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Abstract 

A model of a stacwwire system, wind-induced vibration of the stack based on an unsteady- 

flow theory, and nonlinear dynamics of the stack's heavy elastic suspended cables was developed 

in this study. The response characteristics of the stack and cables are presented for different 

conditions. The dominant excitation mechanisms are lock-in resonance of the stack by vortex 

shedding and parametric resonance of suspended cables by stack motion at their support ends. 

INTRODUCTION 

A 100-m high stack supported by guy wires at four levels (see Fig. 1)  was susceptible to 

large-amplitude oscillations, and some of the guy wires at the lower two levels had been 

damaged when wind speed exceeded 15 m/s (54 h / h )  for a period of time. The excitation 

mechanism was identified through scoping calculations, analytical prediction with a finite- 

element code, and observation of the stacWwire response [ 1-21. 

The dimensional parameters and material properties of the system shown in Fig. 1 111, 

referred to as the original system, are summarized in Table 1. The damping ratios for the stack 
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and wires are assumed to be a few percen The Young's modulus of helically woven guy wire is 

assumed to be 6.2 x 1Olo - 10.3 x 1Olo N/m* [3]. 

The objective of this paper is to derive a coupled nonlinear dynamic model of the wind- 

induced vibration of the stack based on an unsteady-flow theory, and the heavy elastic suspended 

cable whose upper end is subject to bending vibration of the stack. Numerical analysis of the 

coupled system presents the effect of fluidstructure interaction and cable parameters on 

parametric and external resonances of cables. 

LOCK-IN RESONANCE OF STACK 

Vortex shedding across a bluff body has been studied for more than 100 years. Many 

reviews on this subject are available [4-81. A fluidstructure system with wind-induced vibration 

of a stack can be described by an unsteady-flow theory [9]. Once fluid excitation forces and 

motion-dependent fluid forces are known, the response of the stack with vortex-shedding- 

induced vibration can be predicted. The stack is subjected to a crossflow wind uniformly along 

its length e,. The equation of motion in the lift direction is 

a4w(z, t) + dw(2, t) + d2W(2, t) a2w(2, t) pu2 dw(z, t) 
a' -- 

at 0 
E1 +a 

aZ4 at at2 at2 

-pU 2 a''w(z, t) = -pU 1 2  DC;L cos(ost), 

2 

where w(z,t) is the displacement of the stack in the lift direction, D is the stack diameter, U is the 

wind speed, p is the air density, E1 is the flexural rigidity, C is the stack damping coefficient, ms 

is the stack mass per unit length, E is the fluctuating lift coefficient, and w, (= 2 x S U D )  is the 

circular frequency of vortex shedding. a, a', and a'' are the added-mass, fluid-damping, and 



fluid-stiffness coefficients, respectively. 

experimental data [ 10- 1 11. 

All of the fluid force coefficients are based on 

Let 

W T T  

pxD2 
y=- 

4m ' 

where Wn(z) is the n-th normal mode, f is the oscillation frequency, and U, is reduced wind 

speed. Substituting Eqs. 2 in EQ. 1, yields 

Note that o and l, are the circular frequency and modal damping ratio, respectively, for the 

stack in crosswind flow. CM is called an added mass coefficient; when Ur = 0, it is equal to a 

When U, f 0, CM depends on both Ur and a", which in turn, depends on Ur and the stack 

oscillation amplitude. ov and cv are the in-vacuum natural frequency and modal damping ratio, 

respectively [lo]. 

When guy wires were modeled as springs and the stack was modeled as a Bernoulli-Euler 

beam with the lower end fixed and the top end free, the first four modes of all models of the 
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stack were analyzed with the finite-element code MSC-PAL, because the previous study [ 11 

showed that coupling between the stack and guy wires is important only for low-frequency 

modes. The natural frequencies and natural modes of the stack are given in Fig. 2 for the first 

four modes. 

Consider a stack with the mass ratio yof 0.2 and damping ratio 5" of 2%, a Strouhal 

number S of 0.175, and a fluctuating lift coefficient of 0.5. The root mean square (RMS) 

values of the four-point stack motions (corresponding to four guy-wire ends) in the lift direction 

were plotted as the function of wind speed in Fig. 3. 

