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Abstract

This study presents modelling and analysis of a new magneto-mechanical (MM) oscillator (Nonlinear

Dyn 99:323-339,2020), which pays a special attention to mechanical and magnetic nonlinearities for

large amplitude responses. The oscillator is comprised of a box structure made of two parallel leaf

springs with one end fixed and the other clamped with a proof mass, and an electromagnetic actuator.

A solenoid and a permanent magnet are the main parts of the actuator, which acts directly on the proof

mass providing an accurate and versatile excitation by varying intensity and frequency of the input

current. The new model for a beam of large deflection is based up the constitutive relation of nonlinear

beam theory. A new design of the electromagnetic actuator with a pair of identical solenoids and a

new concept of quasi-constant force (QCF) are proposed, which aim to generate a nearly constant

force for a constant input current. The mathematical model of the MM oscillator is systematically

developed and discussed for different types of excitations depending on designs and parameters of

the electromagnetic actuator. The undertaken nonlinear dynamics analysis further demonstrates

versatility of the electromagnetic actuator to generate a wide spectrum of excitations. The prediction

from the modelling were validated with the experimental results from the previous work (Nonlinear

Dyn 102:835-861,2020). The study demonstrates that the electromagnetic actuator provides versatile

excitation patterns and can be used to study experimentally subtle nonlinear phenomena.

Keywords: Magneto-mechanical oscillator, Constitutive relation, Electromagnetic actuation,

Nonlinear dynamics

1. Introduction

Modelling and analysis of nonlinear oscillators play a vital role in our understanding, application

and controlling of various types of vibration in mechanical systems and structures. The analysis

methodologies of nonlinear oscillators provide valuable theoretical and applied insight if the modelling
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of the main nonlinear effects have been undertaken with care. Classical and new examples such as5

pendula [1–3], Duffing [4–7], Lorenz [8–10], SD [11–13] and impact [14–18] oscillators, demonstrate

diverse forms of nonlinear oscillations. In recent years, lots of nonlinear mechanical oscillators have

been developed due to the application-driven theoretical and experimental studies. Several compre-

hensive reviews can serve as guides how to utilize various of nonlinear oscillators for vibration isolation

[19–25], vibration absorption [26–29] and energy harvesting [30–36], and for other applications.10

A large variety of beam structures are used as stiffness elements in above-mentioned applications

and theoretical studies, for instance, cantilever beams, buckled beams, nanobeams, as well as beams

with different shapes and configurations, which have been extensively studies, e.g. see [37–48]. In

1980’s, some scholars started to study the nonlinear dynamics of beam, e.g., Moon and Shaw et al.

[49, 50], who reduced a cantilever beam by a Galerkin approximation to the Duffing oscillator. In15

this work, they focused on the study of twin-well dynamics and found strange attractors, and on the

chaotic vibrations of a beam with an impact boundary condition. Recently, Ding et al. [51, 52], Yan

et al. [53] and Wang et al. [54, 55] modelled a continuous fluid-conveying pipe as an Euler-Bernoulli

beam, investigating the bending vibration modes and nonlinear responses also using the Galerkin

method and the finite difference method. The elliptic integral approach is another classical method20

to solve the large nonlinear deformation of a slender structure in form of a beam or column, which

accurately describes effects of loads on deflections [56, 57]. Batista [58] presented an exact analytical

solution for the equilibrium configurations of a cantilever beam subjected to an inclined force and

tip moment acting on its free end. By using this method, Virgin et al. [59] investigated the buckled

characteristic of a simple beam subjected to an axial load. Emans et al. [60] considered the cumulative25

effect of nonlinearities of the beam and derived out an analytical third order expansions. Different

from the above-mentioned methods, the first objective of this paper is to develop a lump parameter

mathematical model of the beam structure composed of parallel leaf springs to accurately describe its

geometry for large deflection.

