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Abstract

The dynamics of many cardiac arrhythmias, as well as the nature of transitions between different

heart rhythms, have long been considered evidence of nonlinear phenomena playing a direct role

in cardiac arrhythmogenesis. In most types of cardiac disease, the pathology develops slowly and

gradually, often over many years. In contrast, arrhythmias often occur suddenly. In nonlinear

systems, sudden changes in qualitative dynamics can, counter-intuitively, result from a gradual

change in a system parameter –this is known as a bifurcation. Here, we review how nonlinearities

in cardiac electrophysiology influence normal and abnormal rhythms and how bifurcations change

the dynamics. In particular, we focus on the many recent developments in computational modeling

at the cellular level focused on intracellular calcium dynamics. We discuss two areas where recent

experimental and modeling work have suggested the importance of nonlinearities in calcium

dynamics: repolarization alternans and pacemaker cell automaticity.

Keywords

alternans; calcium; bifurcation; model; pacemaking

1. INTRODUCTION

The systematic application of nonlinear dynamics as a means to describe and understand

cardiac arrhythmias has grown increasingly popular over the last thirty or so years. The

system that gives rise to the electrical activity in cardiac myocytes is highly complex: it

consists of many interconnected parts such as ionic channels and transporters that often have

a nonlinear dependence on one or more variables, such as the transmembrane potential or

the concentration of an ionic species. To further complicate matters, different variables feed

back on one another, through loops that may be positive or negative.

Unlike linear equations, nonlinear systems do not necessarily exhibit a direct proportionality

between input and output. Indeed, such dependencies may exhibit threshold effects, biphasic

relationships, and other nonlinearities. In addition, complex systems often exhibit emergent

properties that are not easily predicted from the characteristics of the individual parts.

Therefore, to analyze the dynamics of a complex system, and to predict the effects of a

perturbation (e.g., the application of a drug), it is often necessary and almost always useful

to employ mathematical models to simulate the resulting behavior. Mathematical models of

Address for editorial correspondence: Trine Krogh-Madsen, Weill Cornell Medical College, Greenberg Division of Cardiology, 520
E. 70th St., Starr 463, New York, NY 10065, phone: 212-746-6271, fax: 212-746-8451, trk2002@med.cornell.edu.

DISCLOSURE STATEMENT
The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the

objectivity of this review.

NIH Public Access
Author Manuscript
Annu Rev Biomed Eng. Author manuscript; available in PMC 2013 August 05.

Published in final edited form as:

Annu Rev Biomed Eng. 2012 ; 14: 179–203. doi:10.1146/annurev-bioeng-071811-150106.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



electrophysiological dynamics in cardiac myocytes, consisting of coupled, nonlinear

differential equations, have been developed with increasing complexity and specificity for

almost 50 years (1). These models have inarguably helped increase our understanding of

cellular electrophysiology and cardiac arrhythmias. In this article, we will review a range of

areas where recent advances exemplify such advancement.

2. NONLINEAR DYNAMICS IN CARDIAC ELECTROPHYSIOLOGY

In cardiac electrophysiology, as in many other biological systems, nonlinear dynamics occur

on multiple spatial scales: subcellular (e.g., at the single-channel level), cellular, and whole-

heart. In the following, we review some of the nonlinearities in cardiac electrophysiological

dynamics, and discuss their roles in normal and pathological rhythm dynamics.

2.1 Nonlinearities in action potential generation and morphology

The cardiac action potential is generated by a well-orchestrated flux of ions across the cell

membrane through specialized ionic channels and transporters (Fig. 1A). Inward currents

such as the sodium current (INa) and the L-type calcium current (ICa,L) depolarize the

membrane, while a number of potassium currents repolarize the membrane back to its

resting value (Fig. 1B).

The currents through the different ionic channels and transporters are almost always a

nonlinear function of voltage. Many of these nonlinearities play clear functional roles.

Consider for example the inward rectifier current (IK1), whose conductance is large for a

range of voltages around the resting membrane potential, but drops to zero for depolarized

potentials. Hence, relatively small perturbations to the resting membrane potential

(depolarizing or repolarizing) elicit large current responses (outward or inward, respectively)

and IK1 thus stabilizes and controls the membrane resting potential, without playing much of

a role during depolarization. Had IK1 not been strongly rectifying, a large outward current

would have been elicited during the action potential, necessitating a large counteracting

inward current and greatly increasing the metabolic cost of maintaining ionic homeostasis.

Another classic example of a nonlinearity in action potential dynamics is the threshold-range

effect seen in the generation of the action potential upstroke. In a linear system, the response

is always directly proportional to the input. However, in cardiac myocytes (and other

excitable cells), depolarizing stimulation results in one of two responses: an action potential

of essentially fixed amplitude (for suprathreshold stimuli) or no action potential (for smaller-

amplitude subthreshold stimuli). Mechanistically, this all-or-none response results from a

positive feedback loop, called the Hodgkin cycle, involving activation of the sodium current

with depolarization.

Finally, a number of nonlinearities are involved in controlling the action potential duration.

As the conductances of the currents involved in generating the action potential change

throughout its phases, so does the membrane resistance. Indeed, the resistance is low at the

resting membrane potential (due primarily to the large IK1 conductance), but increases

steeply during the plateau phase (2, 3). Thus, tiny current perturbations late in the plateau

can cause substantial membrane potential deviations, resulting in changes to the action

potential duration. Recently, Bányász et al. (4) showed that a nonlinear relationship between

membrane current and action potential duration in canine ventricular myocytes may

contribute to the phenomenon of reverse rate dependence, i.e., that drug-induced

prolongation of the action potential duration is less at faster rates, where the action potential

is of shorter duration.
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2.2 Action potential duration restitution

Shortening of the action potential during fast pacing is a critically important property of

cardiac myocytes because it allows time for proper filling of the heart’s chambers between

contractions. The action potential duration of a cardiac myocyte is reasonably well-

described as a nonlinear function of the previous resting interval (the diastolic interval): fast

pacing and extensive diastolic interval shortening cause more severe action potential

shortening than intermediate pacing rates and diastolic interval shortening (Fig. 2A). This

relationship is known as the restitution curve.

