Theoretical and Computational Fluid Dynamics manuscript No.
(will be inserted by the editor)

Samuel N. Stechmann - Andrew J. Majda - Boualem
Khouider

Nonlinear Dynamics of Hydrostatic Internal Gravity
Waves

Submitted: September 23, 2007 / Revised: March 26, 2008 / Received: date / Accepted: date

Abstract Stratified hydrostatic fluids have linear internal gravity waves with different phase speeds
and vertical profiles. Here a simplified set of partial differential equations (PDE) is derived to represent
the nonlinear dynamics of waves with different vertical profiles. The equations are derived by projecting
the full nonlinear equations onto the vertical modes of two gravity waves, and the resulting equations
are thus referred to here as the two-mode shallow water equations (2MSWE). A key aspect of the
nonlinearities of the 2MSWE is that they allow for interactions between a background wind shear
and propagating waves. This is important in the tropical atmosphere where horizontally propagating
gravity waves interact together with wind shear and have source terms due to convection. It is shown
here that the 2MSWE have nonlinear internal bore solutions, and the behavior of the nonlinear waves
is investigated for different background wind shears. When a background shear is included, there is
an asymmetry between the east- and westward propagating waves. This could be an important effect
for the large-scale organization of tropical convection, since the convection is often not isotropic but
organized on large scales by waves. An idealized illustration of this asymmetry is given for a background
shear from the westerly wind burst phase of the Madden—Julian oscillation; the potential for organized
convection is increased to the west of the existing convection by the propagating nonlinear gravity
waves, which agrees qualitatively with actual observations. The ideas here should be useful for other
physical applications as well.

Moreover, the 2MSWE have several interesting mathematical properties: they are a system of non-
conservative PDE with a conserved energy, they are conditionally hyperbolic, and they are neither

Samuel N. Stechmann

Courant Institute of Mathematical Sciences
New York University

251 Mercer Street

New York, NY 10012 USA

Tel.: 212-998-3302

Fax: 212-995-4121

E-mail: stechman@cims.nyu.edu

Andrew J. Majda

Courant Institute of Mathematical Sciences
New York University

251 Mercer Street

New York, NY 10012 USA

Boualem Khouider

Department of Mathematics and Statistics
University of Victoria

PO BOX 3045 STN CSC

Victoria, BC

Canada V8W 3P4



2 Samuel N. Stechmann et al.

genuinely nonlinear nor linearly degenerate over all of state space. Theory and numerics are developed
to illustrate these features, and these features are important in designing the numerical scheme. A
numerical method is designed with simplicity and minimal computational cost as the main design
principles. Numerical tests demonstrate that no catastrophic effects are introduced when hyperbol-
icity is lost, and the scheme can represent propagating discontinuities without introducing spurious
oscillations.

Keywords Internal gravity waves - internal bores - stratified fluids - tropical atmospheric dy-
namics - convectively generated gravity waves - nonconservative PDE - computational methods for
nonconservative PDE

PACS 47.35.Bb - 47.11.-j - 92.60.-e

1 Introduction

The nonlinear dynamics of waves are important in many physical applications involving interactions
across different space and time scales. Energy can be transported upscale or downscale as in turbulence
and wave—mean interaction theory; the properties of waves can change depending on the background
state through which they propagate; and some phenomena are inherently multiscale and involve a
combination of these effects [1-4].

The tropical atmosphere abounds with examples of nonlinear and multiscale effects of waves on
many different scales, including the quasi-biennial oscillation [5], the Madden—Julian oscillation [6],
convectively coupled equatorial waves [7,8], squall lines and other mesoscale convective systems [9], and
density currents and gravity waves generated by convective clouds [10-12]. For most of these examples,
hydrostatic balance is a reasonable approximation because the aspect ratio (vertical length scale over
horizontal length scale) is small. This corresponds to horizontal spatial scales of more than 100 km
and time scales of more than 1 hour. On these scales, waves interact nonlinearly with background wind
shear and with source terms due to convection. In a growing body of literature, these effects are shown
to be mostly captured by two vertical Fourier modes [13-23]. While the important vertical modes have
been identified, and while they have been used in many linear studies, the nonlinear interactions among
the vertical modes have been largely ignored in simple models.

Here a set of simplified partial differential equations (PDE) is derived and analyzed for the non-
linear interactions between different vertical modes. The derivation is carried out by projecting the
full equations of motion, the nonlinear hydrostatic Boussinesq equations, onto the vertical modes of
two gravity waves. The projected equations are thus referred to here as the two-mode shallow water
equations (2MSWE). This derivation is carried out in section 2.

The 2MSWE have several interesting mathematical properties: they are a system of nonconserva-
tive PDE with a conserved energy, they are conditionally hyperbolic, and they are neither genuinely
nonlinear nor linearly degenerate over all of state space. Theory and numerics are developed to illus-
trate these features in sections 3-5, and these features will be important in designing the numerical
scheme.

A simple numerical method for the 2MSWE is presented in section 3. The scheme is designed
with simplicity and minimal computational cost as the main design principles. The idea is to split
the equations into conservative and nonconservative parts and to solve each part with an appropriate
method. The numerical scheme is tested with emphasis on conditional hyperbolicity (section 4) and
breaking waves that resemble internal bores (a.k.a. density currents or gravity currents) [24-27] (section
5).

An important aspect of the nonlinearities of the 2MSWE is that they allow for the effects of a
background wind shear interacting with propagating waves. This is emphasized in sections 5 and 6. In
section 6, it is shown that a background wind shear causes asymmetries between the westward- and
eastward-propagating waves. This could have important implications for the large-scale organization of
tropical convection, since waves propagating away from clouds can suppress or favor the formation of
new convective clouds [10,11]. Furthermore, the background wind shear is also important for convection
because it determines whether convection will be unorganized and scattered or whether it will become
organized into a squall line or mesoscale convective system [28,29]. In other work, in order to represent
these important effects of background wind shear, the authors are currently adding the nonlinear
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effects of the 2MSWE to a simplified model for organized tropical convection [18-23]. That model,
which is called the multicloud model, includes the effects of water vapor and clouds through additional
equations and nonlinear interactive source terms. The 2MSWE can be used in the multicloud model as
a nonlinear dynamical core, since its dynamical core was originally linear for simplicity. Results with
the multicloud model with the effect of background shear will be reported elsewhere in the near future.

2 Derivation of the Two-Mode Shallow Water Equations (2MSWE)

The setup considered here is a hydrostatic Boussinesq fluid with a background stratification that
is linear with height. The fluid is bounded above and below by rigid lids where free slip boundary
conditions are assumed: w|,—¢, i = 0. In this situation there is an infinite set of linear gravity waves
with phase speeds ¢; and vertical profiles sin(jz) for j = 1,2,3,--- [1]. The waves ¢; are decoupled
from all waves cj, (k # j) for the case of linear dynamics, but the waves become coupled in the case of
nonlinear dynamics. In this section nonlinear effects are included to describe the interactions between
the waves ¢; and ¢x (k # j). Here ¢; and cg are chosen because of their relevance to applications in
atmospheric science [13-23]. The PDE for these interactions are derived by projecting the full nonlinear
equations onto the dynamics for only the two waves ¢; and cs.

