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The conductivity of highly charged membranes is nearly constant, due to counterions screening pore surfaces. Weakly
charged porous media, or “leaky membranes,” also contain a significant concentration of coions, whose depletion at
high current leads to ion concentration polarization and conductivity shock waves. To describe these nonlinear phenom-
ena in the absence of electro-osmotic flow, a simple leaky membrane model is formulated, based on macroscopic elec-
troneutrality and Nernst–Planck ionic fluxes. The model is solved in cases of unsupported binary electrolytes: steady
conduction from a reservoir to a cation-selective surface, transient response to a current step, steady conduction to a
flow-through porous electrode, and steady conduction between cation-selective surfaces in cross flow. The last problem
is motivated by separations in leaky membranes, such as shock electrodialysis. The article begins with a tribute to Neal
Amundson, whose pioneering work on shock waves in chromatography involved similar mathematics. VC 2013 American

Institute of Chemical Engineers AIChE J, 59: 3539-3555, 2013
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This article is dedicated to the memory of Neal R.
Amundson, the “father of modern chemical engineering,”1

who brought mathematical rigor to the fields of transport
phenomena and reactor engineering.2,3 His education, teach-
ing, and research were truly interdisciplinary, long before
that term came into fashion. His early education (BS 1937,
MS 1941) was in Chemical Engineering, the field of his pri-
mary faculty appointments at University of Minnesota
(1949–1977) and University of Houston (1977–2011) and
lifelong professional focus. He is famous for leading the
Department of Chemical Engineering at Minnesota to lasting
national prominence, as its chair for 25 years—starting at
age 33, only 2 years after being hired. It is perhaps surpris-
ing then, that his most advanced degree at Minnesota (Ph.D.
1945) and his early teaching as an Assistant Professor
(1945–1947) were not in Chemical Engineering, but in
Mathematics.

Amundson revolutionized the way that chemical engineers
design systems for separations, heat transfer and adsorption,
by replacing empirical principles with rigorous models based
on partial differential equations (PDE). His Ph.D. thesis
(1945)4 and early articles (1948–1952)5–7 involved analytical
solutions of PDEs for flow-through adsorption in porous

media, which are still used today in chromatography, electro-
phoresis, and ion exchange. His work built on the seminal
article of Thomas (1944)8 and preceded those of Goldstein
(1953),9,10 which are better known in applied mathematics.11

A major achievement of Amundson was to show that
flow-through adsorption processes described by the PDE
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where c is the flowing concentration and f(c) is total (adsor-
bed 1 flowing) concentration per volume in local equilib-
rium, lead to nonlinear kinematic waves.3,11 Neglecting
diffusion (D 5 0), the model reduces to a first-order quasilin-
ear PDE, which can be solved in implicit form
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by Lagrange’s method of characteristics, as explained in a
series of articles by Rhee, Aris and Amundson (1970–
1972).12–14 For most boundary and initial conditions, kine-
matic waves eventually “break” and produce shock waves,
or propagating discontinuities, which are sharp in the limit
D 5 0. Lapidus and Amundson (1952)7 showed that these
discontinuities are broadened by diffusion (D > 0) around
the same time that Hopf15 and Cole16 famously solved Bur-
gers equation in fluid mechanics.11 Amundson, Aris, and
Swanson (1965)17 rigorously explained and analyzed the
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sharp concentration bands arising in chromatography and ion
exchange as concentration shocks in porous exchange
beds.3,13,14,18

Upon being invited to contribute to this special issue, I set
out to learn more about the man and his life’s work. At first,
I was struck by the unusual parallels with my own career,
since I too began graduate study and teaching in mathemat-
ics before moving to chemical engineering and holding a
joint appointment. What impressed me most, however, were
the parallels in research. Without knowing Admunson’s sem-
inal work on exchange beds, Mani and I recently developed
a theory of “deionization shocks” in porous media19 that
bears intriguing mathematical similarities; surface conduction
(SC) within the pores and bulk ionic current play the roles
of surface adsorption and pressure-driven flow, respectively.
This phenomenon was first discovered in microfluidics by
Mani, Zangle and Santiago (2009),20–23 but its extension to
porous media—analogous to Amundson’s work—is more gen-
eral (e.g., decoupling the directions of flow and current) and
paves the way for practical applications. Indeed, the first
experiment in my new laboratory in the Department of Chemi-
cal Engineering (Deng et al., Submitted) applies the shock
theory to water deionization by “shock electrodialysis”24 and
relies on mathematical analysis for finite-length pores25 to
interpret the data, as elaborated in this article.

Like Amundson, I too began my career in mathematics, so
it is perhaps not surprising that we ended up doing similar
research in chemical engineering. At MIT, I used to teach
18.311 Principles of Applied Mathematics, which introduced
PDEs to undergraduates, starting with first-order quasilinear
equations (applied to traffic flow).26 In contrast, chemical
engineering courses up to the graduate level (such as 10.50
Analysis of Transport Phenomena, which I teach with
Deen27 following Amundson’s coteaching model1) mainly
cover the solution of linear parabolic PDEs, including the
finite Fourier transform method championed by Amundson.2

As a result, many chemical engineering students today do
not know the method of characteristics, even though it is the
mathematical basis for theories of chromatography,3,12 gas
dynamics,11,28 electrokinetic soil remediation,29–32 capillary
electrophoresis,33–37 and ion concentration polarization (ICP)
in microchannels20–22 and porous media19,38 (the focus of
this article).

Perhaps this special issue of AIChE Journal can serve as a
call to reinvigorate the teaching of mathematical methods
introduced by Amundson to our field, which provide physi-
cal insights and useful formulae, too often overlooked in the
computer age.

Introduction

When current is passed through an electrolyte to an ion
selective surface (such as an ion-exchange membrane,
micro/nanochannel junction, or electrode), the passage of
certain ions, and the rejection of others, generally lead to
concentration variations and voltage losses (or internal
resistance), known as “ion concentration polarization”
(ICP). Under classical assumptions of electroneutrality with-
out convection or homogeneous reactions, the current is
limited by electrodiffusion, when the concentration of the
active species vanishes at the selective surface.39 In a neu-
tral binary electrolyte, the current appears to be limited by
diffusion alone, because the concentration profiles evolve
according to a pure diffusion equation, but electromigration

and diffusion conspire to determine the effective (ambipo-
lar) diffusivity.40 Both species diffuse in the same direction,
but electromigration enhances the flux of the active species
and opposes the flux of the inactive species (and cancels it
in steady state).

Despite this theoretical speed limit, overlimiting current
(OLC) has been observed in a variety of systems involving
membranes, porous media, and micro/nanochannels. Eluci-
dating mechanisms for OLC remains a central question in
membrane science and chemical engineering.41 In free elec-
trolyte solutions, there are two fundamental mechanisms for
OLC—chemical and physical—each of which affects ICP in
different ways.

Chemical mechanisms for OLC involve the production of

additional ions (from solvent decomposition, H1, and OH2

in water) and/or the loss of surface selectivity (from charge

regulation of a membrane or nanochannel or from side reac-

tions at an electrode) to reduce ICP and maintain ionic con-

ductivity at high currents.41–43 Andersen et al. (2012)44

recently showed that both phenomena are needed to achieve

significant OLC via the phenomenon of “current-induced

membrane discharge” (CIMD). In particular, for aqueous

systems, CIMD can result from bulk water splitting coupled

to charge regulation of the membrane, for example, by pro-

ton adsorption in anion exchange membranes.
Physical mechanisms for OLC involve the amplification of

a different transport mechanism, which allows ions to reach

the selective surface faster than by quasineutral electrodiffu-

sion in the region of strongest ICP near the selective surface.

