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Nonlinear dynamics of a driven mode near marginal stability 

H.L. Berk, B.N. Breizman, and M. Pekker 

Imtitute for fision Studies, The University of Tms at Austin 
Austin, Texas 78712 USA 

The nonlinear dynamics of a linearly unstable mode in a driven kinetic system is 
investigated to determine scaling of the saturated fields near the instability threshold. 
To leading order, this problem reduces to solving an integral equation with a temporally 
nonlocal cubic term. This equation can exhibit a self-similar solution that blows up 
in a finite time. When the blow-up occurs, higher nonlinearities become important 
and the mode saturates due to plateau formation arising from particle trapping in 
the wave. Otherwise, the simplified equation gives a regular solution that leads to a 
different saturation scaling reflecting the closeness to the instability threshold. 

PACS numbers: 52.35Qz, 52.35Mw, 52.40Mj 

In previous works [l-41, we have considered the nonlinear evolution of kinetic systems 

maintained by a balance of sources and relaxation processes that give rise to a distribution 

function with “free energy” [5,6] available to excite waves in a background medium such as 

a plasma. Here we assume that the instability mechanism is due to wave-particle resonances 

and that there are weakly unstable discrete modes, such that the linear growth rate, y, is 

much less than the mode frequency w,,. We also assume that y = y~ - yd, where y~ is the 

kinetic drive in the absence of dissipation, and yd is the intrinsic damping rate from the 

background plasma. Thus instability arises when y~ > yd. In the analysis given in the past 

work it was assumed that v d  << y ~ .  The purpose of this note is to discuss the nonlinear 

character of this problem when yd/y~ - 1, with particular emphasis given to the case near 

the instability threshold when 7~ - cyd << y ~ .  

The cogent results of the previous investigations are the following. A particle in an 

integrable kinetic system is characterized by a discrete set of orbit frequencies, w,(p), (p is an 

integer label) which are harmonics of the frequencies of the unperturbed particle motion. For 
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a given mode frequency w,, the resonant particles are those which nearly satisfy w, -w,.(p) = 

0. These particles are responsible for the linear and nonlinear properties we are describing. In 

the presence of a wave of finite amplitude, A, these resonant particles undergo an additional 

oscillation (that can be described by a nonlinear pendulum equation) at a characteristic 

frequency ug(n,p) that is proportional to A1i2. These oscillations cause the phase mixing 

of resonant particles and produce a local plateau in the resonance region of the distribution 

function as first discussed by Mazitov [7] and O'Neil[8]. We restrict the discussion to the non- 

overlap case in which wg(n,p) is less than the frequency separation between the resonances. 

In this case the system can respond by either producing a steady finite amplitude oscillations 

or pulsations. The former case arises when ud > 'yd, where v d  is the classical relaxation rate 

of the distribution function near the resonance of a finite amplitude wave. Then the nonlinear 

amplitude is determined by w ~ ( n , p )  - yLv&/Yd [l]. In the opposite limit, ud(n,p)  < 3;1, 

the waves pulsate intermittently with a mean period - vzl, with the mean amplitude of the 

pulsation determined by wg(n, p )  - y~ [2,3,9]. For the specific one-dimensional bump-on-tail 

problem, it has been found that the maximum of wg(n,p)  is 3 . 2 7 ~  [9] for the initial value 

problem where there are no sources and where ud = ~d = 0, and ~ ( n , p )  = 1.4y~, with the 

bar referring to the average value [4], for the pulsating driven problem with a source and a 

sink due to particle annihilation. 

We now consider the case ' y d / ' y ~  - 1 and for simplicity we specifically investigate the 

bump-on-tail problem. The results can be readily generalized to more general kinetic sys- 

tems. For deeply trapped particles in the bump-on-tail problem, wg = (ekz/m)'/' where 

ecos(ut - h) is the perturbing longitudinal electric field. Using the particle simulation 

code described in Ref. 4, we have determined the maximum of the ratio w g / ( ' y ~  - 7 d ) )  as 

a function of ' y d / ' y ~  for the initial value problem and found that this ratio hardly changes 

as yd/y~ is varied (the ratio varies from 3.2 to 2.9 as yd / ' yL  varies from 0 to .6). This re- 

sult implies that the particle distribution in the finite amplitude wave is only significantly 

( 
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altered from the unperturbed case in a region about the separatrix width. In this region the 

distribution “mixes,” causing the formation of a plateau with the simultaneous conversion of 

the particle free energy into wave energy so that UB N y, which is the “natural” saturation 

level for pulsating cases. However, even though wg - 7 is a valid estimate, the simulations 

reveal an additional interesting feature. This can be observed in Fig. l(a) and (b) which 

show the evolution of the wave amplitude in the initial value problem as a function of time 

for the cases 7d/7j5 = .05 and yd/7j5 = .6 respectively. Note that the former case can be de- 

scribed by a predominantly single pulse of one sign with relatively small modulations during 

the decay phase of the pulse; an expected response. However, in the case 7 d / 7 ~  = 0.6 the 

amplitude versus time has deep modulations and reverses sign with the highest maximum 

not immediately arising, a surprising result which we will discuss below. 

