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Abstract. This paper presents a nonlinear dynamic analysis of a flexible portal frame subjected to support excitation, 
which is provided by an electro-dynamical shaker. The problem is reduced to a mathematical model of four degrees of 
freedom and the equations of motion are derived via Lagrangian formulation. The main goal of this study is to 
investigate the dynamic interactions between a flexible portal frame and a non-ideal support excitation. The numerical 
analysis shows a complex behavior of the system, which can be observed by phase spaces, Poincaré sections and 
bifurcation diagrams..  
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INTRODUCTION 

In the analyses of vibrating systems, the cases 
when the external excitation is influenced by system 
response have been considered as a major challenge in 
theoretical and practical engineering research. When 
the excitation is not influenced by system response, it 
is called an ideal excitation or an ideal energy source. 
In contrast, when the excitation is influenced by the 
response of the system, it is known as non-ideal. 
Different authors studied dynamical system with non-
ideal excitation (Nayfeh & Mook, 1979; Balthazar et 
al., 2003; Dantas & Balthazar, 2007). 

Brasil (1999) performed an analytical study of the 
nonlinear vibrations of a portal frame excited by two 
ideal energy sources, consisting of unbalanced rotating 
machines. This same problem with two non-ideal 
sources was studied by Balthazar et al. (2004), which 
focused on the self-synchronization of the energy 
sources. 

Another type of vibrating systems excitation that is 
analyzed by several authors is the support excitation. 
Xu et al. (2007) and De Paula et al. (2011) performed 
numerical and experimental dynamical analysis of a 
parametrically excited pendulum. Jiang et al. (2006) 
studied a tuning fork vibratory micromachined 
gyroscope subjected to base excitation.  

In this paper it is carried out a dynamical analysis 
of a flexible portal frame under base excitation, which 

is provided by an electro-mechanical shaker, 
consisting in a non-ideal energy source. The electro-
mechanical device considered in this work consists of 
an electric system magnetically coupled to a 
mechanical structure as used by Felix and Balthazar 
(2008a and 2008b) and Yamapi (2006) in others 
vibrating problems. 

MATHEMATICAL MODEL 

The proposed system consists of a flexible portal 
frame (FPF) with base excitation provided by an 
electro-dynamical shaker, as shown in the schematic 
picture presented in Figure 1, at deflected position. 
The system consists of two columns connected by a 
beam at upper end and clamped in a base at lower end. 
The base is a platform of mass 0m  and stiffness pk , 
with vertical displacement denoted by S . Each 
column has height h , flexural rigidity of EI  and 
carries a lumped mass m  at the upper end. The 
horizontal beam has length l , carries a central 
mass M and is pinned to the columns at both ends.

The three concentrated masses of the flexible 
portal frame absolute coordinates can be written as:
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FIGURE 1. Flexible portal frame and electro-dynamical 
shaker physical model.

The linear stiffness of the columns and the beam 
can be evaluated by a Raleigh-Ritz procedure from 
cubic trial functions. Moreover, geometric 
nonlinearities are introduced by considering the 
shortening due to columns and beams bending under 
inextensibility hypothesis as presented by Brasil 
(1999) and shown in Eq. (2). 
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where the following constants are also obtained from 
cubic trial functions: 
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Using algebraic relations presented in Eq. (1) and 
Eq. (2), the modeling of the flexible portal frame 
system may be reduced to two unknown variables: 1z
(horizontal displacement) and 2v  (vertical 
displacement).  

The coupling between the flexible portal frame and 
the electro-dynamical shaker is then obtained through 
the electromagnetic force as presented in Eq. (4), 
caused by a permanent magnet.   

emF Kq= & (4) 

where c cK l B= , and cl  and cB are, respectively, 
length of the conductor and magnetic flied. As a result, 
it produces a Laplace force in the mechanical part and 
the Lenz electromotive voltage in the electrical part. 
The electrical part of the system consists of a resistor 
(R), an inductor (L), a capacitor (C) and a sinusoidal 
voltage source ( 0( ) cos( )e t e tω= ) connected in series. 
In the present model, the capacitor voltage is a non-
linear function of the instantaneous electrical charge q
as presented in Eq. (5). 
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where 0C  is the linear part of C  and 3d  is the 
nonlinear coefficient, both depending on the type of 
the capacitor in use. 

The system equations of motion can then be 
obtained by using the Lagrangian equations and are 
presented in Eq. (6) in dimensionless form. The portal 
frame governing equations without excitation are 
similar to those obtained by Balthazar et al. (2004) and 
the coupling with the electro-dynamical shaker is 
obtained according to Felix et al. (2008). 
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NUMERICAL RESULTS 

The dynamical analysis of the proposed system is 
carried out numerically by using the forth order 
Runge-Kutta method and appropriate tools for 
nonlinear dynamics investigation. An important 
characteristic associated with dynamical response of 
nonlinear system near resonance is the jump 
phenomena (Bernardini & Rega, 2005; Savi et al., 
2011). Dynamical jumps result in abrupt changes in 
system behavior and its analysis is essential for a 
proper design of nonlinear systems. Besides abrupt 
changes in system response, these jumps lead to 
system instability due to the coexistence of periodic 
attractors. These jumps are related to the Sommerfeld 
effect (Sommerfeld, 1902; Balthazar et al., 2003). 

FIGURE 2. Maximum displacement by increasing and 
decreasing the forcing frequencies. 