The best-known example is the Rubinstein–Zaltzman

electro-osmotic instability,45–48 which has recently been

observed in micro/nanofluidic systems.49–51 In porous media

and microchannels, the presence of charged double layers on

the side walls, aligned with the direction of current, allows

OLC to be sustained by the additional transport mechanisms

of SC25 and electro-osmotic flow (EOF).25,52 At lower

(underlimiting) currents, ICP has also been observed experi-

mentally in an electro-osmotic pump with a porous glass

frit53 and in porous electrodes in a system designed for

capacitive desalination.54

Advances in microfluidics over the past 10 years have
enabled the direct observation of ICP during OLC. Steady,
sharply defined depletion zones, sometimes containing inter-
nal electro-osmotic vortices, have been observed near the
junctions of microchannels and nanochannels by Han’s
group since 200555–57 and have been shown to be affected
by the microchannel geometry.58,59 Of particular note for
this work, Mani, Zangle, and Santiago (2009) have shown
that in very thin (1 mm) channels, these depletion interfaces
can propagate as shock waves under constant current.19–21

Zangle et al. (2010)22 give an insightful review of these
experiments and the theory behind them, which is mathe-
matically similar to Amundson’s theory of chromatography,
as noted above.

Although the original experiments and theory were limited
to single microchannels, Mani and Bazant (2011)19 predicted
the possibility of propagating deionization shocks in porous
media and formulated general nonlinear PDEs to describe
volume-averaged ICP at the macroscopic scale, driven by
SC within charged nanopores, neglecting EOF as a first
approximation. They obtained analytical similarity solutions for
power-law variations in microstructure and analyzed the inter-
nal structure and dynamical stability of deionization shocks in
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three-dimensions (3-D). The formal volume averaging of their
macroscopic ICP model is analogous to Amundson’s theory
of surface adsorption in fixed beds5–7,12,17 and Helfferich’s
early models of ion exchange membranes,60 but the PDEs
are solved under general conditions of strong ICP with diffu-
sion. Although porous ICP equations also provide simple
area-averaged descriptions of microfluidic devices, they are
also more general because the flow and current directions
can be decoupled in 3-D, opening some new possibilities for
separations.

In this article, we develop a fundamental picture of ICP
dynamics in finite-size porous domains, including effects of
simultaneous pressure-driven fluid flow and applied current,
leading to 2-D concentration variations. The analysis is
based on the PDEs of Mani and Bazant19 for nanopores (or
nanochannels) in the SC regime with forced convection,
neglecting EOFs that dominate in larger pores at the micron
scale.25 Borrowing a term of Yaroshchuk,61 we will refer to
this as the “Leaky Membrane Model” (LMM). All of the
example calculations here are motivated by experiments in
our group aimed at establishing surface-transport mecha-
nisms for OLC and harnessing ICP dynamics in porous
media for novel separations (Deng et al., Submitted).

Before we begin, we would like to draw attention to the
recent work of Yaroshchuk, connecting these ideas to classi-
cal membrane science60 via in a theory of “leaky mem-
branes” and performing some similar transient37 and steady-
state61,62 calculations in 1-D, without flow. His analysis is
based on “virtual concentrations” in local thermodynamic
equilibrium with a hypothetical ionic reservoir across each
thin slice of the porous medium. The results can be left in
general form or connected to specific quasi-equilibrium local

models, such as the Poisson–Boltzmann model with fixed

surface charge in a straight channel, with thin or thick dou-
ble layers.63 This is an analytical limit of the full model of

Mani et al.20 for thick double layers with effective longitudi-

nal transport coefficients obtained numerically by integrating
over the cross section. Our approach uses the physical

volume-averaged concentration variables (defined in the next

section) and the slowly varying, macroscopic part of the
potential of mean force. As such, interfacial voltages at the

ends of the porous domain must be added to describe experi-

mental data, but this can be done accurately by modeling or

measuring the electrochemical series resistances and open
circuit voltage (Deng et al., Submitted).

Leaky Membrane Model

General formulation

Consider a charged porous medium of porosity �p, inter-
nal pore surface area/volume ap, pore surface charge/area rs

filled with an electrolyte, containing ions of charge zie and
concentration ci (per pore volume). An example of a porous
silica glass frit is shown in Figure 1. Charge conservation
implies

�p

X
i

zieci1aprs50 (3)

which can be written as a balance of surface charge per pore
volume

qs5
aprs

�p
52

X
i

zieci (4)

with the electrolyte charge density.
The electroneutrality condition (4) determines the relative

importance of surface charge. Let c0 be a typical concentra-
tion of coions (of the same sign as the surface charge),
which sets the scale for neutral salt permeating the porous
medium. There are two limiting cases, illustrated in Figure
1c. In the membrane limit jqsj � ec0, coions are strongly
excluded, and the porous medium maintains a large, constant
conductivity from nearly uniformly distributed counterions
(of the opposite sign as the surface charge). In the opposite
limit jqsj � ec0, naively one would expect classical electro-
diffusion of a quasineutral electrolyte, only with diffusivities
rescaled to account for the tortuosity of the medium. This is
indeed the case at low currents, but it turns out that the sur-
face charge is a singular perturbation. As we shall see, a
“leaky membrane” with jqsj > 0, no matter how small, is
fundamentally different from an uncharged porous medium
with qs50.

The simplest approximation for the nonlinear dynamics of
the electrolyte in a charged porous medium, which we call
the LMM, combines the macroscopic electroneutrality condi-
tion (4) with homogenized Nernst–Planck equations19

Figure 1. Physical picture of a leaky membrane.

(a) SEM image of a silica glass frit with 557-nm mean pore size, which can sustain OLC and deionization shocks (Deng et al., Sub-

mitted) (b) Fixed surface charges (red) of density rs per pore area and qs per total volume, and mobile counterions (orange) and

coions (yellow) in the pores of concentration c6 per total volume. (c) Sketch of the quasi-equilibrium ion profiles in small and

large pores, relative to the Debye length kD. The surface conductivity scales with the total screening charge (orange areas), and the

bulk, depletable conductivity scales with the coion charge (yellow areas). [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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where Fi is the macroscopic flux density of species i (per

cross-sectional pore area), Di is the macroscopic chemical

diffusivity (with tortuosity correction64), / is the slowly

varying, nonequilibrium part of the electrostatic potential of

mean force, u is the mean fluid velocity, and Ri is the mean

reaction rate (per volume) producing species i. The current

density is

J5
X

i

zieFi (7)

(per cross-sectional pore area). For binary electrolytes, the
LMM can also be cast in terms of bulk and surface conduc-
tivities (defined below).19

In a concentrated solution, the chemical diffusivity
depends on the ionic concentrations40,65

Di5D0
i 11

@ln ci

@ln ci

� �
(8)

where D0
i is the tracer diffusivity in a dilute solution (which

also generally depends on concentration64–66) and ci is the

molar activity coefficient. Using (8) in (5) leads to “modified

Poisson–Nernst–Planck (PNP) equations,”67,68 which are

used to account for thermodynamic effects in the nonlinear

dynamics of electrolytes.69,70 In a general formulation based

on nonequilibrium thermodynamics,65 the ionic fluxes and

reaction rate are related to electrochemical potentials, defined

as variational derivatives of the total free energy functional.

For systems with phase transformations (such as precipita-

tion or phase separation), the Nernst–Planck Equations (5)

become generalized Cahn–Hilliard-reaction models65 coupled

with macroscopic quasineutrality (4) in the LMM frame-

work. Coupled diffusive fluxes, for example, friction

between different species in a Stefan–Maxwell formulation,

can also be important for large ions or charge colloids in

porous media.71

Here, we focus mostly on dilute solutions, where Di is
constant or simply a function of the local salt concentration.

Theoretical justification

In the absence of flow and reactions, the LMM can be
derived from the microscopic PNP equations within the
pores by taking the limit of thin double layers and area aver-
aging,20 by formal homogenization of the microscopic PDEs
for arbitrary double layer thickness (Schmuck and Bazant,
Submitted) and by assuming local thermodynamic quasi-
equilibrium at the pore scale.38 The microscopic potential of
mean force within the pores is /1weq, where / is the slowly
varying part reflecting macroscopic departures from equilib-
rium and weq is the rapidly varying correction due to quasi-
equilibrium local interactions between the ions and the sur-
face charge, constrained by the slowly varying mean ion con-
centrations ci. In the microscopic PNP equations, the surface
charge per internal pore area rs, enters via the electrostatic
boundary condition on the pore walls, but after homogeniza-
tion the macroscopic Nernst–Planck Equations (5) are simply
augmented by a quasineutrality condition (4) that includes
the surface charge per volume qs. Effectively, the local

quasi-equilibrium charge fluctuations associated with weq are
“integrated out” by homogenization to macroscopic length
scales in the porous medium.