It is noted that for the third mode, lock-in resonance occurs at U = 15 m/s, and point 2 (45.7 

m) associated with the second-level guy wire has the largest oscillating amplitude. From this 

observation, the vibration mode was about the same as the mode shape of the third mode (Fig. 

2c). Because the upper portion of the stack had spoilers and the lower portion did not, this 

particular mode was vulnerable to vortex-shedding-induced resonance due to a large 

participation factor associated with vortex shedding [l]. From the calculation (Fig. 3) and the 

observation, we concluded that the stack vibration was excited by vortex shedding at the lower 

portion associated with the third mode of the stack. 

PARAMETRIC RESONANCE OF GUY WIRES 

Forced vibration of elastic suspended cables has been studied by many investigators [12- 

161. However, very little has appeared in the literature that reports work on parametric and 

external resonances of suspended cables. Perkins [ 171 derived a nonlinear model of a suspended 

elastic cable under parametric and external excitation. Cai and Chen [2] derived a nonlinear 

model of in-plane motion of a heavy elastic cable in a tilted configuration. This model included 

a pulsating excitation at the support at the upper end of the cable due to lock-in resonance of the 
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stack. Axial motion at the support leads to parametric excitation, whereas transverse motion 

contributes to both parametric and external excitations. Therefore, the angle of the cable, which 

determines the ratio of axial and transverse motions, is very important to the parametric and 

external resonances [2]. 

Consider the original system in Fig. 1: the guy wires can be described as heavy elastic 

cables suspended between two supports in an angled configuration (see Fig. 4). The lower end of 

the cable is fixed to the ground and the upper end is pin-supported and movable horizontally to 

simulate the bending motion of the stack due to vortex shedding. Thus, the motion components at 

the support at the upper end in both axial and transverse directions of the cable u and v are 

where 4 is the distance between the two supports of the cables and a is the angle between the 

cable and the ground; w is the stack motions at the upper end of cables and can be calculated 

from Eqs. 2 and 3. Subscript k represents the levels of wires. 

The initial static equilibrium configuration CI in Fig. 4 lies in the OXY plane and is 

represented by the function y(s), s being a curvilinear abscissa. Let E, H, A, and mc be the 

elastic modulus, the tension, the cross-sectional area, and the mass per unit length of the cable, 

respectively. The vaned configuration C V  can be described by the displacement coordinate u(x,t) 

and v(x,t) [2]. 

The dimensionless static equilibrium configuration of the cable can be derived easily: 
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wherep- ,mcgl . 

Let 

EA p=- 
H ’  

and 

n = 1,2,3 ,..., (9) 

where O, is the frequency and {n is the damping ratio of the cable in the n-th mode. Let 

where di? = 1, v2 [= xw] corresponds to the boundary condition at the support at the upper end 

(see Eq. 3)’ qn(t) is the generalized transverse displacement of the cable, and @n(x) is the modal 

function and can be described simply as 

and 

jiQi (x)dx = 1. 
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Then, by applying the Galerkin method, a system of ordinary differential equations is 

obtained [2]. 

OD 

+p13nqnxq:)= - I , n s i n e [ w + 2 ~ n ( ~ ) w ]  n = 1,2,3, ..., 
n=l 

where Io, Ijn (5 = 1,2,3 ,... 7) are defined in Ref. 2. 

Dynamic response of cables can be numerically calculated from Eqs. 3 and 13 together as a 

function of wind speed. Figure 5 gives nondimensional RMS displacements of the cable at X/& 

= 0.500 for the first four modes of the stack as a function of wind speed of U, with S = 0.175, Ci 

= 0.5, H = 2.85 x 104 N, 5 = 0.02. Regardless of the values of the excitation amplitudes, the 

cable was subjected to external resonance at lock-in resonances of the stack. When the vortex- 

shedding frequency is the of cable's natural frequency, parametric resonance exists 

corresponding to the first primary parametric instability frequencies, i.e., primary parametric 

instabilities occur near 0, = 201. These phenomena can be viewed clearly in Fig. 5. In Fig. 5a, 

which corresponds to mode 1 of the stack (f = 1.27 Hz), the first primary parametric resonance 

occurs in the level-four cable, whose natural frequency is 0.73 Hz at U = 1 1  m/s. In Fig. 5b, 

which corresponds to mode 2 of the stack (f = 1.66 Hz), the first primary parametric resonances 

occur in the level-four cable, whose natural frequency is 0.73 Hz at U = 1 1  m/s, and in the level- 

three cable, whose natural frequency is 0.90 Hz at U = 13.5 m/s. In Fig. 5c, which corresponds 

to mode 3 of the stack (f = 2.20 Hz), the second primary parametric resonances occur in the 
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level-four cable, whose natural frequency is 0.73 Hz at U = 11 m/s, and the first primary 

parametric resonances occur in the level-two cable, whose natural frequency is 1.1 Hz at U = 