Hydrostatic Boussinesq equations. Consider the equations for a rotating hydrostatic Boussinesq fluid
[1-3]:

DU

— Ut =-vVP
e W)
V-U+ 8—W =0
0z
oP C)
5 =9
z eref
DO doy
— W= =0 1
Dt + dz ’ (1)
where the material derivative is
D 0 0
E = g +U-V+ W@

Here the horizonal velocity is U = (U(x, y, 2,t), V(x,y, 2, t)), and V is the horizonal gradient operator:
U -V = U0; + V09,. The model parameters and scales are given in Table 1. With the background
potential temperature 0y, (z) and the reference potential temperature 6.y = 300 K, the total potential
temperature of this model is

etotal = eref + ebg(z) + @(xv Y, z, t)

The pressure P has been scaled by a reference density so its units are not the typical pressure units.
The term f(y)U* represents the Coriolis force, where U+ = (=V,U). In what follows, the equatorial
[-plane approximation will be used [1,2]. This approximation replaces f(y) with the first two terms of
its Taylor expansion at the equator (y = 0). Since f(y = 0) = 0, this takes the form f(y) ~ By, where
the value of 3 is used here to define reference length and time scales as shown in Table 1. Although
this special form of f(y) is used here, the ideas in this paper apply for a general Coriolis parameter

f(y) as well.
Using the scales defined in Table 1, (1) are nondimensionalized to give

DU N
E—i—yU =-VP
vour W _y
0z
oP
9: ¢
D
DO . w—o. 2)

Dt
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Table 1 Model parameters and scales.

Parameter Derivation Value Description
I6] 2.3 x 107" m~'s™!  Variation of Coriolis parameter with latitude
Ores 300 K Reference potential temperature
g 9.8 m/s> Gravitational acceleration
H 16 km Tropopause height
N? (g/0ref)dbpy/dz  107* 572 Buoyancy frequency squared
c NH/m 50 m/s Velocity scale
L \e/B 1500 km Equatorial length scale
T L/c 8 hrs Equatorial time scale
a HN?0,.;/(rg) 15K Potential temperature scale
H/m 5 km Vertical length scale
H/(nT) 0.2 m/s Vertical velocity scale
& 2500 m3s~? Pressure scale

The fluid is bounded above and below by rigid lids at the earth’s surface (z = 0) and the top of the
troposphere (z = H = 16 km). The boundary condition at the surface is W = 0, and the boundary
condition at z = H is also W = 0. While the atmosphere has no such rigid lid at z = H, several studies
have shown that this is a reasonable approximation [10,15,18,19,30].

Vertical basis functions. There is a natural set of vertical basis functions for (2). The basis functions
can be obtained by linearizing the equations, using separation of variables for the z-dependence, and
solving the resulting Stiirm-Liouville problem [1]. Besides their relevance as vertical eigenfuctions
for the equations of motion, several of the basis functions also appear prominently in the tropical
atmosphere due to cloud types associated with certain vertical modes [13-23]. These basis functions
take the form of sinusoids:

Oo(Z) =1
Ci(z) = V2 cos(jz), Si(z) = V2 sin(jz), j=1,2,3,--- (3)

where the upper lid is located at z = 7 in nondimensional units. The inner product is then defined as
(Fe).6) == [ PeGE) (1)

so that the S’s and the C’s are orthonormal bases: (S;,S;) = d;; and (C;,C;) = d;;. The model
variables are expanded as

U(x,y,2,t) = Zuj:vy, (%) O(z,y,2,t) = ZGwy, )35;(2)
P(z,y,2,t) = ijxy, (2) Wz, y,21) = ijxy, i (2). (5)

Note that the convention here is to expand © in the basis jS;(2), not S;(z). This vertical structure is
illustrated for the first few modes in Figure 1.

Vertical projection of linearized equations. Before dealing with the nonlinear equations (2), the lin-
earized version is considered to illustrate the vertical projection in a simpler setting. A trivial back-
ground state U = W = P = © = 0 is used for the linearization. If the expansion (5) is then inserted
into the linearized version of (2), and if the equations are projected onto each mode j = 0,1,2, - - - using
the inner product (4), then the variables for each mode j solve a set of equations that is decoupled
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Fig. 1 Vertical profiles for the first few modes of velocity (a) and potential temperature (b), as described in
(3) and (5).

from the other modes. For j = 0 (the barotropic mode), the equations that arise are the rotating linear
2D incompressible fluid equations:

(9110

W + yué + Vpo =0
V- Uy = 0 (6)
For each other mode j = 1,2,3,--- (the baroclinic modes), the equations that arise are the rotating

linear shallow water equations:

Ou,; n
a—tj—i-yuj —V6‘j =0
00; 1 )
—atj—j—2v-uj20, j=123,---, (7)

where the wavespeed for the jth set of equations is ¢; = 1/j in nondimensional units. The hydrostatic
and continuity equations of (2) give the relations

1

The equations (6) and (7) have a rich variety of linear waves (see [1] for more details). While the
equations have been written down here for an equatorial 8-plane, the projection can also be carried
out for a general Coriolis parameter f(y).

Vertical projection of monlinear equations. Now we return to the nonlinear hydrostatic Boussinesq
equations in (2). Observations and simulations show that the 1st and 2nd baroclinic modes are the
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most important for many phenomena in the tropical atmosphere [13-23]. Therefore, the model variables
are assumed to have the truncated form

U =u;C; +uy(Cy O = 0151 + 0:2S5,
1
W=-V- u151 - §V . u252 P = —6‘101 - 9202. (9)

When (2) are projected onto the 1st and 2nd baroclinic modes, the result is the rotating two-mode
shallow water equations (2MSWE):

1 1
% —I—yuf — V91 = _ﬁ |:U1 . VUQ +ug - Vul + 2u2V -up + iulv . 112:|
0 1 1
% —V-ul = _ﬁ |:2111 -V@g—u2~V91 +492V~u1—§91V~ug]
(10)
1
%—I—yuﬁ‘ V@g:—ﬁ[Uqul—ulV-ul]
a0, 1 1
2 IV ew = ——— Ty -V — 6,V -
ot 4V U 2\/5 [U-l \V4 1 1V ul]
Energy Conservation Define the energy density
1
£=3 (Jar|” + [uz|* + 67 + 463) . (11)

One can show that this is a conserved energy for smooth solutions of (10):

dE 1 1 1
T4V F=0, F=—6u—0Ouy+—=[u;-usju; + ——|u[>us + v20,60u, — —=067u,. (12
ot 141 2U2 \/5[ 1 2] 1 2\/§| 1| 2 1v2U1 2\/§ 142 ( )

The form of this flux illustrates that the nonlinear terms in (10) can lead to energy exchanges between
modes 1 and 2.