When y = 75 - yd << y~ one can expect to develop an analysis based on the closeness 

to marginal stability. For the sink we choose a particle annihilation model where u a  = u 

and u is the annihilation rate. We will assume u N y and that the relevant nonlinear time 

scale T N l/y, is shorter than wil) the characteristic time it takes a trapped particle to 

complete a period. Hence we develop a perturbative analysis based on small deviations of 

the particles from their unperturbed orbits; formally we generate an expansion in the s m d  

parameter (wBT)~ .  Below we show that this procedure leads to the prediction of a steady 

state mode amplitude given by WB = 81/4u(7/7j5)1/4 which satisfies our assumption that 

W ~ T  is small. This steady solution is only stable for u > u, E 4.387. For smaller u values 

the amplitude is found to oscillate in time (close to the steady state one if u, - u << urn). 

However, when u is sufficiently small, it is found from numerical integration and verified with 

a self-similar solution, that the solution of the perturbatively derived equations blows up in 

a finite time. In reality this singular behavior leads to a level where the perturbation method 

fails. Saturation is then due to the natural saturation mechanism, where the distribution 

function flattens about the separatrix when WB rises to the level that it is - 7. 
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To begin the analysis we develop a perturbative procedure for solving the distribution 

function F(x, v, t )  in the presence of an electric field, E = @t) cos(kx - ht + a),  

dF dF e d F  
- + v - + - E(t) COS( kx - wt + a)  - + VF = S(V) 
at dx m av 

where e and m are the particle charge and mass respectively, a is a phase which can be 

shown to remain constant in our problem and S(v) the source particles. We will write F as 

a Fourier series 
00 

F = FO + fo + [fn exp(in$) + c.c.] 
n=l 

where Fo = S(v)/u is the equilibrium distribution when E = 0 and $ = kx - wt + cy. 
The evolution equation for the wave amplitude is determined by the condition that the 

time rate of change of wave energy, aWE/&, is equal to the negative of the power dissipated 

into the background plasma, -2ydWE, plus the power, P ,  the energetic particles transfer 

to the waves 

-P = -e dz E(x)j(z) = -e dxdvv E(x, t)F(x, t )  = -- ew J dzdv ~ ( x ,  t ) ~ ( z ,  v, t). J J * k  

Note that for plasma waves, the wave energy takes into account field energy and kinetic 

energy due to oscillations at the plasma frequency and is given by W E  = dzE2(x, t)/47r 

where the x-integration is over a wavelength. Now using these relations, we obtain 

J 

Thus we need to determine dvfi in terms of e(t) from Eq. (1) and substitute it into 1 
Es* (3). 

We assume that F can be expressed as a power series in E(t) and we can truncate terms 

at sufficiently high n (we neglect n 2 3). With u = kv, the equations for fn(n = 0, 1,2) are 

then of the form 
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af 1 43 a m 0  + f o  + f 2 )  - +iUfI - uf1= -- 
at 2 dU 

4 Wl - + 2iuf2 - uf2 = -- - a f 2  

at 2 du + Ot43f3) (4) 

where ui = ek,!?(t)/rn. These equations are integrated iteratively, assuming Fo >> f1 >> 

f 2 , f o  with the initial condition F = Fo. It turns out that f 2  does not contribute to the 

final result. By performing the time integration of Eqs. (4) we find dv fl(v,  t )  that reduces 

Eq. (3) to the form 

J 

t l? - d 2  wB = (+yL-~d)u ; ( t ) -$  Ll2 dt'(t-t I 2  ) u B ( t  2 I ) J dtl exp [ - ~ ( 2 t  - t' - ti)] ~ ~ ( t i ) w $ ( t ' + t i - t )  
dt t--r 

(5) 

where y~ = 27r2- 

( Y L  - Yd)G A = 

aFo(wlk). We rescale our variables with the transformations r = 

; D = u / ( y ~  - yd). Equation (5 )  can then be 

mk2 aV 

written as 

dA 7-22 

d r  
- = A ( r ) - $  [ / 2 d z z 2 A ( r - z ) J  0 0 dz exp (-5(2z+z) A ( r - z - z ) A ( r - 2 z - z ) .  (6) 

Note that B is the only parameter appearing in Eq. (6). As long as the solution to Eq. (6) 

remains finite, the amplitude A for P << 1 will be a dimensionless and scale-free number, 

which implies that w ~ / ( 7 ~ - y d )  N , which is smaller than the natural saturation 

level if (1 - yd/'y~) << 1. 

We find that Eq. (6) admits a constant solution, Ao, as r -+ 00, 

We examine the stability of this solution by looking for solutions of the form 

where BX is the eigenvalue and instability arises if Re X > 0. Substituting Eq. (8) into Eq. (5 )  
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leads to the dispersion relation 

1 -  - + h 8 

x (1 + X)(2 + X)2 (1 + 4 4  

Instability is found to arise when D < G, E 4.38 (for D = Dm, we find X = f0.46i.) 

