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NONLINEAR DYNAMICS OF NETWORKS:

THE GROUPOID FORMALISM

MARTIN GOLUBITSKY AND IAN STEWART

Abstract. A formal theory of symmetries of networks of coupled dynamical
systems, stated in terms of the group of permutations of the nodes that pre-
serve the network topology, has existed for some time. Global network sym-
metries impose strong constraints on the corresponding dynamical systems,
which affect equilibria, periodic states, heteroclinic cycles, and even chaotic
states. In particular, the symmetries of the network can lead to synchrony,
phase relations, resonances, and synchronous or cycling chaos.

Symmetry is a rather restrictive assumption, and a general theory of net-
works should be more flexible. A recent generalization of the group-theoretic
notion of symmetry replaces global symmetries by bijections between certain
subsets of the directed edges of the network, the ‘input sets’. Now the symme-
try group becomes a groupoid, which is an algebraic structure that resembles
a group, except that the product of two elements may not be defined. The
groupoid formalism makes it possible to extend group-theoretic methods to
more general networks, and in particular it leads to a complete classification
of ‘robust’ patterns of synchrony in terms of the combinatorial structure of the
network.

Many phenomena that would be nongeneric in an arbitrary dynamical
system can become generic when constrained by a particular network topol-
ogy. A network of dynamical systems is not just a dynamical system with
a high-dimensional phase space. It is also equipped with a canonical set of
observables—the states of the individual nodes of the network. Moreover, the

form of the underlying ODE is constrained by the network topology—which
variables occur in which component equations, and how those equations relate
to each other. The result is a rich and new range of phenomena, only a few of
which are yet properly understood.

Contents

1. Introduction
2. Symmetry and synchrony
3. Animal locomotion
4. Is symmetry necessary for synchrony?
5. Coupled cell networks
6. Admissible vector fields
7. Balanced equivalence relations

Received by the editors May 2, 2005.
2000 Mathematics Subject Classification. Primary 37G40, 34C23, 34C25, 92B99, 37G35.
Part of this material was presented by M. Golubitsky in the SIAM plenary lecture “Coupled

cell systems: A potpourri of theory and examples”, given at the Joint Mathematics Meetings in
Phoenix, AZ, January 2004.

c©2006 American Mathematical Society
Reverts to public domain 28 years from publication

305



306 MARTIN GOLUBITSKY AND IAN STEWART

8. Rigid equilibria
9. Quotient networks
10. Rigid periodic states
11. Synchrony-breaking bifurcations
12. Interior symmetries
13. Phase equations
14. Synchronized chaos
15. Bubbling bifurcation
16. Is there a linear theory?
Acknowledgments
About the authors
References

There are plenty of objects which exhibit what we clearly recognize as sym-
metry, but which admit few or no nontrivial automorphisms. It turns out
that the symmetry, and hence much of the structure, of such objects can be
characterized algebraically, if we use groupoids and not just groups.

Alan Weinstein [83]

1. Introduction

The biologist J.B.S. Haldane, when asked what we can learn about the Creator
by examining the world, replied that God seemed to have an inordinate fondness
for beetles. Today’s biologists could be forgiven for pointing to the deity’s inordi-
nate fondness for networks. Networks are ubiquitous in biology: examples include
gene expression, neural circuitry, ecological food webs, and disease transmission.
Networks are also common in many other branches of science, and there has been
a recent explosion of interest in the topic. The research literature, including appli-
cations, now extends to many thousands of papers.

Mathematically, a network is a directed graph whose nodes represent state vari-
ables and whose directed edges represent interactions among those variables. In this
paper we usually assume that the graph is finite, but most of the ideas extend to
locally finite graphs. What interests us here is processes taking place on networks.
The nodes and edges are equipped with some kind of ‘dynamic’, which could be a
choice of moves (games), a transition probability (Markov chains), discrete states
in time and space (cellular automata), or continuous states (coupled ODEs, the
subject of the present discussion). Analogies of the groupoid formalism that we
introduce below can be developed for any sensible type of process on a network,
but this area is virtually unexplored as we write.

Much progress has been made on how combinatorial features of networks af-
fect their static or statistical behavior. The work of Watts and Strogatz [82] on
‘small world’ networks is especially well known. For surveys of the field, see Boc-
caletti et al. [10] or Wang [80]. Probabilistic aspects of networks have also received
a lot of attention, Newman [63]. However, general studies of network dynamics
are fairly rare: of the 429 references cited by Newman, only 6 are about dynamics
(though, admittedly, dynamics is not the main target of that paper). Many papers
on network dynamics make restrictive assumptions, a typical one being to assume
weak linear coupling, as in Kuramoto [54] and Ashwin and Swift [7]. Wu [90]
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uses a Liapunov function to derive conditions for stable synchronization of systems
with identical internal dynamics, assuming linear (time-dependent) coupling. Fein-
berg [26] and Tyson et al. [77, 78] study cell systems where the dynamical equations
are chemical reaction equations. Feinberg has beautiful results about when the net-
work can support steady states and periodic solutions; Tyson et al. have derived
detailed cell cycle models along with an understanding of how the network affects
the dynamics in these models. Most of the rest are about numerical simulations of
specific models. There are several excellent books, including Manrubia et al. [57],
Mosekilde et al. [60], and Wu [89]. All three of these discuss applications.

Here we describe a formal framework for the nonlinear dynamics of networks,
based on the recent discovery of an algebraic context for such questions, namely
the symmetry groupoid of the network [72]. This is a natural generalization of the
concept of a symmetry group. The main difference between groupoids and groups is
that in a groupoid the product of two elements may not be defined. This difference
has significant knock-on effects, and the theory of groupoids has a different flavor
from that of groups; see Brandt [11], Higgins [47], and Brown [12].

The symmetry group of a network (that is, the automorphism group of the
graph) is known to have a strong influence on its dynamics [6, 20, 21, 25, 30,
36, 37, 40, 41, 86, 87, 88]. Evidence is accumulating that many generic features
of the dynamics of asymmetric networks can be understood from the groupoid
viewpoint (where ‘generic’ is relative to the network structure). As for conventional
dynamical systems, quantitative information about specific models must usually be
obtained through numerical simulations, but the conceptual framework helps us to
organize and understand the results of such simulations and to predict their general
qualitative features.

Our framework applies to networks whose architecture is fixed, and we shall not
discuss cases where the architecture itself evolves over time, even though this is a
very interesting topic. It is worth observing, however, that the ‘local’ nature of
groupoid symmetries implies that small changes in the architecture—such as the
addition or removal of a node or an edge—may preserve large parts of the groupoid.
Global group-theoretic symmetries are more easily destroyed by small changes in
architecture. It is also worth remarking that many popular examples of networks,
such as the Internet, do not fit directly into our scheme because the nodes are not
naturally modeled by dynamical systems. However, the groupoid concept applies
to the topology of the network, independently of the structure associated with a
node, and it can readily be generalized to other mathematical contexts, for instance
Markov chains.

It remains to be seen how useful the groupoid formalism will be for applied
science. The group-theoretic approach to pattern-formation now has many appli-
cations, including several to networks, the latter mostly in connection with neuro-
science. The groupoid formalism is most likely to be useful for networks constructed
from multiple copies of a few basic ‘components’, both for cells and for couplings,
and where the network architecture is fairly repetitive. Such networks occur in
several areas of science. Generalizations of the theory that permit approximate or
statistical symmetries may be feasible and, if so, may be more suitable for some
applications. The phenomenon of ‘motifs’—unusually common small subnetworks,
Milo et al. [59], Wolf and Arkin [85], Dobrin et al. [22]—is also worth mentioning
in this context. However, as we write, there exist few applications of the groupoid
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formalism as such. Because it is a natural generalization of the successful group-
theoretic formalism and because the mathematical theory is rich and challenging,
we believe that the prospects for useful applications are good. But we also antici-
pate a period of further development before it becomes clear whether we are right.
At any rate, the topic is an interesting area of pure dynamical systems theory with
a fascinating interplay of techniques.

Dynamic Features Specific to Networks. It is important to appreciate that a
network is not just a high-dimensional dynamical system, even though its associated
ODEs can be interpreted as precisely that. The novel feature is that the nodes of
the network define distinguished observables whose dynamics can be compared.
Two nodes may be (exactly or approximately) synchronous, they may have related
phases or frequencies, and they may behave chaotically yet still resemble each other.

To illustrate these points in an informal setting, we briefly consider the simplest
nontrivial network: two identical cells with identical coupling. Schematically such
a system is represented as in Figure 1, and this network has an obvious symmetry
which swaps the two nodes and the two edges. Abstractly, this group is a cyclic
group Z2 of order 2.

1 2

Figure 1. Schematic of a two-cell network with identical cells and
identical coupling.

We associate with this network a class of differential equations, which we call
‘admissible’. For this network the admissible differential equations are those of the
form

(1.1)
ẋ1 = g(x1, x2)
ẋ2 = g(x2, x1)

where x1, x2 ∈ Rk are the state variables of the individual cells. Observe that a
single function g : Rk × Rk → Rk defines the system.

One consequence of the Z2 symmetry of this system is the existence of solutions
in which x1(t) = x2(t) for all t. This follows because the ‘diagonal’ subspace
{x : x1 = x2} is invariant under the flow of the differential equation for all g. For
all such solutions, the two cells behave synchronously.

Another consequence of symmetry is that there exists a nonempty open set
of functions g for which there is a periodic solution, with period T , such that
x2(t) = x1(t + T/2) for all t; see [41, 37]. That is, the two cells have the same
periodic dynamics except for a relative phase shift of half a period.

It turns out that both synchrony and phase relations occur naturally for many
other networks, even when the only global (group-theoretic) symmetry is trivial.
We will show that the symmetry groupoid goes a long way towards explaining both
of these phenomena and can be viewed as a natural algebraic framework for such
comparisons.

We say that a network exhibits synchrony if two or more cells behave (more or
less) identically. Synchrony is a fundamental phenomenon in networks, and there
is a huge literature, most of which we shall not cite here. In models of speciation in
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evolutionary biology (Cohen and Stewart [15], Elmhirst [23], Stewart et al. [71], Vin-
cent and Vincent [79]) the nodes of the network represent (coarse-grained sets of)
organisms, the edges represent interactions (breeding, competition for resources),
and synchronized clusters correspond to species. In analogous models of pathologi-
cal microorganisms, synchronized clusters correspond to genetically closely related
strains (Gomes and Medley [43]). In neurobiology (Kopell and LeMasson [53]) syn-
chronized clusters correspond to groups of nerve cells that ‘fire together’, which
is significant for neural processing and the architecture of the brain (Singer [70]).
Manrubia et al. [57] discuss synchronization in neural networks. Mosekilde et al. [60]
describe a model of synchronization in nephrons, structures in the kidneys that help
regulate blood pressure.

Similarly, we say that two cells are phase-related if they have identical periodic
dynamics except for fixed phase shifts. Phase-relation is another important net-
work phenomenon. Such patterns are central to animal locomotion (Kopell and
Ermentrout [51, 52], Collins and Stewart [16, 17], Buono and Golubitsky [13]).
Phase-locked waves of activity are observed in the leech heartbeat (Calabrese and
Peterson [14], Olsen and Calabrese [64]) and elsewhere. The nephron model of
Mosekilde et al. [60] also exhibits phase-related states.

As the two-cell example suggests, there is one general context in which synchrony
and phase-relations are entirely natural and easily explained, namely, dynamics
with symmetry. If the network is symmetric, then the constraints imposed on the
dynamics by symmetry often lead to cells being synchronous or phase-related. The
theory to be outlined in this paper grew from the realization that although symme-
try is sufficient to make these phenomena natural, it is not necessary. Certain types
of network architecture, with trivial symmetry, still imply the ‘generic’ existence
of synchronized states and of phase-related states. This realization led to a weaker
concept of ‘symmetry’ for dynamics on a network; this formalism in turn suggested
numerous questions, some of which we can answer, while others remain mysterious.

In order to draw out the themes of this article, we list a few of the broader
questions raised by the groupoid viewpoint:

• How does the combinatorics (graphs) affect the algebra (groupoids), and
how does the algebra affect the dynamics?

• Which dynamic phenomena become likely because of the network con-
straints?

• What are the existence theorems?
• What are the linear conditions for stable equilibria, and what are the non-

linear bifurcation theorems?
• What are the analogies with the group case? When do these analogies fail

and why?

Outline of the Paper. Section 2 introduces some basic ideas from symmetric dy-
namics and examines how symmetry leads to synchrony and phase relations. These
phenomena are codified by the H/K Theorem, which classifies the possible spatio-
temporal symmetries of periodic states for symmetric systems. Section 3 applies
the resulting techniques to patterns that arise in the motion of four-legged animals,
illustrating the constraints imposed on dynamics from network architecture and
demonstrating that features of the architecture can be inferred (subject to certain
modeling assumptions that can be made explicit) from observed dynamics. This
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application also shows that this approach has some predictive value and can be
tested.

Section 3 broadens the scope of enquiry. We present several examples of networks
in which synchrony and phase relations can be observed, even though the network
lacks symmetry in the group-theoretic sense. These patterns are ‘robust’: that is,
they cannot be destroyed by small changes to the ODEs that respect the network
architecture. Note that robustness is not the same as stability, which concerns
small changes in initial conditions; in particular, robust states may be unstable.
The (linear) stability of any given state is essentially a computational issue in
linear algebra and can be worked out directly for any specific network (provided it
is too large), so we mainly focus on issues of existence. Stability issues are basic to
bifurcation theory, however, and are discussed in more detail in the corresponding
sections of the paper.

The examples in Section 3 motivate two key ideas: that patterns of synchrony
are related to ‘local’ symmetries of the ‘input sets’ of the synchronous cells and
that the type of synchronous dynamic that occurs is determined by a ‘quotient
network’ in which synchronous cells are identified. We formalize the notion of
‘coupled cell network’ in Section 5 and describe the associated ‘admissible’ ODEs
in Section 6. Section 7 introduces the notion of a ‘balanced’ equivalence relation,
which characterizes robust patterns of synchrony and leads to a precise definition
of a quotient network. Proofs of these results are found in [42, 72]. We apply
this characterization to some patterns that arise in lattice dynamics—with a few
surprises (Wang et al. [3, 81]).

Robust synchrony is a very strong requirement: it occurs because of the presence
of subspaces that are flow-invariant for all admissible ODEs. Section 8 shifts the
emphasis to synchronous states rather than entire subspaces. The main conclusion
is that this makes no difference: the synchrony relation is still balanced. We prove
this when the state concerned is a hyperbolic equilibrium [42]. We conjecture that
it is true for any hyperbolic attractor, but a proof is currently lacking and the issues
involved are not straightforward.

Moving away from equilibria to more complex dynamics, Section 9 defines quo-
tient networks and relates their dynamics to the original network. The key theorem
is that any admissible dynamic on the quotient lifts to a synchronous dynamic on
the original network [42]. Therefore we can deduce the existence of synchronized
states with complex dynamics—periodic, quasiperiodic, chaotic, etc. The periodic
case is studied in Section 10, and here the theory becomes more conjectural. A
plausible (but as yet unproved) conjecture, the Rigid Phase Conjecture, states that
for a hyperbolic periodic state, phase-related cells have phase-related input sets
(with the same phase-shift). Assuming this conjecture, we can prove that rigid
phase relations always arise from a quotient network with cyclic group symmetry.

The discussion to this point concerns individual states of the system, that is,
possible phenomena occurring in individual solutions. The paper now moves in
a new direction: bifurcation. Bifurcations occur when the dynamics of a system
changes radically as a parameter is varied. Examples include steady-state bifurca-
tion, where an equilibrium becomes unstable and new equilibria appear nearby, and
Hopf bifurcation, where an equilibrium becomes unstable and gives rise to a peri-
odic state. Bifurcation theorems are useful ways to prove the existence of certain
states.
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Such bifurcations are relatively well understood in the case of symmetric sys-
tems [37, 41], and here the central phenomenon is ‘symmetry-breaking’: the sym-
metry of the state can change. The analogous concept in general networks is
‘synchrony-breaking’, in which a synchronized state loses stability and other states
arise.

There are two main issues here. One is a linear algebra question: the conditions
for a state to become unstable are determined by the eigenvalues of the linearized
vector field. The other question involves nonlinear terms: to deduce what form the
bifurcations take when instability sets in. We show that the network architecture
has a significant (and puzzling) influence on both of these issues.

Section 11 introduces synchrony-breaking bifurcations and opens Pandora’s box
with a 3-cell feed-forward network studied in [24, 32]. Here we find the occurrence
of a Hopf bifurcation in which the first cell remains in equilibrium, the second
becomes periodic with an amplitude that grows according to the square root of
the bifurcation parameter, and the third becomes periodic with an amplitude that
grows according to the sixth root of the bifurcation parameter. This ‘anomalous’
behavior is generic with such a network architecture.

With Pandora’s box open and its contents released, it becomes clear that network
architecture can have a major effect on generic bifurcation. Numerous phenomena
that would be highly exotic, or degenerate, in a single dynamical system become
typical in a network. The classification and analysis of these bifurcations is com-
plicated by curious problems of linear and nonlinear algebra. We manage to bring
a semblance of order into one tiny corner of this vast area in Section 12, which in-
troduces a type of network symmetry that is somehow intermediate between global
group symmetry and local groupoid symmetry. We call it ‘interior symmetry’, and
we discuss analogues of the Equivariant Branching Lemma for steady-state bifur-
cation and the Equivariant Hopf Theorem for bifurcation to periodic states proved
in [33].

