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Abstract—We present an investigation of the nonlinear dynam-
ics of clamped–clamped micromachined arches when actuated by
a dc electrostatic load superimposed on an ac harmonic load. The
Galerkin method is used to discretize the distributed-parameter
model of a shallow arch to obtain a reduced-order model. The
static response of the arch due to a dc load actuation is simulated,
and the results are validated by comparing them to experimental
data. The dynamic response of the arch to a combined dc load and
ac harmonic load is studied when excited near its fundamental
natural frequency, twice its fundamental natural frequency, and
near other higher harmonic modes. The results show a variety
of interesting nonlinear phenomena, such as hysteresis, soften-
ing behavior, dynamic snap-through, and dynamic pull-in. The
results are also shown demonstrating the potential to use mi-
croelectromechanical systems (MEMS) arches as bandpass filters
and low-powered switches. An experimental work is conducted
to test arches realized of curved polysilicon microbeams when
excited by dc and ac loads. Experimental data are shown for
the softening behavior and the dynamic pull-in of the curved
microbeams. [2009-0180]

Index Terms—Arches, dynamic pull-in, dynamic snap-through,
electrostatic actuation, microelectromechanical systems (MEMS).

I. INTRODUCTION

M ICROMACHINED shallow arches have been under
increasing focus in recent years in the microelectro-

mechanical systems (MEMS) community because of their
unique attractive features. One major advantage is their bista-
bility nature, which makes them suitable for switching and
actuation applications. In particular, bistable structures, such
as arches and buckled beams, do not require power to hold
them down in either stable states (the on or off positions as
switches); they need power only during transition between the
two states. Another advantage in actuation applications is that
they can be displaced in large strokes compared to straight and
monostable structures. Both arches and buckled structures share
the bistability advantages, and hence, both have been inves-
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tigated extensively in the MEMS literature. However, arches
have the advantage of not requiring permanent axial force or
stress to be actuated, which is usually hard to be controlled
through microfabrication. In addition, because the curvature
of arches is predetermined from fabrication, their response
(the stroke) is more predictable and controllable compared to
buckled beams. Qui et al. were among the first who recognized
these advantages [1]. They have fabricated a stress-free curved
beam, realized from two beams connected in the middle, for
easier and more controllable snap-through motion.

Curved clamped–clamped microbeams, arches or buckled
beams, have been the mostly used bistable structures for a
variety of MEMS actuation applications. For example, curved
microbeams have been used as acceleration-threshold switches
[2], an artificial muscle actuator [3], to deliver electrical pulses
in the human body [4], and as a mechanical memory for data
storage [5]. Most of the literature has been focused on utiliz-
ing the structural instability snap-through in clamped–clamped
arches and buckled microbeams as a static phenomenon due to
the actuation of static forces. Those forces can be mechanical
[1], magnetic [6]–[8], thermal [9], [10], comb-drive electrosta-
tic [4], [11]–[13], and parallel-plate capacitive [2], [14]–[18].

When actuating a curved beam by a parallel-plate electro-
static force, its stability problem becomes very interesting.
Previous works have shown that curved microbeams may
exhibit snap-through or pull-in instability, depending on the
interaction between mechanical and electrostatic forces [13]–
[18]. Zhang et al. [14] and Krylov et al. [15] conducted
theoretical and experimental investigations on initially curved
(arches) clamped–clamped microbeams actuated by a dc load.
The microbeams were fabricated by deep reactive ion etching
technologies. They showed several results demonstrating the
possibilities of snap-through or pull-in, depending on the level
of curvature of the arch and the electrostatic load. Their simula-
tions were based on the Galerkin method, and they have shown
good agreement among their theoretical and experimental
results.