When submitted to fast pacing rates, cardiac cells and tissue often undergo a quantitative

change from a period-1 rhythm, where each action potential has the same duration, to a

period-2 rhythm exhibiting a beat-to-beat alternation in action potential duration, which has

been putatively linked to the onset of cardiac arrhythmias (5–7). One of the early successes

of applying nonlinear dynamics theory to cardiac electrophysiology was the demonstration

of how such repolarization alternans may arise due to the nonlinear restitution relationship

(8) as a consequence of a period-doubling bifurcation (9). With slow pacing, the operating

point falls on the flat part of the curve, which is stable in the sense that the action potential

duration changes little when the diastolic interval varies (Fig. 2B). Increasing the pacing rate

shifts the operating point down the curve. When the slope of the restitution curve exceeds

one, this stability is lost, a period-doubling bifurcation occurs, and the rhythm alternates

(Fig. 2B). In smooth maps and models, this period-doubling is a smooth supercritical

bifurcation. However, recent experimental and modeling work indicate that myocytes

undergoing repolarization alternans may embody features of both a smooth bifurcation and a

non-smooth border-collision bifurcation (10). It is not yet clear what physical features of the

cellular dynamics would contribute to the discontinuity associated with border-collision

bifurcations or to the seemingly hybrid bifurcation characteristics. We will return to a

discussion of more recently described aspects of alternans mechanisms in Chapter 3.

Alternans represents just one of many higher-order period rhythms that can occur in paced

cardiac cells or tissues. For rates faster than those required to induce alternans, a myriad of

rhythms occur in some models and experimental preparations, an example from iteration of

a restitution map is shown in Fig. 2C. Famously, in addition to periodic rhythms, nonlinear

systems can also exhibit aperiodic dynamics with no phase-locking; such irregular dynamics

highly suggestive of chaos have been observed in periodically paced cardiac tissue

preparations (11, 12), as well as in models (reviewed in (13)).

2.3 Early afterdepolarizations

An early afterdepolarization (EAD) is a spontaneous extra depolarization prior to full

repolarization of the membrane potential (Fig. 3A). EADs typically occur in purkinje fibers

or ventricular myocytes when repolarizing potassium currents are reduced and/or

depolarizing currents such as ICa,L and INaCa are increased. Because of the added

depolarization event, EADs may sometimes trigger cardiac arrhythmias. The pattern by

which EADs occur is often irregular, with only some action potentials exhibiting an EAD.

Such irregularity may be due to intrinsic noise (e.g., random channel open/close kinetics)

and/or deterministic chaos (14–17). Fully deterministic mathematical models are capable of

producing irregular EAD dynamics when parameters are in the right range (15, 16, 18–20).

Bifurcation analysis of such models has shown that the oscillatory EADs are associated with

a Hopf bifurcation and a homoclinic bifurcation (19, 20), a bifurcation combination linked to

the onset of chaos. By reducing the cell model to an iterative map of action potential

duration and diastolic interval dynamics, Sato et al. (15) demonstrated how such a map,

characterized by steep parts and sharp transitions, cause chaotic EAD dynamics (Fig. 3B and

C).
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2.4 Nonlinearities in action potential propagation

During normal heart rhythms, action potentials propagate through the myocardium one wave

at a time, activating the muscle cells and causing contraction. The propagating waves spread

between neighboring cells, which are electrically coupled by gap junction proteins. The

speed of propagation depends on the diastolic interval in the same way that action potential

duration does: it is a nonlinear function that decreases steeply at short diastolic intervals and

plateaus at long diastolic intervals.

The steepness of this dispersion curve means that during alternans, alternating beats may

propagate with considerably different conduction velocities. A short action potential

following a short diastolic interval will propagate at a slow speed, allowing the tissue at

more distant locations to recover more (i.e., increase the diastolic interval). This

prolongation of the diastolic interval in turn increases the action potential duration, such that

the short action potential has become of long duration. Likewise, the alternate action

potential can change duration dynamically in space from long to short. Thus, steep

conduction velocity dispersion represents one way of forming a spatially heterogeneous

pattern in a completely homogeneous tissue (21, 22). The theory of such pattern formation is

a well-described part of nonlinear systems theory (23).

Some cardiac arrhythmias such as atrial flutter and monomorphic ventricular tachycardia

can be maintained by waves repeatedly circulating an anatomical obstacle such as a valve or

a scar. A simple way to simulate such reentry is to use a one-dimensional ring of virtual

cardiac cells. In such a system, the properties of action potential restitution and dispersion

control to a large extent important dynamics such as the transition to quasiperiodic dynamics

for short ring sizes (24) and wave block (25–27).

In two- and three-dimensional tissue, propagation is also influenced by curvature such that

stable spiral (two-dimensions) and scroll (three-dimensions) waves can form. Such spiral

waves, which can arise in generic nonlinear, excitable systems such as chemical reactions

(e.g., the Belousov-Zhabotinsky system), can underlie cardiac arrhythmias. Such spiral and

scroll waves can undergo different bifurcations, which are hypothesized to underlie

transitions between different cardiac arrhythmias (see Ref. (13) for a recent review).

2.5 Nonlinear dynamics and arrhythmias

Sudden cardiac death is typically caused by ventricular fibrillation, an arrhythmia where the

ventricles of the heart are activated, presumably by scroll waves, in a manner so rapid and

disorganized that pumping fails. Fibrillation is not a property of the individual cells or

channel proteins; rather it is an emergent phenomenon of the tissue. In fact, during

fibrillation, cells behave as they are expected to: they fire an action potential if recovered

when activated. However, wave propagation through the tissue has become pathological: it

is reentrant and irregular (28, 29), similar to simulated ventricular fibrillation displaying

spatiotemporal chaos (30).