Two-Mode SWE above the Equator. The main focus of this paper is on the nonlinear wave interactions
between different vertical modes. To illustrate the physical and numerical issues in the simplest possible
setting, the 2MSWE will be studied for the rest of this paper in a 1D setting above the equator (y = 0).
This will eliminate the dispersive equatorial waves and leave only 1D non-dispersive gravity waves. In
this setup above the equator, the Coriolis parameter f(y) vanishes, and the north—south y-depenedence
of the flow and the north-south velocities v; are set to zero. With these simplifications, the 2MSWE
(10) become

Oun 960 3}, Owm L Ouz

o dr V2 “or T 2" oz

891 811,1 o 1 892 891 811,1 1 811,2
W‘%“ﬁ[“%‘“?%“%—xﬁ%—x

(13)

Quz _ 992 _

ot or

9y 1Ouz 1 [ 90, 0m

ot 40r 2v2 | ‘or ox

These will be the equations used in the rest of this paper. This system is more mathematically tractable
than the 2D version in (10), and, as will be shown in subsequent sections, it still allows for interesting
interactions between the different vertical modes.
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Note that, in this 1D setting, the barotropic mode must be a constant due to the incompressibility
constraint: 0 = div ug = dug/0x. In 2D, however, the barotropic mode is active. The 2D case of
interactions between the barotropic mode and the 1st baroclinic mode was studied in [31], and a
numerical scheme for those equations was designed in [32,33].

Comparison with two-layer shallow water equations. Traditionally, the simple models used for studying
stratification, shear, and internal waves in the atmosphere and ocean are the multi-layer shallow water
equations (SWE) [2,34]. The two-layer SWE and the 2MSWE (13) have several important differences
and similarities, both physical and mathematical. In terms of their physical properties, they are quite
different. The two-layer SWE describe flows with two layers of constant densities (p; and p3), and
the dynamical variables are the velocity in each layer (uq(x,t) and ug(z,t)) and the thickness of each
layer (hq(z,t) and ha(x,t)). Since the density has no horizontal variations within each layer, the model
does not represent thermodynamic processes (see [35] for a discussion of layer models that include
thermodynamic effects). In contrast, the 2MSWE include thermodynamic effects through the potential
temperature (61 (z,t) and 62(x, t)). In addition, the two-layer SWE include a free upper surface, and the
vertical structure of the flow consists of the barotropic mode and the 1st baroclinic mode. In contrast,
the 2MSWE have a rigid upper lid, and the vertical structure of the flow consists of the 1st and 2nd
baroclinic modes (the barotropic mode is inactive in 1D in the presence of a rigid upper lid).

In terms of their mathematical form, the 2MSWE and the two-layer SWE have several similarities:
both are systems of nonconservative PDE in four variables, both have a conserved energy, both are
conditionally hyperbolic, and both have eigenstructures that are analytically intractable. One difference
is in the behavior of nonlinear waves. The baroclinic mode of the two-layer SWE is like all of the modes
of the 2MSWE in that it is neither genuinely nonlinear nor linearly degenerate over all of phase space.
The barotropic mode of the two-layer SWE, however, is genuinely nonlinear.

There are also models for compressible two-phase flow that share many of these mathematical
properties. See, for instance, [36,37] and references therein.

3 Numerical Methods

In this section, a numerical method for the 2MSWE is proposed, and a convergence test is carried
out to verify second-order convergence. The 2MSWE (13) have the following properties that must be
considered when designing a numerical scheme:

— They are nonconservative, i.e., they take the form

ou ou

e + A(u) e 0, (14)
where u = (ug, 01, us,62)7 and A(u) is a matrix that cannot be written as OF /0u for any flux F.

— The energy in (11) plays the role of a convex entropy function, and an entropy/entropy-flux pair
(P,¥) is formed by identifying & = £ and ¥ = F from (12) [38,39].

— They are conditionally hyperbolic, i.e., hyperbolic only for certain values of u. For some values of
u, the matrix A(u) has complex eigenvalues.

— The eigenstructure of A cannot be written down in a simple analytic form.

— They are neither genuinely nonlinear nor linearly degenerate over all of phase space, i.e., smooth
waves can break and become discontinuous, but they do not necessarily break.

These properties will be described in more detail in sections 4 and 5.

Because of these properties, designing a numerical scheme is a challenge. Since the equations are
nonconservative, the analytical tools for conservations laws, such as Rankine-Hugoniot jump condi-
tions, do not have unambiguous definitions; and standard numerical methods for conservation laws
cannot be readily used [39]. Analysis of nonconservative PDE is an active area of research (see, for
instance, [40-43] and references therein), and some methods have been developed to extend Riemann
solver-based numerical methods for conservation laws to nonconservative systems (see [44,45] and
references therein). However, such methods are difficult to apply here because the eigenstructure of
this system is not accessable analytically. For these reasons, the following simple, computationally
inexpensive scheme is proposed.
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In short, to solve (13) numerically, the equations are split into three parts: a conservative part, a
nonconservative part, and an external forcing part:

ou 0 ou OF
= — —_ + S, —_— =
ou

The conservative part is solved using a non-oscillatory central scheme [46,47]; the nonconservative part
is solved using the method of lines (see [39] and references therein) with centered differences,

A,. (15)

ou Ujy1 — Uj—1

— N 16

O |,_,, PYAY (16)
for the spatial derivatives and 2nd-order Runge-Kutta to advance in time; and the external forcing
terms will be solved using a 2nd-order Runge-Kutta scheme. Strang splitting is used to combine these
three parts into a 2nd-order scheme [39,48].

The splitting A = A. + A, in (15) can be done in many ways. The choice used here is

%4_ ﬂl—%—i—iulw— = iUl%‘i‘sul

ot Oz V2 | 22 = Ox

%—i— %[—m—f—\/ﬁm@z—%uﬁl: = —% [292%"'%91% + 56,
%4- (% l— 92: = Su,

Note that three nonlinear terms appear in the flux on the left-hand side, and the other nonlinear terms
appear on the right-hand side. This splitting A = A, 4+ A, has the following properties:

— The conservative advection matrix A.(u) has eigenvalues :I:%, %uz +4/1+2u3 — V205, so that

the time step of the central scheme can be easily chosen to meet the CFL condition, and the
conservative part is hyperbolic for §5 < 1/4/2 (which is ~ 11 K in dimensional units).

— The nonconservative advection matrix A,.(u) is nilpotent, i.e., the linear wavespeeds of A,.(u)
are all zero for all u. This property seems to justify using centered differences in (16) instead of
upwind differences.

To test for second-order convergence of this numerical method, a convergence test was carried out
with the numerical solution compared to an “exact” simple wave solution. Simple waves are discussed in
section 5, and the numerical procedure used to calculate the “exact” solution is described in appendix
A. The simple wave used for the convergence test propagates eastward at 50 m/s with a background
state of 81 = 4 K, uy = uy = 6 = 0. The initial condition is nearly sinusoidal, and the wave breaks
at time t = 2.15 hours, but the exact and numerical solutions are compared at time ¢ = 2.0 hours,
just before the wave breaks. This is shown in Figure 2. Grid sizes from 32 to 4096 points were tested,
and Figure 2 shows a comparison of the exact and numerical solutions for u; for the cases with 32,
64, 128, and 256 grid points. The case with 256 grid points seems to capture the wave well visually,
whereas the cases with fewer grid points have notable discrepancies. Figure 3 shows the results of the
convergence test using the L' error:

N
1
Ll error — N Z |unum(ZAx7 t) - uBE(iA'rv t)|7 (18)
i=1

where N is the number of grid points, wyqym is the numerical solution, and wu., is the “exact” solu-
tion. The errors in #; and 2 (not shown) are indistinguishable from those of u; and wus in Figure 3,
respectively. Second-order convergence is demonstrated in each of the variables.
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Fig. 2 Comparison of “exact” simple wave solution with numerical solution at time ¢t = 2 hours for (a) 32,
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4 Hyperbolicity

In this section the linear waves of the 2MSWE are studied for different background states, and it is
shown that the equations can become non-hyperbolic in some situations. Illustrations are given of both
the hyperbolic travelling waves and the non-hyperbolic overturning waves. Then, using the nonlinear
equations, hyperbolicity is examined numerically by forcing the system into non-hyperbolic states using
imposed source terms. This test shows that the numerical scheme can handle non-hyperbolic states in
a reasonable way.