Among the few works on the dynamics of curved micro-
beams, Krylov and Dick [17] studied the transient response
of arches when actuated by suddenly applied step voltages.
They showed several interesting phase portraits to illustrate
the various scenarios of escape from one potential well of
the arch to the other and also for the escape out of the
global well through dynamic pull-in. Terré et al. [13] studied
theoretically and experimentally the possibility of triggering
the snap-through motion of a comb-drive actuated buckled
microbeams driven dynamically at resonance. They have shown
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that this snap-through motion can be used to realize a switch
actuated at reduced voltage. Li et al. [19]–[21] investigated
the nonlinear dynamics of initially buckled piezoelectrically
driven microbeams. Static, free, and forced vibrations have
been investigated. It was shown that a buckled microbeam can
vibrate in a softening or hardening behavior, depending on the
thickness of the microbeam. Buchaillot et al. [22] explored
theoretically and experimentally the dynamic snap-through
phenomenon of clamped–clamped buckled microbeams when
subjected to base excitation and undergoing large vibration.
Several scenarios of snap-through and chaotic-like behavior
have been shown for a variety of excitation levels. Cabal and
Ross [23] devised a methodology based on a mathematical
model to describe theoretically the snap-through phenomena of
a bilayer micromachined curved beam. Poon et al. [24] studied
the dynamic response of a buckled clamped–clamped curved
beam to sinusoidal excitation using a Runge–Kutta numerical
integration method. Their work predicted various features, such
as softening and hardening behaviors and chaotic motion of
intermittent snap-through.

This paper is concerned with clamped–clamped microma-
chined arches, which are made curved intentionally through
the induced residual stress from fabrication. By reviewing the
state of the art, one can see that the dynamic behavior of
clamped–clamped shallow arches under harmonic electrostatic
forces has been rarely investigated. In previous works [25]–
[30], we presented analytical and computational methods, and
reduced-order models (ROMs) to investigate the static and
dynamic behaviors of straight microbeams under electrostatic
and electric harmonic loads. In this paper, we develop a ROM
and utilize it to investigate the static and dynamic behaviors of
clamped–clamped shallow arches when actuated by a dc load
superimposed to an ac harmonic load. We explore the response
of the arch for various loading ranges, which result in a variety
of interesting nonlinear dynamics phenomena, including soft-
ening behaviors, dynamic snap-through, and dynamic pull-in.
Our motivation of this investigation is that deep understanding
of the dynamic behavior of these structures is needed to explore
and enable their utilization and potential as sensors and actua-
tors. We show preliminary results due to this dynamic actuation,
which can be promising for MEMS filter and switch applica-
tions. We do not intend in this paper to study the switching
dynamics or the post pull-in behavior. Such issues need a model
that takes into account factors, such as the bouncing effect and
the adhesion forces, which are beyond the scope of this paper.

The organization of this paper is as follows. Section II gives
a short background on the two-well potential problem of a
shallow arch and the dynamic snap-through and pull-in insta-
bilities. In Section III, we present a model and derive a ROM
of an electrically actuated clamped–clamped shallow arch. In
Section IV, we study the static behavior of an arch under the
actuation of a dc load. We select the arch parameters of [15]
for the theoretical investigations of Sections IV and V to enable
the demonstration of the snap-through phenomena without pull-
in, which cannot be achieved using the fabricated beam of
Section VI. In Section V, the dynamic response of the shallow
arch when excited by a dc load superimposed to an ac harmonic
load is simulated. Results are shown for several excitation

Fig. 1. (a) Shallow arch undergoing a snap-through motion. (b) Total potential
energy of the arch. (c) Corresponding phase portrait.

frequencies near the fundamental natural frequency of the arch,
its secondary resonances, and near its second and third natural
frequencies. Section VI describes the experimental setup and
the curved microbeam used for testing. In Section VII, the
dynamics of the curved microbeam are investigated experimen-
tally and compared with the theoretical results. Finally, we sum-
marize the results and give some conclusions in Section VIII.

II. BACKGROUND

A. Dynamics of a Shallow Arch

A shallow arch can vibrate around its original deformed
shape, around its opposing symmetric configuration, and in be-
tween those two shapes (snap-through motion) with large am-
plitude vibrations, Fig. 1(a). The potential energy of a shallow
arch is of a double-well type, Fig. 1(b). With sufficient kinetic
energy, a local vibration near one well can transfer to the other
or escape to the global attractor in the case of snap-through
motion, Fig. 1(c). The initial deformed configuration of the arch
and its immovable edges results in strong influence of quadratic
and cubic geometric nonlinearities on the structure behavior
[31]. Because of its rich nonlinear phenomena, shallow arches
and the problem of two-well potential have received special
attention in the nonlinear dynamics literature [31], [32].