Among the first arrhythmias investigated systematically from a nonlinear dynamics point of

view were Wenckeback rhythms and parasystole. In classic Wencheback rhythms, some

waves block as they pass through the atrioventricular node, the anatomical passageway

between the atria and the ventricles. The blocking occurs in particular phase-locked patterns

[n+1:n, such that for every n+1 stimuli (atrial waves) there are only n responses (ventricular

waves)], and can be understood theoretically from considerations of periodically stimulated

nonlinear oscillators such as that underlying Fig. 2 (11, 31, 32). Parasystole is another

example of entrainment, in this case as the interaction between the sinoatrial node (the

natural pacemaker of the heart) and an ectopic pacemaker (a pathological additional
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pacemaker, often located in the ventricles of the heart), which feature patterns consistent

with those occurring in two coupled nonlinear oscillators (33, 34).

2.6 Multistability

In situ, ventricular fibrillation is typically fatal, as it stops the pumping of blood. However,

in an isolated, perfused heart, ventricular fibrillation can be long-lasting. The arrhythmia

may be terminated by the application of a defibrillating shock. Fibrillation can also be

initiated from normal (sinus) rhythm by an external perturbation, e.g., an electrical shock or

a mechanical impact. Thus, a healthy heart is capable of (at least) two stable rhythms, with

possible intermode switching by external stimuli. Such bistable behavior is consistent with a

nonlinear system having two stable states (attractors), each reachable from different sets of

initial conditions (basins of attraction).

Bistable behavior can also exist between different reentrant rhythms (35, 36), and between a

stable fixed point, corresponding to a cell at rest, and at stable limit cycle, corresponding to

pacemaking activity (18, 37) - we will return to this scenario in Chapter 4. Finally,

bistability between different phase-locked rhythms of low periodicity [in particular between

alternans (2:2) and regular beating (1:1) and between block (2:1) and regular beating] is

recurrently observed in cardiac cells (38, 39), small tissues (11), whole hearts (39, 40), and

mathematical cell (38, 41, 42) and tissue models (42, 43). At the level of the whole heart,

bistability can also manifest between alternans with different spatiotemporal patterns (39).

Indeed, in simulated tissue models, multistability between a range of different spatial

alternans patterns can occur (42, 43), suggesting prudence should be taken when performing

such simulations and interpreting their outcomes.

3. MODEL DYNAMICS AND ANALYSIS

Since the first Hodgkin-Huxley-type mathematical model of the cardiac sarcolemmal ionic

dynamics was published in 1962 (44), new models have been developed frequently. Newly

published cardiac cell models almost always build on existing models, but typically

incorporate more detailed ionic current formalisms, more detailed intracellular calcium

dynamics, and/or rely more heavily on species- and/or region-specific data. Model

component recycling can span several model generations, which can make tracking and

disentanglement of the individual components an arduous task (45). In order to lower model

complexity and/or computational costs (in particular for three-dimensional tissue

simulations), reduced models with fewer variables and parameters have also been

developed, e.g., Refs. (46, 47).

The expansion of model development has resulted in the existence of multiple models for

some species/cell-type combinations. This, in turn, has meant that models themselves have

become the objects of comparative investigations, in terms of their structure, parameter

values, parameter sensitivity, and simulated dynamics. Examples include models of human

ventricular myocytes (3, 45, 46, 48), human atrial myocytes (49, 50), canine ventricular

myocytes (51), rabbit ventricular myocytes (52), and rabbit sinoatrial node cells (53, 54).

The goal of such analyses is not necessarily to determine if one model is better - such a task

may not even be possible in the sense that different models may reflect variations in action

potential morphology even for the same overall cell type. However, such comparisons do

help clarify model differences.

As mentioned previously, cardiac myocytes and cardiac myocyte models typically exhibit a

nonlinear dependence of action potential characteristics on system parameters. For example,

increasing the conductance of the transient outward current (Ito) in ventricular myocytes or

myocyte models induces a sharp transition in action potential morphology (55, 56). Varying
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two conductances simultaneously can have synergistic effects - a classic example is that of

blocking two repolarizing currents, IKs and IKr, whichunder normal circumstances act as

mutual reserves (57). Such parametric dependence is typically not investigated

systematically during model development. Yet, many models do in fact capture

experimentally observed behaviors such as various types of drug block, thus showcasing

their predictive abilities.

Analyzing resulting behaviors upon systematic parameter variation, known as bifurcation

analysis, is a much-employed tool in nonlinear dynamics. Bifurcation analysis has been

widely used in theoretical neuroscience, e.g., to characterize different types of oscillations or

bursting (58), but is less widespread in quantitative cardiac electrophysiology (we discuss

recent examples in subsequent chapters). The strength of bifurcation analysis lies in its

ability to provide insights into how abnormal dynamics arise with the change of (at most) a

few parameters at a time. However, given the large number of parameters in modern models,

it is a much too tedious technique to apply to all of them. Hence, in terms of analyzing

parameter dependencies in cardiac electrophysiology models, other methods are often

necessary. Additionally, novel approaches that systematically fit or optimize model

parameters, replacing the traditional ad hoc determination based on individual

electrophysiological recordings, have been used for model development. In this chapter, we

will review some of these approaches.

3.1 Parameter estimation

Recent years have seen an increased effort in attempting more automated parameter

estimation for cardiac electrophysiology models. A global parameter optimization, using a

nonlinear least squares method applied to the Beeler-Reuter 1977 model (59), demonstrated

that accurate reconstruction of the voltage waveform and the ionic currents is possible

despite substantial deviation from default parameters (60). However, the Beeler-Reuter

model has only 63 free parameters (60), while more modern models may have many more.

In addition, the increased complexity of recent models may enlarge the number of local

minima of the optimization objective function. Both of these effects contribute to the often

prohibitive computational cost of global optimization approaches.

One approach to circumvent such lengthy computations is to focus on a limited number of

parameters, typically those defining the maximal ionic conductances and the maximal flux

of ions through sarcolemmal transporters and between intracellular compartments. Such a

cutback is particularly useful when investigating cell-to-cell variability where, purportedly,

the main source of variation is in the number of functional channels and transporters at their

respective locations, while the parameters detailing the kinetics of individual channel/

transporter proteins are largely conserved. By focusing only on the conductance parameters,

genetic algorithms that repeatedly perturb parameters and select better fits have been used to

reconstruct voltage wave forms from cardiac models and experimental data (61, 62).