4.1 Linear Hyperbolic Waves

If the 2MSWE (13) are linearized about the constant solution

u = (u17915u2592)T - (ﬁlaélv’aQ)éQ)T

3

the resulting linearized equations are

3 B3 a0
u; + A(a)u, =0, where A(q) = -1 +§ 26> _?W —?91 \/51;1 (19)
1 1 - 1
vzl M T 0

Linear equations of this form have only nondispersive solutions (see chapter 5 of [1]), which take the
form of travelling wave solutions u(z, t) = rf(x — At). If this ansatz is inserted into (19), an eigenvalue
problem is obtained for the wave speeds A and the eigenvectors r:

[\ 4+ A(@)]r = 0. (20)

Table 2 lists A and r for several choices of u. In general, uo and s have a much stronger effect than u,
and #;. The strongest effect occurs with §; = +2.5 K, for which the 1st baroclinic wave speeds decrease
in magnitude from £50 m/s to £36 m/s. Notice that the eigenvector is either entirely in mode-1 or
entirely in mode-2 unless there is a mode-1 background state. This can be seen from the form of A(u)
in (19).

Plots of the waves for a trivial background state u; = @g = 01 =0,=0 (corresponding to the first
two linear baroclinic equations in (7) in 1D, without rotation) are shown in Figure 4. These are the
first four waves listed in Table 2. The mode-1 waves propagate at speeds of £50 m/s, and the mode-2
waves propagate at speeds of +25 m/s.

4.2 Linear Non-Hyperbolic Waves

Here it is shown that the 2MSWE are conditionally hyperbolic, i.e., they are hyperbolic in some
regions of phase space and non-hyperbolic in other regions. The system in (19) is hyperbolic if the
4 x 4 matrix A(a) has real eigenvalues and linearly independent eigenvectors. Finding the eigenvalues
for the general matrix A(@) is not analytically tractable. Instead, the eigenvalues and eigenvectors of
A(u) are computed numerically for a representative set of fixed background states. First consider four
simple background states where only one of (u1, us,61,62) is nonzero:

uy # 0, ug = 01 = 03 = 0. The eigenvalues are all real unless |ui| > /2/3 (41 m/s).
01 #0, uy = us = O = 0. The eigenvalues are all real unless |0;] > /2 (21 K).

ug # 0, up = 01 = 03 = 0. The eigenvalues are all real.

02 # 0, uy = ug = 6 = 0. The eigenvalues are all real unless 6 > 1/(2v/2) (5 K).

Ll

(21)

These results suggest a sufficient condition for the 2MSWE system to lose hyperpolicity is that either
the background shear |u1| or |#| becomes too large. Large jet shears from |uz|, however, will not affect
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Table 2 Linear waves of 2MSWE for different background states. The first four columns show the background
state used. The middle column lists the four linear wavespeeds \. The last four columns show the eigenvector
r corresponding to each wavespeed A.

Background state ~ A Eigenvector r (nondim.)
a1 (m/s) 61 (K) @2 (m/s) 62 (K) | (m/s) U1 01 U2 02
0 0 0 0 | —50.0 0.71 0.71 0 0
—25.0 0 0 0.89 0.45
+25.0 0 0 0.89 —-0.45
+50.0 0.71 —-0.71 0 0
+5 0 0 0| —50.3 0.71 0.71 —-0.03 —-0.03

—24.7 0.14 0.16 0.88 0.43
+24.7 | —0.14 0.16 0.88 —0.43
+50.3 0.71 —-0.71 0.03 —0.03
0 +5 0 0 | —50.5 0.70 0.70 0.11 0.11
—24.1 | -0.14 —-0.07 0.89 0.43
+24.1 | —0.14 0.07 0.89 —0.43
+50.5 0.70 —-0.70 0.11 —-0.11

0 0 +5 0| —47.0 0.66 0.76 0 0
—25.0 0 0 0.89 0.45
+25.0 0 0 0.89 —0.45
+54.0 0.76  —0.66 0 0
0 0 0 +2.5 | —36.4 0.81 0.59 0 0
—25.0 0 0 0.89 0.45
+25.0 0 0 0.89 —0.45
+36.4 0.81 —0.59 0 0

hyperbolicity, and neither will strongly negative 82, but strongly positive 3 will make the system lose
its hyperbolicity.

When hyperbolicity is lost, at least one of the eigenvectors has a positive growth rate. Plots of the
unstable waves for the four cases in (21) are shown in Figure 5. For large positive 0}, there is downward
transport of cold air and upward transport of warm air. This overturning circulation should lead to
a more stable stratification. Note that this unstable wave has its strongest amplitude at upper levels;
this is because large positive 6 leads to a less stable stratification at upper levels and a more stable
stratification at lower levels (see Figure 1). For similar reasons, large negative #; creates an instability
at lower levels, as shown in Figure 5b, and large positive A, creates an instability at middle levels, as
shown in Figure 5c. Notice from (21) that for large negative 65 the 2MSWE are hyperbolic, and there
is a more stable stratification at middle levels. On the other hand, this case of large negative 05 also
leads to a less stable stratification at the lowest and highest levels (see Figure 1), but, interestingly,
the 2MSWE remain hyperbolic for this case. This is possibly due to the crude vertical resolution of the
2MSWE, which cannot resolve a wave in the shallow unstably stratified layer that appears when 6
takes large negative values. It would be interesting to see what would happen if more baroclonic modes
were retained. Also note that the unstable waves in Figure 5 are all stationary, i.e., they all have zero
phase speed. This is not necessarily the case when more than one background state variable are not
zero, as seen below in Table 3. Finally, note that the dispersion relation for (19) is w(k) = Ak. Therefore,
for the unstable waves in Figure 5, which grow exponentially in time, the smallest scales (largest k)
have the fastest growth rates. In atmospheric science, this type of behavior is seen, for instance, with
conditional instability of the second kind (CISK) in convergence-based convective parametrizations [3,
49].

When two of @y, 01, s, f2 are allowed to be nonzero at the same time, the hyperbolic region of state
space becomes harder to describe, as shown in Figure 6. In these plots, hyperbolic regions (labelled as
“hyp.”) and non-hyperbolic regions (labelled as “non-hyp.”) are separated by the solid curves. While
large values of |ui|, |f1], and 2 tend to cause non-hyperbolicity, large values of |ug| and strongly
negative 0> tend to maintain hyperbolicity. An example of the complexity of the hyperbolic region is
the case of Figure 6e with nonzero @; and . In that case some hyperbolic regions appear for large
values of |u;| and values of 63 in the range ~ 5-7 K.