The theory derived at this stage of the paper, modulo a few plausible conjec-
tures, is reasonably coherent and complete. However, it is restricted either to
general observations about invariant subspaces or to properties of equilibria and
periodic states—not terribly exciting dynamically. Moreover, the cell phase spaces
are assumed to be vector spaces (an assumption motivated by local bifurcation
theory), which rules out any discussion of phenomena associated with the global
topology of the cell phase spaces. Sections 13–15 address these issues, although
they raise more questions than they answer.

Phase spaces with nontrivial topology are important in the network literature,
because it is common to model synchrony and phase relations in periodic dynamics
in terms of phase oscillators, where the cell phase space is a circle; see Kopell and
Ermentrout [52] and Hoppensteadt and Izhekevich [49]. With this choice of cell
phase space, oscillations have frequency but no specific amplitude. In Section 13 we
follow [31] and apply the theory to such networks and deduce strong constraints on
rotation numbers of cells in all-to-all coupled networks. We round off our discussion
of synchronized states in Section 14, which discusses synchronized chaos. Section 15
develops this topic by analyzing an associated bifurcation scenario, the ‘bubbling’
bifurcation in synchronized chaos. Here, the chaotic state repeatedly loses and
regains synchrony. This example relates our idealized form of synchrony (states are
identical) to the more approximate synchrony often seen in applications.
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Finally, we provide a speculative postscript directed at a key unsolved question
which is central to the understanding of the stability of equilibria, periodic states,
and synchronized chaotic states. Section 16 discusses the linear algebra questions
involved in determining stabilities of network states, which opens up some intriguing
but puzzling problems. It seems clear that much more remains to be said.

2. Symmetry and synchrony

Issues of synchrony and phase-relations are well understood in a more specialized
context: symmetric networks. This context provides a natural entry route into the
more general setting that we wish to introduce and is more accessible. At this
stage we therefore formalize ‘symmetry’ as invariance with respect to some group
of transformations. The resulting theory applies not just to symmetric networks
but to symmetric dynamical systems in general.

We therefore begin by reviewing the theory of symmetry in nonlinear dynamics
from the group-theoretic viewpoint, [37, 41], but with emphasis on the network
point of view. These results motivate the development of the generalization to net-
works with groupoid ‘symmetries’. The crucial difference is that group symmetries
are transformations of the network that preserve its global architecture, whereas
groupoid symmetries relate local regions of the network to other regions. For the
moment, though, we confine the discussion to group symmetries.

A symmetry of an ordinary differential equation (ODE) is a transformation that
sends solutions to solutions. More precisely, let γ : Rn → Rn be a linear map. A
system of differential equations

(2.1) ẋ = f(x)

(where x ∈ Rn and f : Rn → Rn is smooth) has symmetry γ if γx(t) is a solution
to (2.1) whenever x(t) is a solution. It is straightforward to verify that γ is a
symmetry if and only if f satisfies the equivariance condition

(2.2) f(γx) = γf(x).

In contrast, a symmetry of a network is a purely combinatorial concept: a trans-
formation that preserves the network architecture. It can be defined as a pair
of permutations, one of the nodes and one of the edges, that preserve incidence
relations between nodes and edges. Each symmetry of a network induces a symme-
try of any corresponding ODE. The set of all network symmetries is a group (its
graph-theoretic automorphism group).

These two notions are related, because the ODEs that describe the dynamics of
a symmetric network inherit its symmetries. This relationship is a natural conse-
quence of the constraints imposed on the ODEs by the network architecture. We
can therefore apply the theory of symmetric dynamical systems to symmetric net-
works. The most immediate result is that both synchrony and phase-locking are
natural consequences of network symmetry [20, 21, 35, 37, 41].

Example 2.1. To provide a concrete example of dynamics in a symmetric net-
work, we consider a specific system of ODEs determined by the two-cell network
of Figure 1, based on the FitzHugh-Nagumo model of a neuron (FitzHugh [28],
Nagumo et al. [61]). For a single neuron, the variables assumed in this model are
a membrane potential v and (a surrogate for) an ionic current w. The state of the



NONLINEAR DYNAMICS OF NETWORKS: THE GROUPOID FORMALISM 313

neuron is thus specified by a point (v, w) ∈ R2, and the internal dynamic is

(2.3)
v̇ = v(a − v)(v − 1) − w
ẇ = bv − γw

where a, b, γ are parameters, and 0 < a < 1, b > 0, γ > 0.
In a two-cell network, the internal dynamic of one cell is modified by coupling

effects from the other cell. In the Fitzhugh-Nagumo model, coupling can (for in-
stance) occur by adding an applied current to the v̇ equation, this being a function
of the state of the other cell. Thus x1 = (v1, w1), x2 = (v2, w2), and

(2.4) g(x1, x2) = (v1(a − v1)(v1 − 1) − w1 − cv2, bv1 − γw1)

where c represents coupling strength. The origin is a stable equilibrium for the full
four-dimensional system when a = b = γ = 0.5 and c = 0.9. Hence the cells are
(trivially) synchronous. When c = 1.1 the two-cell system has a stable periodic
solution with the two cells one half period out of phase. See Figure 2.
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Figure 2. Two coupled Fitzhugh-Nagumo neurons exhibiting a
half period out of phase periodic solution. Time series of v1, v2 in
(1.1) using g in (2.4).

As indicated in the introduction to this paper, these two phenomena are group-
theoretic consequences of the symmetry of the two-cell network rather than the
specific choice of model. We now discuss this point in a little more detail.

The symmetry is visible in the figure and in the equations: all two-cell systems
(1.1) have a permutation symmetry σ(x1, x2) = (x2, x1) inherited from the symme-
try of the network. This symmetry causes synchrony and phase-locking to occur
‘robustly’, which means, roughly speaking, that these phenomena do not depend
on the precise form of the function g in (1.1).

In the case of synchrony, the reason for this independence of g is very simple: the
diagonal ∆ = {(x1, x2) : x1 = x2} is a flow-invariant subspace for any choice of g.
This is obvious, because the two equations in (1.1) reduce to the same equation on
∆. It follows that if the initial conditions of a solution x(t) satisfy x1(0) = x2(0),
then x1(t) = x2(t) for all t. Two cells are synchronous if their time series are
identical, so the invariance of ∆ implies that synchrony should be expected in
identical two-cell systems (1.1). Moreover, this synchrony is ‘really’ a consequence
of symmetry. Indeed, suppose that γ is a symmetry of (2.1). Then

Fix(γ) = {x ∈ Rn : x = γx}
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is a flow-invariant subspace. (Proof: γf(x) = f(γx) = f(x) for each x ∈ Fix(γ).
Hence f : Fix(γ) → Fix(γ).) The invariance of ∆ can now be explained in symmetry
terms, because ∆ = Fix(σ).

Phase-locking is also a natural consequence of symmetry, though it has a subtler
cause, not directly related to a fixed-point space. To see how a phase-locked state
can arise from symmetry, suppose that x(t) is a T -periodic solution to (2.1) and
that γ is a symmetry. Then either γx(t) is a different periodic trajectory from
x(t) or it is the same trajectory. In the latter case, the only difference is a time-
translation. That is, γx(0) = x(θ) for some θ, and uniqueness of solutions implies
that γx(t) = x(t + θ) for all t. In the two-cell system, applying σ twice implies
that 2θ ≡ 0 (mod T ). Hence either θ = 0 or θ = T

2 . Since σ is the permutation

(1 2) it follows that x2(t) = x1(t) when θ = 0 (synchrony) and x2(t) = x1(t + T
2 )

when θ = T
2 (phase-locking). Indeed, it is an important feature of identical two-cell

models that these systems naturally produce in-phase (synchronous) periodic solu-
tions and half-period out of phase (phase-locked) periodic solutions. The nephron
model of Mosekilde et al. [60] can have periodic states that are a half-period out of
phase. Biped gaits provide another excellent illustration: in-phase periodic states
correspond to two-legged hopping (swapping left and right legs leaves the motion
unchanged) and half-period out-of-phase periodic states correspond to walking.
Animal gaits will be discussed in more detail in the next section. ✸

These observations can be generalized substantially. The set of symmetries of
an ODE is a group, so the natural context for symmetry is group theory. Most
of the theory can be set up for a compact Lie group acting on a vector space or
a manifold, and to some extent even for noncompact Lie groups, especially the
Euclidean groups. However, the natural context for dynamics on finite networks,
where we work with ODEs, is that of finite groups, and for simplicity we restrict
the discussion to that case. For definiteness, we work with vector spaces as phase
spaces. When the phase spaces are manifolds, new issues related to the global
topology arise: see for example [31], which develops similar ideas for networks of
phase oscillators.

Suppose, therefore, that the system (2.1) has a finite symmetry group Γ. First,
suppose that Σ ⊂ Γ is a subgroup. Then

Fix(Σ) = {x ∈ Rn : σx = x ∀σ ∈ Σ}
is a flow-invariant subspace. Second, suppose that x(t) is a periodic solution. Define

H = {γ ∈ Γ : γ{x(t)} = {x(t)}} spatiotemporal symmetries
K = {γ ∈ Γ : γx(t) = x(t) ∀t} spatial symmetries.

Then, as above, for each h ∈ H, there is a phase shift θ(h) ∈ S1 such that hx(t) =
x(t + θ(h)). Moreover, θ : H → S1 is a group homomorphism with kernel K.
It follows that H/K is isomorphic to a finite subgroup of S1 and hence is cyclic.
Moreover, since fixed-point subspaces are flow-invariant, K is an isotropy subgroup
of the action of Γ on Rn.

Example 2.2. To illustrate the roles of H and K, consider a ring of three identical
cells with identical bidirectional coupling as in Figure 3. This network has a symme-
try group S3 consisting of all permutations of the three cells (with corresponding
permutations of the three arrows), and this group of network symmetries is re-
flected in the associated ODEs. Specifically, the systems of differential equations
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determined by this network have the form

(2.5)
ẋ1 = g(x1, x2, x3)
ẋ2 = g(x2, x3, x1)
ẋ3 = g(x3, x1, x2)

where x1, x2, x3 ∈ Rk and g : (Rk)3 → Rk. The overline indicates that g is
invariant under permutation of the second and third coordinates, that is, g(a, b, c) ≡
g(a, c, b). This property reflects the fact that the two couplings affecting a single
cell are identical.

1

2 3

Figure 3. Schematic of a three-cell network with identical cells
and identical coupling.

The symmetry group of this system is the permutation group Γ = S3 with
generators σ = (1 2) and τ = (1 2 3) in cycle notation (Biggs [8]). When k ≥ 2,
three different types of asynchronous periodic solutions can be found that have some
spatiotemporal symmetry: rotating waves, two cells in phase, and two cells out of
phase (by exactly half the period). These solution types are characterized by pairs
(H, K) equal to (Z3(τ ),1), (Z2(σ),Z2(σ)), and (Z2(σ),1), respectively. In rotating
waves the time series of the three cells are identical up to a phase shift of one
third or two thirds of a period. The out-of-phase periodic solution has a surprising
feature. Suppose that x(t) is a T -periodic solution satisfying σx(t) = x(t + T

2 ).

Then x2(t) = x1(t + T
2 ), as expected. However, in addition, x3(t) = x3(t + T

2 ), so
x3 oscillates at twice the frequency of x1 and x2. Time series of rotating wave and
out-of-phase periodic solutions are illustrated in Figure 4, which shows a numerical
solution for a particular choice of g. Note the double-frequency small-amplitude
time series in the right-hand figure. ✸
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Figure 4. Periodic state of a three-cell network: (left) rotating
wave, (right) out of phase.
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For a general coupled cell system, periodic states with spatiotemporal symmetries
are classified by the following theorem.

Theorem 2.3 (H/K Theorem [13, 37]). Let Γ be the symmetry group of a coupled
cell network in which all cells are coupled and the internal dynamics of each cell is at
least two-dimensional. Let K ⊂ H ⊂ Γ be a pair of subgroups. Then there exist pe-
riodic solutions to some coupled cell system with spatiotemporal symmetries H and
spatial symmetries K if and only if H/K is cyclic and K is an isotropy subgroup.
Moreover, the system can be chosen so that the periodic solution is asymptotically
stable.

Asymptotic stability implies hyperbolicity, which in turn implies that any small
perturbation of the vector field leads to a unique perturbed periodic orbit that lies
close to the original periodic orbit. It follows that both H and K are unchanged by
small Γ-equivariant perturbations of the vector field. That is, the pattern of phase
relations in the states whose existence is asserted by the H/K theorem is ‘rigid’—
unchanged by small perturbations. The same goes for the pattern of synchrony,
since this corresponds to zero phase shifts. It is easy to construct examples of
nonrigid phase relations, so this fact is nontrivial.

The implications of this theorem include some surprises. For example, consider
the five-cell network in Figure 5. The symmetry group of this network is Z3×Z2

∼=
Z6. Periodic solutions with (H, K) = (Z6,1) can exist by the H/K Theorem. Let

4 5

1 2 3

Figure 5. Five-cell system made from a ring of three cells and a
ring of two cells.
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Figure 6. (L) Cells 1-2-3 one-third period out of phase; (C) cells
4-5 half period out of phase; (R) shows that twice the frequency of
cell 4 equals three times the frequency of cell 1.
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σ = (ρ, τ) be the generator of Z3 × Z2. Observe that (σ2, 1/3) forces the 3-cell
ring to exhibit a rotating wave and that (σ3, 1/2) forces the 2-cell ring to generate
out-of-phase signals. Finally, (σ, 1/6) symmetry implies that three times the two-
cell frequency equals twice the three-cell frequency. Such a solution is shown in
Figure 6. Such symmetry-induced ‘resonances’ are known as multirhythms.

3. Animal locomotion

We apply the above ideas to a less trivial example, with some interest for ap-
plications, which has been suggested as a model for the patterns of synchrony and
phase shifts that are observed in the movement of four-legged animals.

The general phenomenology of symmetric networks can be illustrated in the
context of animal locomotion [13, 16, 17, 38, 39]. It has long been recognized
that legged locomotion involves a variety of standard spatio-temporal patterns in
which the legs move periodically in a particular sequence and with particular phase
relationships. The case of quadrupeds is especially familiar. For example, when
a horse trots, diagonally opposed legs are synchronized, but the two diagonals are
half a period out of phase. When the horse walks, the legs hit the ground in the
sequence left rear, left front, right rear, right front (or its left/right mirror image)
at intervals of one quarter period. When a camel or giraffe paces, its left legs are
synchronous, its right legs are synchronous, but left and right are half a period
out-of-phase. More complex gaits, such as the gallop, have phase shifts that are
not such simple fractions of the period, leading to a distinction between primary
gaits with very rigid, simple phase shifts, and secondary gaits with more arbitrary
and more flexible phase shifts. (The symmetry formalism can be used to make this
distinction precise, as we discuss shortly.) Figure 7 shows seven common quadruped
gaits. Dogs tend to walk, trot, and transverse gallop; squirrels bound; camels tend
to pace and rotary gallop; and deer often pronk (all legs moving in synchrony) when
startled.

0

0 1/2

1/20 1/2

1/4 3/4

0

0

1/2

1/2

0 0

1/2 1/2

0

1/2

0.1

0.6

0

1/2

0

0 0

0.1

0.6

WALK PACE TROT BOUND

TRANSVERSE

GALLOP

ROTARY

GALLOP

0

PRONK

Figure 7. Seven quadrupedal gaits. Numbers indicate the per-
centage of the time through the gait when the associated leg first
strikes the ground. Gaits begin when left hind leg strikes ground.
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The symmetry approach to gaits aims to provide a rationale for these patterns
and to explain the distinction between primary and secondary gaits. It tackles these
problems by seeking the schematic form of the animal’s central pattern generator
(CPG); see Kopell and Ermentrout [52]. The CPG is a network of neurons that is
widely believed to generate nerve signals with the corresponding spatio-temporal
rhythms. Its existence is supported by much indirect evidence (see for example
Grillner and Wallén [45]), but significant information on the detailed structure of the
CPG is known only for a few animals, notably the lamprey (see for example Grillner
et al. [44]). For most animals even the existence of a CPG has not been confirmed
directly, though it is well established that the basic rhythms of locomotion are
generated somewhere in the spinal cord, not in the brain. It therefore makes sense
to try to infer qualitative information about the CPG from the gaits themselves.

Such inferences must start by making some assumptions about the nature of the
CPG and how it relates to the gaits, and the consequent deductions are only as good
as those assumptions. So what should emerge is either a valid CPG architecture
or the falsification of at least one of the assumptions. In the current state of
knowledge, either of these is possible, but what concerns us here is the use of
symmetry arguments to infer features of network topology, and conversely.

An important but sometimes neglected aspect of gaits is the phase shifts that do
not occur, as well as the ones that do. This rules out otherwise effective ‘engineering’
designs of CPG that can produce any desired collection of phase shifts.