In Fig. 2 we show numerical solutions of Eq. (6)  for various values of D starting with 

sufficiently small d u e s  of A so that initially the nonlinear term in Eq. (6) is unimportant. 

In Fig. 2(a), with D = 5 we see that A( t )  goes to the steady state value 2&D2. With 

2 = 4.3, we see in Fig. 2(b) that the solution pulsates periodically in time around the steady 

state level; analytically one finds for u, - u << u, that 

A(t)  = 2&G2 [1+ p(D, - COS [(2.01+ p(% - 3)) t ] ]  

with p = 0.76, ,O = 0.8. For v^ = 3, we see in Fig. 2(c) that the oscillation amplitude exceeds 

the steady level so that A(t)  even changes sign. In Fig. 2(d), we show results of v^ = 2.5 

case where the oscillations have become irregular, indicating bifurcations to other periods 

has taken place. In Fig. 2(e), for D = 2.4, we see that the system breaks into oscillations 

with decreasing periods and with ever increasing amplitude. 

This final behavior is predicted by a self-similar singular solution of Eq. (6) that blows 

up in a finite time. Such a solution needs to have an oscillatory structure for A(t)  as without 

oscillations, it is readily demonstrated that the cubic term will stabilize the linear terms (e.g. 

this occurs in obtaining the steady solution given by Eq. (7)). As the blow-up occurs very 

quickly, A >> A,  so that the first term on the right-hand side of Eq. (6)  is unimportant. We 

then seek a solution of the form 

(9) 

assuming V (̂h - t )  << 1 and where g(X) is a periodic function of X. The choice of this form 

enables us to have a balance between A and the nonlinear term in Eq. (6). In particular 
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observe that ( t o  - t)-@+') factors from the quantity 

A(t) = (to _',,,,I [P9 - g] * 

The choice p = 5/2 allows ( to  - t)-(P+l) to be factored from the nonlinear term as well. Thus 

the problem is reduced to finding a periodic function g(X). We take G(t0 - t )  << 1 and use 

the fact that the expected solution diverges near t = to .  This allows us to extend the upper 

integration limits of Q. (6) to infinity, giving 

where 

e2 
(1 + ~ ) 5 / 2 ( 1 +  + r1)5/2(1 + 25 + 7)5/2- 

bo 

We look for a Fourier solution for g(X) of the form g(X) = 3 x(gh+' ei(2n+1)x + c.c.), 

and we attempt to solve this equation by iteration in 92n+1. If we first neglect g%+1 for 

n 3 1, we find that CY satisfies the equation 

n=O 

where 

(1 + t + d ( 1  + % + 59 
1+t 

, a3 = 
(1 + m+ 25 + rl) 

1 + t + 7  
, csa= (1 + 0)(1+ 5 + 11) 

1 + % + r l  
a1 = 

Equation (12) admits the solution CY = 11.67. If the iteration is carried out to the next order, 

the correction to cy is less than .01, which indicates that the iteration procedure leads to a 

rapidly convergent series. Note that the above solution is not unique. We have found that 

Eq. (11) also has another solution that contains both odd and even Fourier components, so 

that 
00 

g(x) = 3 C (gn einx + c.c.) . 
n=o 
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For this solution, a is close to 6.1. Depending on initid conditions, the system may asymptote 

to either solution. In our numerical simulations we find that the ( to  - t)-5/2 divergence is 

robust, and the oscillatory behavior is fitted relatively well with cy = 6.1. 

We ais0 observed that even for P > Gm, we can find a diverging solution of Ea. (6) if the 

initial amplitude is large enough. 

In summary we have completed the understanding of the wave saturation mechanisms of 

isolated weakly unstable modes in kinetic systems destabilized by resonant particles. The 

new element in this work is the quantitative description of the dynamics near instability 

threshold. New scaling features have been found for both steady state and pulsating so- 

lutions. Surprisingly, we find that the system with a sufficiently weak source, reaches the 

saturation levels that is expected from particle trapping, wg N 7~ - yd ,  even though the 

dimensionless scaling of the equation would indicate that the saturation level should scale 

as #I3 - (7L - 7d)(1- 7d/7L)1’4. 
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Figure Captions 

in kinetic 
e& 

m(7L - 7d2 
Fig. 1 Time evolution of the normalized wave amplitude E,,,, = 

simulations of the bumpon-tail instability in presence of background damping: 

a) low-damping rate yd/y~ = 0.05 

b) damping rate comparable to the kinetic growth rate yd/y~ = 0.6. 

Fig. 2 Numerical solutions of Eq. (6) for A(0) = 1 and various values of D: a) D = 5.0; 

b) v^ = 4.3; c) v^ = 3.0; d) v^ = 2.5; e) v^ = 2.4. 
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