Many of the newly developed cardiac myocyte models contain Markov models of one or

more ionic currents, rather than the classic Hodgkin-Huxley formalism. While Markov

models represent a more general description than Hodgkin-Huxley-type models, and may be

able to simulate drug block better, they carry higher computational costs due to increased

stiffness and/or a larger number of states (63). In addition, they typically contain many more

parameters than Hodgkin-Huxley models. While parameter values in Markov models have

often been hand-tuned, some modeling work has employed optimization of the parameters in

a pre-defined Markov model structure to data from voltage clamp protocols using simulated

annealing and simplex algorithms (64, 65). Recently, Menon et al. (66) provided proof-of-

concept of optimizing model structure as well as parameters for a neuronal sodium current

using a genetic algorithm.
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3.2 Model analysis

The increasing complexity of the mathematical models of cardiac electrophysiology makes

it difficult to pin-point causal relationship such as the effects of different ionic currents on

action potential characteristics (67, 68), let alone on more complex phenomena such as

alternans onset and alternans mechanism (68–70), without the use of sophisticated analysis

tools. One such tool is the eigenmode analysis developed by Li and Otani (71), which

quantifies the dependence of different behaviors (eigenmodes, e.g., alternans and various

types of memory) on dynamical variables. Li and Otani further showed how this method can

be used to eliminate alternans in a myocyte model, by applying stimuli with a particular

timing that was predicted to kill the alternans eigenmode (72). In a tissue model, elimination

of the alternans eigenmode can prevent spiral breakup (73). The eigenmode approach has

also been used to quantify the relative contributions of voltage-dependent dynamics vs.

intracellular calcium dependent dynamics to the onset of alternans (70), a problem we

discuss more in Chapter 3.

Another approach to investigate the dependence of a model output to a parameter is to

compute their mutual information. This method, applied to several ionic myocyte models

and using parameter values sampled over all of parameter space, have demonstrated that

most action potential characteristics are each controlled by very few parameters (74). This

illustrates the fact that the normal action potential is overdetermined in cardiac myocyte

models (3, 60, 74), however, parameters that are redundant during normal action potential

generation may be important during simulations of drug application and/or

pathophysiological conditions (3).

Despite the nonlinearities in cardiac electrophysiology models, multivariable linear

regression analysis has turned out to be a useful approach to sensitivity analysis, at least in

cases when the parameters of interest are not varied too far from their default values (68).

Multivariable linear regression analysis has been used to characterize sensitivity of action

potential markers (action potential duration, resting membrane potential, and overshoot

potential) to input parameters (68). Importantly, this regression method can also work

inversely to predict conductance parameter values based on system outputs such as action

potential and calcium transient characteristics (75). The method is also capable of

identifying model parameters influencing alternans occurrence, resulting in identification of

both well-known alternans associated parameters (e.g., the conductances of ICa,L and IKr) as

well as parameters not previously related to alternans and hence warranting further

(experimental) examination (68).

4. INTRACELLULAR CALCIUM DYNAMICS AND CALCIUM TRANSIENT

ALTERNANS

One aspect of cardiac myocyte function that has received particular attention in terms of

model development in recent years is the intracellular calcium dynamics. Calcium differs

from the other main ionic species involved in action potential generation (sodium and

potassium) in that it takes part in numerous other processes. Calcium not only triggers

mechanical contraction of the myocyte, it is also a ubiquitous signaling molecule (76).

Hence, calcium is essential to cardiac myocytes; nevertheless, balance is key, as too much

calcium is toxic (calcium overload is arrhythmogenic and severe overload causes cell death).

Because of all these factors, calcium dynamics is tightly regulated.

Calcium enters ventricular myocytes primarily through the L-type calcium channel (LCC).

LCCs open during the action potential upstroke, allowing an early, local rise in calcium

concentration. The LCCs are localized in so-called transverse (t) tubules, invaginations in

the sarcolemmal membrane (Fig. 4). This anatomical arrangement allows the LCCs to be in
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close proximity to another calcium channel: the ryanodine receptor (RyR), which spans the

membrane of the sarcoplasmic reticulum (SR), an internal calcium store. The RyRs open in

response to the local increase in calcium concentration, thus allowing efflux of calcium ions

from the SR and further increase in calcium concentration. This calcium-induced calcium

release forms a positive feedback loop with a gain of about 2.5 to 4 in most mammalian

species, including humans (but can as large as 10 to 12 in mice and rats) (76), and plays an

important functional role in excitation-contraction coupling.

The increase in free cytosolic calcium, globally combined from all active LCC and RyR

sites (“couplons” or “dyads”), is seen as the calcium transient (Fig. 4). The cytosolic calcium

initiates mechanical contraction of the cell, and is then resequestered back into the SR by the

sarcoplasmic-endoplasmic reticulum calcium ATPase (SERCA) pump or into the

extracellular space by the sodium/calcium exchanger (Fig. 4), ending the cycle.

Efforts in modeling the intracellular calcium dynamics in ventricular myocytes date back to

the 1977 Beeler-Reuter model (59), which used a single variable to describe the cytosolic

calcium concentration. More modern models tend to include several subspaces with

intercompartmental fluxes (1), in order to avoid using a partial differential equation

formulation to capture the variations in calcium concentration throughout the cell. Such a

multi-compartment approach was first used in the DiFranceso-Noble model (77), which also

included a sarcolemmal sodium/calcium exchange current. Recently, some models have

incorporated stochastic descriptions at the level of the couplon, in order to simulate the

random activation of these individual units. Such modeling include work that has illustrated

mechanistically how graded release at the level of the cell (i.e., total SR calcium release is a

graded function of the amplitude of the L-type calcium current) may arise despite the

positive feedback release at the couplon level (78–81) and work that has provided insights

into the occurrence of intracellular calcium alternans (see below). Another line of modeling,

in a nascent but rapidly progressing stage, is electromechanical modeling, in which a

myofilament model of actin-myosin-based contraction is coupled to an ionic model (82).