B. Dynamic Pull-In and Dynamic Snap-Through

Dynamic pull-in refers to the collapse of a movable electrode
to a stationary electrode of a capacitor due to the combined
action of its kinetic and potential energies. Sources of kinetic
energy can be due to transient effects, for example due to a
sudden step actuation of the microstructure or due to dynamic
loading, for example, due to an ac harmonic voltage. Sources of
potential energy are due to the elasticity or restoring forces of
the microstructure and to the dc load actuation. Dynamic pull-in
requires lower values of dc voltage to be triggered compared to
the static pull-in threshold [30], [33]–[35].

Snap-through is another instability, which characterizes
structures, such as buckled beams and arches. Similar to pull-in,
snap-through can be triggered statically or dynamically. This
can be also noted from Fig. 1, which indicates the possibility
of snap-through due to the combined effect of kinetic and
potential energies of the arch. Dynamic snap-through has been
investigated thoroughly in the literature since the 1960s [36].
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Fig. 2. (a) Schematic of the electrically actuated clamped–clamped arch.
(b) 3-D schematic of the arch.

III. PROBLEM FORMULATION

In this section, we formulate the problem governing the
behavior of a MEMS shallow arch. Here, we consider
a clamped–clamped shallow arch, Fig. 2, of initial shape
w0(x) = −bo[1 − cos(2πx/L)]/2, where b0 is the initial rise,
actuated by an electrode underneath it with a gap width d
using a dc load superimposed to an ac harmonic load VAC of
frequency Ω̃. Assuming a Euler–Bernoulli beam model, the
nonlinear equation of motion governing the transverse deflec-
tion w(x, t) of the arch of width b, thickness h, and length L is
expressed as [14], [15], [31]
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where E = 166 GPa is the effective Young’s modulus of the
arch: E = Ê/(1 − ν2), where Ê = 154 GPa and ν = 0.27
are the Young’s modulus and Poisson’s ratio of silicon, to
account for the fact that the arch beam is wide [14], [15],
A = bh is the cross-sectional area, I is the moment of inertia,
ρ = 2332 Kg/m3 is the material density, and c̃ is the viscous
damping coefficient.

The boundary conditions of the considered clamped–
clamped arch are

w(0, t) = 0
∂w

∂x
(0, t) = 0

w(L, t) = 0
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∂x
(L, t) = 0. (2)

For convenience, we introduce the following nondimensional
variables:
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where T is a time constant defined by T =
√

ρAL4/EI . Next,
we drop the hats for convenience. Therefore, the nondimen-
sional equations of motion and associated boundary conditions
can be written as
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w(0, t) = 0
∂w
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(0, t) = 0

w(1, t) = 0
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(1, t) = 0 (5)

where
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2d
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and ωn = 1/T .
One can see that the last term of (4) contains quadratic and

cubic nonlinearities. When the arch is actuated by a dc load,
its equilibrium position changes. This gives rise to additional
quadratic nonlinearity terms. The interaction among all these
nonlinearities can play a crucial role in the response of the arch.
To simulate the response of the arch, (4) and (5) are discretized
using the Galerkin procedure to yield a ROM [27], [28]. Hence,
the deflection of the arch is approximated as

w(x, t) =

n
∑

i=1

ui(t)φi(x) (7)

where φi(x)(i = 1, 2, . . . , n) denotes the normalized linear
undamped mode shapes of the straight microbeam (w0 = 0),
and ui(t)(i = 1, 2, . . . , n) denotes the nondimensional modal
coordinates. To obtain the ROM, we first multiply (4) by
F (x, t) = (1 − w0 − w)2. This reduces the computational cost
since the electrostatic force term in the discretized equation
will not require complicated numerical integration (integrating
a numerator term over a denominator term numerically is
computationally expensive) [27], [28]. Then, substituting (7)
into the resulting equation, multiplying by φi(x), and then
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integrating the outcome from zero to one yield the following
differential equations in terms of the modal coordinates ui(t):
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To simulate the dynamic behavior, (8) is integrated with time.
To simulate the static response, all time-dependent terms in (8)
are set equal to zero, and then, the modal coordinates ui(t) are
replaced by unknown constant coefficients ai(i = 1, 2, . . . , n).
This results in a system of nonlinear algebraic equations in
terms of the coefficients ai. The system is then solved numer-
ically using the Newton–Raphson method to obtain the static
deflection of the arch.