The second objective of this work is to develop a comprehensive, accurate and computationally30

viable model of the electromagnetic force generation. In the recent years there has been a lot of

investigations in this area and we will summarise the main developments. To develop an oscillating

motor, a solenoid activated system with a RLC series circuit and a metal bar was designed by Nguyen

et al. [61, 62], which was used to generate resonant vibro-impacts. Xu et al. [63] modelled an

electro-magnetic shaker as two and a half degrees-of-freedom system, and studied the dynamics of35

the pendulum-shaker system theoretically and experimentally. A capsule system was proposed to

explore vibro-impact responses to realize self-propelled locomotion by Liu et al. [64–66], where a

DC step motor and gear mechanism were used to generate excitations. In [67], the authors explored

magnets and excitation coils to drive an inverted pendulum of piezoelectric energy harvester, aimed
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at developing micro and nanomechanical resonators. Wang et al. [68] presented electromagnetic40

quasi-zero-stiffness resonators periodically to realize the semi-active metamaterial beam. A cantilever

beam-based electromagnetic resonator with electromagnetic and mechanical damping was investigated

in [69]. Piezoelectric type actuator is other type which has been often used for vibration control of

beams [70]. Moreover, a nonlinear electromagnetic shunt damping for vibration isolators has been

investigated in [71–73], where a pair of the permanent magnets and a pair of the coils are applied to45

produce electromagnetic damping force mechanisms. Liu et al. [74] employed a magnetic interaction

to improve the performance of a multi-direction vibration isolator theoretically and experimentally.

Witkowski et al. in [75] used a pair of permanent magnets to serve as magnetic springs and studied

the dynamics of two degrees-of-freedom mechanical system. From this brief review, it is apparent

that a simple and reliable actuator design is of great interest both fundamentally and practically to50

provide arbitrarily desired types of excitations as a vibration source, a vibration controller and an

electromagnetic damper. To authors knowledge, a design of versatile, robust and accurate actuator

still presents a significant challenge [76, 77].

Coil

Magnet

Piezoelectric
loadcell

Figure 1: (colour online) New magneto-mechanical oscillator: (a) a phototype of the experimental setup [78],
(b) a schematic diagram of the oscillator. The main components of the system are a coil, a permanent magnet,
a steel linked rod, a proof mass, and a pair of adjustable length of leaf springs as well as sensors (the eddy
current probe and accelerators to record the motion of beam and the support platform, a piezoelectric load
cell as a force transducer to evaluate the reaction force resulting from the interactions of the magnetic field
of the solenoid with the magnet). The current is provided by a control system with a Proportional Integral
Derivative (PID) controller program created in Labview, which can supply a required current in the coil. The
current signal from Labview needs to be amplified using the DC power supplier.

Recently, a new magneto-mechanical (MM) oscillator has been designed and studied by the Centre

for Applied Dynamics Research at the University of Aberdeen (see Figure 1), which has been early ap-55

plied to study subtle bifurcation scenarios in a soft impacting oscillator [78–80]. For small amplitudes

of vibration, the experimental study indicated the stiffness of the two parallel leaf springs structure

was linear and the electromagnetic force was harmonic. For large oscillations the system is strongly
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nonlinear due to the large deflection of structure and electromagnetic force generation mechanisms. To

this end, several new ideas are presented here in order to design a versatile and robust electromagnetic60

actuator, which can provide a wide range and highly controllable excitations pattern including har-

monic ones where the frequency and amplitude can be adjusted independently. Additionally, from the

view point of dynamics, stability and bifurcations will be investigated comprehensively by advanced

nonlinear dynamics analysis methods.

This paper is structured as follows. In Section 2, a new analysis method is presented to model65

the large-deflection beam structure of parallel leaf springs based up the constitutive relation from

nonlinear beam theory. In Section 3, we derive the mathematical model of electromagnetic actuator

by applying the infinitesimal element analysis method and the charge model. This section will study

the nature of actuating force and then propose a new quasi-constant force actuator for a versatile

exciter, for which an optimization will be carried out to broaden the nearly constant force range. In70

Section 4, the dynamic model of the MM oscillator is derived and dynamics and bifurcation analysis are

conducted for harmonic, parametric and harmonic-parametric electromagnetic force. The availability

of the new proposed twin-solenoid electromagnetic actuator to supply various types of excitations

is demonstrated in this section. In Section 5, experimental studies are implemented to validate the

theoretical model. In Section 6, concluding remarks are drawn.75

2. Mathematical model of large-deflection beam

In this section, a new computation approach is presented to solve the large deflection problems

of beam with a shape under the first order vibration mode. The new proposed method to obtain

the lumped parameter model of the oscillator is based upon the constitutive relation of nonlinear

beam theory. By analyzing the data derived from the constitutive equations, the polynomial fit based80

upon the least square method will be implemented in the second subsection to obtain the relationship

between the displacement and restoring force.