4.1 Calcium transient alternans

As mentioned above (Chapter 1), cardiac myocytes often exhibit alternations in action

potential duration when paced at a rapid rate - a pattern first explained by the occurrence of

a period-doubling bifurcation when the slope of the restitution curve increases one (Fig. 2).

While the onset of alternans do indeed correlate with this criterion in some studies (83–85),

many instances have been described where alternans is absent when the restitution slope is

greater than one, or where alternans does occur for slopes less than one (e.g., (86, 87) and

references therein).

Such discrepancies may be partly due to the fact that the complex dynamics of the myocyte

cannot be fully captured by a one-dimensional map such as the restitution curve. Indeed, the

action potential duration of a given beat depends on more than just the prior diastolic

interval, there is a dependence on the history of pacing – a memory effect. This deviation

from a one-dimensional map is seen clearly in the so-called restitution portrait, obtained by

sweeping through multiple pacing protocols (88). In some experiments, the onset of

alternans has been shown to correlate with one of the slopes of the restitution portrait (89).

In tissue models, alternans onset can be different from that of single cell models, in

particular, electrotonic and conduction velocity restitution effects can suppress alternans

(86).

Multiple lines of recent research have demonstrated that the limited predictability of the

restitution hypothesis may also be due to the fact that action potential duration alternans

(APD alternans) can be a consequence of alternans in the calcium transient, rather than
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arising as an instability in the sarcolemmal current and transmembrane potential system.

Indeed, alternans in the calcium transient have been demonstrated in the absence of APD

alternans, by applying an action potential voltage clamp to isolated myocytes (90). Because

several of the sarcolemmal currents depend on calcium, alternans in the calcium

concentration can induce secondary APD alternans. The dominant calcium dependent

transmembrane currents are ICa,L and INaCa. A larger calcium transient will inactivate, and

hence decrease, ICa,L, while increasing the efflux of calcium through the exchanger, thus

increasing INaCa. Since both ICa,L and INaCa are depolarizing currents that help maintain the

action potential plateau and prolong the action potential, the effect of a larger calcium

transient on action potential duration depends on the particular balance of ICa,L and INaCa.

The case where a larger calcium transient prolongs the concurrent action potential is called

positive calcium-to-voltage coupling. Such positive coupling is predicted to result in

electromechanically concordant alternans, where the long (short) action potential occurs

with the large (small) calcium transient (91). In contrast, negative calcium-to-voltage

coupling results when a larger calcium transient shortens the concurrent action potential.

When alternans is caused primarily by a calcium cycling instability, negative calcium-to-

voltage coupling is predicted to result in electromechanically discordant alternans, where the

long (short) action potential occurs with the small (large) calcium transient (91). Both

electromechanically concordant and discordant alternans have been seen experimentally, in

different species and under different experimental conditions, presumably due to differences

in the balance between of ICa,L and INaCa. However, concordance seems to be the more

typical case (92).

Similarly to how APD alternans arises when there is insufficient time between beats for the

sarcolemmal ion channels to fully recover, calcium transient alternans arises when there is

insufficient time between each beat for the intracellular calcium handling system to cycle

calcium completely. Considerable efforts have been put into elucidating the exact cellular

mechanism underlying calcium transient alternans. The highly nonlinear relationship

between SR load and calcium release from the SR has been suggested as key. A large SR

load on a given beat will cause a large calcium release due to the steepness of the load-

release curve at large loads. Such large release may deplete the SR, in particular if uptake of

calcium into the SR is not sufficiently fast during rapid pacing, causing a decreased load on

the subsequent beat and hence a decreased release, getting the system back to the large SR

load state. Computational studies have shown that a steep load-release curve can indeed

cause calcium transient alternans (91, 93, 94), especially when calcium uptake into the SR is

slow (93, 94). Mathematical analysis of a piecewise-linear version of the Shiferaw et al.

model (95), also showed explicitly how the onset of alternans shifts to faster pacing rates

with increased SERCA pump uptake strength (96).

However, recent experimental findings in ventricular myocytes have shown that SR load

alternations are not necessary for calcium transient alternans to occur (97). In this case,

refractoriness of the RyRs may underlie the alternans if the pacing is too fast to allow full

recovery of the channels between successive beats. The exact biophysical mechanism of

such RyR refractoriness has not been fully determined (98), but one aspect involves binding

and unbinding of the auxilary proteins triadin and junctin, regulated in turn by binding of

calsequestrin, a calcium chelator whose free concentration depends on the SR calcium

concentration. By incorporating these features of calsequestrin into a mathematical model of

intracellular calcium dynamics, Restrepo et al. (80) showed how calcium transient alternans

may occur due to RyR refractoriness, even in the absence of a steep load-release curve. Due

to lack of recovery of RyR channels between beats, some dyads fire on odd beats, while a

different number of other dyads fire on even beats (80). Using both a phenomenological

model and a detailed biophysical model of diffusively coupled dyads, Cui et al. (99) and

Rovetti et al. (100) demonstrated the dependence of alternans onset on couplon
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refractoriness as well as on parameters describing random and heterogeneous couplon firing,

and couplon recruitment by activation of a neighboring couplon.

In short, much progress has been made in identifying mechanisms of alternans and

determining whether alternans is driven primarily by alternations in action potential or in

calcium transient morphology. That being said, attempting to attribute the cause of alternans

to either sarcolemmal currents or intracellular calcium dynamics is probably not worthwhile

given that due to the feedback between transmembrane potential and calcium cycling, both

mechanisms are likely to contribute to alternans onset in a non-clamped cell (70, 101–103).

Further, just as there are different ionic mechanisms underlying APD alternans under

different conditions and in different cell types (Ref. (104) provides a recent review), a range

of factors may contribute to calcium transient alternans.

4.2 Subcellular calcium alternans

Under some conditions, alternations in intracellular calcium present as subcellular alternans,

where different regions of the myocyte alternate out of phase (Fig. 5A). Initially, such

subcellular alternans were seen in atrial and ventricular myocytes under conditions of

increased calcium release heterogeneity (105–107). More recently, subcellular alternans

have been reported in calcium overloaded myocytes (108), and during fast pacing (109).