Four Cells Do Not Suffice. The simplest model of a quadruped locomotor CPG
has four identical cells, where it is presumed that the output signal from each cell
is sent to one leg. See Figure 8. We ask whether it is possible to couple these four
cells in such a way that network systems can naturally produce rhythms associated
with the three gaits—walk, trot, and pace—and show that it is not [13].

1 2

3 4

RHLH

LF RF

Figure 8. Signal from cell 1 is sent to left hind (LH) leg, etc.

To justify this negative statement we discuss three points:

(a) Gait rhythms are described by spatiotemporal symmetries.
(b) The symmetry groups of trot and pace cannot be conjugate.
(c) The symmetry group of trot and pace are always conjugate in any four-cell

network that also produces a walk.

(a) Collins and Stewart [17] observed that standard quadruped gaits are distin-
guished by spatiotemporal symmetries, where the space symmetries are leg permu-
tations. The generators for the symmetry groups of trot, pace, and walk are listed
in Table 1. In our models we assume that gait rhythms are exact and robust. We
also assume that the only robust phase shifts of periodic solutions that are given in
these models are those that are described by symmetry. This point will be discussed
further in Section 10.
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Gait Generators of spatio-temporal symmetries Solution form

Trot ((1 2)(3 4), 1
2
) and ((1 3)(2 4), 1

2
) (x(t), x(t + 1

2
), x(t + 1

2
), x(t))

Pace ((1 2)(3 4), 1
2
) and ((1 3)(2 4), 0) (x(t), x(t + 1

2
), x(t), x(t + 1

2
))

Walk ((1 3 2 4), 1
4
) (x(t), x(t + 1

2
), x(t + 1

4
), x(t + 3

4
))

Table 1. Legs are numbered by the associated cells in Figure 8.
The permutation (1 2)(3 4) swaps left and right legs; the permuta-
tion (1 3)(2 4) swaps front and back legs; fractions indicate phase
shift as a fraction of a gait period.

(b) Experiments on dogs imply that trot and pace are not gaits that can be
modeled by conjugate solutions. Note that in a system of differential equations
conjugate solutions differ only by initial conditions and have the same stability.
Blaszczyk and Dobrzecka [9] indicate that the stability of pace and trot are not the
same. In their experiment, a dog’s legs are restrained so that they can use a pace
at intermediate speeds, but not a trot, which is the dog’s preferred gait. Different
dogs are placed in this device for two to six months. In post-restraint trials dogs
that were in the shorter restraint period switched back to a trot quickly with only
occasional use of a pace. Occurrence of the pace was more frequent in the animals
that were restrained for a longer period, but the use of pace decreased with every
post-restraint experimental trial.

(c) It follows from (a) that if a four-cell network is coupled so that periodic so-
lutions with the rhythm of a walk occur naturally, then the permutation (1 3 2 4)
must be a network symmetry. Suppose that the system also produces a pace solu-
tion. As indicated in Figure 9, cells 1 and 3 and cells 2 and 4 must be synchronous.
As illustrated in the figure, applying the walk symmetry to that solution produces
a solution in which cells 1 and 4 and cells 2 and 3 are synchronous — a pace. It
follows that trot and pace solutions are conjugate in any four-cell network that can
produce a robust walk.

PACE TROT

1 2

3 4

1 2

3 4

Figure 9. Lines between cells indicate synchrony; no lines indi-
cate half-period phase shifts.

The Eight-Cell Network. Golubitsky et al. [13, 39] make six assumptions and
deduce that for quadrupeds the only possible symmetry class of CPG networks is
the 8-cell network shown in Figure 10. The details of the deduction are unimportant
here, but they are explicit in the original paper. In this figure, unlike all the others
in this paper, the edges of the graph do not represent specific connections but
compose the simplest set of edges that determines the network’s symmetry group.
If any additional edge is added, all symmetrically related edges must be added as
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2

4

6

8

1

3

5

7

Figure 10. Eight-cell network for quadrupeds. Dashed lines in-
dicate contralateral coupling; single lines indicate ipsilateral cou-
pling.

well. For example, if we add an edge from cell 1 to cell 4, then we must also add
identical edges from cells 3 to 6, 5 to 1, 7 to 2, 2 to 3, 4 to 5, 6 to 7, and 8 to 1. We
adopt this convention for this example only, because otherwise the picture would
become too complicated to follow.

It is worth remarking that the context assumed in the analysis was that of
group-equivariant dynamical systems, leaving open the possibility that groupoid
symmetries might lead to an alternative, smaller, network with similar properties.
There are good reasons to believe that this is not the case, but we postpone this
issue to Section 10, by which point the necessary ideas will be available.

Perhaps the most surprising feature here is that a 4-cell network, with one cell
per leg, is ruled out. The reason is related to the walk, trot, and pace gaits and
how they coexist.

This network has eight symmetries: permutations of the legs (more precisely,
the leg labels) that preserve the edges. There are two types of symmetry: con-
tralateral symmetry κ, which interchanges cells on the left with cells on the right;
and ipsilateral symmetry ω, which cyclically and simultaneously permutes cells on
both left and right. Thus the symmetry group of the eight-cell quadruped CPG is
Γ = Z2〈κ〉 × Z4〈ω〉.

The H/K Theorem provides a classification of the possible spatio-temporal sym-
metries. Primary states are characterized by all eight cells having the same wave-
form modulo phase shift (that is, H = Γ), whereas secondary gaits involve more

walk jump trot pace bound pronk

LF RF 3
4

1
4

1
2

1
2

1
2 0 0 1

2
1
2

1
2 0 0

LH RH 1
2 0 3

4
3
4 0 1

2 0 1
2 0 0 0 0

LF RF 1
4

3
4 0 0 1

2 0 0 1
2

1
2

1
2 0 0

LH RH 0 1
2

1
4

1
4 0 1

2 0 1
2 0 0 0 0

Subgroup K Z2(κω2) Z2(κ) Z4(κω) Z4(ω) D2(κ, ω2) Z2 × Z4

Table 2. Phase shifts for primary gaits in the eight-cell network.
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than one waveform (that is, H � Γ). It is straightforward to calculate the six
subgroups K ⊂ H for which H/K is cyclic and to determine the primary patterns
for the 8-cell network; see Table 2. There is an analogous (but more complicated)
classification of secondary gaits.

The patterns listed in the table correspond to standard primary quadruped gaits,
with one exception: the gait we have labelled ‘jump’. After performing the above
analysis, the jump gait was observed at the Houston Livestock Show and Rodeo.
Figure 11 shows four video frames of a bucking bronco, taken at equal intervals of
time. The interval between the footfalls is very close to 1/4 of the period of this
rhythmic motion.

Figure 11. Quarter cycles of bareback bronc jump at Houston
Livestock Show and Rodeo. (UL) fore legs hit ground, (UR) hind
legs hit ground, (LL) and (LR) all legs in air.

Figure 12. Average right hind to right fore = 31.2 frames (light
region); average right fore to right hind = 11.4 frames (dark re-
gion); 31.2

11.4 = 2.74.

Indeed, approximately 200 frames of the rodeo video are coded in Figure 12.
Dark regions begin when the right hind leg is firmly on the ground and light regions
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begin when the right fore leg is firmly planted on the ground. This figure indicates
that the average time elapsed from right hind to right fore leg ground strikes is
approximately three times the average time elapsed from right fore to right hind
leg ground strikes. The primitive ricocheting jump of a Norway rat and an Asia
Minor gerbil also has the same pattern of phases as the jump gait (Gambaryan [29]).

4. Is symmetry necessary for synchrony?

The theory of symmetric dynamical systems shows that striking patterns, such
as synchrony and phase-relations, are to be expected in systems with a global group
of symmetries. It also provides general theorems and techniques for deriving the
appropriate patterns for any given symmetry group. However, symmetry in the
group-theoretic sense is a rather strong modeling assumption.

The question here is not so much whether symmetry is ‘realistic’, but what kind
of symmetry is appropriate. If a realistic model is ‘close to’ an idealized symmetric
one, then (invoking normal hyperbolicity) we can anticipate that in many respects
the realistic model’s behavior will resemble that of the symmetric ideal. Some
delicate features will not survive the slight loss of symmetry, but the more robust
features will. For example, if the idealized model predicts that two variables will
be exactly synchronous, then the corresponding variables of a more realistic model
will track each other fairly closely, even though their values may differ slightly.

Many models, in particular networks, do not possess global group-theoretic sym-
metries, even in this approximate sense. So it is reasonable to ask whether global
group-theoretic symmetry is necessary for rigid synchrony and phase-locking, as
well as being sufficient and natural.

The perhaps surprising answer is ‘no’, and this fact forms the basis of the theory
to be presented in this article.

The observation that rigid synchrony and phase relations can occur in a more
general class of networks leads us to relax the constraint that the network should
have group-theoretic symmetry and to begin compiling evidence that a groupoid-
theoretic generalization is also natural, as well as being mathematically interesting
and potentially useful in applications. (We emphasize the word ‘potentially’.)

In the remainder of this section we justify the claim that rigid synchrony and
phase relations can occur in networks whose symmetry group is trivial by presenting
some simple examples where such features arise. We also explain why these features
are present. These explanations motivate the formal theory developed in Sections 5-
7.

We begin by showing that network symmetry is not needed for synchrony and
phase-locking and derive the idea of a ‘quotient network’. We set the scene by dis-
cussing four examples. These examples have been chosen to illustrate mathematical
points and have no particular significance for applications.

Example 4.1. Figure 13 shows a directed ring of 3 identical cells with identical
couplings. The associated ODEs are Z3-equivariant and take the form

(4.1)
ẋ1 = g(x1, x3)
ẋ2 = g(x2, x1)
ẋ3 = g(x3, x2)
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1

2 3

Figure 13. A 3-cell unidirectional ring.

As for the bidirectional ring (Figure 3), H/K theory suggests that a unidirec-
tional ring can support periodic states x(t) in which

x2(t) = x1(t + T/3)

x3(t) = x1(t + 2T/3)

where T is the period. Such a state is called a (discrete) rotating wave. Fully syn-
chronous states can also occur. However, the unidirectional ring does not support
the double frequency periodic state (see Figure 4 (right)) found in the bidirectional
ring. Indeed, there is no pair of subgroups H, K in Z3 that can correspond to such
a state. ✸

Example 4.2. Next, consider a linear chain of (seven) identical cells; see Figure 14.
This network has trivial symmetry. The associated ODEs have the form

(4.2)
ẋ1 = h(x1)
ẋj = g(xj , xj−1) j = 2, . . . , 7

and thus involve two distinct functions, g and h. Despite the regular form of the
network, traveling waves solutions are not expected (and in fact cannot occur if the
cell phase spaces are all 1-dimensional). ✸

1 2 3 4 5 6 7

Figure 14. Seven-cell linear network.

Example 4.3. Modify the previous example by inserting a feedback loop; see
Figure 15. The symmetry group remains trivial, but the associated ODEs become

(4.3)
ẋ1 = g(x1, x3)
ẋj = g(xj , xj−1) j = 2, . . . , 7

so that the same function g occurs in every equation.

1 2 3 4 5 6 7

Figure 15. A seven-cell chain.

This chain network is closely related to the unidirectional ring network of Fig-
ure 13. In fact, if we restrict attention to states in which

x1 = x4 = x7

x2 = x5

x3 = x6
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then equations (4.3) become exactly the same as (4.1). It follows that the ‘polydiag-
onal’ ∆ = {(x1, x2, x3, x1, x2, x3, x1) : x1, x2, x3 ∈ R} is flow-invariant for the chain
network in Figure 15, for any choice of g. Hence synchrony is possible even though
no network symmetry is present. It also follows that we can ‘lift’ any rotating wave
state of the 3-cell unidirectional ring to the 7-cell chain, obtaining a state in which

x7(t) = x4(t) = x1(t)
x6(t) = x3(t) = x1(t + 2T/3)
x5(t) = x2(t) = x1(t + T/3).

This is a traveling wave, consisting of three synchronous sets of cells with phase-
shifts 0, T/3, 2T/3. Thus nontrivial phase-locking is present even though no net-
work symmetry exists.

We say that the unidirectional ring network in Figure 13 is a quotient network
of the chain network in Figure 15. Section 9 develops this useful notion. ✸

Example 4.4. The fourth example, Figure 16, is a 5-cell network. This network
consists of a directed ring of four cells, forced symmetrically by a fifth cell (and
would therefore have Z4 symmetry if there were no other connections). However,
there is also feedback from two cells in the ring to the forcing cell, which breaks
the Z4 symmetry. The equations that correspond to the network take the form

(4.4)

ẋ1 = g(x1, x4, x5)
ẋ2 = g(x2, x1, x5)
ẋ3 = g(x3, x2, x5)
ẋ4 = g(x4, x3, x5)
ẋ5 = g(x5, x2, x3)

where the ‘overline’ indicates that the couplings are interchangeable, that is,
g(a, b, c) = g(a, c, b). We show that this network has a symmetric quotient net-
work and a quotient network with self-coupling and multiple arrows.

1234

5

Figure 16. Five-cell network.

We define a polysynchronous subspace of a coupled cell network to be a flow-
invariant polydiagonal. Perhaps surprisingly, this network has five polysynchronous
subspaces. Each of them corresponds to a partition of the set of cells—a decom-
position into disjoint subsets—such that the components of the state vector are
identical (that is, the cells are synchronous) on each subset in the partition. See
Table 3. We call such a partition a pattern of synchrony of the cells.

Each of these five patterns of synchrony leads to a system of restricted ODEs. For
example, if we take the partition {1, 3}{2, 4}, {5} and the corresponding subspace
{x, y, x, y, z}, then the restricted equations take the form:

(4.5)
ẋ = g(x, y, z)
ẏ = g(y, x, z)
ż = g(z, y, x).



NONLINEAR DYNAMICS OF NETWORKS: THE GROUPOID FORMALISM 325

partition polysynchronous subspace

{1, 2, 3, 4, 5} {x, x, x, x, x}
{1, 2, 3, 4}, {5} {x, x, x, x, y}
{1, 3, 5}, {2, 4} {x, y, x, y, x}
{1, 3}, {2, 4, 5} {x, y, x, y, y}
{1, 3}, {2, 4}, {5} {x, y, x, y, z}
Table 3. Synchrony patterns for Figure 16.

These correspond precisely to a 3-cell bidirectional ring network with symmetry
group S3, shown in Figure 3. So this asymmetric 5-cell network has a symmetric
quotient network. This ‘concealed’ symmetry has dynamical consequences for the
five-cell network. We know that for suitable choices of the ODE, the 3-cell ring
can have periodic states where one cell oscillates with twice the frequency of the
other two (recall Figure 4 (right)). We can lift this state from the three-cell quotient
network to the original five-cell network, leading to a state shown in Figure 17. Note
that the left image has cell 5 oscillating at double frequency and the right image
has cells 2 and 4 oscillating synchronously and at double frequency. Remarkably,
because of the S3 symmetry in (4.5), these solutions, which look so different in
cell coordinates, are obtained merely by choosing different initial conditions in the
appropriate synchrony subspace.
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Figure 17. Double frequency solutions in five-cell network.

Moreover, the stabilities of these two solutions, inside the synchrony subspace,
are the same. However, the stabilities transverse to the synchrony subspace are
in general different (though both solutions happen to be stable for this particular
choice of parameters). To analyse the transverse stability, consider (4.4). Use the
notation g(ijk) = g(x1, xj , xk) and recall that g is symmetric in the second and
third arguments. So

gv(ijk) = gw(ikj).

Let a = (x1, x2, x1, x2, x5) and b = (x2, x5, x2, x5, x1) be S3 related equilibria in the
synchrony subspace. We compute the transverse eigenvalues of the Jacobians Ja
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and Jb using the basis

v1 =

⎡

⎢

⎢

⎢

⎢

⎣

1
0
1
0
0

⎤

⎥

⎥

⎥

⎥

⎦

v2 =

⎡

⎢

⎢

⎢

⎢

⎣

0
1
0
1
0

⎤

⎥

⎥

⎥

⎥

⎦

v3 =

⎡

⎢

⎢

⎢

⎢

⎣

0
0
0
0
1

⎤

⎥

⎥

⎥

⎥

⎦

v4 =

⎡

⎢

⎢

⎢

⎢

⎣

1
0
−1
0
0

⎤

⎥

⎥

⎥

⎥

⎦

v5 =

⎡

⎢

⎢

⎢

⎢

⎣

0
1
0
−1
0

⎤

⎥

⎥

⎥

⎥

⎦

since v1, v2, v3 is a basis for the synchrony subspace. The eigenvalues in the trans-
verse directions are found by computing Ja(v4), Ja(v5), Jb(v4), and Jb(v5). A
calculation shows that the transverse eigenvalues are the eigenvalues of the matri-
ces

Ma =

[

gu(125) −gv(125)
gv(215) gu(215)

]

and Mb =

[

gu(251) −gv(251)
gv(521) gu(521)

]

.

There is no reason for these matrices to be related, and the eigenvalues and stabil-
ities can certainly be different.

The system (4.4) also illustrates another phenomenon, which turns out to be
important in setting up a suitable formal theory. Consider the polysynchronous
subspace {x, y, x, y, y}. On this subspace system (4.4) reduces to the system

(4.6)
ẋ = g(x, y, y)
ẏ = g(y, x, y)

.