Fluid flow in charged porous media is much more compli-
cated to homogenize rigorously, and no simple approxima-

tions are currently available. The difficulty is that flows

within the pores are strongly coupled to the ion profiles via

(locally linear) electrokinetic phenomena and lead to com-

plex dispersion effects, modifying Di by nonuniform convec-

tion in the porous medium. Classical Taylor dispersion52

is often negligible compared to internal electro-osmotic

convection25 and eddy dispersion (Deng et al., Submitted).

In the simplest version of the LMM considered here, we

neglect electroconvection and dispersion in (5) and simply

assume an imposed pressure-driven flow.
In this work, we also neglect the reaction rate Ri, but

reactions are important in many situations, such as electroki-

netic remediation29–32 and porous electrode charging,64,72,73

and provide an additional source of nonlinearity. In particu-

lar, the surface charge density rs, is generally a function of

the local electrolyte composition via the specific adsorption

of ions. This phenomenon of “charge regulation” is crucial

for the quantitative interpretation of shock electrodialysis

(ED) experiments using LMM (Deng et al., Submitted) and

also underlies the theory of CIMD.44 Assuming fast adsorp-

tion kinetics, the LMM then closely resembles Amundson’s

classical models of exchange beds of the form (1), except

that the LMM also accounts for the electrokinetic coupling

between ion adsorption via the macroscopic charge balance

(4). The LMM with charge regulation could also be applied

to biological membranes, for example, in nerve cells,74 or

biomimetic membranes with distinct surface and bulk trans-

port phases.75,76 In these situations, polymeric ion-exchange

membranes, or electroactive gels, it could also be important

to account for the deformation of the solid matrix in

response to electrochemical transport, but here we focus on

rigid porous media, such as the glass frit in Figure 1.

Uniform membrane charge in a binary electrolyte

To highlight the nonlinear dynamics of ion transport in
porous media, we adopt the simplest form of the LMM. As

noted above, we neglect reactions (Ri50) and charge regula-

tion (
@qs

@t 50). We also impose a pressure-driven Darcy flow u

without accounting for dispersion or electrokinetic phenomena.

In particular, we consider only the representative cases of uni-

form flow, either parallel or perpendicular to the applied cur-

rent. We further assume a uniform porous medium with

constant microstructure and charge (qs; �p5constants ). For

ease of calculations, we also make the standard theoretical

assumption of a symmetric binary z: z electrolyte with equal

ionic diffusivities D (including the tortuosity correction). See

Mani and Bazant19 for extensions to asymmetric binary elec-

trolytes and nonuniform porous media (with uniform flow) and

Andersen et al.44 for the full LMM (without flow) for a multi-

component electrolyte (water ions plus added salt) in a leaky

membrane with charge regulation (proton adsorption) and

homogeneous reactions (water self-ionization).

With these assumptions, the LMM takes the form

@~c6

@~t
52 ~r � ~F6 (9)
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~F65Pe ~u~c62 ~r~c67~c6
~r~/ (10)

~c22~c152~qs (11)

in terms of the dimensionless variables ~x5x=L; ~r5Lr;~t5
tD=L2; ~c65c6=c0; ~/5ze/=kBT; ~F65F6L=Dc0, and ~u5u=U,
for a geometrical length scale L and characteristic velocity
U. There are two dimensionless groups that control the solu-
tion, the P�eclet number (ratio of convection to diffusion)

Pe 5
UL

D
(12)

and the dimensionless charge density

~qs5
qs

2zec0

5
aprs

2�pzec0

(13)

which is the ratio of fixed surface charges to mobile ionic
charges per volume, if the pores were filled with a neutral
reference solution of salt concentration c0. We stress that ~qs

is different from the Dukhin number,19,77 which is typically
used to quantify effects of SC in electrolytes of uniform salt
concentration,78,79 as explained in Appendix A. As discussed
above, the key parameter is ~qs, which determines to what
extent the porous medium acts like a “good membrane” with
high conductivity and selectivity for counterions (j~qsj � 1).
We are mainly interested in “leaky membranes” with
0 < j~qsj � 1, that can become depleted at high currents,
leading to complex nonlinear dynamics analyzed in the
remainder of the article.

Uniform Current without Flow

In this section, we analyze the canonical problem of ICP
in a leaky membrane illustrated in Figure 2. A symmetric
binary electrolyte (D65D; z656z) passes from a reservoir
of fixed concentration (c65c0;/50) at x 5 0 through a

weakly cation-selective leaky membrane with qs < 0 through
an ideal anion-blocking surface (F250; zeApF15I;/52V)
at x 5 L, which could represent a nonleaky cation-exchange
membrane or an electrode consuming cations, for example,
by electrodeposition. We define I5ApJ, as the total current
that passes through the cross-sectional pore area Ap, and
solve for the transient current-voltage characteristics of the
leaky membrane itself, not including interfacial polarization
at either end.

Dimensionless equations

Following our prior work,19,25 it is convenient to trans-
form the LMM for a symmetric, binary electrolyte, Eqs. 9–
11, into a dimensionless PDE

@~c

@~t
5
@2~c

@~x2
2~qs

@2 ~/

@~x2
(14)

for the depletable salt concentration ~c5~c2 (which, as
explained above, is equal to the coion concentration) and a
constraint for the uniform, time-varying current

~I52 ~c2~qsð Þ d
~/

d~x
(15)

obtained by integrating the cation transport equation. The
dimensionless current

~I5
IL

2zeApDc0

(16)

is carried by cations and scaled to the limiting current for
the case of an “ideally leaky” membrane, ~qs50. The bound-
ary conditions fix the reservoir concentration ~c 0;~tð Þ51, and
impose zero anion electrodiffusive flux at the cation-
selective surface

dln ~c

d~x
1;~tð Þ5 d~/

d~x
1;~tð Þ (17)

as well as ~/ 0; ~tð Þ50 and ~/ 1;~tð Þ52 ~V , where

~V5
zeV

kBT
(18)

is the dimensionless applied voltage across the leaky mem-
brane (not including interfacial voltage drops and series
resistances; Deng et al., Submitted).

Steady state for a dilute electrolyte

For constant diffusivity in a dilute electrolyte, the steady
state can be solved analytically.25 The concentration profile
is given by an implicit formula

~c2~qsln ~cð Þ512~I~x (19)

and current–voltage relationship

~I512e2 ~V 2~qs
~V (20)

has the form of an equivalent circuit consisting of a diode,
representing neutral-electrolyte concentration polarization, in
parallel with a shunt resistor, representing SC. At low vol-
tages and high bulk conductivity, the model describes the
familiar linear Ohmic regime of bulk electrolyte transport
~I � ~V 12~qsð Þ. At high voltages and low bulk conductivity,

Figure 2. Canonical problem for the leaky membrane
model in 1-D.

Symmetric binary electrolyte transport from a reservoir

through a weakly cation-selective leaky membrane to an

ideally cation-selective surface, such as a (nonleaky)

cation-exchange membrane or an electrode undergoing

cation electrodeposition. Solutions appear in Figures 3–8

for steady and transient applied currents. Mobile cati-

ons (orange 1) and anions (yellow 2) and fixed negative

surface charges (red 2) are indicated in each region.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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however, the model predicts OLC ~I � 12~qs
~V , with a

constant overlimiting conductance sustained by SC. This for-
mula provides good fit of experimental data for conduction
through a silica glass frit (a leaky membrane) from a reser-
voir to a Nafion membrane in copper sulfate solution (Deng
et al., Submitted), although the overlimiting conductance
also includes strong effects of EOF.25

Concentration-dependent diffusivity

In most of our calculations, the diffusivity is treated as a
constant, independent of concentration, which is strictly valid
only for dilute solutions. In leaky membranes, however, sig-
nificant concentration variations are possible, which alter the
theoretical predictions. It turns out that the steady-state prob-
lem can still be solved exactly in implicit form. Rewriting
Eq. 19 with a concentration-dependent diffusivity gives

~D
d~c

d~x
2 ~D~qs

dln ~cð Þ
d~x

52~I (21)

with ~D5
D cð Þ
D c0ð Þ. Integrating by parts and applying the bound-

ary conditions yields

~I512e2 ~V ~D e2 ~V
� �

2~qs
~V ~D e2 ~V
� �

1

ðe2 ~V

1

~c2~qsln ~cð Þ d
~D

d~c
d~c

(22)

If D varies significantly along the channel, the current–
voltage relationship will begin to deviate from the ideal case.
In particular, OLC will increase if the diffusivity strongly
increases with decreasing concentration, which is often the
case.