Since the shear and stratification determine the hyperbolicity of the 2MSWE, one might expect
there to be a Richardson number criterion for hyperbolicity. The Richardson number is the ratio of
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the stratification to vertical wind shear squared [1,3]:

) N2 g 00iotal
Ri = —_total N2, — _9 OYiotal 99
4 (aU/aZ)g ) total eref 9z ( )
With the truncated vertical structure of the 2MSWE, a Richardson number could be defined as
Ri — f(91,92)7
g(u1, uz)

where f and g are functions to be determined. However, given the results in this section, it is not clear
how f and g should be defined. Ultimately the hyperbolicity of the 2MSWE is determined by the roots

of the characteristic polynomial of A(@) of (19):
1
A — V2u )+ yihs 8v/20, — 2u? — 6u2)A?
1 1
+ 2—\/5(—2\/51“91 + ug + 3u%u2)/\ + §(2 — 9% — 420, — 3u% + 6\/51@92 + 3u%)

This polynomial, though, is no more analytically tractable than an analytic Richardson number cri-
terion. Nevertheless, the results in this section suggest empirical conditions for hyperbolicity that are
physically intuitive.
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4.3 Forcing the System into Non-Hyperbolic States

If the system enters a state (u1, 01, ug, 62) that is non-hyperbolic, it could potentially be problematic
for the numerical scheme. This might happen if source terms are included (e.g., the effects of water
vapor and clouds as in [18-23]) and the source terms become too strong. To test how the numerical
scheme behaves when non-hyperbolic states are reached, imposed source terms are used to force the
system into non-hyperbolic states. It is shown that the numerical scheme responds in a physically
reasonable way.

The imposed forcing is chosen to represent condensational heating from deep convective and con-
gestus clouds, which are observed to directly force the 1st and 2nd baroclinic modes, respectively (see
[18] and references therein). For simplicity, the forcing is assumed to be localized in space and periodic

in time:
2
Son(.1) = H(t)aexp (_ (x — o) ) CH() = { 1 for mod (¢,12 hr) <4 hr

202 0 for mod (¢,12 hr) >4 hr

1
SQQ(:E,t) = §S91 (23)

where the heating is centered in the middle of the domain at zo = 1000 km, the standard deviation
is 0 = 20 km, and the amplitude is a = 200 K/day ~ 8 K/hour. This is a typical heating rate for the
deep convective region of a squall line or mesoscale convective system [9,53].
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Table 3 Some sample points where hyperbolicity was lost in the simulation in Figure 7

Location State Eigenvalues (m/s)
z (km) ¢ (hr) | w1 (m/s) 61 (K) w2 (m/s) 62 (K)
950 25 8.4 6.5 2.8 3.1 | 43, 17, —28+1.6¢
400 44 19.3 6.6 -3.2 3.6 | 44, 8, —29+&

The mode-1 and -2 heatings have the same strength when their vertical structures are considered,
since the basis functions for #; and 6, are v/2sin(rz) and 2v/2sin(272), respectively. This heating is
applied for 4 hours and then turned off for 8 hours, and this process is repeated periodically for the
simulation duration of 24 days. The grid spacing is Az = 2 km on a 2000 km-wide domain. The initial
conditions are u; = 01 = ug = 3 = 0.

Figure 7a shows the time evolution of the total energy. Initially the energy evolves in a stair-step
pattern, increasing as the source terms are turned on and remaining constant while the source terms
are turned off. The stair-step pattern lasts less than 2 days, after which the system dissipates energy
at the same time the forcing pumps energy into the system. Figure 7b shows the time evolution of the
domain-maximum of #5. Note that 6 is bounded above by ~ 6 K, which was the simple criterion for
hyperbolicity given in (21). Figure 7c shows a black square at each point (z,t) where hyperbolicity is
lost. Non-hyperbolic states are common in this simulation. The results in Figure 7 suggest that the
source terms force 02 to increase until non-hyperbolic states are reached, and the unstable states (as in
Figure 5) act to stabilize the system and bring it back to hyperbolic states with 63 < 6 K. The energy
plot in Figure 7a shows that the non-hyperbolic unstable waves do not cause catastrophic problems
for the numerical scheme, since the numerical solution does not grow without bound. Note also that
while the 2MSWE became non-hyperbolic, the conservative part of the numerical scheme is always
hyperbolic, since it is non-hyperbolic only when 65 > 11 K, as described in section 3.

Some sample points where hyperbolicity was lost are shown in Table 3. These sample states have
nonzero contributions from each variable. Each individual contribution is well within the limits of
hyperbolicity that were described in (21) and Figure 6, but taken together they lead to a non-hyperbolic
state. Therefore, while the results in (21) and Figure 6 suggest that relatively large values must be
reached in order for hyperbolicity to be lost, it is not excluded that moderate values can lead to non-
hyperbolic states when several of the variables are nonzero. From the different shapes in Figure 6, it is
not hard to imagine that the system can become non-hyperbolic through more complex configurations
of the background state variables.

5 Breaking Waves

In this section, nonlinear solutions to the 2MSWE are studied. It will be shown analytically that
smooth initial conditions can break, but there are also exact solutions that do not break. Whether or
not a wave breaks depends on the background state; that is, the characteristic fields of the 2MSWE
are neither genuinely nonlinear nor linearly degenerate over all of phase space. The breaking waves
resemble internal bores [24-27]. The numerical scheme is also tested with breaking waves. After the
wave breaks, the numerical front is sharp and without oscillations, and it continues to propagate and
decay as an N-wave [38,39]. A numerical solution of the dam-break problem demonstrates that the
numerical scheme can represent rarefaction waves as well as linearly degenerate fronts and genuinely
nonlinear fronts.

5.1 Simple Wave Solutions

Now consider the nonlinear 1D 2MSWE (13) written in a quasi-linear form,
u; + A(u)u, =0, (24)

where u = (uy, 61, uz,02) is a vector solution and A(u) is the corresponding advecting matrix. Here
we seek simple wave solution on the form [38,50]

u(z,t) = U(o(z,1)). (25)
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Inserting this ansatz into (24) leads to
oUy + 0,A(U(0))U, = 0.

The ansatz (25) will then provide a solution if

U, =r,(U(0))
U(oinit) = Uinat (26)
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and

ot + Ap(U(0))o

0
o(z,0) =0

o(z), (27)

where r, and ), are the eigenvector and eigenvalue corresponding to the pth characteristic field. The
ordinary differential equation (ODE) in (26) can be solved on some interval o_ < o < o4, within
which the initial data oq(z) should be chosen. The PDE (27) can then be solved using characteristics:

do dz
i 0 along i Ap(U(a)), (28)

which are straight lines. It is assumed in this construction that the sytem remains hyperbolic.
The solution is then

a(z,t) = oo(x = Ap(U(0))t) = oo(). (29)
This solution is valid until two characteristic lines meet, which will happen at time

-1 -1
T, = min, %AP(U(UO(CL’))) o min, [(rp . V)\p)%} : (30)

Note that the simple wave will never break if an initial state is chosen so that r, - VA, = 0.

Since the wave-breaking condition (30) depends on whether r,- VA, is nonzero, it is useful to define
two common cases: genuine nonlinearity and linear degeneracy [38,50]. For a PDE of the form (24),
the pth characteristic field is said to be genuinely nonlinear in an open set D if

rp(u) - Vydy(u) #0 for all ueD. (31)

For a scalar conservation law u;+ f(u),; = 0, this is the convexity condition f”(u) > 0 (or the concavity
condition f”(u) < 0). At the other extreme, the pth characteristic field is said to be linearly degenerate
in an open set D if

rp(u) - Vyd,(u) =0 forall ueD. (32)

This condition is satisfied trivially by constant-coefficient linear hyperbolic systems, for which V, A, = 0
for all u. Furthermore, (32) is sometimes satisfied for nonlinear systems; for instance, in gas dynamics,
vorticity waves and entropy waves are linearly degenerate [50].