In a natural way, to be explained more formally in later sections, this restricted
system corresponds to the network in Figure 18 with self-coupling and multiple
arrows. This hints that our concept of ‘network’ should permit these two features.
✸

xy

Figure 18. Two-cell quotient network with self-coupling and mul-
tiple arrows.

Not every identification of cells leads to a consistent set of equations, hence a
possible pattern of synchrony. For example, if we identify cells according to the par-
tition {1, 2, 3}, {4, 5} with associated variables y, z and polydiagonal {y, y, y, z, z},
then the reduced equations become

(4.7)

ẏ = g(y, z, z)
ẏ = g(y, y, z)
ẏ = g(y, y, z)
ż = g(z, y, z)
ż = g(z, y, y).

The first equation does not match the second and third, and the fourth and fifth
do not match either. In other words, the space Y = {(y, y, y, z, z)} is not flow-
invariant for all ODEs of the form (4.4). In particular, we do not expect to see a
robust pattern of synchrony in which cells 1,2,3 are synchronous and cells 4,5 are
synchronous.
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What property of the network characterizes the polysynchronous subspaces? To
answer this basic question we must first formalize the idea of a network and the
associated class of ODEs. We devote the next two sections to this task.

5. Coupled cell networks

In order to analyze how the dynamics of networks relates to the network archi-
tecture, we must first specify what we mean by a network and what dynamics we
consider to be consistent with its architecture. We will then be in a position to
prove rigorous theorems and ask precise questions about that relationship.

In this section we define a coupled cell network and focus attention on the ‘input
sets’ of the cells—namely, those cells from which they receive coupling and whose
associated variables appear in the component of the ODE that governs the dynamic
of the chosen cell. Cells whose input sets consist of similar types of cells, with sim-
ilar couplings, should obey similar equations. More precisely, if some permutation
of the cells and couplings preserves the architecture of the input sets, then the
corresponding components of the ODE should involve the same function, but with
suitably permuted variables. This simple and natural observation leads, inexorably,
to the conclusion that the structure of the ODE is determined by the ‘symmetry
groupoid’ of the network.

We hasten to add that we do not require the abstract theory of groupoids, as
described in, say, Higgins [47]. Our groupoids will be very concrete: sets of per-
mutations, acting on certain subsets of cells. However, the groupoid framework
does lead to conditions on the ODE that naturally generalize group-equivariance,
making it convenient to use groupoid terminology.

There are several ways to formalize the structure of a coupled cell network and
the associated ODEs. Our philosophy when setting up the formal theory is to
avoid artificial restrictions such as linearity, weak coupling, and additive coupling.
One reason is that these assumptions seldom survive an appropriate change of
coordinates. However, they are often useful to motivate the formal theory and
can be entirely appropriate in specific models. Because we wish to understand
the influence of network architecture on dynamics, we prefer not to make strong
assumptions about the type of dynamics that may occur. We therefore seek the
most general class of ODEs that conforms to the network architecture. (Because a
major focus is local bifurcation, we find it convenient to assume that the phase space
is a vector space, but this assumption is not essential; see for example Section 13.)

As a matter of recent history, the original formulation in [72] was quickly super-
seded by a slightly more complicated version, introduced in [42], which is nonethe-
less preferable, because it has useful technical advantages. We motivate the defini-
tion, state it, and then explain the advantages. The associated ODEs are treated
in the next section.

The state of cell c at time t is determined by a list of state variables for that cell.
(For ODE models the list is finite.) Each cell c must be assigned a cell phase space
(or cell state space) Pc, and its state xc(t) at time t is an element of Pc. In general
Pc should be a manifold, and for simplicity we take it to be a finite-dimensional
real vector space.

Each cell typically has an internal dynamic, an ODE that determines its behavior
in isolation. In a network, the internal dynamic of a given cell is modified by
coupling effects from other cells. The direction of coupling is important since it
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determines which cell is affected by which. It is therefore natural, and common,
to represent the cells as the nodes of a directed graph (or digraph, Tutte [76],
Wilson [84]) and the couplings as directed edges, drawn as arrows.

In many applications the cells occur in a variety of different types, and cells of
the same type have the same internal dynamic (expressed in suitable coordinates).
There are two ways to formalize this requirement. One is to attach labels to cells,
symbols drawn from some finite set. Cells with identical labels are required to
have the same type. Alternatively, we can introduce an equivalence relation ‘same
type’ on cells. Logically, both approaches are equivalent, but psychologically each
has advantages in some contexts. For example, it is visually useful to label the
cells in the network diagram by the shape of the symbol used for a given node
(circle, square, hexagon, and so on), but for formal purposes it is more convenient
to introduce a relation of ‘cell-equivalence’, which does the same job.

Similarly, coupling among cells also occurs in various distinguishable types. We
can ‘label’ arrows graphically by using different kinds of lines (solid, dashed, dotted)
and/or different arrowheads (black, white), but for formal purposes we introduce a
relation of ‘edge-equivalence’.

Figure 19 presents a 3-cell example with two cell types (cells 1 and 2 have the
same type, but cell 3 is different) and three edge types (the couplings from cells 2
to 1 and 1 to 2 are the same, and the couplings from cell 3 to cells 1 and 2 are the
same). Systems of ODEs associated with this network have the form:

(5.1)
ẋ1 = g(x1, x2, x3)
ẋ2 = g(x2, x1, x3)
ẋ3 = h(x3, x1).

Note that the same function g appears in cells 1 and 2. This g has no special
symmetry properties.

1 2

3

Figure 19. A 3-cell example with two cell types and three edge types.

Finally, we follow the normal conventions of graph theory and represent the
topology of the network by two ‘incidence relations’, H and T , which determine
the cells that lie at the head and tail of a given arrow (Tutte [76], Wilson [84]).

Thus motivated, we can now state:

Definition 5.1. A coupled cell network G comprises:

(a) A finite set C = {1, . . . , N} of nodes or cells.
(b) An equivalence relation ∼C on cells in C.

The type or cell label of cell c is the ∼C -equivalence class [c]C of c.
(c) A finite set E of edges or arrows.
(d) An equivalence relation ∼E on edges in E .

The type or coupling label of edge e is the ∼E-equivalence class [e]E of e.
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(e) Two maps H : E → C and T : E → C.
For e ∈ E we call H(e) the head of e and T (e) the tail of e.

We also require a consistency condition:

(f) Equivalent arrows have equivalent tails and heads. That is, if e1, e2 ∈ E and
e1 ∼E e2, then

H(e1) ∼C H(e2) T (e1) ∼C T (e2).

✸

Two noteworthy features of this definition are:

• Self-coupling is permitted: that is, we allow H(e) = T (e) for an edge e.
• Multiple arrows are permitted: we allow H(e1) = H(e2) and T (e1) = T (e2)

for e1 
= e2. (We even permit e1, e2 to have different edge-types.)

Example 4.4 shows why these features are useful, and other examples reinforce that
view. See [42] for details.

Associated with each cell c ∈ C is a canonical set of edges, namely, those that
represent couplings into cell c:

Definition 5.2. If c ∈ C, then the input set of c is

(5.2) I(c) = {e ∈ E : H(e) = c}.
An element of I(c) is called an input edge or input arrow of c. ✸

Input edges determine the form of the ODEs associated with G. For a given cell
c ∈ C, the form of ẋc should depend only on the cells coupled to cell c, that is, on
xc and on those xi for which there exists an arrow with head c and tail i. This
point will be discussed in more detail in Section 6. Figure 20 illustrates the input
sets of the 3-cell network in Figure 19. Observe that after relabeling, the input sets
of cells 1 and 2 are identical. Their common input structure reflects the occurrence
of the same function g in the ODEs for cells 1 and 2.

1 2

3

1 2

3

1

3

Cell 1 Cell 2 Cell 3

Figure 20. Input sets for 3-cell example in Figure 19.

Definition 5.3. The relation ∼I of input equivalence on C is defined by c ∼I d if
and only if there exists an arrow type preserving bijection

(5.3) β : I(c) → I(d).

That is, for every input arrow i ∈ I(c)

(5.4) i ∼E β(i).
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Any such bijection β is called an input isomorphism from cell c to cell d. The set
B(c, d) denotes the collection of all input isomorphisms from cell c to cell d. The
set

(5.5) BG =
⋃

c,d∈C

B(c, d)

is the (symmetry) groupoid of the network. The set B(c, c) is a permutation group
acting on the input set I(c), which we call the vertex group of cell c. ✸

A groupoid (Brandt [11], Brown [12], Higgins [47]) is an algebraic structure rather
like a group, except that the product of two elements is not always defined. Note
that the union in (5.5) is disjoint. By the consistency condition (f) of Definition 5.1,
c ∼I d implies c ∼C d, but the converse fails in general.

Definition 5.4. A homogeneous network is a coupled cell network such that B(c, d)

= ∅ for every pair of cells c, d. A homogeneous network that has one equivalence
class of edges is said to have identical coupling. The valence of an identical coupling
network is the number of arrows in any (and hence every) input set.

1 2 3

1

23

1 2 3 1 2 3

Figure 21. The four valence one identical coupling connected
3-cell networks.

There are four connected 3-cell networks with identical coupling and valence 1
(see Figure 21) and 34 such networks with valence 2 (see Leite [55, 56] and Fig-
ure 22). It is possible for two networks to generate the same systems of differential
equations [18, 19, 42]. Such redundancies have been eliminated in this enumeration.
The number of identical coupling networks grows exponentially with the number of
cells. For example, there are precisely 13,505,066,262,007 connected 6-cell networks
with identical coupling and valence 6 (Aldosray and Stewart [1]).

Motifs. Many applications are modeled by large networks; these include gene tran-
scriptional networks, networks of neurons, electronic circuits, and the World Wide
Web, to name just a few. Recent work on classes of networks has shown that certain
small subnets appear more frequently in applications than they would in random
networks, and the frequently appearing subnets have been called motifs [59, 65].
Typical motifs include the feedforward loop, the three chain, and the uplinked mutual
dyad; these subnets are pictured in Figure 23. Note the similarities with Figure 21
(3) and Figure 22 (23, 33). Some typical dynamics of the network in Figure 21 (3)
is discussed in Example 11.1; it is shown there that near certain bifurcations this
network acts to amplify signals down the chain.

6. Admissible vector fields

We now define the class FP
G of ‘admissible’ vector fields corresponding to a given

coupled cell network G. This class consists of all vector fields that are compatible
with the labeled graph structure or equivalently are symmetric under the groupoid
BG. The class FP

G also depends on a choice of ‘total phase space’ P , which we
assume is fixed throughout the subsequent discussion. We construct P as follows.
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Figure 22. Connected 3-cell networks with identical coupling and
valence 2, from [55, 56].

X

Y Z

X

Y

Z

X

Y

Z

Figure 23. Typical motifs: feedforward loop, three chain, and
uplinked mutual dyad [59].

For each cell in C define a cell phase space Pc. This must be a smooth manifold
of dimension ≥ 1, which for simplicity we assume is a nonzero finite-dimensional
real vector space. We require

c ∼C d =⇒ Pc = Pd
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and we employ the same coordinate systems on Pc and Pd. Only these identifica-
tions of cell phase spaces are canonical; that is, the relation c ∼C d implies that cells
c and d have the same phase space, but not that they have isomorphic (conjugate)
dynamics.

Define the corresponding total phase space to be

P =
∏

c∈C

Pc

and employ the coordinate system

x = (xc)c∈C

on P .
More generally, suppose that D = (d1, . . . , ds) is any finite ordered subset of s

cells in C. In particular, the same cell can appear more than once in D. Define

PD = Pd1
× · · · × Pds

and write
xD = (xd1

, . . . , xds
)

where xdj
∈ Pdj

. For a given cell c the internal phase space is Pc and the coupling
phase space is

PT (I(c)) = PT (i1) × · · · × PT (is)

where T (I(c)) denotes the ordered set of cells (T (i1), . . . , T (is)) as the arrows ik
run through I(c).

Suppose c, d ∈ C and c ∼I d. For any β ∈ B(c, d), define the pullback map

β∗ : PT (I(d)) → PT (I(c))

by

(6.1) (β∗z)T (i) = zT (β(i))

for all i ∈ I(c) and z ∈ PT (I(d)). We use pullback maps to relate different compo-
nents of a vector field associated with a given coupled cell network. Specifically,
the class of vector fields that is encoded by a coupled cell network is given by:

Definition 6.1. A vector field f : P → P is G-admissible if:

(a) (domain condition) For all c ∈ C the component fc(x) depends only on the
internal phase space variables xc and the coupling phase space variables

xT (I(c)); that is, there exists f̂c : Pc × PT (I(c)) → Pc such that

(6.2) fc(x) = f̂c(xc, xT (I(c)))

(b) (pullback condition) For all c, d ∈ C and β ∈ B(c, d)

(6.3) f̂d(xd, xT (I(d))) = f̂c(xd, β
∗xT (I(d)))

for all x ∈ P . ✸

The pullback condition (b) is a natural generalization of the usual equivariance
condition for a group action. The domain condition (a) is necessary for (b) to make
sense, and this type of constraint has not been formalized in the group-theoretic
literature. The interplay between these two conditions is what lends the groupoid
formalism its own special flavor.

It follows that f is determined if we specify one mapping (on the appropriate
spaces) for each input equivalence class of cells. Indeed, each admissible vector
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field on a homogeneous cell system is uniquely determined by a single mapping fc

at some (any) node c. In general, each component fc of f is invariant under the
vertex group B(c, c). Indeed, every such invariant function determines a unique
admissible vector field via pullback to the other components.

An ODE defined by an admissible vector field on a coupled cell network is called
a coupled cell system. It is now easy to verify that the ODEs previously associated
with specific networks, on heuristic grounds, are precisely the admissible ODEs in
the formal sense.

Larger classes of coupled cell systems can be studied by considering vector fields
that commute with only a subgroupoid of BG. The basic theorems that we describe
are valid in this context as well [46].

7. Balanced equivalence relations

With the formalities in place, we can now seek a necessary and sufficient condi-
tion for a pattern of synchrony to be possible for all admissible ODEs. It turns out
that the pattern must be ‘balanced’, which roughly speaking means that synchro-
nous cells must have synchronous input sets. This condition is obviously sufficient;
its necessity is slightly more subtle.

We then apply the result to dynamics on planar lattices (an ODE version of ‘cou-
pled map lattices’, currently popular in the physics literature because of connections
to statistical mechanics). In particular we observe that lattices with short-range
connectivity can support states with unexpected properties, whereas longer-range
connectivity implies that all synchronous patterns are doubly-periodic.

We have seen that Example 4.4 exhibits patterns of synchrony that correspond
to a particular kind of flow-invariant subspace, namely, one that is invariant under
all admissible vector fields. Such subspaces are said to be robust and are known
either as polydiagonals or polysynchronous subspaces. A basic theorem, Theorem 7.2
below, characterizes all robust polydiagonals in combinatorial terms.

The key feature of a robust polydiagonal is that identifying synchronous variables
leads to a consistent system of ODEs. We emphasized this feature when discussing
the two examples, and it leads fairly directly to the concept of ‘balance’.

In a formal treatment, we describe a pattern of synchrony in terms of an equiva-
lence relation ⊲⊳ on the set C of all cells. An equivalence relation ⊲⊳ on C determines
a unique partition of C, in which the ‘parts’ are the ⊲⊳-equivalence classes. Con-
versely, any partition determines a unique equivalence relation. The corresponding
polysynchronous subspace is defined by

(7.1) ∆⊲⊳ = {x ∈ P : c ⊲⊳ d =⇒ xc = xd}.
For instance, in Example 4.4 the partition {{1, 3}, {2, 4}, {5}} has polysynchronous
subspace {(x, y, x, y, z)}. Entries xc with ⊲⊳-equivalent c’s (that is, with c’s in the
same part of the partition) are equal.

An equivalence ⊲⊳ induces an identification of variables xc, xd whenever c ⊲⊳ d.
By (7.1) this identification has the same effect as restricting the vector field f to
the polysynchronous subspace ∆⊲⊳. There is an obvious sufficient condition for this
restriction to leave ∆⊲⊳ flow-invariant under f ∈ FP

G , namely:

(7.2) c ⊲⊳ d =⇒ fc = fd on ∆⊲⊳.

We can reformulate this condition in terms of input isomorphisms, leading to the
following concept:
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Definition 7.1. An equivalence relation ⊲⊳ on C is balanced if for every c, d ∈ C
with c ⊲⊳ d, there exists an input isomorphism β ∈ B(c, d) such that T (i) ⊲⊳ T (β(i))
for all i ∈ I(c). ✸

It is easy to see that condition (7.2) is valid if and only if ⊲⊳ is balanced. This
condition does not depend on f .

There is a graphical way to test whether a given equivalence relation ⊲⊳ is bal-
anced. Color the cells in C so that two cells have the same color precisely when
they are in the same ⊲⊳-equivalence class. Color the tail of each arrow by using
the color of the corresponding cell. Say that an input-isomorphism β : I(c) → I(d)
is color-preserving if T (i) and T (β(i)) have the same color for all i ∈ I(c). Then
⊲⊳ is balanced if and only if: If c, d have the same color, then there exists a color-
preserving input isomorphism β : I(c) → I(d).

In particular, B(c, d) 
= ∅, so c ∼I d. Therefore any balanced equivalence ⊲⊳
refines ∼I , meaning that

c ⊲⊳ d =⇒ c ∼I d.