To illustrate effects of nonideal thermodynamics via Eq.
8, we consider the Debye–H€uckel theory of electrostatic cor-
relations in a dilute z:z electrolyte. The molar activity coeffi-
cient c of each ionic species is given by

ln c52
zeð Þ2

8pekTkD
(23)

where e is the permittivity of the solvent and

kD5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ekT

2 zeð Þ2c

s
(24)

is the Debye screening length, assumed to be larger than the
effective hydrated ion size. The activity is reduced by attrac-
tive interactions between an ion and its screening cloud as
the ionic strength is increased, ln c / 2

ffiffiffi
c
p

. The tracer diffu-
sivity D0

i is taken to be constant, consistent with the moder-
ately dilute range of validity for Debye–H€uckel theory.

Using Eqs. 22 and 23, the effect of a nonideal diffusivity
(8) can be found for varying initial ion concentration. In
Figure 3, we see that for very dilute solutions (1 mM) there
is very little change in the current–voltage relationship and
concentration profile. However, at larger concentrations (1
M), there is a significant deviation. The Debye–H€uckel
theory also breaks down and underpredicts the activity, so
this example suffices to bound the trends. The OLC is larger
than expected from the ideal case and the depletion region is
wider. This arises as a result of the diffusivity increasing in
the depleted region leading to an increase in mass transfer.
This calculation shows that it is generally necessary to
account for thermodynamic corrections in the LMM for
concentrated electrolytes, although the qualitative results are

similar with ideal solution theory, consistent with experimen-
tal data (Deng et al., Submitted).

Transient Response to a Current Step

A canonical problem of leaky membrane dynamics is the
response to a current step for a dilute, symmetric binary elec-
trolyte in a charged porous material. Three different dynami-
cal regimes in the solution of Eqs. 14–18 can be identified as
follows.

Zero surface charge: neutral electrolytes

The limit of zero surface charge ~qs50, corresponds to an
“ideally leaky membrane” consisting of quasineutral electro-
lyte confined within the pores. The classical Nernst–Planck
equations apply, only with diffusivities corrected for the tor-
tuosity and porosity. An exact series solution can be
obtained by finite Fourier transform (FFT), as pioneered by
Amundson for transport problems,

~c512~I~x12
X1
n50

~I 21ð Þn

k2
n

e2k2
ntsin knx (25)

where kn5 n1 1
2

� �
p. According to Sand,80 this classical solu-

tion of the diffusion equation was first derived by Weber in
1879,81 who applied it to infer the diffusivity of ZnSO4 from
the voltage transient after the interruption of steady current.
The series can be truncated at a small number of terms with-
out losing accuracy for late times ~t � 4

p2. The series is non-
uniformly convergent, however, and requires a diverging
number of terms at early times.

For early times or large currents, a more accurate and
insightful similarity solution (which effectively sums the
series) can be obtained by solving for @~c

@~x in a semi-infinite
domain. After integrating @~c

@~x and applying the boundary con-
ditions, the concentration profile is found to be

Figure 3. Effects of nonideal thermodynamics in the
model problem of Figure 2.

Steady-state current-voltage relations (top) and concen-

tration profiles (bottom) are shown for two initial ion

concentrations, 1 mM (left) and 1 M (right), using the

concentration-dependent diffusivity D(c) from the

Debye–H€uckel theory of electrolyte activity.
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~c5112~I
ffiffi
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p

gerfc g2
e2g2ffiffiffi

p
p

 !
; g5

12~x

2
ffiffi
~t
p (26)

This famous result was first obtained by Sand in 1901,80

who applied it to infer the diffusivity of CuSO4 from obser-
vations of “Sand’s time,”81 tSand , the time when the voltage
diverges during constant OLC. Solving Eq. 26 for ~c 1;~tð Þ50
shows that in this case

~tSand 5
p

4~I
2

(27)

At Sand’s time, the concentration goes to zero at the
selective surface, and the potential at that point is undefined
and corresponds to an infinite voltage. This voltage spike
signifying diffusion limitation, however, can be removed by
SC in a leaky membrane.

Large surface charge: ion exchange membranes

The other extreme is the case of ~qs � 1, which corre-
sponds to a highly charged ion-exchange membrane with
high-electrochemical permselectivity. As shown in Figure 4,
high values of surface charge suppress large concentration
gradients, even under OLC. This lack of concentration gradi-
ent results in a nearly constant potential across the system,
meaning that under ~qs � 1 conditions the system is almost a
purely controlled by the diffusion of the counterions. Inter-
estingly, the transient behavior of the case of very large ~qs

behaves similarly to that of the case of ~qs50 (as shown in
the FFT solution), where transport is dominated by diffusion
in the absence of a significant potential gradient. In a neutral
medium (~qs50), the ambipolar diffusivity (based on the
diffusivities of the counterions and coions) determines the
transient behavior, but the counterion diffusivity alone domi-
nates at high-charge density (~qs � 1).

Small surface charge: leaky membranes

In a leaky membrane, the surface charge is relatively
small, ~qs5O 1ð Þ but plays an important role. Below the limit-

ing current (~I � 1), a small dimensionless surface charge
(0 � j~qsj � 1) acts as a regular perturbation of the system,
and the solution to our model problem remains close to the
diffusive relaxation of a neutral electrolyte (25) for all times.
Above the limiting current (~I > 1), however, even a very
small, but nonzero, surface charge (0 < j~qsj � 1) acts as a
singular perturbation that significantly alters the dynamics.
The transient concentration profile in our model problem for
three different currents is shown in Figure 5, and several
OLC voltage responses are given in Figure 6. Under OLC

Figure 4. Salt concentration evolution after a current
step in slightly leaky ion-exchange mem-
branes (Figure 2).

Profiles shown for moderate (~qs521) and high

(~qs5210)-negative surface charge as well as just below

(~I50:9) and far above (~I55) the limiting current.

Figure 5. Transient response of the salt concentration
to a current step across a leaky membrane
(~qs520:01, Figure 2).

Just below the limiting current (a), the dynamics is

dominated by linear diffusive relaxation, while nonli-

nearity begins to alter the concentration profile just

above the limiting current (b). Well above the limiting

current (c), the initial diffusion layer drives total salt

depletion (Stage 1), followed by a new dynamical regime

of shock propagation (Stage 2), and ending in relaxation

to steady state (Stage 3).
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conditions, the ion concentration profile undergoes three
stages: 1) depletion, 2) shock propagation, and 3) relaxation.

Salt Depletion. During this early stage, the ion concen-
tration is depleted at the selective surface and behaves simi-
larly to the classic model (~qs50). This is more clearly
shown in second half of Figure 6 where time has been
rescaled with respect to the classically derived Sand time
tSand . With this rescaling, it is clear that the large voltage
increase, corresponding to full depletion, occurs at ~s15~tSand .
The fact that time scales for the classical case still apply
when SC is taken into consideration is further shown by
demonstrating the impact of ~qs in Figure 7. In this figure,
the voltage response is shown for decreasing surface charge.
As the absolute value of ~qs decreases an order of magnitude,
the voltage drop increases about an order of magnitude. As
the dimensionless surface charge continues to decrease the
system grows closer to the classical result, as expected.