The 2MSWE are neither genuinely nonlinear nor linearly degenerate over all of phase space. To
demonstrate this, it is shown that, for each of the characteristic fields p, r, - V., is nonzero over parts
of phase space and zero over other parts of phase space. Since analytic experssions are not known for
r, and Ay, rp, - V), is calculated numerically. Figure 8 shows plots of r,, - VA, for different points of
phase space. Figure 8a uses points where us = 6; = 63 = 0 with different values of u;. Note that the
states shown in this figure are all hyperbolic, which is clear for Figure 8a from the results in (21).
The characteristic fields are labelled p = —1,—2,42, +1, where the +(—) corresponds to an eastward
(westward) phase speed \A,, and 1 and 2 refer to whether the eigenvector r,, is predominantly in the 1st
or 2nd baroclinic mode. Figure 8a shows that none of the characteristic fields is genuinely nonlinear
over all of phase space, since r, - VA, = 0 for all fields when u; = 01 = us = 6 = 0. It is also clear
from this plot that none of the characteristic fields is linearly degenerate over all of phase space, since
r, - VA, # 0 for most of the points shown. Figure 8b shows that the trivial state u; =6, =us =6, =0
is not the only point in phase space where r, - VA, = 0. This plot shows states with up =0, 6; = 4
K, 62 = 2 K, and different values of u;. Also note that, for each of the characteristic fields, r,, - VA, is
sometimes positive and sometimes negative. Furthermore, while r, - VA, = 0 sometimes, there do not
appear to be any open sets in phase space where this is true.
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of ui, and (b) uz =0, 61 =4 K, 2 = 2 K with different values of u;. Since each characteristic field has both
positive and negative values of ry, - V., they are neither genuinely nonlinear nor linearly degenerate over all
of phase space.

5.2 Simple Waves that Do Not Break

Here we illustrate simple wave solutions for the 2MSWE that do not break. For a simple wave u(z,t) =
U(o(z,t)) to not break, it must satisfy r,(U) - V,A,(U) = 0 for all values of o. To find such a simple
wave solution, one must first find a particular value of Uj;,;; and a characteristic field p for which
rp(Uinit) - VuAp(Uinie) = 0. Then, using U(oini) = Uipie, one must solve (26) over an interval
o_ < o < oy to see if rp(U) - V,A,(U) = 0 over that interval. For the 2MSWE, the search for
such solutions must be done numerically because the eigenstructure is analytically intractable. Points
in phase space where r, - VA, = 0 seem to occur infrequently based on the results in Figure 8. In
principle, one could search all of phase space to find all of these points, possibly using an iterative
method. Here, instead, one family of non-breaking simple waves is presented as an example.
One family of non-breaking simple waves for the 2MSWE takes the form

u(z,t) = Ujpir + ro(z — At), (33)

which is a special solution of (26)—(27) with constant eigenvector r,(U(c)) = r, constant eigenvalue
Mp(U(0)) = A, and traveling wave solution o(z,t) = o(z — At). In this solution form, Uy, acts
as a background state and ro(x — At) as an anomaly, but these are not just solutions to linearized
perturbation equations; these are linearly degenerate solutions to the nonlinear 2MSWE (13). If Uy, is
chosen to be purely 2nd baroclinic, then there is a simple wave of this form for each of the characteristic
fields, as shown in Table 4. The trivial choice Uj;,;+ = 0 is a special case and was shown in Figure 4.
Note that, for the purely mode-2 values of Uj,;; in Table 4, the eigenvector r is either purely mode-1
or purely mode-2. In summary, Table 4 demonstrates that the simple waves for all characteristic fields
do not break if Uj;,;; is purely 2nd baroclinic. On the other hand, if a 1st baroclinic contribution is
included in Uy, then a breaking simple wave might exist, which is the topic discussed next.

5.3 Simple Waves that Break

The results in Table 4 show that a nonzero mode-1 background state is needed for a simple wave to
break. One example of a breaking simple wave was given in the convergence test in Figure 2, where the
background state was 61 = 4 K and u; = us = 62 = 0. As another example of a breaking simple wave,
consider a background state with w1 =5 m/s, us = 61 = 02 = 0. The methods described in section 5.1
and appendix A were used to calculate “exact” simple wave solutions for this background state. The
simple waves of all four characteristic fields will break with this background state. Figure 9 illustrates
the eastward-propagating mode-1 wave, which has a speed of roughly 50 m/s. Figure 9a shows the
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Table 4 Examples of simple waves that do not break. These are cases of Ujpit, A, and r for which (33) is a
solution to the 2MSWE.

Uinit r

ur 01 uz 62 A (m/s) Uy 01 uo 0o
0 0 0 o0 —50 1 1 0 0
—25 0 0 2 1
+25 0 0 2 -1
+50 1 -1 0 0

A —La
0 0 a b|50(Za-VitT-2v) |2 1 0 0
95 0 0 2 1
+25 0 0 2 -1
50 - (2 Thoa? V) | 2585 1 o o

'(ﬁ“* +2at - ) “ireva

background shear, and Figures 9b and ¢ show snapshots at times ¢t = 0 and 4 hours, respectively, of
pressure contours and the velocity field. The velocity field includes the background state and is shown
in a reference frame moving eastward at 12 m/s. The plot at 4 hours was shifted in space to put the
breaking wave in the center of the domain. Initially the wave was nearly sinusoidal, but after 4 hours,
the gradients of both the pressure and velocity steepen sharply as the solution approaches the wave
breaking time of T, = 4.3 hours. At ¢t = 4 hours, the wave resembles an internal bore (a.k.a. density
current or gravity current) [24-27]. The flow is westward and nearly barotropic in the right half of the
domain, and it sharply veers upward near x = 50 km where it meets the high pressure fluid in the
lower left part of the domain. In the left half of the domain, the flow is mostly baroclinic. The simple
waves for the other characterstic fields (not shown) have similar features but clearly several differences
as well due to their different eigenstructures and propagation speeds.

For simple waves that break, the exact solution is no longer valid after characteristic lines meet.
Defining weak solutions for nonconservative PDE is currently a challenging research topic that is beyond
the scope of this paper (see [40-45] and references therein). Nevertheless, a numerical solution of a
breaking wave will be shown to demonstrate that the numerical scheme proposed here can represent
propagating discontinuities in a reasonable way.

The breaking wave in Figure 9 was also simulated numerically using the scheme from section 3.
The domain is 100 km wide with periodic boundary conditions, and the grid spacing is Az = 0.1 km.
The duration of the simulation was 36 hours, which is roughly 8 times the wave breaking time, and
the results are shown in Figure 10. The time evolution of the energy is shown in Figure 10a, and the
evolution of u; is shown in Figure 10b. The wave propagates eastward at roughly 50 m/s, but the
snapshots shown in Figure 10b were shifted to put the discontinuity in the center of the domain. After
the wave-breaking time T, = 4.3 hours, the energy of the wave anomaly decays to zero over a time
scale of ~ 10 hours. Note that the total energy decays to a nonzero value corresponding to the energy
of the background shear, u; = 5 m/s. The energy here serves as a convex entropy function, and the
breaking wave takes the form of a decaying N-wave. This example demonstrates that the numerical
scheme can represent propagating discontinuities without introducing spurious oscillations.