In fact, being balanced is equivalent to defining a robust polysynchronous sub-
space:

Theorem 7.2. Let ⊲⊳ be an equivalence relation on a coupled cell network. Then
⊲⊳ is robustly polysynchronous if and only if ⊲⊳ is balanced.

The proof, given in [42, 72], can be summarized as follows. By constructing
appropriate linear admissible vector fields, we can show that if a polysynchronous
subspace is flow-invariant under all linear admissible vector fields, then the asso-
ciated equivalence ⊲⊳ must be balanced. The reduction process tells us that when
⊲⊳ is balanced, the corresponding polysynchronous subspace ∆⊲⊳ is flow-invariant
under all admissible vector fields (linear or not). Clearly, flow-invariance under all
admissible vector fields implies flow-invariance under all linear admissible vector
fields.

The combinatorial notion of balanced relations enables us to find patterns of
synchrony. We use square lattice dynamical systems as an example. This example
also illustrates the importance of network architecture (as opposed to symmetry)
in the determination of patterns of synchrony. Let the planar integer square lattice
be the index set for a coupled cell network and assume identical nearest neighbor
coupling, so each cell has four nearest neighbors. See Figure 24 (left).

Figure 24. Square lattice network with nearest neighbor cou-
pling. Balanced 2-coloring on right.
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It is straightforward to show (using either symmetry or balanced relations) that
the pattern of synchrony pictured in Figure 24 corresponds to a flow-invariant
subspace. In this correspondence all white cells are synchronous and all black cells
are synchronous. It is observed in [32] that interchanging black and white cells on
any upward sloping diagonal leads to another balanced 2-coloring and hence to a
continuum of balanced 2-colorings and patterns of synchrony. Some examples are
shown in Figure 25.

Figure 25. Two examples of balanced 2-coloring of square lattice
network obtained from Figure 24 (right) by diagonal shifts.

Wang [81] has classified all balanced 2-colorings for planar square and hexag-
onal lattices with nearest neighbor coupling. This classification shows that up to
symmetry there is only a finite number of balanced 2-colorings with both nearest
and next nearest neighbor coupling and that all of the corresponding patterns of
synchrony are spatially periodic. These facts are clearly false for lattice dynamical
systems with just nearest neighbor coupling. In fact, with nearest and next near-
est neighbor coupling it can be shown that for each k there is a finite number of
balanced k-colorings, and all of these are spatially periodic [3].

8. Rigid equilibria

It is easy to construct examples of synchronized states that do not correspond
to balanced equivalence relations, but all such examples known to us are ‘fragile’,
that is, destroyed by small admissible perturbations of the vector field. We can
prove this fragility when the states are hyperbolic equilibria—a fact that has some
interest because it does not start with the assumption that an entire subspace
must be flow-invariant for all admissible vector fields. Nevertheless, we deduce the
presence of such a subspace. So observed properties of a single (equilibrium) state
can imply regularities of the entire network architecture.

We conjecture that similar results apply to any synchronized state lying on a
hyperbolic attractor (perhaps periodic, or even chaotic), but this seems difficult to
prove. We discuss this problem in Section 10.

To set the scene, recall Theorem 7.2, which proves that the balanced equivalence
relations on a given network classify its robust patterns of synchrony—that is, those
patterns that are determined by flow-invariant subspaces for all admissible vector
fields. Robustness is a strong requirement, and it might seem that something weaker
might apply to specific synchronized dynamical states, such as equilibria, periodic
states, or even synchronized chaos.
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The main result of this section is that the only ‘rigid’ patterns of synchrony
for hyperbolic equilibria are those determined by balanced equivalence relations.
Rigidity here means that the pattern does not change when the vector field is
perturbed by a sufficiently small admissible perturbation. The proof introduces
some useful general methods.

Let x0 = (x0
1, . . . , x

0
N ) ∈ P . Define the equivalence relation ≡x0

by c ≡x0
d if and

only if c ∼C d and x0
c = x0

d. Suppose that we color two cells c and d the same color
if and only if c ≡x0

d. Then this coloring is the pattern of synchrony associated to
x0. Note that

∆≡x0
= {x ∈ P : xc = xd if c ≡x0

d}
is the smallest subspace of P that contains all points with the same pattern of
synchrony as x0.

Definition 8.1. Let x0 ∈ P be a hyperbolic equilibrium of a C1 admissible cell
system. The equivalence relation ≡x0

is rigid if in each C1 perturbed admissible
system the unique hyperbolic equilibrium near x0 remains in ∆≡x0

. We also say
that the pattern of synchrony defined by x0 is rigid.

Theorem 8.2 ([42]). The equivalence relation ≡x0
determined by the hyperbolic

equilibrium x0 is rigid if and only if ≡x0
is balanced.

The proof uses the concept of a strongly admissible diffeomorphism:

Definition 8.3. A map G : P → P is strongly admissible if Gc(x) = Gc(xc) for
every cell c and Gc = Gd for every pair of cells where c ∼C d.

A strongly admissible map G is admissible, since c ∼I d implies that c ∼C d and
hence Gc = Gd. The key property of strongly admissible maps is:

Lemma 8.4. Let F : P → P be admissible and let G : P → P be strongly
admissible. Then F ◦G and G◦F are admissible.

Example 8.5. These composition properties fail for merely admissible maps, even
in the linear case. These failures are a significant departure from the group-
symmetric case. Examples of failure are easy to come by. Figure 18 above is
perhaps the simplest. It has two cells and is homogeneous with valence 2. The
admissible linear maps are those of the form

L =

[

A 2B
A + B B

]

.

The product of two such maps is
[

A 2B
A + B B

] [

C 2D
C + D D

]

=

[

AC + 2BC + 2BD 2AD + 2BD
AC + 2BC + BD 2AD + 3BD

]

which in general is not of the same form. ✸

9. Quotient networks

The story so far has focused on the notion of a balanced equivalence relation
⊲⊳ on a network G and the existence of associated synchronized states in a robust
or rigid manner. But we can also ask: what kinds of synchronous dynamics can
occur for a given network and a given balanced equivalence relation? The answer
is striking: the dynamics is determined by a network whose nodes correspond to
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clusters of synchronous cells (that is, ⊲⊳-equivalence classes) and whose edges are
defined to preserve the ‘colored input sets’ defined by ⊲⊳. We call this network
the quotient of G by ⊲⊳ (because it is obtained by identifying cells in the same
⊲⊳-equivalence class). In this section we introduce quotient networks, remark that
they necessarily may have multiple edges or connections from a cell to itself, and
prove that any dynamic on the quotient ‘lifts’ to a synchronous dynamic on the
original network.

In Example 4.4 we saw that the restricted equations for a particular pattern
of synchrony (a partition with three parts) are precisely the admissible equations
for a smaller network, which in that case had three cells and S3 symmetry. The
existence of such a network is a general phenomenon. In this section we observe
that each balanced equivalence relation ⊲⊳ of a coupled cell network G induces a
unique canonical coupled cell network G⊲⊳ on ∆⊲⊳, called the quotient network. (We
use the term ‘quotient’ because on the graph-theoretic level—network topology—it
is obtained by identifying members of equivalence classes.) This is not the case in
the setting of [72], where quotient networks always exist but uniqueness fails. It
was also shown in [72], in the context of coupled cell systems without self-coupling
and multiple arrows, that every admissible vector field on the original network
restricts to an admissible vector field on ∆⊲⊳ in every quotient network. However,
in general an admissible vector field on a quotient network cannot be extended (or
‘lifted’) to an admissible vector field on the original network. A full discussion, with
necessary and sufficient conditions for such an extension to exist, can be found in
Dias and Stewart [18]. It is the uniqueness and lifting properties that constitute
the above-mentioned ‘technical advantages’ of the multiarrow formalism.

In the present context, then, it can be proved that admissible vector fields re-
strict to admissible vector fields and every admissible vector field on the canonical
quotient G⊲⊳ lifts to an admissible vector field on G. We begin by defining the
(canonical) quotient network.

To define a network (see Definition 5.1) we must specify (a) the cells, (b) an
equivalence relation on cells, (c) the arrows, (d) an equivalence relation on arrows,
and (e) the head and tail incidence relations. We must also (f) prove a consistency
relation between arrows and cells. We do each of these in turn.

(a) Let c denote the ⊲⊳-equivalence class of c ∈ C. The cells in C⊲⊳ are the
⊲⊳-equivalence classes in C, that is,

C⊲⊳ = {c : c ∈ C}.
Thus we obtain C⊲⊳ by forming the quotient of C by ⊲⊳, that is, C⊲⊳ = C/ ⊲⊳.

(b) Define

c ∼C⊲⊳
d ⇐⇒ c ∼C d.

The relation ∼C⊲⊳
is well-defined since ⊲⊳ refines ∼C .

(c) Let S ⊂ C be a set of cells consisting of precisely one cell c from each ⊲⊳-
equivalence class. The input arrows for a quotient cell c are identified with the
input arrows in cell c, where c ∈ S, that is, I(c) = I(c).

When viewing the arrow i ∈ I(c) as an arrow in I(c), we denote that arrow by
i. Thus, the arrows in the quotient network are the projection of arrows in the
original network formed by the disjoint union

(9.1) E⊲⊳ =
˙⋃

c∈S
I(c).
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The definition of the quotient network structure is independent of the choice of
the representative cells c ∈ S.

(d) Two quotient arrows are equivalent when the original arrows are equivalent.
That is,

(9.2) i1 ∼E⊲⊳
i2 ⇐⇒ i1 ∼E i2

where i1 ∈ I(c1), i2 ∈ I(c2), and c1, c2 ∈ S.
(e) Define the heads and tails of quotient arrows by

H(i) = H(i) T (i) = T (i).

(f) It is easy to verify that the quotient network satisfies the consistency condition
in Definition 5.1(f). The quotient network is independent of the choice of cells in
S because ⊲⊳ is balanced.

Remark 9.1. It is straightforward that quotients of homogeneous networks are
homogeneous and that quotients of identical coupling networks are identical cou-
pling.

Theorem 9.2 ([42]). Let ⊲⊳ be a balanced equivalence relation on a coupled cell
network G.

(a) The restriction of a G-admissible vector field to ∆⊲⊳ is G⊲⊳-admissible.
(b) Every G⊲⊳-admissible vector field on the quotient lifts to a G-admissible vec-

tor field on the original network.

Remark 9.3. Example 4.4 illustrates that identical coupling networks without
self-coupling or multiple arrows can have quotient networks with these features. In
[42] we show that every identical coupling network that has self-coupling and/or
multiple arrows lifts to an identical coupling network without these features, in the
sense that the original network is a quotient network of the larger network. An
example of such a lifting is given in Figure 26.

1 2 3

2 3

1

1’

Figure 26. (Left) Three-cell feed-forward network with self-
coupling. (Right) A lift to a four-cell network with identical cou-
pling.

In fact, this statement is true for all networks—not just identical coupling net-
works. The proof is similar to that in [42], but some care must be taken to ensure
that the inductive process stops.

This fact provides yet another reason to believe that the natural category of net-
works to study is the one that permits self-coupling and multiple arrows. This gives
added importance to the study of the dynamical properties of the 3-cell networks
shown in Figures 21 and 22.
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Moreover, this observation/conjecture has implications for modelling. Often
complicated networks are simplified by observing that groups of cells behave syn-
chronously and can be lumped together as a single unit. When this kind of simpli-
fication is made, our abstract results show that self-coupling and multiple arrows
can result, which implies that there may exist constraints on the ‘lumped’ system,
which must be accounted for when analyzing its behavior. ✸

10. Rigid periodic states

There are reasons to believe that Theorem 8.2 has an analog for periodic states,
with a generalization to phase-relationships and a remarkable consequence. As
we write, however, the periodic theory depends upon an unproved but plausible
conjecture, which we call the Rigid Phase Conjecture. We outline the motivation
for this conjecture, some of the evidence in its favor, and its main consequence,
which is: in any network, any nontrivial rigid pattern of phase shifts always derives
from a cyclic-group symmetry of a closely related network.

To motivate the discussion, consider the animal locomotion network of Figure 10.
We know that this network supports a variety of phase-related states, in which
particular pairs of cells c, d have the same waveform, possibly subject to specific
phase shifts.

For example, consider the ‘walk’ gait. Here there is a single periodic waveform,
call it X(t), such that

(10.1)

x1(t) = x6(t) = X(t)
x3(t) = x8(t) = X(t − T/4)
x5(t) = x2(t) = X(t − 2T/4)
x7(t) = x4(t) = X(t − 3T/4)

where T is the period. Using symmetry, it is not hard to prove that provided the
periodic cycle is hyperbolic in the sense of Katok and Hasselblatt [50], chapter 6,
section 2, the same pattern of phase relations arises if the vector field is perturbed
slightly (while preserving the symmetry). Hyperbolicity implies that there is a
unique perturbed periodic cycle close to the original one and any change of sym-
metry would violate uniqueness.

Simple examples show that in general networks, hyperbolicity alone is not suf-
ficient to guarantee that phase relations are preserved by small perturbations of
the vector field. So it seems reasonable to attempt to characterize cases where the
phase relations persist under perturbation. By analogy with the case of equilibria,
we will call such periodic states ‘rigid’.

Using balanced equivalence relations and quotients we can easily construct cou-
pled cell networks that have trivial symmetry but also support rigid phase-related
periodic states by lifting from a quotient with cyclic-group symmetry. In this con-
struction, the equivalence relation ‘same phase’ (or ‘synchronous’) is balanced. The
traveling wave in a feed-forward network is an example of precisely this construc-
tion.

The existence of such networks lies behind the question raised in Section 3 in
connection with the 8-cell network for animal locomotion, namely: might a simpler,
asymmetric network perform the same task for groupoid-related reasons? The Rigid
Phase Conjecture, if true, should resolve this issue. Roughly speaking, we expect
the 8-cell network to be a quotient of any network that exhibits the necessary
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range of phase relations, implying that no smaller network is suitable. However, we
have not yet worked out the details of this idea, and it may require some technical
hypotheses (perhaps including bilateral symmetry).

We now explore the conditions under which a hyperbolic periodic state can have
rigid phase relationships.

Definition 10.1. Let X = {x(t)} be a periodic orbit of a G-admissible vector field

f . Assume that x(t) is hyperbolic. Therefore if f̂ is a sufficiently small perturbation

of f , then the vector field f̂ has a unique periodic orbit X̂ = {x̂(t)} near x(t) having

period T̂ near T (Hirsch et al. [48]). We call X̂ the perturbed periodic orbit. Then
X is rigid if, in addition to hyperbolicity, any phase relation

(10.2) xc(t) ≡ xd(t + θ)

is preserved in the corresponding perturbed periodic orbit:

x̂c(t) ≡ x̂d(t + θ̂)

where θ̂/T̂ = θ/T . That is, the phase shift represents the same proportion of the
period. ✸

The Rigid Phase Conjecture. Using strongly admissible coordinate changes it
is possible to prove:

Theorem 10.2 (Rigid Input Theorem). For rigid X = {x(t)}, each phase relation
of the form (10.2) implies that c ∼I d.

Now we can play (10.2) off against the pullback condition. For the appropriate
f ∈ FP

G we have:
fc(x(t)) ≡ ẋc(t)

≡ ẋd(t + θ)
≡ fd(x(t + θ))
≡ fc(β

∗x(t + θ))

where by the Rigid Input Theorem, β ∈ B(c, d) 
= ∅. Therefore we obtain

(10.3) fc(x(t)) ≡ fc(β
∗x(t + θ)).

We are thus led to:

Conjecture 10.3 (Rigid Phase Conjecture). Suppose that X is rigid. If c, d satisfy
(10.2), then there exists β ∈ B(c, d) such that

(10.4) xI(c)(t) ≡ β∗xI(d)(t + θ).

Intuitively: ‘Rigid phase relations are inherited by input sets, up to input iso-
morphism.’

The primary motivation for this conjecture is that (10.4) is sufficient for (10.3)
to hold, and it is difficult to think of any other reason for such a relationship that
could survive perturbation of f . We can prove special cases of the conjecture under
various technical hypotheses (Stewart and Parker [73, 74]) or for particular small
networks, but a complete proof has not yet been found. These proofs employ a
technique that is of interest in its own right: ‘symmetrizing over the groupoid’,
analogous to the well-known method of summing (or integrating) over a group
action. The main obstacle is to obtain enough control over how the periodic cycle
moves when the vector field is perturbed, bearing in mind that the perturbation
must be G-admissible.
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One piece of evidence for the Rigid Phase Conjecture is that it implies a periodic
analog of Theorem 8.2:

Theorem 10.4. With the above notation, the Rigid Phase Conjecture implies that
the relation of synchrony defined by

c ⊲⊳ d ⇐⇒ xc(t) ≡ xd(t)

is balanced.

To prove this, set θ = 0 in (10.4).
The Rigid Phase Conjecture has more to offer: it allows us to characterize rigid

patterns of synchrony. Subject to some technical assumptions which we ignore here,
they always arise by lifting from a quotient network that has cyclic group symmetry.

