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Abstract

The present work purports to the formulation and characterization of signal based chaos based on Bessel Functions.
Specifically, the variable in these functions is viewed as an additively coupled sum of sinusoidal signals, with competing
frequencies. By adapting the regular and modified Bessel Functions of the first and second kinds into signals, the
derivatives are computed and used to form the corresponding iterative maps, which are studied using phase portraits.
It is seen that the phase portraits of the regular and modified Bessel functions of the first kind exhibit rich, ornamental
patterns, characteristic of quasiperiodicity and chaos. Using these, the bifurcation diagrams are plotted, and the chaotic
behavior is quantitatively characterized using largest Lyapunov Exponents. It is seen that the nature of chaos in the
generated signals indeed depend on the frequency ratio of the driving signals, thus pertaining to a case of signal based
chaos, which has the key advantage of easy tunability, which forms the novelty of the present work.
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1. Introduction

Chaos Theory, the flagship of Nonlinear Dynamics, with its characteristic properties of determinism and an extreme
sensitivity to initial conditions, has emerged as one of the defining highlights of twentieth century science, with a
plethora of applications covering biology, astrophysics, engineering and mechanics [1]-[16]. The development of tools
and techniques to characterize and study nonlinear dynamics such as Bifurcation Plots, Iterative Maps and Lyapunov
Exponents, stemming from the development of computation and visualization technologies have enabled visualizations
of complex and intricate patterns of long term evolution [1, 2].

In the engineering domain, the ability to generate chaotic signals using op-amp based physical realizations of nonlinear
differential equations, such as the Chua Circuits, has subsequently been translated into real-time applications of chaos
theory such as secure communications and cryptography [17]-[21]. However, such implementations typically use physical
system-based parameters such as resistors and capacitors as the initial conditions or ‘control parameters’, with the
looming disadvantage of difficulty in tunability when implemented at high frequencies as Integrated Circuits (IC) [22, 23].

A radical and innovative way to address this issue would be to use signal based chaos, where the initial conditions
are not physical parameters, but rather the signal properties (amplitude, frequency and phase) of the input signals in a
driven chaotic system. This forms the key motivation for the present work, where we explore various forms of the Bessel
Function, one of the most popular special mathematical functions, with applications as diverse as electromagnetic waves
in a cylindrical waveguide, heat conduction in cylindrical objects, lattice diffusion and acoustic radiation patterns and
dynamics of floating bodies [24]-[31]. Specifically, the regular and modified Bessel functions of the first and second kinds
are considered, and in each case for the general form B(x), the variable x is set to an additively coupled sinusoidal signal
with competing frequencies, which then becomes the ‘driving signal’ of the system, with the frequency ratio between
the input signals acting as the control parameter r. Various orders from 1 to 4 are considered for each form, and for
each case, the phase portrait is plotted for an r value of π. The presence of ornamental patterns in the phase portrait
indicate the presence of quasi-periodicity and chaos in the system, and this is observed for the Bessel and modified Bessel
functions of the first kind. For these cases, the iterative map is then formed by computing the derivative of B(x) and
expressing it as a difference equation. Using the iterative map, the Bifurcation plots are then plotted, which indicate the
regions of order and chaos in these signal forms. Finally, the computation of Largest Lyapunov Exponents assertively
establishes the trends of order and chaos in these signal forms as a function of r.

The results discussed in the present work indicate that for specific values of r in some of the Bessel function derived
signal forms, chaotic behavior is observed, thus pertaining to the case of signal based chaos, which is physically realized
using FPGA’s, with much simpler circuitry and easier tunability than conventional chaos generator circuits, and this
forms the novelty of the present work.



2. The Bessel Functions and Phase Portraits

We start with the most general Bessel’s Differential Equation first defined by Bernoulli and later generalized by Bessel
and given as follows, of which the Bessel Functions are the canonical solutions y(x) [24]-[31].

x2 d
2y

dx2
+ x

dy

dx
+ (x2

− n2)y = 0 (1)

where n is typically an integer, defined as the ‘Order’ of the function and for such cases, the Bessel Functions are termed
the ‘Cylinder Functions’. Based on the finiteness at the origin (x = 0) and divergence of x towards zero or negative
non-integer n, the solutions of the above equation are obtained as regular and modified Bessel Functions of the first
and second kinds [24]-[31]. By assuming a generalized form B(x) the following procedure is used for the investigation of
nonlinear dynamics in the various Bessel Functions:

1. The variable x is denoted as an additively coupled signal of two sinusoids of frequencies f1 and f2 = rf1, as

x = sin(2πf1t) + sin(2πrf1t) (2)

with r denoting the ratio between the frequencies, and acting as the key control parameter.

