Non-linear dynamics and statistical theories for basic geophysical flows

ANDREW J. MAJDA New York University

XIAOMING WANG Florida State University

Contents

Pr	Preface page xi			
1				
	el	ementary introduction	1	
	1.1	Introduction	1	
	1.2	Some special exact solutions	8	
	1.3	Conserved quantities	33	
	1.4	Barotropic geophysical flows in a channel domain – an important		
	1.5	physical model	44	
	1.5	Variational derivatives and an optimization principle for	50	
		elementary geophysical solutions	50	
	1.6	More equations for geophysical flows	52	
		References	58	
2	The	response to large-scale forcing	59	
	2.1	Introduction	59	
	2.2	Non-linear stability with Kolmogorov forcing	62	
	2.3	Stability of flows with generalized Kolmogorov forcing	76	
		References	79	
3	The	selective decay principle for basic geophysical flows	80	
	3.1	Introduction	80	
	3.2	Selective decay states and their invariance	82	
	3.3	Mathematical formulation of the selective decay principle	84	
	3.4	Energy–enstrophy decay	86	
	3.5	Bounds on the Dirichlet quotient, $\Lambda(t)$	88	
	3.6	Rigorous theory for selective decay	90	
	3.7	Numerical experiments demonstrating facets of selective decay	95	
		References	102	

Contents

	A.1	Stronger controls on $\Lambda(t)$	103	
	A.2	The proof of the mathematical form of the selective decay		
		principle in the presence of the beta-plane effect	107	
4	Non-	linear stability of steady geophysical flows	115	
	4.1	Introduction	115	
	4.2	Stability of simple steady states	116	
	4.3	Stability for more general steady states	124	
	4.4	Non-linear stability of zonal flows on the beta-plane	129	
	4.5	Variational characterization of the steady states	133	
		References	137	
5	Торо	ographic mean flow interaction, non-linear instability,		
	_	d chaotic dynamics	138	
	5.1	Introduction	138	
	5.2	Systems with layered topography	141	
	5.3	Integrable behavior	145	
	5.4	A limit regime with chaotic solutions	154	
	5.5	Numerical experiments •	167	
		References	178	
		Appendix 1	180	
		Appendix 2	181	
6	Intro	oduction to information theory and empirical statistical theory	183	
	6.1	Introduction	183	
	6.2	Information theory and Shannon's entropy	184	
	6.3	Most probable states with prior distribution	190	
	6.4	Entropy for continuous measures on the line	194	
	6.5	Maximum entropy principle for continuous fields	201	
	6.6	An application of the maximum entropy principle to		
		geophysical flows with topography	204	
	6.7	Application of the maximum entropy principle to geophysical		
		flows with topography and mean flow	211	
		References	218	
7	Equilibrium statistical mechanics for systems of ordinary			
		fferential equations	219	
	7.1	Introduction	219	
	7.2	Introduction to statistical mechanics for ODEs	221	
	7.3	Statistical mechanics for the truncated Burgers-Hopf equations	229	
	7.4	The Lorenz 96 model	239	
		References	255	

		Contents	vii	
8	Stati	stical mechanics for the truncated quasi-geostrophic equations	256	
	8.1	Introduction	256	
	8.2	The finite-dimensional truncated quasi-geostrophic equations	258	
	8.3	The statistical predictions for the truncated systems	262	
	8.4	Numerical evidence supporting the statistical prediction	264	
	8.5	The pseudo-energy and equilibrium statistical mechanics for		
		fluctuations about the mean	267	
	8.6	The continuum limit	270	
	8.7	The role of statistically relevant and irrelevant		
		conserved quantities	285	
		References	285	
		Appendix 1	286	
9	Emp	irical statistical theories for most probable states	289	
	9.1	Introduction	289	
	9.2	Empirical statistical theories with a few constraints	291	
	9.3	The mean field statistical theory for point vortices	299	
	9.4	Empirical statistical theories with infinitely many constraints	309	
	9.5	Non-linear stability for the most probable mean fields	313	
		References	316	
10	Asse	ssing the potential applicability of equilibrium statistical		
		eories for geophysical flows: an overview	317	
	10.1	Introduction	317	
	10.2	Basic issues regarding equilibrium statistical theories		
	10.0	for geophysical flows	318	
	10.3	The central role of equilibrium statistical theories with a		
	10.4	judicious prior distribution and a few external constraints	320	
	10.4	The role of forcing and dissipation	322	
	10.5	Is there a complete statistical mechanics theory for ESTMC and ESTP?	324	
		References	326	
11	Predictions and comparison of equilibrium statistical theories 32			
	11.1	Introduction	328	
	11.2	Predictions of the statistical theory with a judicious prior and a		
		few external constraints for beta-plane channel flow	330	
	11.3	Statistical sharpness of statistical theories with few constraints	346	
	11.4	The limit of many-constraint theory (ESTMC) with small		
		amplitude potential vorticity	355	
		References	360	

12	Equilibrium statistical theories and dynamical modeling of		
	flo	ws with forcing and dissipation	361
	12.1	Introduction	361
	12.2	Meta-stability of equilibrium statistical structures with	
		dissipation and small-scale forcing	362
	12.3	Crude closure for two-dimensional flows	385
	12.4	Remarks on the mathematical justifications of crude closure	405
		References	410
13	Pred	icting the jets and spots on Jupiter by equilibrium	
		itistical mechanics	411
	13.1	Introduction	411
	13.2	The quasi-geostrophic model for interpreting observations	
		and predictions for the weather layer of Jupiter	417
	13.3	The ESTP with physically motivated prior distribution	419
	13.4	Equilibrium statistical predictions for the jets and spots	
		on Jupiter	423
		References ·	426
14	The	statistical relevance of additional conserved quantities for	
		incated geophysical flows	427
	14.1	Introduction	427
	14.2	A numerical laboratory for the role of higher-order invariants	430
	14.3	Comparison with equilibrium statistical predictions	
		with a judicious prior	438
	14.4	Statistically relevant conserved quantities for the	
		truncated Burgers–Hopf equation	440
		References	442
	A.1	Spectral truncations of quasi-geostrophic flow with additional	
		conserved quantities	442
15	A m	athematical framework for quantifying predictability	
		ilizing relative entropy	452
	15.1	Ensemble prediction and relative entropy as a measure of	
		predictability	452
	15.2	Quantifying predictability for a Gaussian	
		prior distribution	459
	15.3	Non-Gaussian ensemble predictions in the Lorenz 96 model	466
	15.4	Information content beyond the climatology in ensemble	-
		predictions for the truncated Burgers–Hopf model	472

Contents

_

viii

- -

	15.5	Further developments in ensemble predictions and	
		information theory	478
		References	480
16	Baro	tropic quasi-geostrophic equations on the sphere	482
	16.1	Introduction	482
	16.2	Exact solutions, conserved quantities, and non-linear stability	490
	16.3	The response to large-scale forcing	510
	16.4	Selective decay on the sphere	516
	16.5	Energy enstrophy statistical theory on the unit sphere	524
	16.6	Statistical theories with a few constraints and statistical theories	
		with many constraints on the unit sphere	536
		References	542
		Appendix 1	542
		Appendix 2	546
Ind	ex		550

e

Contents

ix