Notably, subcellular alternans may also occur within myocytes in intact hearts during rapid

pacing, as shown in a series of studies using confocal line scan imaging of individual

myocytes in perfused hearts (110–112). Subcellular alternans may trigger intracellular

calcium waves (105–108), which in turn might cause delayed and early afterdepolarizations

(108, 113), transient depolarizations that can potentially initiate cardiac arrhythmias.

The formation of different out-of-phase regions within the myocyte may be due to fixed

anatomical heterogeneity in calcium cycling properties, as recently hypothesized in

modeling work (110). However, subcellular alternans can also arise in homogeneous cell

models due to a pattern forming instability (114–116), similar to how spatially discordant

APD alternans can arise in homogeneous tissue. Based on a theoretical analysis of coupled

iterative maps of APD and calcium transient dynamics, Shiferaw and Karma (114) showed

in seminal work that a diffusion-driven instability (i.e., a Turing instability) can cause

subcellular alternans under certain conditions.

A Turing instability is a generic mechanism by which spatial gradients can arise in systems

without underlying structural heterogeneity (117). The mechanism hinges on an

autocatalytic process with limited diffusion giving rise to a more rapidly diffusing inhibitor.

In the case of subcellular alternans, Shiferaw and Karma identified calcium alternans as the

slowly diffusing activator and APD alternans as the faster inhibitor (114).

The particular conditions necessary for a Turing instability laid out by Shiferaw and Karma

include negative calcium-to-voltage coupling when the myocyte is paced at a (rapid)

constant rate. As mentioned above, negative calcium-to-voltage coupling causes calcium-

driven whole-cell alternans to be electromechanically discordant. Electromechanical

discordance has been observed experimentally, but electromechanical concordance may be

more typical. Gaeta et al. (116) showed that the requirements for a Turing instability are also

met in myocytes with positive calcium-to-voltage coupling, when the myocyte is paced by a

particular pacing protocol used to eliminate APD alternans (Fig. 5B,C). In guinea pig

ventricular myocytes, with whole-cell electromechanical concordance during static pacing,

such APD alternans control pacing can indeed induce subcellular calcium alternans (Fig.

5A) (115). These findings were reproduced in a mathematical model without structural

heterogeneity, emphasizing that anatomical inhomogeneity at the level of the cell is not a

necessary requirement for the formation of subcellular alternans (115).
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5. NONLINEAR DYNAMICS OF CARDIAC PACEMAKING

5.1 Bifurcation analysis

From a nonlinear dynamics point of view, spontaneous beating such as that occurring in

cells in the sinoatrial node (the natural pacemaker of the heart), is associated with a stable

limit cycle, i.e., a stable periodic orbit. Hence, the study of how spontaneous activity arises/

ends can be approached by investigating how stable limit cycles gain/lose stability or arise/

disappear in mathematical models, i.e., a bifurcation analysis. Different types of bifurcations

are associated with different dynamics close to the bifurcation point. For example, in a Hopf

bifurcation, a limit cycle is born with a certain (non-zero) frequency and infinitesimal

amplitude, while in a homoclinic bifurcation, a limit cycle is born from a homoclinic orbit

with infinitely long period and normal amplitude (Fig. 6). Such variations become important

when limit cycle oscillators are perturbed away from the normal operating range by disease

and/or drug application, but should also be considered when attempting to create biological

pacemakers (118–120). In particular, some bifurcation sequences result in bistability

between a limit cycle and a stable fixed point (Fig. 6). This is referred to as a “black hole” -

perturbations that bring the trajectory sufficiently close to the stable fixed point, will result

in abolishment of spontaneous activity (18, 37, 118, 121) – obviously a disastrous scenario

for a pacemaker.

When conductance parameters are varied in models of sinoatrial node cells, limit cycles

typically arise from Hopf bifurcations (sub- and supercritical), homoclinic bifurcations, or

saddle-node bifurcations of limit cycles (54, 118, 119, 122, 123). Bifurcation analysis also

suggests that cells from the peripheral part of the sinoatrial node are more resilient to

hyperpolarizing loads than those from the central part because of larger pacemaker (If) and

sodium (INa) currents in the peripheral cells (54, 122). This is of importance because cells

from the periphery of the sinoatrial node are subject to larger loads due to their coupling to

atrial myocytes. This role of INa has also been shown in extensive tissue simulations and

experiments (124).

As mentioned in Chapter 1, IK1 stabilizes the resting membrane potential of ventricular

myoctes. By suppressing this current by viral gene transfer, biological pacemaker cells can

be created (125). This phenomenon can be reproduced in ventricular cells models (120, 126–

128). While modeling work showed that INaCa is the largest inward current during the

pacemaking phase of the action potential (120, 128), bifurcation analysis revealed that 1)

spontaneous activity was only abolished when INaCa was almost completely blocked; 2)

spontaneous activity was only abolished because of secondary effects of INaCa on causing

calcium overload, thus inactivating ICa,L (120). This example thus emphasizes the inherent

difficulties in making arguments about cause and effect in complex, nonlinear systems.

Another strategy to create a biological pacemaker from an excitable cell is to overexpress

the channel generating If (129). Modeling studies demonstrate that including If in the

ventricular oscillators with suppressed IK1 moves the bifurcation point at which automaticity

occurs to less-reduced IK1 conductance values (126, 127). In particular, Tong and Holden

(127) used a two-parameter bifurcation analysis to show how a combination of IK1 reduction

and If increase can result in stable oscillations far from bifurcation points. Overexpressing

both If and IK1 in ventricular myocytes can speed up spontaneous firing compared to

overexpression of If alone (130). Such synergy have not been explored in the models, but

would probably need very substantial If increases. However, bifurcation analysis in one

model with suppressed IK1 revealed a complex rate dependency on If and IK1, with the rate

slowing down for increased IK1 in the absence of If, and a triphasic rate dependence on IK1

in the presence of If (126). Hence, at least for some IK1-range, increased IK1 does cause a

speed up of spontaneous activity.
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These modeling studies also illustrate model dependence of some of the results; for

example, suppressing IK1 in the Luo-Rudy guinea pig ventricular myocyte model leads to a

homoclinic bifurcation (127), while suppressing IK1 in a human ventricular myocyte model

causes a saddle-node bifurcation of limit cycles (120). The extent to which these (and other)

differences represent real substrate variation (e.g., species differences) may be limited, but

remains to be tested.