2.1. Constitutive relations

The bending problem of a parallel leaf spring beam is schematically presented in Figure 2, which is

similar to other beam structures such as cantilever and clamped-clamped ones. Additionally, it should85

be pointed out that the two leaf springs shown in Figure 1 are identical with the same constraints, so

the problem can be simplified into deflection of one spring.

Under the assumption that the material of beam remains linearly elastic, the relationship of bend-

ing moment and beam deformation reads

κ=
dθ

ds
=
M(s)

EI
=

ω′′

(1 + ω′2)
3
2

, (1)
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where κ is the curvature of the beam deflection curve, θ, s, M(s), ω are the tangent angle from90

the x-axis, the curvilinear coordinate, the bending moment and the transverse displacement of the

considered infinitesimal beam element, respectively, and EI is the bending stiffness of the beam, as

well as the prime denotes the derivative with regards to x. Additionally, see Eq. (A.1) describing the

relationship between ω and θ.

As shown in Figure 2 depicting an infinitesimal element of the beam, the relationship between the95

bending moment M(s) and the internal shear force Q can be derived out (see A.2 and A.3 for more

details) as the following

Q =
dM

ds
=

dM

dx
· dx
ds

=

[
EI

ω′′

(1 + ω′2)
3
2

]′

· cos θ = −P cos θ+G sin θ, (2)

where the force P acted on the mass M and the gravity G of the mass are considered and the mass

of the leaf springs are neglected herein.

According to Eq. (2) and letting ϕ = ω′, the following equation can be obtained100

ϕ′′ − 3ϕ

1 + ϕ2
ϕ′2 = − P

EI
(1 + ϕ2)

3
2 +

G

EI
ϕ(1 + ϕ2)

3
2 . (3)

In addition, the parallel spring leaf beam should satisfy the following boundary conditions ω(0) =

0, ω′(0) = 0, ω′(l) = 0, s(0) = 0, s(l) = L. Combining Eqs (1) and (3), the exact mathematical

model of the studied beam will be established and reduced into first order differential equations with

boundary constraint conditions as follows

ω′ = tan θ = ϕ,

ϕ′ = u,

u′ = 3ϕu2

1+ϕ2 − P
EI (1 + ϕ2)

3
2 + G

EIϕ(1 + ϕ2)
3
2 ,

s′ =
√
1 + ϕ2,

ω(0) = 0, ϕ(0) = 0, ϕ(l) = 0, s(0) = 0, s(l) = L.

(4)

There are four differential equations and five boundaries conditions. Taking account into one of the105

two boundary conditions for the curvilinear coordinate s as s(0) = 0, the solution of the system can

be found by adjusting parameter l to satisfy s(l) = L. This is the first boundary value problem of

high order ordinary differential equations, which can be computed by using the routine bvp4/5/6c in

Matlab [81]. From Eq. (4), the vibration characteristics of the beam with the mass subjected to point

loads can be easily obtained. Example curves are given in Figure 3, which are obtained for parameters110

listed in Table 1.

5



Figure 2: (colour online) Free-body diagrams of an element of the beam, where M , Q, P and G denote the
bending moment, the internal shear force, the force acting on the mass and the gravity of the mass, and dx,
dy, ds express the differentials of the beam element in x and y directions and the arc differential, respectively.

Figure 3: (colour online) The response characteristics of the beam of parallel leaf springs when the tip mass
is loaded by the static force P (P=10 N, 100 N, 200 N, 400 N marked in each panel): (a) the deflection, (b)
the rotation angular, (c) the bending moment, (d) the shear force in the beam cross-section. The red square-
dashed lines and the blue circle-solid lines show the cases of with and without gravity influences considered,
respectively.
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Table 1: Geometric and material properties of the oscillator.

Parameter (symbol) Value Parameter (symbol) Value
Width(w) 0.035 m Length (L) 0.115 m

Thickness (t) 0.001 m Force (P ) 0-500 N
Young’s modulus (E) 210 GPa Gravity of tip mass (G) 19.6 N

2.2. Restoring force analysis

For a simple harmonic oscillator, the restoring force is a force acting opposite to displacement to

bring the system back to an equilibrium. The force magnitude depends only on displacement obeying