IV. STATIC RESPONSE

As a case study, we consider the silicon clamped–clamped
shallow arch of Krylov et al. [15] of L = 1000 µm, h =
2.4 µm, b = 30 µm, d = 10.1 µm, and initial rise bo = 3.5 µm.
First, we examined the contribution from the antisymmetric
modes in the ROM and found it negligible for the static analysis
(unlike the case cited in [37] for a deep arch loaded by a static
point load). Next, we examine the convergence of the ROM.
Fig. 3 shows the maximum static deflection of the shallow arch
(midpoint deflection) when using one up to six symmetric mode

Fig. 3. Variation of the static deflection of the shallow arch with the dc voltage
for various numbers of mode shapes of a straight beam in the ROM.

Fig. 4. Comparison between the obtained static deflection of the shallow arch
with the dc voltage using five-mode shapes in the ROM with the experimental
data of Krylov et al. [15].

shapes of a straight clamped–clamped beam in the ROM while
varying the dc load. It follows from the figure that using five
symmetric modes yields acceptable converged results. As can
be seen in the figure, the shallow arch undergoes a snap-through
motion near VDC = 88 V and, then, a pull-in instability near
VDC = 106 V.

In Fig. 4, we validate the five-mode ROM results for the
clamped–clamped arch by comparing them with the experi-
mental data reported in [15]. It is clear that the experimental
data and the ROM results are in good agreement except near
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Fig. 5. Variation of the static deflection of the shallow arch with the dc voltage
for various values of initial rise b0.

snap-through and pull-in. Similar deviation has been observed
by Krylov et al. [15], which they have attributed to the inertia
and dynamic effect in the experiment, which are not being
modeled in the static analysis. According to Zhang et al. [14],
this discrepancy can be attributed to several factors, including
the possible inhomogeneity of the beam, the stress experienced
by the beam ends that is larger than the other parts of the
beam, the dynamic effect, and the possibility of the presence
of unwanted moments at the beam ends due to the coupling
between the force acting on the beam ends and friction.

In Fig. 5, the effect of the initial rise on the static deflection
of the arch is shown. For bo = 2 µm, the arch behaves more
like a beam with no discontinuity in its deflection as VDC

increases. For the cases of bo = 3 µm and bo = 4 µm, the
arch snaps through first and then pulls in while increasing
VDC. Moreover, the figure shows that the values of dc voltage,
where the arch snaps through, increase with bo, while the pull-
in voltage decreases with increasing bo. This indicates that the
stiffness of the shallow arch increases before snap-through and
then decreases in the buckled position with the increase of
bo. Increasing bo further results in direct pull-in without the
intermediate snap-through jump. These behaviors were also
reported in [14] and [15].

V. RESPONSE TO DC AND AC HARMONIC LOADS

In this section, we study the dynamic behavior of the shallow
arch due to a combined dc and ac harmonic loads near the
primary and secondary resonances. We should mention here
that the actuation of the arch with a dc load alone may shift
its natural frequencies to lower values. In addition, varying
the curvature level can affect the natural frequencies. More
details on this can be found in [38] and [39]. We integrate
the differential equations in terms of the modal coordinates
numerically with time using the Runge–Kutta technique to
simulate the dynamic response. Here, we use both symmetric
and antisymmetric mode shapes in the ROM to capture any
possible crossing among the resonances of the symmetric and
antisymmetric modes.

Fig. 6. Simulated frequency-response curves of a shallow arch actuated by
dc and ac harmonic loads, showing several scenarios of nonlinear behaviors
for an initial rise b0 = 3 µm. (a) VDC = 40 V, VAC = 20 V, and ζ = 0.1.
(b) VDC =40 V, VAC =20 V, and ζ =0.005. (c) VDC =40 V, VAC =40 V,
and ζ = 0.1.