5.2 Entrained oscillators as a mechanism of sinoatrial nodal cell pacemaking

The mathematical models discussed above rely on different ionic mechanisms to generate

spontaneous beating. Typically, the net inward current that drives diastolic depolarization

arises from a combination of factors: decay of outward potassium currents and onset of

inward currents such as If, ICa,L, and INaCa. Similar to the increased recognition that

intracellular calcium dynamics can play an important role in determining the duration of the

action potential in cardiac myocytes, focus has been placed on calcium cycling as a

modulator and/or controller of spontaneous beating in sinoatrial node cells. Although there

are no t-tubules in sinoatrial node cells, ryanodine receptors are also clustered around L-type

calcium channels in functional release units that may fire spontaneously (131). Calcium

release from these units occurring late in diastolic depolarization triggers an efflux of

calcium from the cell through the sodium/calcium exchanger, thus depolarizing the

membrane.

Attempts to determine the relative roles of the sarcolemmal membrane currents (in particular

If) and the intracellular calcium cycling in causing and rate-controlling spontaneous activity

in sinoatrial node cells have lead to considerable controversy, but a consensus that both are

important seems to have percolated recently (132, 133). Thus, it is possible that sinoatrial

node cells possess both a “membrane clock” creating automaticity from sarcolemmal

membrane currents and a “calcium clock” invoking INaCa late in diastolic depolarization.

However, the calcium clock by itself may only generate sustained spontaneous activity

under special conditions since it requires action potential generation (with inward calcium

flux) for its perpetuation (132, 133).

Evidence for the importance of both If and calcium cycling includes findings that loss-of-

function mutations in the channel that generates If are associated with sinus rhythm

disturbances such as sinus bradycardia (134, 135), that block of If by ivabradine slows sinus

rate in humans (134, 135), and that block of calcium release by ryanodine slows or abolishes

spontaneous activity in isolated sinoatrial node cells (136). However, effects of ivabradine

and ryanodine are very varied between different studies (as are effects of the calcium

chelator BAPTA (137, 138)), which has contributed to the controversy. The interpretation of

experimental data is also confounded by the fact that the total current during diastolic

depolarization is very small, but is generated as the sum of much larger inward and outward

currents. In addition, the membrane resistance in sinoatrial node cells is relatively large,

such that small currents can have substantial effects on membrane potential. Finally, β-
adrenergic and cholinergic stimulation regulate both clocks in the same direction through

various mediators (cyclic AMP, protein kinase A, and Ca2+/calmodulin-dependent protein

kinases II): β-adrenergic stimulation speeds up both clocks while cholinergic stimulation

depresses the rate of both (132, 134).

Mathematical modeling of sinoatrial nodal cells suggests that the membrane current system

and the calcium handling system can work synergistically: when the calcium clock is

included, the coupled system is more robust and has a larger ability for the rate to change

smoothly (139, 140). For example, adding the calcium clock decreases the value of the ICa,L

conductance for which a bifurcation occurs that abolishes automaticity and shrinks/removes

a range of calcium conductance values for which skipped beats occur. The coupling between
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the two clocks is highly complex through mutual dependencies on calcium concentration

and fluxes and it remains to be seen if the sinoatrial cell is amenable to theoretical analyses

based on separation of the two sub-systems, such as was done for theoretical investigations

of the APD dynamics in ventricular myocytes (101, 114, 116).

6. CONCLUSIONS: THERAPY TRANSLATION AND FUTURE

PERSPECTIVES

6.1 Nonlinear dynamics in cardiology: clinical applications

While it is clear that nonlinear dynamics and complex systems theory have been successful

in providing mechanistic explanations of many aspects of cardiac arrhythmogenesis, it is

less clear whether they can be applied practically to improve patient care and therapy.

Indeed, translation of therapy predictions based on nonlinear systems analysis into clinical

practise is almost non-existent. One area, which had fostered hope of such translation, is

ventricular fibrillation termination based on chaos-control theory. The idea being that if

ventricular fibrillation is deterministic chaos, then it should be terminable using stimuli

smaller, less painful and/or damaging, than large defibrillation shocks. Unfortunately, while

chaos-control efficacy has been demonstrated in experimental work and computer

simulations (141, 142), it has not been successful in terminating fibrillation in the clinic.

New strategies for unpinning and suppressing spiral and scroll waves based on theoretical

and simulation work are under development (e.g., (143, 144), and some show promise in

experiments (145, 146).

Other control methods, based on chaos control, have been employed to terminate

repolarization alternans as a means to prevent alternans-induced ventricular tachycardia or

fibrillation. While such alternans control works well in small pieces of tissue (147), its

efficacy is considerably more limited in larger tissues due to wave-propagation dynamics,

heterogeneities in repolarization, and the intrinsic wave nature of alternans (148–151). To

date, only a single alternans control study has been performed in the clinic - a study that

successfully controlled alternations in propagation time through the atrioventricular node,

i.e., in a highly limited spatial region (152).

In general terms, many of the pacing strategies for alternans or spiral wave control fail at the

level of the intact heart because of spatial heterogeneity, disordered anatomical structures,

and/or other added spatiotemporal complexity. Paradoxically, other termination methods

rely on intrinsic heterogeneity to create virtual electrodes close to the core of reentrant

waves (143, 145, 146) – virtual electrodes are also key to classic defibrillation.

A different line of approach is drug development based on predictions from nonlinear

dynamics; however, this too has proved arduous. Part of the challenge in bridging the gap

between understanding the mechanistic bases of arrhythmias and applying such knowledge

to improve therapy lies in the intricacy of developing drugs targeting a particular emergent

property. For example, there is experimental evidence that flattening the action potential

duration restitution curve is antiarrhythmic (153), however, current pharmaceuticals with

this property also have deleterious primary effects.