Certainly, the existence of such a quotient is sufficient for certain rigid phase
patterns to occur. For example, we know that the coupled cell network of Figure 13
supports a discrete rotating wave—a solution x(t) with phase shifts 0, T/3, 2T/3,
where T is the period. Such a state can be lifted to any network that has the 3-cell
ring as a quotient—in fact, this is what we did to generate the traveling wave in
the 7-cell feed-forward network.

Discrete rotating waves are typical of any network with cyclic-group symmetry,
even when the network is not homogeneous. The next example illustrates circum-
stances in which nontrivial phase shifts can occur without cyclic-group symmetry
but for trivial (and avoidable) reasons, which we therefore define away.

Example 10.5. Figure 27 shows a network in which a ring of three cells drives
two other cells. If cell 0 forces cell 3 and cell 1 forces cell 4 in the same manner,
with a 1:1 resonance between cells 0, 3 (hence also between 1, 4), we can arrange a
T -periodic state with

x0(t) = x1(t + T/3) = x2(t + 2T/3)
x3(t) = x4(t + T/3).

If a sixth cell (cell 5) were added, the network would have Z3 symmetry. However,
with cell 5 missing, no such symmetry group occurs, but cells 3 and 4 are rigidly
phase-locked with phase-shift T/3 by equivariant dynamics applied to the 6-cell
system.

543

1 20

Figure 27. A three-cell ring with dangling cells.

We can avoid such examples by assuming that G is path-connected, meaning
that there is a directed path from any cell to any other cell. The Rigid Phase
Conjecture implies (Stewart and Parker [75]) the following characterization of rigid
phase patterns in the path-connected case:
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Theorem 10.6. Assume the Rigid Phase Conjecture. Suppose that G is path-
connected, and B(c, c) = 1 for all c ∈ C. Let X = {x(t)} be a rigid phase-related
periodic state of an admissible vector field f . Let ⊲⊳ be the relation of synchrony on
X, which is balanced (by the Rigid Phase Conjecture). Then the quotient network
G/ ⊲⊳ supports a faithful Za-action, for some integer a ≤ |G/ ⊲⊳ |, and x(t) is a
discrete rotating wave whose orbit is fixed setwise by Za. �

Corollary 10.7. With the above assumptions, let |C| = N . Then the phase shifts
of any rigid phase pattern on G are integer multiples of T/a, where 1 ≤ a ≤ N .

11. Synchrony-breaking bifurcations

Dynamical systems theory involves (at least) two major areas. One considers the
different types of dynamical states that a system can exhibit. The other, bifurcation
theory, analyzes the typical transitions between states as parameters are varied.

The discussion until now has taken place in the first area: individual states of
the system. Now we turn attention to bifurcations. Once more, we motivate the
network theory by recalling what is known about bifurcations of symmetric systems.

Symmetry-breaking bifurcations have proved useful in a number of applica-
tions [37, 41]. The usual setup is the loss of stability, as a parameter λ is varied,
of a Γ-invariant equilibrium x0 in a Γ-equivariant system of differential equations
ẋ = f(x, λ). Without loss of generality we may assume that bifurcations are lo-
cated at λ = 0 and occur when the Jacobian matrix J = (df)x0,0 has eigenvalues
on the imaginary axis. The equivariant bifurcation theory that we describe here is
discussed in detail in [37, 41].

The generic theory goes as follows. There are two classes of bifurcations: steady-
state and Hopf. Steady-state bifurcation occurs when the critical eigenvalues are 0,
and Hopf bifurcation occurs when the critical eigenvalues are nonzero and purely
imaginary (by scaling time we can assume that the critical eigenvalues are at ±i).
Real representation theory tells us that the commuting linear maps of an irreducible
representation form a skew-field and so are isomorphic either to the reals (absolutely
irreducible) or the complexes or quaternions (nonabsolutely irreducible). It can be
shown that generically the center subspace Ec of J is an absolutely irreducible
representation of Γ at steady-state bifurcations and a Γ-simple representation at
Hopf bifurcations, where a representation is Γ-simple if it is either the direct sum of
two isomorphic absolutely irreducible representations or a nonabsolutely irreducible
subspace.

In equivariant theory, the Equivariant Branching Lemma states that generically
each axial subgroup of Γ leads to a branch of equilibria at steady-state bifurcations.
Similarly the Equivariant Hopf Theorem states that each C-axial subgroup of Γ×S1

leads to a branch of periodic states at Hopf bifurcations. A subgroup Σ ⊂ Γ is axial
if Σ is an isotropy subgroup of the action of Γ on Ec and dimFix(Σ) = 1 in this
action. In Hopf bifurcation the action of S1 on Ec is given by etJ , which commutes
with the action of Γ on Ec. A subgroup Σ ⊂ Γ × S1 is C-axial is Σ is an isotropy
subgroup of the action of Γ × S1 on Ec and dimFix(Σ) = 2 in this action.

For example, Γ-simple representations of abelian groups are all two-dimensional
and the Equivariant Hopf Theorem reduces to the standard Hopf theorem in this
case, with the addition that the bifurcating periodic solutions have spatio-temporal
symmetries H = Γ and space symmetries K equal to the kernel of the representation
of Γ on Ec (using the terminology of Section 2). It follows that each of the primary
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quadrupedal gaits described in Section 3 can in principle be obtained by Hopf
bifurcation from a Z4 ×Z2-invariant equilibrium (see [37, 38]). On the other hand,
perhaps surprisingly, the multirhythm solution illustrated in Figure 6 cannot be
obtained by such a Hopf bifurcation [32].

The question that we would like to address is whether there is an analogous
theory of synchrony-breaking bifurcations from a synchronous equilibrium. So far
the answer is ‘no’, since there does not appear to be a groupoid representation
theory that is suited to the task. Nevertheless, some unusual examples indicate
that such a theory will lead to new phenomenology, but these examples also indicate
why a general theory may be difficult to develop.

We assume that a coupled cell system has a synchronous equilibrium and that
the Jacobian J at the synchronous equilibrium has a nonzero center subspace Ec.
As indicated above, generic codimension one equivariant bifurcations occur with
the Jordan normal form of J |Ec being trivial. It is only in codimension two that
Takens-Bogdanov type singularities with nilpotent normal forms occur. This is not
the case in coupled cell systems, and we present two examples here.

We begin by recalling that in ordinary generic Hopf bifurcation there is a unique
branch of periodic solutions that emanates from the origin and that the amplitude
of these periodic states grows at a rate of λ1/2. We now discuss three cases where
network architecture forces multiple branches of periodic solutions and, in one case,
a huge growth of λ1/6 in the amplitude of bifurcating periodic states. After pre-
senting the three examples we will discuss briefly how the proof proceeds, as there
is one common feature to all three examples — codimension one bifurcations lead
to a nilpotent Jordan normal form. The details of this analysis may be found in
[24, 32].

Example 11.1. The 3-cell feed forward network in Figure 21 (3) has associated
systems of differential equations defined by a single function g(u, v), where g :
Rk × Rk → Rk, as follows:

(11.1)
ẋ1 = g(x1, x1)
ẋ2 = g(x2, x1)
ẋ3 = g(x3, x2).

We can assume that the synchronous equilibrium is at the origin. Let α = (dug)0,0

be the linearized internal dynamics and let β = (dv)0,0 be the linearized coupling.
Then

J =

⎡

⎣

α + β 0 0
β α 0
0 β α

⎤

⎦ .

It follows that the eigenvalues of J are those of the k × k matrices α + β and α
with those of α repeated twice. Indeed, when α has critical eigenvalues, generically
J |Ec will be nilpotent.

The architecture of this feed forward network leads to unusual behavior in syn-
chrony-breaking Hopf bifurcation. For simplicity, assume k = 2, the function g
depends on a parameter λ, α + β has real part negative eigenvalues, and α has
purely imaginary eigenvalues at λ = 0. The assumption on α+β implies that x1(t)
tends to 0; without loss of generality we may assume that x1 = 0 and we may
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rewrite (11.1) as

(11.2)
ẋ2 = g(x2, 0, λ)
ẋ3 = g(x3, x2, λ)

where the dependence on λ is made explicit. The skew-product structure of these
equations allows us to solve the second equation using standard Hopf bifurcation
techniques and (generically) find a periodic solution in x2 whose amplitude growth
is the expected λ1/2. As discussed in [32], this solution forces x3(t) to have the
same period as x2(t) but to grow at the surprising rate of λ1/6. A simple example
is:

(11.3) g(u, v, λ) =

[

λ −1
1 λ

]

u − |u|2u − v.

The resulting periodic solution is shown in Figure 28. Note that
√

λ ≈ 0.32 and
λ1/6 ≈ 0.68. These values are the approximate amplitudes of the oscillations in
cells 2 and 3 respectively. However, a single solution cannot establish the relevant
power law, so we plot the corresponding bifurcation diagram, containing the above
solution, in Figure 29 (Left). To verify the 1/6 power, Figure 29 (Right) plots the
square of the amplitude of cell 2 and the sixth power of the amplitude of cell 3
against λ. The fact that the graphs are almost straight lines verifies the stated
power laws. ✸
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Figure 28. Time series from three-cell network with g as in (11.3)
and λ = 0.1. The horizontal line is the time series from cell 1; the
small amplitude oscillation is from cell 2; and the large amplitude
oscillation is from cell 3.

Example 11.2. One might be tempted to attribute the non-trivial Jordan block
to the skew-product structure forced by the feed forward architecture, but the
truth must be somewhat subtler [55, 56]. Consider network 32 in Figure 22. The
admissible systems for this network have the form

(11.4)
ẋ1 = g(x1, x1, x3)
ẋ2 = g(x2, x1, x2)
ẋ3 = g(x3, x1, x2)
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Figure 29. (Left) Maximum amplitude of cells 2 and 3 in (11.3)
as a function of λ. (Right) Square of the amplitude of cell 2 sixth
power of the amplitude and cell 3, plotted against λ.

where g(u, v, w) = g(u, w, v). As before, let α = (dug)0,0 be the linearized internal
dynamics and let β = (dv)0,0 = (dwg)0,0 be the linearized coupling. Then

J =

⎡

⎣

α + β 0 β
α α + β 0
β β α

⎤

⎦ .

The eigenvalues of J are again the eigenvalues of α with multiplicity two and the
eigenvalues of α + 2β. The analysis of synchrony-breaking Hopf bifurcation in
this network given in [24] shows that generically 2 or 4 branches emanate from
this bifurcation (depending on nonlinear terms) and each branch has the standard

amplitude growth rate of
√

λ. ✸

Example 11.3. The admissible systems of differential equations associated to the
homogeneous five-cell network in Figure 30 have the form

(11.5)

ẋ1 = g(x1, x1, x4, x4)
ẋ2 = g(x2, x1, x2, x5)
ẋ3 = g(x3, x2, x4, x4)
ẋ4 = g(x4, x2, x4, x5)
ẋ5 = g(x5, x1, x2, x3)

where xj ∈ Rk, g : Rk × R3k → Rk, and the overbar indicates that g(a, b, c, d)
is invariant under permutation of b, c, d. Again we may assume that there is a
synchronous equilibrium at the origin.

The Jacobian of (11.5) at the origin has the form

J =

⎡

⎢

⎢

⎢

⎢

⎣

A + B 0 0 2B 0
B A + B 0 0 B
0 B A 2B 0
0 B 0 A + B B
B B B 0 A

⎤

⎥

⎥

⎥

⎥

⎦

where A = g1(0) is the linearized internal dynamics and B = g2(0) = g3(0) = g4(0)
is the linearized coupling. The 5k eigenvalues of J are given by the k eigenvalues
of A + 3B and the 2k eigenvalues of A ± iB each repeated twice. For example,
set k = 1 and take A(λ) = λ and B(λ) ≡ −1. It follows that these coupled cell
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Figure 30. Homogeneous five-cell network that leads to a nilpo-
tent Hopf bifurcation with periodic solutions whose amplitude
growth is order λ.

systems can also undergo a generic nilpotent Hopf bifurcation in codimension one.
Generically, this codimension one Hopf bifurcation [24] leads to two branches of
periodic solutions with a surprisingly slow growth rate of λ. ✸

Codimension One Nilpotent Hopf Bifurcations. The standard procedure of
Liapunov-Schmidt reduction for finding periodic solutions through Hopf bifurcation
(see [34]) is still relevant, but nilpotence dramatically changes the analysis. Suppose
we look for small amplitude near 2π-periodic solutions to

(11.6) ẋ = F (x, λ),

where x ∈ Rn and λ ∈ R under the assumptions that F (0, λ) = 0 and (dF )0,0 has
a simple pair of purely imaginary eigenvalues ±i and no other eigenvalues on the
imaginary axis. Since the critical eigenvalues are simple it follows that there are
smoothly varying eigenvalues σ(λ) ± ω(λ)i for (dF )0,λ.

Since periodic solutions to the nonlinear system will not in general have period
2π, we can rescale time in the usual way by setting s = (1 + τ )t so that (11.6)
becomes

(11.7) (1 + τ )
dx

ds
= F (x, λ)

and solving for exactly 2π periodic solutions to (11.7). Fixing the period in this
way allows us to define the operator on loop space Φ : C1

2π × R × R → C2π by

(11.8) Φ(x, λ, τ) = (1 + τ )
dx

ds
− F (x, λ)

where C2π and C1
2π are respectively the Banach spaces of continuous and continu-

ously differentiable 2π-periodic functions on Rn. Note that

(a) Solutions to Φ(x, λ, τ) = 0 correspond to near 2π-periodic solutions of (11.6).
(b) Φ(0, λ, τ ) ≡ 0 since F (0, λ) ≡ 0.
(c) Φ is S1-equivariant, where θ ∈ S1 acts on u ∈ C2π by

(θ · u)(s) = u(s − θ).



NONLINEAR DYNAMICS OF NETWORKS: THE GROUPOID FORMALISM 347

In standard Hopf bifurcation, the dimensions of the kernel and cokernel of
the Frechet derivative (dΦ)0,0,0 are 2 and these spaces may be identified with C.
Liapunov-Schmidt reduction implies the existence of a mapping φ : C×R×R → C

whose zeros near the origin parameterize the small amplitude periodic solutions of
Φ = 0. Moreover, this reduction can be performed to preserve S1 symmetry; that
is, we can assume that

(11.9) φ(eiθz, λ, τ ) = eiθφ(z, λ, τ ).

It follows that

(11.10) φ(z, λ, τ ) = p(|z|2, λ, τ )z + q(|z|2, λ, τ )iz

where p, q are real-valued smooth functions satisfying p(0, 0, 0) = q(0, 0, 0) = 0.
Hence solutions to φ = 0 are of two types: z = 0 (the trivial equilibrium) and
solutions to the system p = q = 0 (the desired small-amplitude periodic solutions).

In standard Hopf bifurcation, a calculation shows that qτ (0, 0, 0) = −1. Hence,
the equation q = 0 can be solved by the Implicit Function Theorem for τ = τ (x2, λ),
and small amplitude periodic solutions to (11.6) are found by solving

(11.11) r(x2, λ) ≡ p(x2, λ, τ (x2, λ)) = 0.

Another (more complicated) calculation shows that

rλ(0, 0) = σ′(0).

It follows from the eigenvalue crossing condition σ′(0) 
= 0 that r = 0 can be solved
by another application of the Implicit Function Theorem for λ = λ(x2), and the first
Hopf Theorem (existence of a unique branch of small amplitude near 2π-periodic
solutions) is proved. Setting u = x2, the second Hopf Theorem (the square root
growth in amplitude) is proved by making the genericity assumption ru(0, 0) 
= 0.

When nilpotence is present in the Jacobian matrix, the eigenvalues are no longer
simple, but the kernels and cokernels are still two-dimensional. Therefore, the
Liapunov-Schmidt reduction through (11.10) is still valid. However, now

pλ(0) = pτ (0) = qλ(0) = qτ (0) = 0

(see [24] for a proof) so simple applications of the Implicit Function Theorem cannot
be used to solve p = q = 0 near the origin.

Solving singular problems in general is a daunting task. However, some structure
is forced on these equations by the existence of a nilpotent Hopf bifurcation with
critical eigenvalues of algebraic multiplicity two. After a change of coordinates we
have [24]

(11.12) p(0, λ, τ ) = λ2 − τ2 + · · · and q(0, λ, τ ) = −2λτ + · · · .

We now consider the three examples in reverse order. Let u = |z|2. If qu(0) 
= 0,
then q = 0 can be solved by the Implicit Function Theorem for u and the equation
p(u(λ, τ ), λ, τ ) = 0 can be solved for two solution branches each with amplitude
growth λ. Generically, this nondegeneracy condition is satisfied for the five-cell
network architecture in Example 11.3.

However, network architecture can force pu(0) = qu(0) = 0. Suppose that gener-
ically quu(0) 
= 0. We can write

p(u, λ, τ ) = P (u, λ, τ ) + · · · and q(u, λ, τ ) = Q(u, λ, τ ) + · · ·
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where P and Q are homogeneous quadratic polynomials. In this case, (11.12)
implies that there are either two or four solution branches to P = Q = 0, each with
λ1/2 amplitude growth. It can also be shown by a standard blowing-up argument
that higher order terms do not matter. This is exactly the situation in Example 11.2.

Finally, it was shown in [32] that this three-cell feed-forward network yields two
solution branches: one with λ1/2 amplitude growth and one with λ1/6 growth. This
observation forces all u derivatives of p and q through order 3 to vanish at the origin.
It can be shown [24] that generically puuuu(0) 
= 0. It follows that there cannot be
any other solution branches of small amplitude periodic solutions.