Shock Propagation. After the coion concentration is
fully depleted at ~x51, a deionization shock appears and
propagates away from the selective surface20 with a stable
exponential profile,19 given by Eq. A12 in Appendix B.
In the case of total salt depletion behind the shock

(~j152~qs � 1) and unperturbed conductivity ahead
(~j21512~qs > 1), the shock velocity, Eq. A11, takes the
simple form

~vs52
~I

12~qs

(28)

which is equal to the (dimensionless) electromigration veloc-
ity of coions19,82 as required by mass conservation across the
shock, as no coions are left behind.

Over the duration of stage 2 s2 can be estimated as the
time for the shock to move at velocity ~vs from the selective
surface at ~x51 to the edge of the steady-state depletion
region at ~x5~I

21
. This implies the scaling

~s25 ~I
21

2~I
22

� �
12~qsð Þ (29)

Next, we analyze the transient voltage during Stage 2. The
dimensionless conductivity in the depleted region is approxi-
mately ~qs � 1, which dominates the total electrical resistance
of the leaky membrane. The length of the depleted region at
any time past tSand is equal to the shock velocity (~I) times
time. Therefore, the resistance of the depleted region is
~I ~t2~tSandð Þ=~qs. Using Ohm’s law, the voltage thus scales as

~V �
~I

2
~t2~tSandð Þ

~qs

(30)

This scaling is verified at high currents in Figure 8, where
~V ~qs=~I is plotted against ~I ~t2~tSandð Þ, leading to a data col-
lapse of both Stages 2 and 3 of the dynamics. As the applied
current increases, thereby strengthening the shock, the sys-
tem closely obeys these scaling laws. At larger currents, the
depleted region nearly encompasses the entire system length

with the shock propagating for a interval scaling as ~s2 � ~I
21

after Sand time has been achieved.
Aside: Shock Propagation at Constant Voltage. Although

the depletion region grows linearly with time under constant
current conditions, it has been shown that depletion propagates
as t1=2 under constant-voltage conditions.23 This scaling can
be easily revealed by estimating the shock as a moving step
function, with a depletion region length equal to d ~tð Þ. From
Eq. A3 and the boundary conditions, the voltage drop across

Figure 6. Transient voltage across a leaky membrane
in response to a current step with increasing
current (~qs520:01).

Top: dimensionless voltage vs. dimensionless time. Bottom:

after rescaling time to Sand’s time, three distinct dynami-

cal regimes (Figure 5) appear at high current: 1) depletion,

2) shock propagation, and 3) relaxation to steady state.

Figure 7. The effect of varying the surface charge on
the transient voltage in response to a current
step (Figure 6) for ~I54.
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the system is given as ~V5~I tð Þ
Ð 1

0
1=~jd~x. Integrating over the

step function gives ~V � ~I 12dð Þ=~j211d=~j1½ �. Since
~j1 � ~j21; ~V � 2~Id=~qs. The size of the depletion region is
equal to the integral of the shock velocity, or ~I5dd=d~t. Com-
bining this with the voltage drop approximation, the depletion
region length is found to propagate as

d ~tð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22~qs

~V~t

q
ðconstant voltageÞ (31)

demonstrating the t1=2 behavior.

Relaxation to Steady State. Under moderate surface
charge, SC only plays a dominant role when ion concentra-
tions are very low, such as in the depletion region. Outside of
this region, transport is dominated by linear diffusion. Once
the shock is close to its final position (determined by the
applied current or voltage), the concentration profile relaxes to
the steady-state profile. As diffusion is the dominant transport
mechanism, the transient scaling during this stage will be sim-
ilar to the ~qs50 case, solved earlier by FFT. The main differ-
ence is that the relevant length scale is not the total leaky
membrane thickness, but rather the width of the steady-state
diffusion layer ~I

21
. As such the eigenvalues are rescaled to

�kn � n1 1
2

� �
p~I , and thus, the time scale for relaxation is

~s35
1

�k
2

1

5
4

p2~I
2

(32)

Finally, we are able to predict the total time to steady
state by adding the times for all three stages

~s5 12~qsð Þ~I21
1

p
4

1
4

p2
211~qs

� �
~I
22

(33)

In the limit of large currents, ~I � 1, the response time is
dominated by the time for the shock to cross the full thick-
ness of the leaky membrane (first term).

Steady State with Normal Flow

In the previous section, we examined how OLC creates
ICP by forcing ion depletion regions to develop. In this sec-
tion, we explore the effects of a uniform normal flow u 5 U

directed toward the selective surface on the depletion region
and compute steady-state concentration profiles and current-
voltage characteristics. This idealized situation shown in Fig-
ure 9 is relevant for flow-through porous electrodes,54 as
well as dominant normal flow that exits through a small side
outlet near the membrane (Deng et al., Submitted). Instead
of a solid right wall, a perfect porous electrode is in place at
x 5 L, which allows fluid and neutral salt to pass through
while removing all excess cations.

Concentration profiles and polarization curves

Starting from Eqs. 9–11, a pair of dimensionless equations
for the steady state is achieved by averaging over the cross
section

Pe
d~c

d~x
5

d2~c

d~x2
2~qs

d2 ~/

d~x2
(34)

05
d

d~x
~c2~qsð Þ d

~/
d~x

" #
(35)

where the P�eclet number Pe 5UL=D controls the importance
of convection relative to diffusion. Note that convection
drops out of the charge balance (second equation) because
we assume a constant surface charge density. For a flow-
though electrode, the boundary conditions are more subtle.
Only neutral salt can pass through the electrode, and there-
fore, to the right of x 5 L, uc1 must equal uc2. However,
charge conservation within the membrane forces c1 > c2

between x 5 0 and x 5 L. As a result, a streaming current
develops Istream 52Uqs, that accounts for this imbalance.
The total current is the sum of the electrodiffusive fluxes,
discussed above, and the streaming current

~I52 ~c2~qsð Þ d
~/

d~x
2Pe ~qs (36)

The anion electrodiffusive flux also vanishes, Eq. 17.

Figure 8. Scaling and data collapse of numerical solu-
tions for the transient voltage (Figure 6)
across Stage 2 (shock propagation) and
Stage 3 (relaxation to steady state) for differ-
ent applied currents (~qs520:01).

Figure 9. Sketch of the model problem with flow
aligned to the current, normal to the cation
selective surface.

Current is passed from a reservoir through a leaky mem-

brane to a flow-through porous electrode that consumes

cations, but allows neutral salt to pass by convection.

Mobile cations (orange 1) and anions (yellow 2) and

fixed negative surface charges (red 2) are indicated in

each region. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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The equations can also be rearranged to determine the
dimensionless total ion concentration (or conductivity)
~j5~c2~qs, instead of ~c

Pe
d~j
d~x

5
d2~j

d~x2
2

~qs
~I1Pe ~qs

� �
~j2

d~j
d~x

(37)

2 ~I1Pe ~qs

� �
5

d~j
d~x

1ð Þ1
~qs

~I1Pe ~qs

� �
~j 1ð Þ (38)

~j 0ð Þ512~qs (39)

Once this boundary value problem is solved for j xð Þ, the
potential profile and voltage are obtained from the current
relation by a simple integration

~/ xð Þ52 ~I1Pe ~qs

� �ð~x

0

ds

~j sð Þ (40)

With flow, the analytical solution becomes more challeng-
ing, so concentration profiles and current-voltage relation-
ships are found numerically.

In Figure 10, several concentration profiles are shown for
varying voltage and Pe values. As shown previously,25 increas-
ing the applied voltage increases the amount of depletion. The
addition of convection pushes all ions toward the membrane,
and the linear concentration profile of the quasisteady diffusion
layer gives way to the exponential profile of a diffusive wave,
propagating against the flow.19,82 As the flow rate increases.
the concentration profile appears more shock-like with a
decreasing shock width. Additionally, as the flow rate increases,
the depletion region shrinks, requiring a higher applied voltage
to maintain its size. At high Pe, the steady-state concentration
profile converges to the propagating shock solution, Eq. A12,
where the uniform flow holds the shock in place.

Figure 11 shows the current–voltage relationship for a
case of strong flow, Pe 55. The shape of the curve is notice-
ably different from the case with no convection,25 Eq. 20,
with a delayed, curved transition to the overlimiting regime.
However, at higher voltages, the OLC eventually becomes
linear, similar to the no-flow case.