6.2 Perspectives on nonlinear dynamics in a systems biology era

In many ways, there is a considerable overlap between physiology, nonlinear dynamics,

complex systems theory, and systems biology (98, 154, 155). Emergent phenomena are

ascribed systems dynamics; as mentioned here, cardiac electrophysiology is rich in emergent

phenomena such as automaticity, complex rhythms, and fibrillation. Systems biology is

often seen as a contrast to a reductionist approach. Indeed, many of the recent cardiac cell
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models certainly defy reductionism, in particular those that include quantitative descriptions

of the biochemistry of intracellular signalling pathways (e.g., (156, 157)). In contrast, earlier

models were much simpler, with a limited number of variables and parameters, which made

them much more amenable to nonlinear dynamics analyses such as bifurcation analysis.

Thus, in some ways, the approach of mathematical modeling in cardiac electrophysiology

may be seen as moving from nonlinear dynamics to systems biology. Yet, nonlinear

dynamics approaches, such as bifurcation analysis of select parameters, still provide

mechanistic insights into electrophysiological problems (e.g., automaticity). Further,

reducing complex model systems can allow for theoretical analyses such as that illustrating

the Turing instability generating subcellular calcium alternans. Hence, we believe that

different approaches can be corporative, and that the future of cardiac modeling, employing

a range of models and methods, will continue to prove exciting and important.
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Fig. 1.
Schematic illustration of ionic currents and action potential in a ventricular myocyte. a: The

major channels and transporters involved in generating the cardiac action potential. Also

shown is a rudimentary schematic of the intracellular calcium dynamics, which will be

discussed more in Chapter 3. b: The fast upstroke of the action potential is generated by a

large inward (negative) total current carried by sodium ions (off scale; goes to about −200

pA/pF in this model (158)). The slowly changing plateau phase is caused by a near-balance

between ICa,L (inward) and IKs and IKr (outward). The rapid relaxation back to the resting

membrane potential is due to IK1. Abbreviations: INa: sodium current; Ib,Na: background

sodium current; ICa,L: L-type calcium current; Ib,Ca: background calcium current; IK,p:

plateau potassium current; Ito: transient outward current; IKs: slow delayed rectifier current;

IKr: rapid delayed rectifier current; IK1: inward rectifier current; INaK: sodium/potassium

pump current; INaCa: sodium/calcium exchange current; IpCa: calcium pump current.
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Fig. 2.
Alternans, higher-order periodic rhythms, and irregular dynamics. a: Action potential

duration restitution curve obtained by applying premature stimuli in the Ten Tusscher and

Panfilov model (158). b: Cobweb iterations of restitution map given by APDi+1=220–

180exp(–DIi/60) (blue curve) and DIi=PCL–APDi (red line)(13), where APD is the action

potential duration, DI is the diastolic interval, PCL is the constant pacing cycle length. Left:

period-1 rhythm for PCL=400 ms. Right: alternans for PCL=220 ms; dashed line indicates

the value of DI for which the slope of the restitution curve equals one. c: Bifurcation

diagram of the restitution map (similar to that in Ref. (13)) with the condition that action
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potentials occur only for DI>5 ms. Numbers give stimuli:response values; ID indicate

irregular dynamics, which is preceded by period-doubling bifurcations.
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Fig. 3.
Early afterdepolarization (EAD) dynamics. a: EADs in a mathematical model of a rabbit

ventricular myocyte modified to simulate oxidative stress. The occurrence of EADs depends

on a fine balance between inward and outward currents during the plateau of the action

potential and is therefore sensitive to changes in stimulus timing. Here, a certain stimulus

timing leads to a normal action potential (blue trace), while a stimulus applied 5 ms later

causes an EAD (red trace). b: Iteration of a one-dimensional map based on the myocyte

model leads to irregular (chaotic) dynamics, with aperiodic switching between short (no

EAD) and long APD values (with EAD). c: APD values from iteration in (B) plotted vs.

beat number. Modified from Ref. (15) with permission.
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Fig. 4.
Intracellular calcium handling. A ventricular myocyte consists of approximately 75

sarcomeres, each of length ~2 μm. Sarcomeres span the distance between adjacent t-tubules

that contain sodium-calcium exchangers (NCX; blue) as well as L-type calcium-channels

(LCC; cyan), which are colocated in functional calcium release units with Ryanodine

receptors (RyR; green) in the junctional sarcoplasmic reticulum (JSR). A cell contains about

10,000–20,000 release units, or couplons, each of which in turn consists of 10–25 LCCs and

100–200 RyRs. The total calcium concentration in the cytosol, arising as a global

contribution from all couplons, gives the calcium transient (CaT). Expanded from Ref. (114)

with permission.
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Fig. 5.
Subcellular calcium alternans. a: Subcellular calcium alternans during alternans control

pacing in an isolated guinea pig ventricular cell. Modified from Ref. (115) with permission.

b: Turing instability can occur with unstable calcium transient dynamics causing local

growth of calcium transient alternans in combination with positive calcium-to-voltage

coupling and negative voltage-to-calcium coupling to cause out-of-phase calcium transient

alternans down the myocyte (C).
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Fig. 6.
Abolishment of spontaneous oscillations. Simulations of the Irisawa-Noma model of a rabbit

sinoatrial node cell (159) illustrating three ways in which spontaneous activity can stop

(118). Left: Gradual decline in amplitude due to a supercritical Hopf bifurcation for

decreasing calcium current conductance. Right: Skipped beats and increased period due to a

homoclinic bifurcation occurring with increasing positive bias current injection. Top:
Annihilation by injection of a brief stimulus current (arrow) due to bistability between a

stable limit cycle and a stable fixed point occurring with zero pacemaker current and

injected positive bias current. Such bistability can arise in different ways, e.g., a subcritical

Hopf bifurcation followed by a saddle node bifurcation of limit cycles. Numbers on the

ordinates give transmembrane potential in mV. See Ref. (118) for details on simulations.
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