Two General Remarks. In general, preliminary calculations suggest that for
every Jordan normal form J0 of critical eigenvalues, there is a network with all
couplings identical (edge-equivalent) that leads to J0 in a codimension-one bifurca-
tion. So it is difficult to conjecture what the analogs of the Equivariant Branching
Lemma and the Equivariant Hopf Theorem might be for coupled cell systems.

There is one positive result in this direction. Given a homogeneous coupled cell
system with a balanced 2-coloring, there is a codimension one bifurcation from a
synchronous equilibrium to a branch of equilibria with that 2-coloring. See [81].

12. Interior symmetries

Group symmetries are global; groupoid symmetries are local. It turns out that
there is a useful intermediate concept, a strengthening of input-equivalence ‘sym-
metries’ that we call interior symmetry. It was introduced in [33], and in particular
it leads to some systematic results on local bifurcation. Like all local bifurcation
theories, a key role is played by the eigenvalue structure of linear (admissible) vec-
tor fields, and this section motivates the one that follows it on the linear theory.
The main aim of this section is to describe analogs of the Equivariant Branching
Lemma ([41], Chapter XIII, Section 3) and the Equivariant Hopf Theorem [37, 41]
in the context of interior symmetries.

Interior symmetries induce extra structure on linearized eigenvalues, and this
structure controls the synchrony-breaking local bifurcations.

Definition 12.1. Let S ⊆ C be a subset of cells, and let I(S) = {i ∈ E : H(i) ∈ S}.
The pair (σ, σE) is an interior symmetry on S if σ : C → C is an input equivalence
preserving permutation that is the identity on the complement of S, σE : E → E is
an edge equivalence preserving permutation that is the identity on the complement
of I(S), and the pair satisfies

(12.1) σ(H(i)) = H(σE(i)) and σ(T (i)) = T (σE(i))

for all i ∈ I(S). ✸

The interior symmetry group ΣS is the set of all interior symmetries on S. It is
obviously a group. The interior symmetry group ΣC on the whole network C is the
usual symmetry group Γ of the entire coupled cell system. Just like symmetries,
interior symmetries force flow-invariant fixed-point subspaces. Suppose that T ⊂
ΣS is a subgroup. Then

(12.2) Fix(T) = {(xS , xC\S) ∈ P : σxS = xS ∀σ ∈ T}.
Note that fixed-point subspaces for groups of interior symmetries are polydiagonals.



NONLINEAR DYNAMICS OF NETWORKS: THE GROUPOID FORMALISM 349

Proposition 12.2. Let T be a subgroup of ΣS , and let f be a G-admissible vector
field. Then the subspace Fix(T) is flow-invariant for f .

Proof. In the context of interior symmetry, admissibility of the cell system implies
that

(12.3) fS(σxS , xC\S) = σfS(xS , xC\S)

where fS is the cell system vector field on the cells in S and σ ∈ ΣS . Observe that
if (xS , xC\S) is in Fix(T), then it follows from (12.3) that

fS(xS , xC\S) = σfS(xS , xC\S)

and f(xS , xC\S) ∈ Fix(T ). �

We now discuss a motivating example:

Example 12.3. The network of Figure 19 is one of the simplest networks with
an interior symmetry. Because of the (dotted) arrow from cell 1 to cell 3, the
permutation (1 2) ∈ S3 is not a group symmetry of the network, but it is an
interior symmetry on the subset S = {1, 2}.

A state (x1, x2, x3) is fixed by this interior symmetry if and only if x1 = x2; that
is, cells 1 and 2 are synchronous. That is, they lie in the polydiagonal

Fix(ΣS) = {(x1, x1, x3) : x1 ∈ Rk, x3 ∈ Rl}
corresponding to the balanced equivalence relation whose equivalence classes are
{1, 2}, {3}.

Let x0 = (x1, x1, x3) be a synchronous equilibrium for an admissible vector field
of the form (5.1). Let J be the Jacobian matrix at x0. Then

J =

⎡

⎣

a b c
b a c
d 0 e

⎤

⎦

where a, b are k × k matrices, c is a k × ℓ matrix, d is an ℓ × k matrix, and e is an
ℓ × ℓ matrix. Interior symmetries force a structure on J as follows.

Let W = {(x1,−x1, 0) : x1 ∈ Rk}; then W is a complementary subspace to
Fix(ΣS) on which ΣS acts nontrivially (as −I). Since Fix(ΣS) is flow-invariant,
the matrix J , written as L in the decomposition W ⊕ Fix(ΣS), is block lower
triangular:

L =

⎡

⎣

a − b 0 0
0 a + b c
d d e

⎤

⎦ .

Thus synchrony-breaking bifurcations occur when the eigenvalues of J |W are crit-
ical (that is, the k × k matrix a − b has eigenvalues with zero real part). In (12.7)
and Lemma 12.4 (a) we show that this kind of decomposition occurs generally for
linearizations about a synchronous equilibrium supported by an interior symmetry
group. ✸

In the context of symmetry-breaking, there are two main local bifurcation the-
orems [37, 41]. The Equivariant Branching Lemma ([41], Chapter XIII, Section 3)
proves the existence of certain branches of symmetry-breaking steady states; the
Equivariant Hopf Theorem ([41], Chapter XVI, Section 4) proves the existence of
certain branches of spatio-temporal symmetry-breaking time-periodic states. Each
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of these theorems generalizes to synchrony-breaking bifurcations of coupled cell
systems with interior symmetry.

The action of the group ΣS decomposes S as

S = S1 ∪ · · · ∪ Sm

where each Sj is an orbit of the action. Let

(12.4) W = {x ∈ P : xj = 0 ∀j ∈ C \ S and
∑

i∈Sℓ

xi = 0 for 1 ≤ ℓ ≤ m}.

Note that W is a ΣS-invariant subspace. Moreover, we can write the state space P
as

(12.5) P = W ⊕ Fix(ΣS).

In particular, (12.4) implies that vectors in W , when written in coupled cell coor-
dinates, have zero components on all cells not in S.

Bifurcation theory concerns changes in solutions of an ODE as parameters are
varied, so we introduce an explicit bifurcation parameter λ ∈ R. We assume that
f (hence also its components fc) depend on λ and that the ODE

(12.6) ẋ = f(x, λ)

has a ‘trivial’ equilibrium x0 ∈ Fix(ΣS). In the present context, we assume that

f(x0, λ) ≡ 0

and that the bifurcation occurs at λ = 0. Let L = (df)x0
. Proposition 12.2 implies

that Fix(ΣS) is invariant under L, so that L has the block form

(12.7) L =

[

A 0
C B

]

with respect to the decomposition (12.5); that is, A : W → W and B : Fix(ΣS) →
Fix(ΣS). Thus the eigenvalues of L are the eigenvalues of A, together with those
of B.

Local bifurcation (steady-state or Hopf) occurs when some eigenvalue of L has
zero real part. That eigenvalue is either associated with A or with B, and it is the
former case that concerns us here. We say that f undergoes a bifurcation at x0 that
breaks interior symmetry if A has an eigenvalue with zero real part. In this case,
steady-state bifurcation occurs when A has a zero eigenvalue, and Hopf bifurcation
occurs when A has a conjugate pair of purely imaginary eigenvalues. In the Hopf
case, we may assume (after rescaling time if necessary) that the purely imaginary
eigenvalues of A are ±i. We assume that the center subspace E(L) = E(A) and
that the center subspace E(A) is equal to ker A in steady-state bifurcation and to
the real eigenspace

E(A) = {x ∈ P : (A2 + 1)x = 0}
in Hopf bifurcation. The structure of L in (12.7) has several important implications:

Lemma 12.4. (a) A commutes with the action of ΣS on W .
(b) If w ∈ W is an eigenvector of A with eigenvalue µ, then there exists an

eigenvector v of L with eigenvalue µ of the form

v = w + u

where u ∈ Fix(ΣS).
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In particular, Lemma 12.4 (a) can force multiple eigenvalues in synchrony-
breaking bifurcations. The analog to the Equivariant Branching Lemma for interior
symmetries is the following.

Theorem 12.5 ([33]). Assume that kerL and kerA have the same dimension. Let
T ⊂ ΣS be an axial subgroup of the action of ΣS on kerA, and assume the eigen-
value crossing condition. Then there exists a unique branch of equilibria, bifurcating
from x0, with symmetry group T.

To discuss Hopf bifurcation we require the following concepts. The ODE (12.6)
undergoes a synchrony-breaking Hopf bifurcation at x0 if, after rescaling time, the
linearization L = (df)x0

has eigenvalues ±i coming from A, as defined in (12.7).
Since the block matrix A defined in (12.7) does commute with ΣS , there is a natural
ΣS×S1-action on E(A), where S1 acts by exp(sA). Let ∆ ⊂ ΣS×S1 be a subgroup.
The spatial subgroup of ∆ is K = ∆ ∩ ΣS .

Definition 12.6. The subgroup ∆ ⊂ ΣS × S1 is spatially C-axial if

(12.8) dimFixEi(A)(∆) = dim FixEi(A)(K) = 2

where K is the spatial subgroup of ∆.

The generalization of the Equivariant Hopf Theorem is:

Theorem 12.7 ([33]). Assume that a synchrony-breaking Hopf bifurcation occurs
at x0. Let ∆ ⊂ ΣS × S1 be a spatially C-axial subgroup, with spatial subgroup K.
Then generically there exists a family of periodic solutions of (12.6), bifurcating
from x0 and having period near 2π, that is synchronous on any two cells in S lying
in the same K-orbit. Moreover, to lowest order in the bifurcation parameter λ, the
solution x(t) has the form

(12.9) x(t) ≈ w(t) + u(t)

where w(t) = etLw0 has exact ∆ spatio-temporal symmetries on cells in S and
u(t) = etLu0 is synchronous on ΣS group orbits of cells in S.

Note that (12.9) follows from Lemma 12.4 (b). We illustrate (12.9) by integrating
a five-dimensional system of ODE of the form (5.1). The exact system is

g(u, v, w) = (J + λ − 1)u − v + w(1, 2)t − (|u|2 + |v|2 + w2)u
h(w, u) = u1 − w − w3

where u, v ∈ R2, w ∈ R, λ = 0.05, and

J =

[

0 −1
1 0

]

.

The result is shown in Figure 31 (left). The first coordinates of cells 1 and 2 and
cell 3 are shown superimposed in that figure; the largest amplitude signal is from
cell 1 and the smallest is from cell 3. To lowest order, the synchronous component
u(t) is the average of the time series of cells 1 and 2. To extract the spatio-temporal
symmetries of the component w(t) we therefore subtract that average from the time
series for cells 1 and 2. The result is shown in In Figure 31 (right). As predicted
by Theorem 12.7, the signals concerned are (approximately) a half-period out of
phase.
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Figure 31. (Left) Simulation from three-cell network in (5.1) with
interior Z2 symmetry. (Right) Cells 1 and 2 with average sub-
tracted, illustrating approximate half-period phase shift.

13. Phase equations

When modeling time-periodic states of networks, it is common to simplify the
dynamics of the cells by assuming them to be phase oscillators. A phase oscillator
is a dynamical system whose state space is the circle, so the only variable required
to determine the state of a cell is the phase of its oscillation. There is a rigorous
reduction from higher-dimensional cell phase spaces to the circle when cells are
weakly coupled [49, 52]. We follow [31] and apply the theory of coupled cell systems
(extended to cell phase spaces that are not vector spaces but manifolds) to such
networks, and the results are significant for applications, for instance to ‘spiking’ in
networks of neurons. We give a brief introduction to some of the main ideas, with
emphasis on relations among the rotation numbers of cells.

The ODEs for a network of phase oscillators have the form

(13.1) θ̇ = F (θ)

where θ = (θ1, . . . , θN ) ∈ TN , and F = (f1, . . . , fN ). Each coordinate satisfies
0 ≤ θj < 1, so that the phase space of each oscillator is the unit interval [0, 1] with
endpoints identified.

Let FL : RN → RN denote the lift of the vector field F : TN → RN in (13.1).
Suppose that θ(t) is a solution to (13.1) with initial condition θ(0) = θ0. The lift of
θ(t) ∈ TN to RN is the solution to x′ = FL(x) satisfying x(0) = θ0 and is denoted
by θL(t).

Definition 13.1. Let θ(t) be a T -periodic solution to (13.1). Then the lift satisfies

(13.2) θL(t + T ) = θL(t) + ρ

where ρ = (ρ1, . . . , ρN ) ∈ ZN is a vector of integers. The integer ρj is the rotation
number of oscillator j.

The rotation number ρj is simply the number of oscillations of cell j during one
period of a periodic solution of (13.1). This notion can be generalized to apply to
nonperiodic solutions:
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Definition 13.2. Let θ(t) be a solution of (13.1) on an interval τ = [t1, t2]. The
oscillation number of θj(t) on the interval τ is given by

(13.3) ρτ
j = θL

j (t2) − θL
j (t1).

Note that ρτ
j is the number of oscillations of cell j during the time interval τ and

is not, in general, an integer. However, for a T -periodic solution and τ = [0, T ],
ρτ

j is an integer and the oscillation number equals the rotation number; that is,

ρ
[0,T ]
j = ρj . The oscillation number is closely related to the frequency of oscillation.

Given an interval τ = [t1, t2], we define the average frequency ντ
j over τ by

(13.4) ντ
j =

ρτ
j

t2 − t1
.

If the limit

νi = lim
|τ |→∞

ντ
i

exists, we say that νi is the average frequency of cell j.
The property of the network that imposes relations between the rotation and

oscillation numbers is described in the following definition.

Definition 13.3. Two phase oscillators i and j coevolve if the codimension one
torus {θ ∈ TN : θi = θj} is flow-invariant.

Note that in an all-to-all Sn-equivariant coupled system every pair of cells
coevolves. The following is proved in [31].

Proposition 13.4. For any periodic solution to a phase oscillator system (13.1),
coevolving oscillators have equal rotation numbers. For any solution on an interval
τ , all coevolving oscillators have oscillation numbers that differ at most by 1.

We sketch the reason for these results. Since the torus θi = θj is assumed to
be flow-invariant, the projections θi(t) and θj(t) of the trajectory θ(t) are either
identical or cannot cross. In other words, oscillators i and j cannot ‘lap’ or ‘pass’
one another. Therefore, for a periodic orbit θ(t), the rotation numbers ρ1 and ρ2

must be equal. Furthermore, for a general solution on an interval τ , ρτ
1 and ρτ

2 can
differ at most by 1, since this is the greatest extent to which the phases can be
separated without passing.

14. Synchronized chaos

The topic of synchronized chaos has received a lot of attention in recent years,
in part because of possible applications to secure communications. The role of
balanced equivalence relations in creating the possibility of synchronous dynamics is
not limited to equilibria and periodic states. In particular, the synchronous dynamic
can be chaotic. We give an example in which the network is as shown in Figure 32,
which has an interior Z2 symmetry, and the dynamics on the synchrony space is the
Rössler attractor (Rössler [69], Peitgen et al. [67]). We also point out some of the
subtleties associated with synchronized chaos, in particular the complex behavior
associated with instability to synchrony-breaking perturbations, which includes the
intriguing phenomenon of ‘bubbling’. A bubbling state repeatedly synchronizes
and loses synchrony in an intermittent fashion. Even though such a state is only
approximately synchronous, it is associated with a flow-invariant subspace.
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Figure 32. Three-cell network with synchronous Rössler-
attractor chaos.

Here cell 1 has 2-dimensional phase space with coordinates (x, y), while cells 2
and 3 have 1-dimensional phase spaces with coordinates z1, z2 respectively. We give
numerical results for the following ODE, which is easily seen to be admissible:

(14.1)

ẋ = −y − z1

ẏ = x + ay
ż1 = b + xz2 − cz1 + k(z1 − z2) + p(z1 − z2)

2 + q(z1 − z2)
3

ż2 = b + xz1 − cz2 + k(z2 − z1) + p(z2 − z1)
2 + q(z2 − z1)

3.

The network has an invariant subspace, namely the synchrony space on which
z1 = z2. Robust synchrony is possible because there is a balanced equivalence
relation with classes {1}, {2, 3}, and associated synchrony space ∆ = {x, y, z, z} in
which z1 = z2 = z. The dynamic on this subspace is obtained by replacing z1 and
z2 by z, which leads to:

(14.2)
ẋ = −y − z
ẏ = x + ay

ż1 = b + xz − cz.

We recognize this as the standard Rössler system (Rössler [69], Peitgen et al. [67]).
Notice that k, p, q do not occur in this system: they affect the dynamics transverse
to ∆, but play no role in the dynamics on ∆.

At the chosen parameter values (a, b, c) the system (14.2) has a chaotic attractor
A, the usual Rössler attractor; see Figure 33. Therefore the system (14.1) has a
chaotic invariant set, which we may identify with A using the coordinates (x, y, z, z)
on ∆. Now A is an attractor inside ∆, but may or may not be stable to perturbations
transverse to ∆. We take up this point in the next section.