5.4 Dam-Break Problem

To illustrate a more complex situation with discontinuities, the well-known dam-break problem [38,39]
is solved numerically with the scheme described in section 3. Initially the flow is at rest (u1 = u2 = 0),
and there is a jump in potential temperature at x = 0 with cold air to the left:

| -10K for z<0
91(:17,0)—{ 0K for x>0

and 03 = 0 over the whole domain initially. The grid spacing used is Az = 0.5 km.

Figure 11 shows the solution after 2 hours. The solution consists of four waves, with two prop-
agating westward and two propagating eastward. Table 5 lists the propagation speed of each wave
and the wave type based on the wavespeeds of the neighboring states. For instance, the leftmost front
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Fig. 9 Exact solution of a breaking simple wave in a background shear. The background shear uses u; = 5
m/s and uz = 0 (a). Snapshots of the simple wave are shown at time ¢ = 0 hours (b) and ¢ = 4 hours (c).
This is the mode-1 simple wave that propagates eastward at roughly 50 m/s. The vector field includes the
background shear and is plotted in a reference frame moving eastward at 12 m/s. The wave at ¢ = 4 hours has

been shifted in space to put the breaking wave in the center of the domain. Pressure contours are shown with
positive anomalies as solid lines and negative anomalies with dashed lines.

propagates into the cold region at —57.6 m/s, which is intermediate between the wavespeeds of the
states to its left and right (—52.5 and —61.9 m/s, respectively). This is consistent with Lax’s stability
criterion for propagating fronts [38,39,50,51]. Therefore, this wave is identified as a genuinely nonlinear
breaking wave. Also identified in Table 5 are a rarefaction fan and a linearly degenerate wave, while the
fourth wave appears to be nearly linearly degenerate. This example shows that the numerical scheme

can represent a variety of nonlinear waves: genuinely nonlinear waves, linearly degenerate waves, and
rarefaction fans.



Nonlinear Dynamics of Hydrostatic Internal Gravity Waves 21

() | | | (b)

u (m/s)

0.2¢ ]

Total energy (scaled, nondim.)

% 10 20 30 0 20 40 60 80 100

time (hours) X (km)

Fig. 10 Numerical solution of a breaking simple wave using the method proposed in section 3. (a) Time
evolution of total energy, which decays to a nonzero value corresponding to the energy of the background
shear, u; = 5 m/s. (b) Snapshots of u; at times 0 (thin solid line), 4 (thin dashed line), 6 (thick solid line),
12 (thick dashed line), and 36 hours (thick dash-dot line). The wave breaks at time 7% = 4.3 hours. The wave
propagates eastward at roughly 50 m/s, but the snapshots were shifted to put the discontinuity in the center
of the domain.
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Fig. 11 Numerical solution of the dam-break problem. Snapshots are shown at time ¢ = 2 hours of (a) u1, (b)
uz, (c) 01, and (d) 62.
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Table 5 Numerical solution of the dam-break problem. List of the four waves that emerge from the initial
jump, along with the propagation speeds of the waves and the probable wave type. The probable wave type is
inferred from the front speeds shown here and the wavespeeds of the neighboring states to the left and right
of the front.

Front/fan location | Propagation Relevant wavespeeds of | Wave type

at t = 2 hours speed (m/s) neighboring states to

(km) left and right (m/s)

-420 -57.6 -52.5 and -61.9 Genuinely nonlinear

-150 -20.5 to -19.3 | -20.6 and -19.1 Rarefaction

170 24.6 24.6 and 24.4 Nearly linearly degenerate
370 50.9 50.9 and 50.9 Linearly degenerate

6 Waves Generated by Thermal Forcing

In this section, an important example from the tropical atmosphere is studied where gravity waves
propagate through background wind shears. When convective clouds form and decay, condensational
heating excites bore-like gravity waves that propagate away from the cloud. These waves play an
important role in suppressing or promoting new convection in the vicinity of the pre-existent cloud.
For simplicity, previous studies have examined these waves as they propagate through a motionless
environment [10,52-55]. However, tropical convection often forms in environments with vertical shear
of the horizontal winds [16,28,29], and it is often not spatiotemporally isotropic but organized by
waves on larger scales [7,8,16]. In order to understand how convection is organized on larger scales,
it is important to study how the bore-like waves are affected by a background wind shear. This is the
topic of this section.

To generate the bore-like waves, a localized heat source, is turned on at time ¢ = 0 and left on for
the duration of the simulation, unlike the situation in (23). This is meant to represent heating from
cloud formation [10,52-54]. The heat source takes the form

(x — x0)?

So1(w,t) = aexp <— 552

1
) ) SGQ(xvt) = _15917 (34)

where the heating is centered in the middle of the domain at xog = 1000 km, the standard deviation
is 0 = 20 km, and the amplitude is ¢ = 200 K/day =~ 8 K/hour. The vertical profile of this forcing
is shown in Figure 12. It is a top-heavy heating that represents a combination of stratiform and deep
convection (whereas the case in (23) was bottom-heavy, representing a combination of congestus and
deep convection). The grid spacing is Az = 2 km on a 2000 km-wide domain.

Before considering the nonlinear case with a background shear, a motionless background state
u1 = ug = 61 = 0 = 0 is considered for comparison. To further aide comparisons, the case with a
motionless background state is shown for both linear dynamics (Figure 13) and nonlinear dynamics
(Figure 14). Snapshots of velocity and potential temperature are shown at time ¢ = 4 hours. The
mode-1 heating forces a mode-1 bore that travels at 50 m/s and reaches x = 300 and 1700 km at t = 4
hours. At the front, the mode-1 bore has downward motion throughout the troposphere due to (8):

w;(z,t) = —%(’“)muj(ac, t), Wz, z,t) = wi (2, t)V2sin(2) + w(z, t)V2sin(2z).

Associated with this subsidence is adiabatic warming, which appears as the term W df,/dz in (1),
and which is seen as the warming in 6; by 1.2 K following the passage of the mode-1 front. In a realistic
situation with water vapor, this subsidence warming would cause a decrease in the convective available
potential energy (CAPE) and stabilize the atmosphere for deep convection [3]. In this way, the mode-1
bore suppresses the formation of new convection. On the other hand, the mode-2 bore has the opposite
effect: it tends to promote convection. The mode-2 heating forces a mode-2 bore that travels at 25 m/s
behind the mode-1 bore and reaches x = 650 and 1350 km at ¢t = 4 hours. At the front there is upward
motion at low levels, from which the low levels are cooled adiabatically. This is seen as the jump in 65
of —0.6 K as the mode-2 bore passes. Thus the mode-2 bore tends to promote new convection in the
vicinity of the existing cloud by increasing the CAPE at low levels. These are the basic mechanisms



Nonlinear Dynamics of Hydrostatic Internal Gravity Waves 23

16

12

z (km)
[o¢]

—%O —1‘0

0 20
Se (K/hour)

Fig. 12 Vertical profile of the heating (34) used to generate the waves shown in Figures 13-15.

of the mode-1 and mode-2 bores which are believed to play a central role in suppressing and favoring
convection, respectively [10,16,52-55].