   
In this context, Figure 2 shows the maximum X-

displacement and Y-displacement with E0=0.15 by 
increasing and by decreasing the forcing frequency 
and considering the following parameters: 1μ =0.05, 

2μ =0.05, 3μ =0.01, 4μ =0.01, 1δ  =0.05, 2δ =0.5, 

3δ =0.8, 4δ =0.2, 2w =0.5, 3w =1, 4w =1, 1α =0.05, 

2α =0.1, 3α =0.4, 1g =0.001, 2g =0.0008, 1β =0.4, 

2β =0.2, 3λ =0.95, 2γ =0.05.  
From Figure 2 it can be observed the presence of 

dynamical jumps and also different behavior of the 
system when increasing and decreasing the frequency. 
This different ways cause instability, since the system 
can present two different stable orbits at the same 
parameters depending on the initial condition. 

Figure 3 presents phase space of the coexistent 
orbits observed in Figure 2 at Ω=1.07. The black 
curve is related to system behaviour obtained when 
increasing the forcing frequency, while the green 
curve corresponds to system response obtained when 
decreasing the frequency.  

FIGURE 3. Phase space of the coexistent orbits with 
E0=0.15 and Ω=1.07.
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It can be observed a significant difference between 
the two stable orbits that coexists at the same system 
and forcing parameters. The change from one orbit to 
the other can occurs with slight external perturbations. 
These abrupt changes are dangerous to the dynamical 
system. 

Figure 4 shows electrical charge and portal frame 
vertical displacement in time so that the energy 
transfer between the shaker and the portal frame in 
steady state can be observed. The left figure shows the 
behavior obtained when increasing the forcing 
frequency, while the right figure presents the response 
when decreasing the frequency. In both periodic 
motions there is a phase angle of π/2 between the two 
variables, where energy transfer from the shaker to the 
flexile portal frame is verified. It is important to 
highlight that the portal frame horizontal displacement 
and the base motion are in the same phase as the 
presented y-displacement. 

FIGURE 4. Energy transfer between shaker and portal 
frame with  E0=0.15 and Ω=1.07. Left: response when 
increasing the forcing frequency; Right: response when 

decreasing the forcing frequency.

The dynamical jumps obtained in Figure 2 can 
also be observed in the bifurcation diagram presented 
in Figure 5. The bifurcation is constructed by 
assuming a quasi-static stroboscopically increase and 

decrease of the forcing frequency, Ω, with E0=0.15. 
Moreover, the first 1000 periods are neglected in order 
to reach the steady state response. 

FIGURE 5. Bifurcation diagram constructed by increasing 
and decreasing the forcing frequencies.

  
Besides dynamical jumps, the bifurcation diagram 

indicates a region related to quasi-periodic behavior as 
well as a region of coexistence of quasi-periodic and 
periodic attractors. Figure 6 presents these two 
attractors in phase space with Ω=1.35. The quasi-
periodic response is obtained when increasing the 
forcing frequency, represented by the black curve, 
while the periodic response is obtained when 
decreasing the frequency and is represented by the 
green curve.  
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FIGURE 6. Coexistent attractors with E0=0.15 and Ω=1.35.

Figure 7 presents phase space and Poincare 
section at x-x’ and y-y’ planes related to periodic orbit 
presented in Figure 6. While Figure 8 presents the 
same results for the quasi-periodic motion.  

FIGURE 7. Phase space and Poincare with E0=0.15 and 
Ω=1.35. Behavior obtained when decreasing the forcing 

frequency.

FIGURE 8. Phase space and Poincare with E0=0.15 and 
Ω=1.35. Behavior obtained when increasing the forcing 

frequency.

Similarly to Figure 4, Figure 9 shows electrical 
charge and portal frame vertical displacement in time. 
The left figure shows the behavior obtained when 
increasing the forcing frequency, while the right figure 
presents the response when decreasing the frequency. 
In the case of the periodic orbit (Figure 9 right), the 
behavior is similar to the ones obtained in Figure 4. In 
the case of quasi-periodic motion (Figure 9 left), 
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however, the energy transfer between shaker and 
flexible portal frame is more significant, when the 
shaker electrical charge is increasing, the vertical 
displacement is decreasing and vice-versa.   

FIGURE 9. Energy transfer between shaker and portal 
frame with  E0=0.15 and Ω=1.35. Left: Quasi-periodic 

behavior; right: periodic behavior. 

CONCLUSIONS 

In this work a flexible portal frame parametrically 
excited by an electro-dynamical shaker is considered. 
The dynamical analysis of the system is carried out 
numerically considering different forcing frequencies, 
mainly near the resonance region. The occurrence of 
dynamical jumps is verified, which is an important 
characteristic of nonlinear dynamical systems. 
Basically, dynamical jumps are associated with 
nonlinear resonant response, causing abrupt changes in 
system behavior and introducing unstable regions on 
system response. The unstable region is caused by the 
presence of coexisting periodic attractors, as presented 
in the results. Besides the dynamical jumps, an 
important point associated with the proposed system is 
the energy transfer between the shaker and the FPF. 
This energy transfer is observed when system behaves 
periodically but it is more significant in quasi-periodic 

response. In the obtained periodic behavior it is 
observed energy transfer from shaker to FPF. In the 
case of quasi-periodic behavior it is verified energy 
transfer from shaker to FPF and also from FPF to 
shaker. 
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