In the numerical analysis that follows, we take parameter values a = 0.15, b =
0.2, c = 5.7, p = −0.001, q = −0.01, and consider three different values of k. The
terms in (z1−z2)

3 prevent z1−z2 blowing up to infinity, and the terms in (z1−z2)
2

break the reflectional symmetry z1 − z2 �→ z2 − z1.
We compare the three cases k = −2.0, 2.9, 3.0. In all cases we choose initial

conditions x(0) = 0.1, y(0) = 0.12, z1(0) = 0.2, z2(0) = 0.1, in which z1, z2 are not
synchronous. The results of numerical integration in these three cases are shown in
Figure 34. The horizontal coordinate is time, and the vertical coordinate is z1 − z2,
which measures to what extent the two cells fail to be synchronous.

The pictures show three distinct kinds of ‘synchrony’. When k = −2.0 the two
cells are identical to within a few parts in 1011, which strongly suggests the occur-
rence of an asymptotically stable chaotic attractor lying on the synchrony subspace.
When k = 2.9 the numerics still suggest an asymptotically stable attractor, but we
show below that appearances are deceptive. When k = 3.0 substantial deviations
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Figure 33. Rössler attractor in 3-dimensional synchrony subspace.
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Figure 34. Synchronous Rössler-attractor chaos. Time runs hor-
izontally. Vertical coordinate is z1 − z2. (Left) k = −2.0: asymp-
totically stable attractor. Note scale factor 10−11 on vertical scale.
(Middle) k = 2.9: Milnor attractor. (Right) k = 3.0: bubbling.

from synchrony repeatedly occur: in Section 15 below we explain these in terms of
the phenomenon of ‘bubbling’ (Ashwin et al. [4, 5]).

15. Bubbling bifurcation

We can also consider the stability of the synchronized chaotic state for the above
example. Associated with this is a natural bifurcation scenario: loss of synchrony
through a loss of transverse stability. More precisely, although the set A is dynam-
ically invariant and is an attractor inside the synchrony space ∆, it need not be
an attractor in the full phase space—the transverse dynamic may cause instability.
This context of ‘bifurcation from an invariant submanifold’ turns out to be surpris-
ingly complex. It is also especially interesting in the network context because of
the natural presence of invariant subspaces that may support chaotic dynamics.

The context considered in Ashwin et al. [4, 5] is actually discrete dynamics, that
is, iteration of a diffeomorphism f : M → M where M is a manifold. We will slide
over this distinction.

Suppose that f has an invariant submanifold N , so that f |N defines a dynamical
system on N . Suppose further that f |N has an (asymptotically stable) attractor
A ⊆ N . Then A is an invariant subset for f . What kind of invariant subset depends
on the transverse dynamic—the projected motion orthogonal to N of a point that
starts out very close to A but lies outside N?
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In simple cases this is a classical problem, solved by eigenvalues in the equilibrium
case and Floquet multipliers in the periodic case. When A is chaotic, the intuition is
that the stability of A in M is determined by the average transverse flow (linearized
about A) with respect to an invariant measure on A. However—and this is crucial—
there are usually many distinct invariant measures, and these lead to different
averages. For example, if A contains a periodic cycle Σ of period σ, then the Dirac
measure δΣ that assigns measure 1/σ to each point of Σ and is zero everywhere
else is invariant. At the other extreme, there may be an SBR (Sinai-Bowen-Ruelle)
measure µSBR, which is an invariant measure supported on A whose conditional
measures on unstable manifolds are absolutely continuous with respect to Lebesgue
measure. The average transverse dynamic with respect to δΣ involves only points
in Σ and may be expected to differ from the average with respect to µSBR.

This difference implies that the associated bifurcation takes place not at a single
parameter value but over an interval of parameter values. Transverse instability
of A sets in ‘gradually’ at the start of the interval and is complete by the end
of the interval. The most important parameter value lies within the interval and
corresponds to a change of sign of the average with respect to the SBR measure.
Theorem 15.1 below is a formal statement of what happens.

The transverse dynamic is characterized by a finite set of normal Liapunov expo-
nents, which measure the local rate of expansion or contraction and are analogous
to linearized eigenvalues. They depend on a choice of invariant measure µ and are
well-defined provided µ is ergodic. Define λmin and λmax to be the infimum and
supremum of all normal Liapunov exponents over all invariant measures, and let
λSBR be the largest normal Liapunov exponent for the SBR measure. Then

λmin ≤ λSBR ≤ λmax

and the signs of these three quantities determine the overall dynamics. Proposition
2.21 of Ashwin et al. [5] summarizes the bifurcation scenario. We restate it as:

Theorem 15.1. Let f : M → M be a C1+α map leaving the embedded submanifold
N invariant. Let A be an asymptotically stable chaotic attractor for F |N . Then
relative to f acting on M , the set A is:

(a) An asymptotically stable attractor if λmax < 0.
(b) Liapunov unstable if λmax > 0.
(c) A Milnor attractor if λSBR < 0 < λmax.
(d) A chaotic saddle if λmin < 0 < λSBR.
(e) A normally repelling chaotic saddle if 0 < λmin.

Moreover, in case (c) A will have a ‘riddled basin’ if a suitable technical condition
is valid. Here a Milnor attractor (Milnor [58]) is an attractor A whose basin of
attraction has nonzero Lebesgue measure, and no compact proper subset A′ ⊆ A
has the same basin of attraction as A (up to a set of zero measure). Riddled basins
can be thought of as basins with fractal holes; for a rigorous definition see Alexander
et al. [2].

In practice, observations of the dynamics in cases (b) will appear to show an
asymptotically stable attractor, because the thin set of unstable points nearby will
probably not be detected.

Observations in case (c) depend on such factors as the direction of bifurcation
(subcritical or supercritical) relative to a given µ. The possibilities include blow-
out bifurcation (Ott and Sommerer [66]), on-off intermittency (Platt et al. [68]) and
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bubbling (Ashwin et al. [4]). Here we focus on bubbling. In this case, the observed
orbit repeatedly moves away from N but is then globally reinjected back near N .
In a sense, this is a kind of homoclinic behavior around the chaotic invariant set A.

Computations for Rössler Synchrony. We now relate the above scenario to
the system (14.1), which we claim exhibits bubbling. The relevant submanifold
N is the synchrony space ∆ on which z1 = z2. The ‘spiking’ observed in z1 − z2

when k = 3.0 represents repeated (but irregular) loss of synchrony followed by its
resumption. This is how bubbling appears when N is a synchrony space.

The dynamics on ∆ has already been derived; see equation (14.2). We analyze
the transverse dynamics as follows. Choose the transverse coordinate

u = z1 − z2

which vanishes on ∆. From (14.1)

u̇ = ż1 − ż2

= x(z2 − z1) − c(z1 − z2) + 2k(z1 − z2) + 2p(z1 − z2)
2 + 2q(z1 − z2)

3

= u(−x − c + 2k) + 2pu2 + 2qu3.

The linearized transverse flow is therefore

u̇ = (2k − c − x)u.

Since the codimension m − n = 1, there is a unique normal Liapunov exponent at
each point (x, y, z, z) ∈ A. Its value is

λk = 2k − c − x

which depends only on x.
Assuming ergodicity of an invariant measure µ, the average linearized flow trans-

verse to A, with respect to µ, can be computed as the integral

(15.1)

∫

A

(2k − c − x) dµ = 2k − c −
∫

A

xdµ.

As a surrogate for the final integral in (15.1) with µ = µSBR we employ the corre-
sponding ergodic integral

Ek = lim
T→∞

Ek(T ) where Ek(T ) =
1

T

∫ T

0

[2k − c − x(t)] dt.

Numerical computations of Ek are shown in the second column of Figure 35, where
the horizontal coordinate is T and the vertical one is Ek(T ).

When k = −2.0 < λmin, the set A is an asymptotically stable attractor.
As k increases, Ek remains negative up to k = 2.9. The second column shows

that 2k − c − x(t) changes sign on A for this parameter value, so A is not an
asymptotically stable attractor. Instead, it is a Milnor attractor.

At k = 3.0, however, Ek > 0, so the SBR-averaged transverse dynamic is re-
pelling, and we observe bubbling. Cells 1 and 2 repeatedly lose synchrony, as shown
by the spikes in z1 − z2, but then return near ∆ and regain synchrony, because tra-
jectories are globally reinjected near A.

Coupled cell networks may have robust flow-invariant subspaces, given by bal-
anced equivalence relations. If so, synchronized chaotic attractors may exist on the
corresponding synchrony space, provided it has dimension 3 or more. Therefore the
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Figure 35. Synchronous Rössler-attractor chaos. Time runs hor-
izontally. Vertical coordinate is: (Left) 2k−c−x. (Right) Ergodic
integral of 2k − c − x. (Row 1) k = −2.0. Asymptotically stable
attractor. (Row 2) k = 2.9. Milnor attractor. (Row 3) k = 3.0.
Bubbling. Note change of sign (to positive) of ergodic integral.

phenomena associated with the loss of transverse stability of a chaotic attractor ly-
ing on an invariant subspace, such as bubbling, are likely to occur. Therefore this
kind of intermittent synchronization is likely to be typical in coupled cell systems.
So even though our initial definition of ‘synchrony’ is very strong, the associated
concepts of balanced equivalence relations and synchrony subspaces can shed light
on more subtle kinds of ‘approximate’ synchrony.

16. Is there a linear theory?

We end this outline of network dynamics by raising an important, though rather
obvious, question. In symmetric dynamics, the presence of a symmetry group has
a significant effect on stability properties, and this effect is well understood for
equilibria and periodic states. To what extent does something similar hold for the
groupoid case?

The natural context here is local bifurcation theory, which employs linear algebra
to detect bifurcation points and then analyzes the nature of the resulting states by
considering nonlinear terms. The most important local bifurcations are ‘codimen-
sion one’, meaning that they occur generically as a single parameter is varied. The
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principal aims of local bifurcation theory are to obtain criteria for the existence of
local branches, to understand their dynamics, and to compute their stabilities.

Consider a general 1-parameter family of ODEs

ẋ = f(x, λ)

where x ∈ Rn, λ ∈ R. For simplicity suppose that there is a trivial solution x(t) ≡ 0
for all λ, and let L(λ) = Dxf |(0,λ) be the Jacobian at (0, λ). Then local bifurcation
occurs at values of λ for which L(λ) has at least one critical eigenvalue µ, that is,
an eigenvalue on the imaginary axis.

When f has no special structure (such as symmetry or network constraints), the
generic cases are µ = 0 and µ = ±iω for nonzero ω ∈ R. Generically, there should
be no other critical eigenvalues; in particular, the critical eigenvalues are simple.
As λ varies through the bifurcation point, generically the critical eigenvalues cross
the imaginary axis transversely (that is, with nonzero speed), and this property
guarantees the local existence of a bifurcating branch of nonzero states. A zero
eigenvalue leads to a branch of steady states, while a conjugate pair of imaginary
eigenvalues leads to a branch of periodic solutions.

The stability of the bifurcating branch depends on the eigenvalues of the Jacobian
evaluated along the branch. This is a linear algebra problem, but the Jacobian
depends on the nonlinear terms because it is evaluated along the branch.

If f has additional structure, what is ‘generic’ may change. Local bifurcation
is still governed by critical eigenvalues, and the real/imaginary distinction still
applies, so we can refer to steady-state and Hopf bifurcations. However, the form of
L(λ) can be more complicated. Symmetry can force multiple eigenvalues; network
architecture can do the same, and can also force nonzero nilpotent parts in the
appropriate Jordan block.

In the group-symmetric case, there exist satisfactory techniques for analyzing
local bifurcations. These techniques are based on the representation theory of the
symmetry group Γ of f . For steady-state bifurcation, a generic zero eigenspace
must be an absolutely irreducible component of the representation; for Hopf bifur-
cation, a generic critical eigenspace is ‘Γ-simple’. Bifurcating branches tend to lie
in fixed-point spaces (of subgroups Σ of Γ in the steady case, and of subgroups Σ
of the group Γ × S1 of spatio-temporal symmetries in the Hopf case). The Jaco-
bian along the corresponding branch can be block-diagonalized according to the
isotypic components of Σ, which are sums of all irreducible components of a given
isomorphism type.

Is there an analogous theory for network dynamics? Some features of the group-
theoretic case carry over. For example, balanced polydiagonals play the same role
as fixed-point subspaces. However, it is not so straightforward to find suitable
analogs of irreducible representations and isotypic components. If we ask too much
of these analogs, they do not exist; if we relax the conditions imposed on them,
they may not be very useful.

Even in the group-symmetric case, many aspects of local bifurcation can be very
complicated, as the examples of Field [27] demonstrate. It is probably overam-
bitious to expect a complete, general theory of all generic possibilities. So it is
not surprising that the groupoid-symmetric case can also be puzzling. Examples
(among them many of those discussed in this paper) do reveal a certain degree of
structure and suggest that a sensible theory may exist for some types of network,
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even if the general case remains elusive. Of course the linear problem can in prin-
ciple be solved for any given network architecture; the question is, are there any
useful general principles?

A few such results are easily obtained. There is, for instance, a straightforward
combinatorial description of the admissible linear maps for a given network, which
is an elaboration of its graph-theoretic adjacency matrix. Moreover, the examples
discussed above indicate that a certain amount of the eigenvalue structure is com-
mon to all linear G-admissible matrices L (that is, matrices of linear admissible
vector fields). For example, there can exist common invariant subspaces ∆. The
obvious examples are polydiagonals corresponding to balanced equivalence rela-
tions ⊲⊳. The restriction of L to ∆ corresponds to the quotient network G/ ⊲⊳, so
some eigenvalues of L are determined by this quotient network. The rest live on
the space P/∆, and the associated matrix induced by L can also be characterized
combinatorially.

However, the invariant subspaces determined by balanced equivalence relations
are arguably the wrong ones to think about. In the group-theoretic analogy, they
correspond to fixed-point subspaces. Such spaces are indeed invariant under all
linear equivariant maps. But the most significant spaces of this kind are the isotypic
components of the group action, which in turn are determined by the irreducible
components. The examples analyzed above show that in the groupoid case there
may exist common invariant subspaces for all admissible linear maps which do
not correspond to any balanced equivalence relation. Some of these spaces seem
to be related to representations of groups (see the interior symmetry section, for
example). Others do not.

Can we characterize the generic critical eigenspaces for a given network archi-
tecture other than on a case-by case basis? Is there a useful analog of isotypic
components in the groupoid case? A serious problem seems to be the absence of
any general theorem of ‘complete reducibility’. The representation theory is less
well-behaved—indeed it is closely related to that of finite-dimensional, possibly
nonsemisimple, associative algebras, which is known to be intractable in general—
and this presents an obstacle to any general understanding of local bifurcations.
We must therefore leave these issues open at the present time.
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Martyn Parker, Marcus Pivato, Eric Shea-Brown, Andrew Török, and Yunjiao
Wang. The work of MG was supported in part by NSF Grants DMS-0071735 and
DMS-0244529 and ARP Grant 003652-0032-2001. That of IS was supported in part
by NSF Grant DMS-0244529 and a grant from EPSRC.

About the authors

Martin Golubitsky is Cullen Distinguished Professor of Mathematics at the Uni-
versity of Houston. He is a Fellow of AAAS and the current president of SIAM.

Ian Stewart is a professor at the University of Warwick (UK). He is a recipient
of the AAAS Award for the Public Understanding of Science and is a Fellow of the
Royal Society.



NONLINEAR DYNAMICS OF NETWORKS: THE GROUPOID FORMALISM 361

References

[1] F. Aldosray and I. Stewart. Enumeration of homogeneous coupled cell networks. Internat. J.

Bif. Chaos Appl. Sci. Engrg. MR2174556
[2] J.C. Alexander, I. Kan, J.A. Yorke, and Zhiping You. Riddled basins, Internat. J. Bif. Chaos

2 (1992) 795–813. MR1206103 (93k:58140)
[3] F. Antoneli, A.P.S. Dias, M. Golubitsky, and Y. Wang. Patterns of synchrony in lattice

dynamical systems, Nonlinearity 18 (2005) 2193–2209. MR2164738
[4] P. Ashwin, J. Buescu, and I. Stewart. Bubbling of attractors and synchronisation of oscillators,

Phys. Lett. A 193 (1994) 126–139. MR1295394 (95e:58114)
[5] P. Ashwin, J. Buescu, and I. Stewart. From attractor to chaotic saddle: a tale of transverse

instability, Nonlinearity 9 (1996) 703–737. MR1393154 (97k:58096)
[6] P. Ashwin and P. Stork. Permissible symmetries of coupled cell networks, Math. Proc. Camb.

Phil. Soc. 116 (1994) 27–36. MR1274157 (95j:92003)
[7] P. Ashwin and J.W. Swift. The dynamics of n identical oscillators with symmetric coupling.

J. Nonlin. Sci. 2 (1992) 69–108. MR1158354 (93g:58103)
[8] N.L. Biggs. Discrete Mathematics, Oxford University Press, Oxford, 1989. MR1078626

(91h:00002)
[9] J. Blaszczyk and C. Dobrzecka. Alteration in the pattern of locomotion following a partial

movement restraint in puppies, Acta. Neuro. Exp. 49 (1989) 39–46.
[10] S. Boccaletti, L.M. Pecora, and A. Pelaez. A unifying framework for synchronization of

coupled dynamical systems, Phys. Rev. E 63 (2001) 066219.
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