Energy cost of deionization

In the regime of OLC, the flow-through electrode is con-
tinuously deionizing the fluid as it passes through the leaky
membrane. This setup could have applications to flow-
through capacitive desalination,54 where the flow channel is
filled with a porous medium or microchannel array, and it is
a simple first approximation for the cross-flow geometry of
shock ED (Deng et al., Submitted) discussed below. For
these applications, the model provides a simple case to ana-
lyze the energy cost of deionization.

The energy per volume of initial solution processed, Ev, is
equal to input electrical power (IV) divided by the volumet-
ric flow rate (Q)

Ev5
IV

Q
52kTc0

~I ~V

Pe
(41)

which has the dimensionless form

~Ev5
Ev

2kTc0

5
~I ~V

Pe
(42)

The energy cost, ~Ev, is a function of the surface charge
density, ~qs, the applied current, ~I , and the velocity, Pe, each
in a suitable dimensionless form.

Figure 10. Concentration profiles in a leaky membrane
(~qs520:01) with normal flow (Figure 9).

Profiles shown while varying (a) the voltage with a

high-flow rate, Pe 55, or (b) the flow rate at high volt-

age, ~V 540.

Figure 11. Current–voltage relations for 1-D model with
normal flow (Figure 9). At a fixed, high-flow
rate, Pe 55, overlimiting current is shown as
the surface charge is increased.

The vertical shift of the curves is due to streaming cur-

rent from the convection of counterions screening the

pore charge of the leaky membrane.
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Model predictions for a fixed system geometry are shown
in Figure 12. In these plots, ~Ev is shown vs. varying Pe and ~I
for two different values of ~qs (20.01 and 20.0001). A black
line indicating when the depletion region has formed
(~c50:001) is placed on top of these surface plots. Below this
line, ~c is less than 0.001 and the energy per volume increases.
The energy profile appears very similar in these two plots,
with the values differing by a factor of 100. In the 1-D case,
SC goes as ~qs

~V . Therefore, as ~qs decreases by a factor of
100, the voltage must increase by a factor of 100 to maintain
the same level of conduction. This increase in necessary volt-
age is what leads to the 100-fold increase in energy.

To reduce the energy per volume required for deioniza-
tion, the depletion region should be as small as possible.
This is the reason that increasing the flow rate (Pe) decreases
~Ev. Similarly, increasing the applied current past the point of
early depletion wastes energy and increases ~Ev. In this 1-D
model with uniform flow, the fluid recovery fraction, or ratio
of deionized to incoming fluid volumes, is 100%. High fluid

recovery is a hallmark of flow-through separations in porous
media, but the shock phenomenon provides an opportunity
for efficient separations in cross flow, perpendicular to the
current, which we analyze next with a 2-D model.

Steady State with Cross Flow

Fractionation by deionization shocks

The formation of a deionization shock represents a
dynamic, “membraneless” separation of salty and deionized
solution, which can be exploited for water purification, brine
concentration, or other separations by fractionation in cross
flow. In contrast to traditional ED, in “shock electrodialysis”
(Deng et al., Submitted) there is no fixed physical, chemical,
or electrostatic barrier between the two regions that sponta-
neously form in a homogeneous porous medium. The strong
localization of the salt concentration jump in the shock and
its ability to propagate to a desired position enables separa-
tion in cross flow.

The basic idea, sketched in Figure 13, is to drive fluid
flow through the leaky membrane in one direction, while
driving OLC in the perpendicular direction between ion
permselective membranes. The deionization shock propa-
gates in the cross flow to form a boundary layer of strong
depletion, which extends across a fresh water collection out-
let on the downstream end of the leaky membrane. If the
leaky membrane is sandwiched between identical ion-

exchange membranes, then an enrichment diffusion layer

also forms on the other side, which is collected in a brine

stream, separated from the fresh stream by splitting the flow

leaving the leaky membrane. This layered structure is the

basic building block of a scalable shock ED system with

electrode streams on the ends to sustain the current.
Several parameters will affect the efficacy and the effi-

ciency of such a device, including the surface charge of the
leaky membrane, the geometry of the device, and the applied
current or potential. To understand how these parameters
relate to each other, we use a 2-D LMM. Analytical solutions
with nested boundary layer structure are possible in the rele-
vant regime of fast cross flow, where the deionization shock
and enrichment regions remain well-separated (Mani and

Figure 13. Sketch of one layer of a cross-flow shock
ED system for water deionization and brine
concentration.

Current in the normal (vertical) direction passes

though a negatively charged porous material (leaky

membrane) sandwiched between two cation-exchange

membranes (or other cation selective layers). Water

flows in the perpendicular direction and is split into

brine and deionized streams on exiting. [Color figure

can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 12. Dimensionless energy cost per deionized
volume, ~Ev, for the 1-D model of normal
flow through a leaky membrane and porous
electrode.

The black line indicates where a depletion region has

formed. Below this line, the outlet concentration, ~c, is

0.001 or less. (a) ~qs520:01; (b) ~qs520:0001. [Color

figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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Bazant, In prepartion) but here we focus on numerical solu-
tions for finite geometries in a wide range of operating condi-
tions. The purpose of this model is to understand in a simple
way how forced convection and SC affect ion transport while
providing design guidelines to optimize the system.

2-D model

Consider a leaky membrane of height h and length L
where x 2 0; h½ � and y 2 0;L½ �. Uniform flow with velocity u
in the y direction originates from y 5 0. In this 2-D model,
we neglect axial diffusion, which is valid beyond a distance
D / u from the inlet, which is small if Pe y5uL=D� 1. In
this regime, convection dominates in the y-direction, and dif-
fusion in the x-direction. The LMM conservation equations
then take the form

u
@c1

@y
5D

@2c1

@x2
1

ze

kBT

@

@x
c1

@/
@x

� �	 


u
@c2

@y
5D

@2c2

@x2
2

ze

kBT

@

@x
c2

@/
@x

� �	 
 (43)

Nondimensionalizing as before, with ~x5 x
h and ~y5

y
L, the

dimensionless conservation equations are

uh2

LD

@~c

@~y
5
@2~c

@~x2
2~qs

@2 ~/

@~x2
(44)

@

@~x
~c2~qsð Þ @

~/
@~x

" #
50 (45)

In our previous examples (Figures 2 and 9), the leaky
membrane was in contact with a reservoir of constant con-
centration at one end (x 5 0) and a cation-selective mem-
brane or porous electrode at the other end (x 5 h). In this
case, anions are blocked at both ends (x 5 0 and x 5 h),
which implies Neumann-type conditions

~x50 : ~/52 ~V ;
@ln ~c

@~x
5
@~/
@~x

(46)

~x51 : ~/50;
@ln ~c

@~x
5
@~/
@~x

(47)

~y50 : ~c51 (48)

with Dirichlet boundary conditions for the concentration at
the inlet and potential at the membranes. The current density
(per area) is no longer uniform

~J ~yð Þ52 ~c2~qs½ � d
~/

d~x
(49)

where ~J5 JL
2zeDc0

is the dimensionless current density in the x-

direction. ~J must be integrated over the membrane area to
obtain the total current

~I5

ð1

0

~J ~yð Þd~y (50)

Noticing that several parameters of interest are lumped
together, the conservation equation can be rewritten in terms
of the P�eclet number

Pe 5
uh

D
(51)

and a new axial length variable

ŷ5
yD

uh2
5

L

h

~y

Pe
(52)

scaled to the entrance length for the convection-diffusion
boundary layer uh2=D, as usual in the analysis of forced con-
vection in a channel or pipe.27 With this change of variables

@~c

@ŷ
5
@2~c

@~x2
2~qs

@2 ~/

@~x2
(53)

the conservation equation becomes the same as the 1-D,
transient equation, Eq. 14. Therefore, the solutions from the
previous section can be reworked and applied here.