When the nonlinear dynamics of the 2MSWE (13) are turned back on (but still with a motionless
background state), the mode-1 and mode-2 responses are mixed, as shown in Figure 14. The 25 m/s bore
is now reinforced by a mode-1 response as well, but the 50 m/s bore is almost purely 1st baroclinic.
Although the mode-1 and -2 reponses are now mixed, the effects are minor so that the previous
discussion applies.

However, when both the nonlinearities and a non-zero background shear are included, the stucture
of the traveling bores becomes spatially asymmetric: the waves to the east and west of the source
are no longer the same. This is demonstrated in Figure 15, which was initialized with a background
shear of u; = +10 m/s and us = —10 m/s, illustrated in Figure 15e. This shear profile was chosen
to represent typical conditions in the westerly wind burst stage of the convectively active phase of
the Madden—Julian oscillation, with strong westerlies at low- and mid-levels and easterlies at upper
levels [56,57]. With this background shear, Figure 15 shows that the area to the west of the source is
more favorable for convection than the area to the east of the source. The vertical profile of potential
temperature is shown in Figure 15f for four different states at time ¢ = 4 hours. At x = 800 km,
after the westward-propagating mode-2 bore passes, the atmosphere is in a state that is favorable for
convection, with ©® < —1 K at low levels. To the east of the source, however, after the mode-2 bore
passes, the atmosphere is in a state that is less favorable for convection, with @ ~ 0 at low levels and
© > 3 K at upper levels. A detailed observational and computational study [57] of the westerly wind
burst phase of the Madden—Julian oscillation has new organized convection always appearing westward
of pre-existing organized convection, which agrees with the idealized study of the present paper. Thus,
these effects might be important for the large-scale organization of convection.

7 Conclusions

A new set of PDE, the 2MSWE, were derived to capture the nonlinear interactions of gravity waves
with different vertical profiles. The nonlinearities allow for waves interacting with a background wind
shear, which is an important feature for many applications in the atmosphere. The nonlinear waves
were shown to resemble internal bores, and the behavior of the waves was investigated for different
background wind shears. When a background shear was included there was a pronounced asymmetry
in the westward- and eastward-propagating waves. An idealized study of this asymmetry (Figure 15)
in the westerly wind burst phase of the Madden—Julian oscillation produced a result in qualitative
agreement with observations [57]; namely, new organized convection appears westward of existing
organized convection in this jet shear. The westward-propagating waves produced an environment
that is more favorable for convection than that produced by the eastward-propagating waves. This
might be an important mechanism in the large-scale organization of tropical convection, since the
convection is often not isotropic but organized on large scales by waves.
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(e) Vertical profile of the initial shear. (f) Vertical profiles of potential temperature at time ¢ = 4 hours at
2z = 500 (thin solid line), z = 800 (thick solid line), z = 1200 (thick dashed line), and = 1500 km (thick
dashed line).

The 2MSWE were shown to have several interesting mathematical features: they are a system
of nonconservative PDE with a conserved energy, they are conditionally hyperbolic, they are neither
genuinely nonlinear nor linearly degenerate over all of phase space, and breaking waves can form from
smooth initial conditions. Theory and numerics were developed to illustrate these features. When
hyperbolicity is lost, the unstable waves have an overturning circulation that transports warm air
upward to stabilize the system. Hyperbolic travelling waves were shown to be exact solutions to the
nonlinear equations provided the background state is purely 2nd baroclinic. Such waves are linearly
degenerate and do not break. In other cases, when a 1st baroclinic background state was present,
several examples of breaking nonlinear waves were given. These are genuinely nonlinear waves that
break, and they resemble internal bores (a.k.a. density currents or gravity currents) [24-27].

Due to these features of the 2MSWE, designing a numerical scheme for them is a challenge. A nu-
merical method was presented in section 3 with simplicity and minimal computational cost as the main
design principles. The non-conservative system is split into a conservative part and a non-conservative
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part. The conservative part is solved by a standard non-oscillatory central scheme [46,47], and the non-
conservative part, which has a nilpotent advection matrix, is handled by a simple centered differencing
scheme. The scheme was tested in sections 4 and 5. When external source terms were applied to force
the system into non-hyperbolic states, no catastrophic effects were introduced when hyperbolicity was
lost, and the numerical solution did not seem to stray far from the hyperbolic region. When tested on
breaking waves, the numerical scheme produced propagating discontinuties without intruducing spu-
rious oscillations. A numerical solution to the dam-break problem demonstrated that the scheme can
represent a variety of nonlinear waves: genuinely nonlinear waves, linearly degenerate waves, and rar-
efaction fans. These tests show that the numerical method can handle a variety of situations including
non-hyperbolic states, nonlinear waves, and intense source terms.

Given the results shown here, the 2MSWE should be useful as a dynamical core for models that
include the effects of water vapor and convection as interactive source terms [18-23]. For instance, this
nonlinear dynamical core is important for the interactions of background wind shear with squall lines
and mesoscale convective systems. The authors are currently pursuing this direction, and results will
be presented elsewhere in the near future.

A Appendix: Numerical Methods for Simple Waves

In section 5, we introduced the simple wave solutions for the two-mode-shallow-water system in (13) and showed
how such solutions are constructed by solving the ODE (26) and the scalar PDE (27). In this appendix it is
shown how (26) and (27) are solved numerically to obtain the “exact” solutions shown in Figures 2 and 9.

First, the ODE (26) is solved. 20,000 discrete points are placed uniformly over the domain from z = 0 to
100 km, and o¢(z) is chosen to be a sinusoid with amplitude gamp. This defines a set of discrete values of o
in the interval —oamp < 0 < Tamp With Ul|o—¢ chosen to be the background state (61 = 4 K for Figure 2 and
u1 = 5 m/s for Figure 9). A value of 0amp = 2 m/s was used in Figure 2 and oamp = 1 m/s was used in Figure
9. The characteristic field (rp,A,) chosen in each case is the one with a characteristic speed of roughly +50
m/s. The solution of the ODE (26) then gives the value of U for each of the 20,000 discrete values of o, given
its value at some initial point o, .

Second, the scalar PDE (27) is solved using characteristics as described in (28). This can be done to give
an “exact” solution to the 2MSWE that is valid until the wave breaking time given by (30).

The wave breaking time given in (30) takes a simple form if two assumptions are made. First, the ODE
(26) allows one to choose a normalization of r,. Here r, is normalized by requiring

rp -V, =1, (A1)

assuming that r, - VA, > 0 or < 0 for all U in some region of phase space. With this normalization, it follows
that

dA
d—; = I‘p . V)\p = 1, (A2)
so that
Ap=Ap+0, where M) = \p|o—o. (A3)

The PDE for o in (27) then takes the form of Burger’s equation,
o1+ (\) 4+ 0)a. =0, (Ad)
and the wave-breaking time T also takes the simple form
-1
dog *

ming <zt

T - (A5)

As the second simplifying assumption, as mentioned above, the initial conditions for o¢(x) are chosen to be
sinusoidal,

oo(xz) = damp sin(kx), (A6)
so that the wave breaking time is simply
1
T, = . A7
pE— (A7)

For Figure 2 with oamp = 2 m/s, the wave breaking time is 7% = 2.15 hours, and for Figure 9 with gamp = 1
m/s, the wave breaking time is 7% = 4.3 hours.
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