2. Using this substitution, B(x) is rewritten as a time-varying signal B(t), and its time derivative B′(t) is computed.

3. The dynamics of B(x) are studied using the Phase Portrait, which is a plot of B′(t) in terms of B(t) for a given r,
illustrating the phase space dynamics and qualitatively serving as a tool to assess various chaotic parameters such
as sensitivity and ergodicity. Since r denotes the frequency ratio of the driving signals, and since the fundamental
property of chaos is mismatches in growing evolutions, an irrational number such as π is set as the value of r, in
order to maximize the frequency and phase mismatches between the driving signals.

4. The detection of ornamental and rich patterns in a phase portrait is a clear indicator of the presence of chaos in
the corresponding iterative map.

5. In order to form the iterative map, B(t) and B′(t) are discretized into B(i) and B′(i) respectively and a difference
equation of the form B′(i) = B(i+1)−B(i) is formed. This difference equation is rearranged to give the expression
of ‘next’ sample B(i+ 1) in terms of ‘current’ samples B(i), as B(i + 1) = B(i) +B′(i), this equation termed the
‘Iterative Map’ due to its recurrence nature.

6. For systems depicting phase portraits indicative of chaos, the bifurcation diagram, plotting the output B as a
function of r is obtained. This diagram clearly illustrates for what values of r, the system exhibits chaotic and
non-chaotic behavior.

We start the investigation with the regular Bessel function of the First Kind Jn(x), given by the Frobenius method
to Bessel’s Equation defining the function by its series expansion around x = 0 as follows [24]-[31]:

Jn(x) =

∞∑

m=0

−1m

m!Γ(m+ n+ 1)
(x/2)

2m+n
(3)

where the Gamma Function Γ(t) is given as Γ(t) = (t− 1)! for positive integers and as follows for all complex numbers
except non-positive integers:

Γ(t) =
1

t

∞∏

n=1

(1 + 1

n
)
t

1 + t

n

(4)

By substituting x with the additive sum of sinusoids as mentioned above, we obtain the ‘Regular Bessel Signal of the
First Kind’ Jn(t). Using this, the time derivative J ′

n
(t) is computed, and is plotted for an r value of π, for four orders

n = 1, 2, 3, 4 in Fig. (1).
As seen from the phase portraits, it can be observed that all the four orders show ornamental patterns characteristic of

either quasi-periodic or chaotic behavior, where to distinguish between these two, further bifurcation analysis is required.
Next, the Bessel function of the second kind Yn(x), multivalued and with a singularity at the origin (x = 0) given as

follows, as the limit of a non-integral a tending to integer n for the n-th order is considered [24]-[31].

Ya(x) =
Ja(x)cos(aπ) − J−a(x)

sin(aπ)
(5)

Yn(x) = lim
a→n

Ya(x) (6)

In a similar fashion as above, the phase portraits of the ‘Regular Bessel Signal of the Second Kind’ Yn(t) are plotted
for four orders n = 1, 2, 3, 4 in Fig. (2).
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Figure 1: Phase Portrait of Jn(t) with n = 1 (top left), n = 2 (top right), n = 3 (bottom left) and n = 4 (bottom right)
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Figure 2: Phase Portrait of Yn(t) with n = 1 (top left), n = 2 (top right), n = 3 (bottom left) and n = 4 (bottom right)
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Unlike the first kind Bessel signal forms, the phase portraits of the second kind Bessel forms do not display ornamental
patterns sufficient to be characterized as quasi-periodic or chaotic.

We now turn our attention towards the modified Bessel Function of the first kind In(x), alternatively called the
Hyperbolic Bessel Function of the First Kind, given as follows for non-integral a and integral n orders [24]-[31].

Ia(x) =

∞∑

m=0

1

m!Γ(m+ a+ 1)
(x/2)

2m+a
(7)

In(x) = lim
a→n

Ia(x) (8)

Deriving from this form, the phase portraits of the signal In(t) are plotted for four orders n = 1, 2, 3, 4 in Fig. (3).
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Figure 3: Phase Portrait of In(t) with n = 1 (top left), n = 2 (top right), n = 3 (bottom left) and n = 4 (bottom right)

Similar to the Jn(t) signals, the phase portraits of In(t) also display ornamental patterns characteristic of quasiperiodic
and chaotic behavior.

Finally, the modified Bessel Function of the Second Kind, given by Kn(x) is considered [24]-[31].