In Fig. 6(a)–(c), we simulate the dynamic response of the
arch investigated in Section IV with an initial rise of bo = 3 µm
to various values of dc and ac loads and damping ratios. These
values have been selected to demonstrate various nonlinear
behaviors of the arch. A damping ratio ζ is assumed, which
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is related to the viscous damping coefficient c as c = 2ζω,
where ω is the nondimensional natural frequency. Fig. 6(a)
shows the response for VDC =40 V, VAC =20 V, and
ζ =0.1. Three distinctive resonances are observed, which are
primary resonance near the fundamental natural frequency and
another two secondary resonances. These are superharmonic
resonances of order one-half (near Ω = 17) and one-third (near
Ω = 12), which indicate the presence of both quadratic and
cubic nonlinearities. Note that the quadratic nonlinearities are
due to both the electrostatic forces and the curvature of the arch
[the terms multiplying α1 and involving w0 in (4)], whereas the
cubic nonlinearity is due to mid-plane stretching, as indicated
in the term multiplying α1 that does not involve w0 in (4).

It is clear from the figure that the quadratic nonlinearity is
dominant over the cubic one since the superharmonic resonance
of order one-half is of larger amplitude than that of order one-
third and also since all resonances exhibit softening behavior
(the frequency-response curves bend to the left). Fig. 6(a)
shows that the softening behavior appears before the snap-
through motion, where the vibration occurs around the local
attractor of one of the potential wells of the arch.

Fig. 6(b) shows the dynamic response of the arch when the
damping ratio is reduced to ζ = 0.005, which should lead to
larger overall response. The figure shows the secondary reso-
nances with the softening behavior but with larger amplitude
compared to Fig. 6(a). Near the primary resonance, the response
seems of softening type except near a narrow band of frequency,
in which the response jumps to larger values where it exhibits
a hardening behavior. In this narrow band, the arch snaps
through and jumps from the local attractor to a bigger global
attractor. Hence, it vibrates in large amplitude motion across
the two wells [see the big blue orbit in Fig. 1(a)], where the
hardening effect of the cubic nonlinearity becomes dominant.
A similar observation has been reported for the vibration of
buckled beams [24]. One possible use of this sudden jump of
response in a narrow frequency range in MEMS is a bandpass
filter [40]. The instantaneous jump in the response to the snap-
through regime means a sharp roll-off from the stopbands to
passband, which is a desirable property of filters. Of course, the
possibility of hysteresis and the stability of the snap-through
vibration are some of the dynamical issues that need to be
further investigated for this idea.

Fig. 6(c) shows the response of the arch when the ac
amplitude is raised to VAC = 40 V while keeping the other
parameters as in Fig. 6(a). This case is an example of very
large excitation. Near the primary resonance, one can see a large
band of snap-through motion with clear hardening behavior.
Moreover, the snap-through amplitude continues to increase
with the increase of excitation frequency until the motion is
terminated by dynamic pull-in. This series of interesting jumps
can be of great potential for designing MEMS switches and
actuators of large strokes and low-power consumptions. This
is because dynamic actuation demands less voltage for pull-in
compared to static methods [13], [29], [30]. For example, one
can excite the arch such that it escapes from the local well
of small vibrations to pull in directly without the intermediate
snap-through oscillation. This case will be demonstrated theo-
retically and experimentally in the next section.

Fig. 7. Simulated frequency-response curves of a shallow arch actuated by dc
and ac harmonic loads for VDC = 40 V, VAC = 20 V, ζ = 0.1, and various
values of initial rise b0.

Next, we show in Fig. 7 the effect of the initial rise on
the dynamic response of the arch. Results are also shown
for bo = 0, which is the case of a straight clamped–clamped
microbeam to enable comparison with arches. Note here that all
the frequency-response curves start at wmax, corresponding to
the equilibrium position at VDC = 60 V shown in Fig. 5 (quasi-
static behavior at slow excitation frequency). First, one can see
that there is an increase in the linear natural frequency of the
arch with increasing bo, as expected based on the conclusion of
Fig. 5 that increasing bo strengthens the stiffness of the arch,
with the exception of the case of bo = 2 µm. This is because,
at VDC = 60 V, the curved beam in this case shows a snap-
through-like behavior, as shown in Fig. 5. For bo = 3 µm and
bo = 4 µm, the frequency-response curve shows a softening-
type behavior. This indicates that the softening effects and
the quadratic nonlinearities of the electrostatic force and the
curvature are dominant. The cases of the straight microbeam
and the “almost-curved” beam bo = 2 µm show a hardening-
type behavior. In this case, the cubic mid-plane stretching effect
dominates the other quadratic nonlinearities.

