved with DNA single strands
which have at both ends sequences of complementary base pairs. As a result the two ends tend to get together to form
a double helix, folding the single strand into a hair-pin shaped molecule. The closing of this hair-pin can be precisely
monitored because, using selective biological reactions, one can attach to one end of the DNA strand a chromophore
and at the other end a quencher, i.e. a molecular group that suppresses the fluorescence of the chromophore when
both are closed to each other [47, 48]. The experimental possibilities go however beyond observing the conformation
of the hairpin. It is now possible to control it electronically. Using selective reactions one can attach a short organic
chain to the loop of the hairpin, and then bound to it a gold nanocrystal which can be heated by a microwave field.
When the field is on, enough heat is transmitted to the DNA hairpin to cause the thermal denaturation of its double
helix part. The hairpin opens and the fluorescence of the chromophore shows up because the two ends of the molecule
are far apart and the quencher is therefore away from the chromophore. When the microwave field is switched off,
the self assembly of DNA closes again the hairpin, and the whole process can be repeated [49]. This remarkable
experiment is only one example of what can now be achieved using denaturation and self assembly of DNA. One can
use this transition as the basis of a working nanomachine [50], but also for the fabrication of objects with nanometer
precision [52, 53]
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