Ka(x) =
π

2

I−a(x) − Ia(x)

sin(aπ)
(9)

Kn(x) = lim
a→n

Ka(x) (10)

Using this form, the phase portraits of the corresponding signals Kn(t) are plotted for four orders n = 1, 2, 3, 4 in
Fig. (4).
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Figure 4: Phase Portrait of Kn(t) with n = 1 (top left), n = 2 (top right), n = 3 (bottom left) and n = 4 (bottom right)

Similar to the Yn(t) signals, the phase portraits of Kn(t) too lack ornamental richness of pattern.
Thus, in summary, it is seen that signals derived from the Regular and Modified Bessel Functions of the First Kind

namely, Jn(t) and In(t) exhibit ornamental phase portraits for the four orders n = 1, 2, 3, 4, characteristic of quasiperiodic
or chaotic behavior.
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3. Bifurcation Analysis

In this section, the bifurcation analyses for Jn(t) and In(t) are explored. It must be noted that, on account of the
coupled frequency formation of x as given earlier, these forms do not give rise to bifurcations in the traditional sense;
rather they exhibit a quasi-periodic route to chaos, as typically seen in other coupled phase based chaotic systems such
as the standard circle map [32, 33, 34, 35, 36, 37].

In order to compute the time derivative of Jn(t), the following identity is used

J ′

n
(x) =

1

2
(Jn−1(x)− Jn+1(x)) (11)

Thus, we obtain the following difference equation by discretizing the above identity and setting J ′

n
(i) = Jn(i+ 1)−

Jn(i).

Jn(i + 1) = Jn(i) +
1

2
(Jn−1(i)− Jn+1(i)) (12)

The above equation is termed the ‘iterative map’ of the First Kind Bessel Function, and the corresponding bifurcation
diagram is plotted for Jn as a function of r in Fig. (5).

Figure 5: Bifurcation Plots of Jn forms for (from top to bottom) n = 1, 2, 3, 4

From the bifurcation plots, it is seen that while the odd orders n = 1, 3 exhibit largely quasiperiodic, ‘wrinkled
landscape’ formations, the even order bifurcation plots n = 2, 4 exhibit well-bounded bifurcation trends, characteristic
of chaos specifically at r values such as 0.6 and 1.4.
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In a similar fashion, the iterative map for signals based on the modified Bessel Function of the first kind In(t) is
given as follows, and the corresponding bifurcation plots for the four orders are given in Fig. (6).

I ′n(x) =
1

2
(In−1(x) + In+1(x)) (13)

In(i+ 1) = In(i) +
1

2
(In−1(i) + In+1(i)) (14)

Figure 6: Bifurcation Plots of In forms for (from top to bottom) n = 1, 2, 3, 4

It is seen from the plots that the trends of quasiperiodicity and chaos are very similar to that of the J(n) forms,
albeit with slightly more dense and ‘grassy’ patterns in all orders.

4. Chaotic Characterization using Lyapunov Exponents

In order to understand the dependence of the chaotic nature in the generated signals on r, we use the Largest
Lyapunov Exponent (LLE), quantifying a systems sensitive dependence on initial conditions [38, 39]. The Rosensteins
algorithm is used to compute the Lyapunov Exponents λi from the signal, where the sensitive dependence is characterized
by the divergence samples dj(i) between nearest trajectories represented by j given as dj(i) = Cje

λi(iδt), Cj being a
normalization constant [38, 39]. With a positive value of LLE assertively establishing the presence of chaos, the LLE’s
of the Jn(t) and In(t) forms with n = 1, 2, 3, 4 for various r values from 0.1 to 1.5 are computed and plotted as a graph
in Fig. (7).
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Figure 7: Largest Lyapunov Exponent Values of Jn(t) and In(t) for n = 1, 2, 3, 4 as function of r

As seen from the plot, the trends of LLE for all the orders of Jn(t) and In(t) are largely similar with the highest and
lowest LLE values of the lot seen for J2(t) and J1(t) respectively. Of the selected range of r, the most chaotic values are
invariably seen for r values of 0.6 and 1.4.

5. Conclusion

Considering concerns of tunability in system based chaos generation circuits such as the Chua Diode, the present
work purports to a radical and innovative solution using signal based chaos, and to achieve this, the regular and modified
Bessel’s Functions of the first and second kinds are considered. Specifically, the Bessel function forms are adapted into
signals by substituting the variable x as an additively coupled sinusoidal signal,viewing the output as a representative of
a driven nonlinear coupled system. Following this, the derivative of the output is computed and used to form a difference
equation, which yields the iterative map of the proposed system. This iterative map is studied using phase portraits,
where it is seen that of the four Bessel forms chosen, signals derived from the regular and modified Bessel functions of
the first kind, namely Jn(t) and In(t) exhibit rich ornamental phase portrait patterns characteristic of quasiperiodic or
chaotic behavior. Hence, the bifurcation analysis of these three forms are presented following which the dependence of
chaotic nature on the frequency ratio r is studied using largest Lyapunov Exponents.

Finally, it is noteworthy that since the behavior of the output signal depends on frequency ratio r, this ratio serves
as a secure ‘key’, enabling the use of the Bessel Function based ‘Frequency Controlled Chaos’ in secure communication
and encryption systems. The signal oriented approach to generating chaos from mathematical functions, coupled with
the easy tunability hence obtained forms the novelty of the present work.
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