In electrostatically actuated systems, secondary resonances
can appear in their responses due to the strong influence of the
nonlinear electrostatic force, which is quadratic in nature. These
resonances can have significant influence on the performance
of the systems. Fig. 8 shows the arch dynamics near the
subharmonic resonance of order one-half (excitation near twice
the fundamental natural frequency) for two values of VAC. The
damping ratio in this figure is taken to be ζ = 0.005 to enable
the activation of the subharmonic resonance [29], [34]. It turns
out in this case that this range of frequency is also close to the
second natural frequency of the arch. Hence, one can see that
the subharmonic resonance curves cross those of the second
natural frequency resonances. Such an interesting phenomenon
may trigger internal resonances between the first and second
modes of the arch [31].

We end up this section by showing results for exciting the
arch near its third natural frequency, Fig. 9. The figure shows
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Fig. 8. Simulated frequency-response curves near the subharmonic resonance
of order one-half, which turns out to be also close to the second natural
frequency of the arch. In the figure, VDC = 40 V, ζ = 0.005, and b0 = 3 µm.

Fig. 9. Simulated frequency-response curves of a shallow arch excited near
its third mode for various ac loads and damping ratios and for VDC = 60 V
and b0 = 3.5 µm.

that the arch oscillates in small amplitude around one of its
stable state before passing resonance. Then, it jumps to the
other symmetric well to vibrate in small motion around the
other stable state for a wide range of frequencies, after which
it returns back and jumps to its original potential well. This
sort of behavior could be also promising to build a bandpass
filter with a sharp roll-off from the stopbands to passband, a
flat bandwidth, and a high center frequency [40]. Fig. 9 shows
also that VAC and damping ratio can be used to control the
bandwidth and the center frequency of such a filter.

VI. EXPERIMENTAL SETUP

The experimental work of this paper was conducted on a
silicon chip containing curved polysilicon microbeams. The
curvature of the microbeams was realized by residual stresses

Fig. 10. Fabrication process flow of the polysilicon microbeams.

during fabrication. These are induced because of the difference
in thermal expansion coefficients of the deposited beam layers
and the substrate. The microbeams were fabricated using sur-
face micromachining process at the Cornell Nano-Scale Facil-
ity. Fig. 10 shows the fabrication process flow of the polysilicon
curved microbeams. The microbeam fabrication starts with the
growth of a layer of sacrificial wet oxide on a bare silicon
wafer, followed by the deposition of a polysilicon layer as the
microbeam material [Fig. 10(a)]. The thickness of the oxide
layer was measured to be ∼0.8 µm (± µm). It acts as an
etch stop in the next step for the polysilicon etch that defines
the microbeams and contact pads [Fig. 10(b)] and holds the
microbeams in place firmly until the final release. The thickness
of the polysilicon was measured with a P10 profilometer to be
∼1.3 µm (±0.1 µm). The wafer is then diced into microbeam
chips. The microbeams are fully released at the chip level
by dissolving the sacrificial oxide layer in hydrofluoric acid
[Fig. 10(c)]. A very thin layer of chrome/gold (approximately
50 Å/50 Å) is evaporated on the microbeams to enhance the
electrical conductivity [Fig. 10(d)].