Example concentration profiles are shown in Figure 14 for
~qs520:01;20:05 and ~V530. As expected, increasing the
surface charge increases the size of the depleted region d.
Here, d was taken to be the point where ~c50:001. It is also
important to note that at around ŷ50:1 the concentration has
reached its steady-state value and no further depletion

Figure 14. Steady concentration profile in a simple 2-D model of the shock electrodialysis device of Figure 13 at
high voltage ~V 530 for varying dimensionless surface charge in the leaky membrane:

(a) ~qs520:01, b) ~qs520:05. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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occurs. By setting ~y51, these plots can be used to examine
the outlet concentration distribution. For example, in the
case of ~qs520:05 (Figure 14b), the outlet can be fractio-
nated at ~x50:25 and if ŷ > 0:1 only depleted fluid will be
collected. This analysis can be used to determine the best
geometry and flow rate. To maximize the flow rate, ŷ should
be minimized. To get full depletion, ŷ should exceed the
dimensionless distance to achieve steady state, which for
these two cases is around 0.1; in other words, full depletion
occurs at roughly 10% of the entrance length. Additionally,

scaling up the system will not be a linear process, as ŷ / L
h2.

Design principles for shock electrodialysis

An important characteristic of this extraction technique is
the energy required to create the necessary depletion region.
For a volumetric flow rate of Q, with current density I, and
voltage V, the energy Ev required per volume of depleted
solution is given by

Ev5
IV

dQ
5

2kBTc0

Pe

~I ~V

d
(54)

The parameters ~I ; ~V , and d are related through the conser-
vation and current equations. If ŷ is far enough downstream
to reach steady state, then ~V and d can be found based solely
on ~I and ~qs. As a result, it is useful to consider the dimen-
sionless energy cost

~Ev5
EvPe

2kBTc0

5
~I ~V

d
(55)

Since 2kBTc0 is the osmotic pressure of a dilute binary
electrolyte, as assumed in these calculations, we see that
~Ev=Pe is the energy cost per deionized fluid volume, scaled
to the theoretical lower limit for this model.

A plot of ~Ev over a range of ~V and ~qs values is shown in
Figure 15. This plot was generated for a system with a maxi-
mum length of ŷ50:1, corresponding to about 10% of the
entrance length. At lower to moderate applied voltages,
increases in the surface charge density lead to decreases in
the depletion energy. Although increases in j~qsj will lead to
increases in ~I the corresponding increases in d are sufficient
to lower the required energy. However, at higher applied
voltages, the balance is shifted and the increase in power
cost overwhelms the efficiency gained by creating a larger
depletion region. Once ~V and ~qs have been determined, the
energy efficiency can be calculated. This efficiency can be
enhanced by properly designing the system geometry. For
example, the larger the aspect ratio, L/h, the lower the
energy efficiency, as seen in Eq. 54.

In addition to energy requirements, to develop a practical
device, the volume of depleted fluid relative to the incoming
fluid (the “water recovery” percentage in desalination) must
be considered. A very efficient device that only depletes 1%
of an incoming stream may not be particularly desirable. In
this case, many passes would be required to achieve a suffi-
cient amount of depleted solution. Recovery in this model
corresponds to the size of the depletion region d. A plot of
d vs. ~V and ~qs is shown in Figure 16, under the same condi-
tions as in Figure 15. The region of highest recovery does
not correspond to the region of lowest energy per volume
(Figure 15). Therefore, a balance must be struck between the
two values, depending on the requirements of a desired
system.

To fully design a practical device that utilized SC in flow,
one other parameter needs to be addressed. Throughout this
study, the parameter ~qs has played an important role. How-
ever, this parameter is a function of the initial anion concen-
tration, c0. The power of SC goes up as c0 goes down. To
have an effect on higher ion concentrations, the volume sur-
face charge density, qs of the material should be increased.
This can be done by either altering the surface charge of the
material, rs or decreasing the pore size. For instance, a typi-
cal silica bead in water has a surface charge density of about
20.001 coul/m2.83 In a 1-mM solution, a porous structure of
these beads with a pore size of 10 mm will result in

Figure 15. Dimensionless energy ~Ev per volume of
deionized fluid in the model of Figure 14,
vs. the dimensionless surface charge ~qs

and dimensionless voltage ~V .

Evaluated at ŷ50:1, the approximate location where a

steady concentration profile is reached in the trans-

verse direction to the flow (x). [Color figure can be

viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 16. Water recovery d (ratio of deionized to
incoming fluid volumes) in the model of
Figure 14, which increases with increasing
~V and ~qs. [Color figure can be viewed in
the online issue, which is available at
wileyonlinelibrary.com.]
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~qs520:001. However, if the pore size decreases to 100 nm,
then ~qs520:1 and SC plays a more dominant role. Based on
this analysis, the smaller the pores, the better the deionization.
However, the energy analysis conducted here did not take into
consideration the force to pump the fluid through the porous
material. As the pore size decreases, the pump energy required
increases. As a result, decreasing the pore size may not be the
best solution. Alternatively, the surface of the porous material
can be altered to create a more negative surface. To maximize
the energy efficiency, the device should be designed with a
high aspect ratio. Additionally, the velocity should be maxi-
mized such that ŷ defined in Eq. 52 is kept low but at a
steady-state value. Based on Figures 15 and 16, the applied
current should be above the limiting value but low enough
such that the energy per volume and water recovery are at
acceptable levels. In this manner, an efficient SC-flow device
can be developed using simple materials.

Although our calculations reveal useful scalings and trade-
offs for the design of a shock ED system, it is premature to
attempt any direct comparisons with other existing methods
for water desalination. Besides various simplifying assump-
tions, such as the lack of EOFs,25 water splitting or charge
regulation,44 the geometry, and materials would need to be
optimized for particular situations. The first experimental
demonstration of a shock ED system (using a silica glass
frit, as in Figure 1) in batch mode has only recently been
achieved (Deng et al., Submitted), and the scalable cross-
flow system considered here is still under development. The
experimental results suggest that shock ED is could be com-
petitive with other desalination methods on energy effi-
ciency, after system optimization. Like any electrochemical
method that removes salt from water, such as traditional ED,
shock ED becomes more efficient at lower salt concentra-
tions, as in brackish water desalination or wastewater purifi-
cation. Methods such as reverse osmosis that remove water
from the solution tend to be more efficient for direct sea-
water desalination at high concentration. Unlike traditional
ED, however, shock ED can reach complete deionization in
one step and may reduce membrane degradation and fouling,
as result of the strong salt depletion and large electric fields
between the shock and the membrane. The need for expen-
sive membranes may even be eliminated by the use of layers
of porous media with different pore sizes, analogous to the
original demonstration of deionization shock propagation
from a microchannel/nanochannel junction.20,21

Conclusions

Unlike ideal ion-exchange membranes, which maintain a
large conductivity of counterions, the conductivity of “leaky

membranes” with larger pores and/or smaller surface charge
densities can vary significantly in response to a large applied
voltage. The surface conductivity, which remains even if the
bulk salt is depleted, provides a mechanism for OLC, faster
than diffusion. This can lead to a macroscopic region of salt
depletion behind a propagating deionization shock, which
opens new possibilities for nonlinear electrokinetic separa-
tions in porous media. Building on recent work,19,20,38 we
formulate a general LMM and derive representative analyti-
cal and numerical solutions for finite domains. We focus on
the simplest situation of a symmetric binary electrolyte in a
leaky membrane of constant surface charge density, uniform
pressure-driven flow, negligible hydrodynamic dispersion,
and no EOF.