14.5 to 18.5 d s .  In Fig. 5d, which corresponds to mode 4 of the stack (f = 2.56 Hz), no 

parametric resonances occur under selected stack and cable parameters over the entire range of 

wind speed. 

Figure 6 shows power spectral densities of cable displacement at x/t = 0.5, corresponding 

to Fig. 5c, at U = 17.5 d s .  At this wind speed, the vortex-shedding frequency is 2.2 Hz, the 

third stack-mode frequency is 2.2 Hz, and the second-level-cable natural frequency is 1.1 Hz. 

The figure clearly shows external resonances for all four cable levels at lock-in resonance 

frequency. However, a t  the second-level cable, very strong parametric resonance is 

demonstrated (see first peak in Fig. 6 for the level-2 cable). 

To better understand the effects of cable tension and damping on parametric resonances, 

RMS displacements of the second-level cable with stack excitation mode 3 were calculated for 

(a) 5 = 0.02, and H = 1.85 x 104 N, 2.85 x 104 N, 4.25 x 104 N, and 6.50 x 104 N, where the 

parametric resonance effect is reduced as the cable tension increases; and (b) H = 2.85 x lo4 N, 

and 5 = 0.01, 0.02, 0.03, and 0.04, where the parametric resonance windows subject to wind 

speed narrowed as cable damping increases. 

In the original stacuwire system, the dominant frequency of the stack oscillation was the 

third mode [ 13. It was about twice the natural frequency of the wires when wire tensions were 

within certain ranges; this made parametric resonance possible. Corresponding to the third mode 

of the stack, the bending displacement amplitudes are very small at the two upper levels (Fig. 1). 

At the two lower levels, the displacement amplitudes reach =25-50 mm. From Fig. 5c, at U = 

14.5 to 18.5 m/s, parametric resonance will definitely dominate cable motion. Moreover, i t  is 

evident that small dampings and certain tension values are more likely to cause parametric 
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resonance. From these calculation results, it is not surprising that some of the wires, only at the 

lower two levels, were damaged by large-amplitude oscillations [ 13. 

CONCLUSIONS 

A coupled model of wind-induced vibration of a stack, based on an unsteady-flow theory 

and nonlinear dynamics of heavy elastic suspended cables, was developed in this study. 

Numerical analysis of the coupled system results in good agreement with observations of the 

original stacwwire response. The excitation mechanisms of the fluidstructure system were 

identified as (a) lock-in resonance of the stack by vortex shedding and (b) parametric resonance 

of the suspended cables by stack motion at the cable support ends. Wind speed, the fluctuating 

lift coefficient, cable tension, and damping are key to parametric resonance of the cables. 

Adjusting cable tension to certain values, which will change the natural frequency of the cables, 

may eliminate parametric resonance of the cables. Even if resonance is not completely 

eliminated, however, the vibration amplitudes of the wires are expected to be much smaller. 

Installation of damping ropes on the wires will further reduce wire vibration. 
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Table 1. Dimensional parameters and material properties of system shown in Fig. 1 

Parameter1 

property Stack Guy wire 

Cross-sectional area, cm* 366.46 1.54 

Density, g/cm3 1.66 7.83 

Inside diam., m 1.219 0.0 

Outside diam., m 1.238 0.0 16 

Masdunit length, kg/m 6 1.08 1.20 

Young’s modulus, kg/cm2 8.09 x 104 6.2 = 10.3 x 1010 
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52.4 m 

Fig. 1. Stack supported by guy wires at four levels 
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Fig. 2. Frequencies and mode shapes of first four natural modes of stack 
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Fig. 4. Cable supported in angled configuration 
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Fig. 5. Nondimensional RMS displacements of cable at x/! = 0.5 