The microbeams were wire bonded to a printed circuit board,
Fig. 11(a). A curved microbeam of length 300 µm and width
50 µm is chosen for this investigation. Fig. 11(b) shows a 3-D
image of the surface profile of the microbeam, as measured
using a Wyko profilometer. It was found that the beam is
initially curved up with an initial rise of approximately 1 µm.
Moreover, the Wyko measurement revealed a total thickness of
the microbeam with the gap underneath near 2.2 µm. Fig. 11(c)
shows the experimental setup used for testing the dynamics of
the curved microbeam and monitoring its motion. The setup
includes an MSA motion analyzer, which is a high-frequency
laser Doppler vibrometer, and a vacuum chamber equipped
with ports for electrical connections, pressure gauge, and a
viewport window made of a quartz glass that enables the laser
to penetrate without any distortion.

VII. EXPERIMENTAL DATA AND COMPARISON

WITH SIMULATIONS

This section presents a comparison between the experimental
data and the ROM results for the dynamic response of the
curved polysilicon microbeam described in Section VI. For the
theoretical model, we estimated d = 0.85 µm and h = 1.35 µm
based on the Wyko measurements in Section VI.
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Fig. 11. (a) Chip of polysilicon curved clamped–clamped microbeams wire-
bonded to a printed circuit board. (b) 3-D Vecco profiler image for the
tested curved microbeam. (c) Experimental setup used for testing the curved
microbeam.

The frequency responses of the curved beam during a
forward-sweep frequency test for different ac voltages are
shown in Fig. 12. The figure shows that, for all the ac voltages,
the frequency-response curves undergo a softening behavior
similar to the predictions in Section V. Because the fabricated
arch has a very small gap, separating it from the substrate, it was
not possible to obtain experimentally a snap-through motion
without pull-in. Instead, we were able to detect the jump from
the stable operation near the local well of the arch to pull in
directly. Fig. 13(a) shows an experimental result of this case.
Increasing the ac load further creates a pull-in zone, Fig. 13(b),
where the microbeam is forced to pull in if operated within
this zone of frequency [34]. This figure was obtained using
both forward and backward frequency sweep tests. Comparing
the simulation results with the experimental data in Figs. 12
and 13 shows good agreement, thereby validating the theoreti-
cal results.

VIII. CONCLUSION AND SUMMARY

The static response of an arch due to a dc load actuation
has been simulated, and the results were validated by com-
paring them to experimental data. The dynamic behavior of
an electrically actuated clamped–clamped shallow arch has
been investigated theoretically and experimentally. The arch is
actuated by a dc load superimposed to an ac harmonic load.
The results show various scenarios of static and dynamic snap-
through and pull-in, depending on the initial rise of the arch and
the electrostatic load level. Furthermore, our investigation also

Fig. 12. Experimental data versus simulation results using a five-mode ROM
for the frequency-response of the fabricated arch for VDC =5 V and various
ac loads and pressure values inside the vacuum chamber. (a) VAC =2.4 V;
pressure=120 mtorr (ζ =0.025). (b) VAC =4.5 V; pressure=124 mtorr
(ζ = 0.035). (c) VAC = 7.1 V; pressure = 145 mtorr (ζ = 0.04).

predicts that the initial rise of the shallow arch has a significant
effect on reducing its hardening behavior and increasing its
softening behavior. Simulation results were shown demonstrat-
ing various scenarios of resonances, including primary and
subharmonic resonances. Moreover, resonances near higher
order harmonics were presented. Promising results were shown
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Fig. 13. Experimental data versus simulation results, showing dynamic pull-in
and pull-in band when VDC =5 V. (a) VAC =9.4 V; pressure=120 mtorr
(ζ = 0.025). (b) VAC = 14 V; pressure = 115 mtorr (ζ = 0.02).

for the possibility of using the dynamic snap-through motion of
the arch near specific bands of frequencies to realize bandpass
filters of sharp transition from the passband to stopbands and
also of flat bandwidth. In addition, a bandpass filter of higher
center frequency was demonstrated by exciting the arch near its
third mode. More research needs to be conducted to investigate
the feasibility of using this system as a filter. Experimental
work has been conducted to test arches made of polysilicon
curved microbeams to dynamic ac and dc actuation. The exper-
imental results were shown to be in good agreement with the
simulations.

Future research is planned to analyze, in more details, the
rule of the various nonlinearities of the electrostatically actu-
ated arch. Moreover, future work is planned to confirm many
of the presented theoretical results based on the shooting tech-
nique for finding periodic motions [29], [30], [34].
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