Relaxing these assumptions and deriving suitable modifi-
cations of the model provide challenging avenues for
research. For example, charge regulation in a multicompo-
nent electrolyte due to specific adsorption of ions is a classi-
cal source of nonlinearity,3,60 which in leaky membrane can
lead to OLC by “current-induced membrane discharge.”44

The LMM with charge regulation could have relevance for
electrokinetic remediation in soils,29–32 as well as ion trans-
port in biological cells and membranes.74,76 The dynamics of
charged colloids in leaky membranes may also lead to inter-
esting nonlinear dynamics, generalizing shock waves in capil-
lary electrophoresis.33–37 The LMM may also improve the
accuracy of porous electrode theories, which currently assume
electroneutrality in the solution phase and neglect SC,40 which
already account for capacitive charging of double layers84

with Faradaic reactions72,73 and specific adsorption of interca-
lation reactions,64,65 but generally neglect SC. In all these sit-
uations, perhaps the most difficult and important extension of
the LMM will be to account for EOF and associated disper-
sion phenomena at the macroscopic scale.25,52
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Appendix A: SC in a Leaky Membrane

As noted by Mani and Bazant,19 the LMM is formulated
using a nonstandard definition of “surface conduction.” In

classical electrokinetic theories, this term refers to the excess
conduction (from electromigration and electro-osmotic con-
vection) that arises from increased ion concentrations in the
electric double layer (EDL).78,79 SC in this case can be
found by taking the total conduction and subtracting the
conduction that would be found in the absence of an EDL.
This definition has a long history in electrokinetics from pio-
neering work of Smoluchowski, Bikerman, and Dukhin.85–91

For a particle or pore of characteristic length a, the Dukhin
number

Du 5
js

ajb
(A1)

is the ratio of excess surface conductivity js, to bulk conduc-
tivity jb.

Although SC is traditionally defined in terms of the excess
ion concentration EDL, the more relevant definition for a
leaky membrane is in terms of the total surface charge den-
sity, as shown in Figure 1. The difference between these two
values is shown in Figure 17. Let C6 be the total excess
surface concentration (Figure 17a). This can be written as

C65

ð
c62cbulkð Þdx

for a binary, univalent electrolyte, where c2; c1, and cbulk

are the negative, positive, and bulk ion concentrations,
respectively, and x is the distance from the charged surface.
For a negatively charged surface C1 > 0 and C2 < 0. In
classical electrokinetics, the excess surface conductivity will
come from the excess neutral salt concentration, w.77,92

w5

ð
c11c222cbulkð Þdx5C11C2

In a leaky membrane, however, the total surface ion con-
centration, or double-layer charge density, q, plays an impor-
tant role and is given by

q5

ð
c12c2ð Þdx5C12C252rs

Here, we consider an EDL at equilibrium and examine a
different mechanism for conduction along a charged surface.
This SC is in addition to, rather than in excess of, the con-
duction through the neutral bulk electrolyte. Throughout this
article, only the SC due to the total surface charge density
will be discussed, and will be referred to as SC.

The importance of surface phenomena generally increases
with the surface to volume ratio. In the case of SC, the role
of surface charge is controlled by ~qs, the ratio of surface
charge to bulk ionic charge per volume, which becomes
non-negligible in submicron pores, especially at low electro-
lyte concentrations. It is important to note that this dimen-
sionless group, while similar, is not the same as the Dukhin
number.19 The Dukhin number depends on w, while ~qs

depends on rs52q. It is possible for w to be very small
while maintaining a large q value, resulting in a large value
for ~qs and a small Dukhin number.

Appendix B: Mathematics of Deionization Shocks

At constant OLC, a leaky membrane (or microchannel20)
supports the propagation of deionization shocks.19 In the
main text, we discuss how shocks arise in transient response
of a finite system, but here we discuss the mathematics of
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shock propagation in an unbounded domain. It is convenient
to recast the equations in terms of the total ion concentration
j5c11c2, which is proportional to the total conductivity
(for equal ionic diffusivities), including both bulk and sur-
face contributions. Note that this definition of j is different
from the “bulk” conductivity jb defined by Mani and
Bazant,19 set by the depletable coion concentration c5c2.

In terms of the dimensionless conductivity ~j5 j
2c0

, the
LMM takes the form

@~j
@~t

5
@2~j

@~x2
2

~qs
~I

~j2

@~j
d~x

(A2)

with boundary condition

@~j
@~x

1; tð Þ1 ~qs
~I

~j 1; tð Þ52~I (A3)

The conductivity can be solved independently and the
potential then obtained by integrating the current

~I52~j
@~/
@~x

(A4)

By rescaling Eq. A2, we can obtain a simple, quasilinear
PDE

@ĵ
@~t

1
@ ĵ21
� �
@~x

5
@2ĵ

@~x2
(A5)

for the rescaled conductivity ĵ5~j=
ffiffiffiffiffiffiffiffiffiffiffi
2~qs

~I
q

(assuming that

~qs is negative). This PDE resembles Burgers’ equation,11,33

where ĵ2=2 has been replaced by ĵ21. Although Burgers’
equation can be transformed into the linear diffusion equa-
tion by the Cole–Hopf transformation,15,16 there does not
seem to be a suitable linearizing transformation for Eq. A5.
However, the scaling used to achieve this simplification sug-
gests that the surface charge density may be as important as
the applied current in affecting the resulting conductivity
profile. In fact, it will be shown subsequently that ~qs signifi-
cantly impacts the conductivity and voltage profiles, bringing
about nonlinear behavior.

As with Burgers’ equation, the long-time dynamics in an
semi-infinite medium is dominated by nonlinear advection
(the second term in Eq. A5), which leads to shock waves for
most boundary and initial conditions. Diffusion plays only a
secondary role in determining shock structure.19 Neglecting
the diffusion term, we obtain a first-order quasilinear PDE

ĵ2 @ĵ
@~t

2
@ĵ
@~x

50 (A6)

of the same form as Amundson’s model of chromatography,
Eq. 1, which can be solved by the method of characteristics.3,11

For current in the 1~x direction, nonlinear kinematic waves
in the conductivity profile propagate in the 2~x direction. For
characteristics originating at the end of the leaky membrane
where conductivity variations are specified, ĵ 0;~tð Þ5ĵ0 ~tð Þ,
the solution for ~x < 0 is given by

ĵ5ĵ0 ~t1ĵ2~x
� �

(A7)

For characteristics originating in the bulk material, the ini-
tial conductivity profile, ĵ ~x; 0ð Þ5ĵ1 ~xð Þ, evolves as

ĵ5ĵ1 ~x1
~t

ĵ2

� �
(A8)

These solutions are valid until characteristics nearly cross,
as conductivity gradients become large and lead to shock
waves. Multivalued solutions (“wave breaking”) for the con-
ductivity profile are prevented by diffusion, which stabilizes
the shock structure.

A deionization shock is a traveling-wave solution of Eq.
A5, ĵ ~x; ~tð Þ5f nð Þ with n5~x2~vs~t, where ~vs is the shock
velocity. Let ĵ5f21 and ĵ5f1 < f21 be the conductivity
asymptotes ahead (~x ! 21) and behind (~x !1) the
shock, respectively. The shock profile then satisfies the ordi-
nary differential equation

2~vsf
01 f 21
� �0

5f
0 0; f 61ð Þ5f61 (A9)

Integrating once we obtain

2~vs f 2f1ð Þ1 f 212f 21
1

� �
5f

0
(A10)

where we impose the boundary condition at n51, where
f 0 ! 0. If we also impose the boundary condition at
n521, we obtain the shock velocity (a nonlinear
eignevalue)

~vs5
f 21
1 2f 21

21
f12f21

< 0 (A11)

for propagation directed toward the high-conductivity region,
leaving behind a depleted region behind the shock. Equation
A11 is the Rankine–Hugoniot jump condition expressing
integrated mass conservation across the shock.

As in the ~c ~x;~tð Þ formulation,19 it is possible to integrate
(A10) analytically to obtain the shock profile for ĵ ~x; ~tð Þ in
implicit form, but it is fairly complicated. A much simpler,
approximate solution can be obtained by neglecting the non-
linear advection term ahead of the shock

f nð Þ �
f212 f212f1ð Þen for n < 0

f1 for n > 0

(
(A12)

which corresponds to a truncated exponential profile moving
at constant velocity, clearly seen in some of our simulations
from the main text (Figure 5, ~I55). This “diffusive wave”
solution arises whenever an absorbing boundary propagates
into a diffusing medium, as in dendritic electrodeposition,82

where metal deposition plays the role of SC in rapidly
removing cations from the bulk solution ahead of the wave.
In the absence of flow, deionization shock waves are nonli-
nearly stable to conductivity perturbations,19 due to a mathe-
matical analogy with interface motion in diffusion-limited
dissolution.93
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