Hookes law Fs = −kx, where Fs is the restoring force and k is the stiffness. The restoring force of a115

large-deflection beam can be defined similarly, which is equal to the force required to make the beam

deviate from its equilibrium position but in the opposite direction. The stiffness will be defined as

the derivative of the restoring force with respect to the deflection amount. Figure 4 computed based

on the values from Table 1, shows the relationships between the acting force and displacement x,

where the blue dotted line and the red dotted line represent the required force without a tip mass120

considered and with a tip mass of gravity 19.6 N considered, respectively. It can be seen clearly that

the restoring force is nonlinear with respect to displacement for large deflections, and the gravity of

tip mass reduces the restoring force in the motion direction for the same deflection, and it makes a

hard nonlinearity of the beam structure even stronger. Meanwhile, it is shown that the contribution

of the gravity is weak in small deflections, and becomes strong as the deflection becomes large. In125

addition, the acting force was computed by two formula (see Appendix A.2 and [46, 60] for details)

and marked with the black dot-dot-dashed line and the green solid line in Figure 4, respectively. A

comparison of above results indicates that the mathematical model corresponds well to the literatures

and can describe the restoring force well only for small beam deflections.

In order to describe a relationship between the force and the displacement, a polynomial fit based

upon the least square method can be applied of the form shown below

Fn(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0,

where the restoring force Fn(x) is connected with the displacement x and ai is the coefficient of the130

polynomial with respect to the term of the i-th power of x. The mathematical approach for finding

the best-fitting polynomial curve of a given set of points by minimizing the sum of the squares of the

offsets of the points from the curve, for which the well-established routines can be used [82, 83]. It is

important to evaluate the goodness of the fitting curve, which can be done by computing the residual
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Figure 4: (colour online) Restoring forces: linear and cubic nonlinear analytical curves introduced in Appendix
A.2, and the exact results derived from Equation (4) for the cases of with gravity and without gravity.

norm (RN)135

RN =

√√√√ n∑
i=1

(ŷi − yi)
2
, (5)

where ŷi is the fitting data corresponding to xi. Table 2 lists the fitting coefficients of the restoring

forces versus the deflections for the data from Eq. (4) with a maximum deflection of 10 mm, which

compares the two cases of with and without gravity considered. Figure 5(a) shows the raw data of

the restoring forces versus deflections within the maximum deflection of 60 mm, where the gravity is

considered. Meanwhile, the fitting curves F3, F5, F7 are plotted, whose coefficients are listed in Table140

3. Furthermore, the residual errors of the raw data minus the fitting data are presented in Figure

5(b), which indicates the seventh order fit is the best.

Table 2: Fitting polynomials and related residual norms

Fn

(Without gravity)
a3(×105) a1(×103) RN

Fn

(With gravity)
a3(×105) a1(×103) RN

F1 0 4.8758 0.3694 F1 0 5.0780 0.3348
F3 6.68783 4.8329 0.0077 F3 6.80021 5.0376 0.0049
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Table 3: Fitting polynomials and related residual norms

Fn a7(×1010) a5(×107) a3(×105) a1(×103) RN

F3 0 0 11.18785 4.6065 40.7870
F5 0 14.262998 5.33044 5.0991 3.9040
F7 1.57705897 5.0654423 6.87475 5.0328 0.5565

Figure 5: (colour online) (a) Comparisons between the exact force and the polynomial fitting results for the
third-order, fifth-order and seventh-order models, that is, F3, F5, F7, with coefficients listed in Table 3. (b)
Residual errors of the fitting curves versus the exact force.

3. Mathematical model of electromagnetic actuator

In this study, the magneto-mechanical oscillator is driven by a cylindrical permanent magnet

plunger, which is acted upon by an external magnetic field generated by a solenoid as shown in Figure145

6(a). Using the Biot-Savart law and the differential element method, the magnetic field at any point

along the axial direction of the coils can be modelled. The force acting on the cylindrical magnet

bar in the external magnetic field can be calculated based upon the charge model introduced in [84].

It should be noted that if the cylindrical magnet moves along the axis of the coil, there will be no

lateral force due to symmetry. However in our experimental rig, in case of a large deflection the150

frame structure induces small vertical motion. Therefore, the axial amplitude of oscillations in all our

experimental studies has been limited to 10 mm. The horizontal lateral forced was balanced out by

positioning the magnet symmetrically in the coil. Hence, by taking these precautions the influence

of lateral forces can be neglected. Additionally, an improved design of the electromagnetic actuator

with a pair of identical solenoids is developed and discussed in this section, which aims at generating155

a constant force for a constant current.

3.1. Modelling of electromagnetic forces

To calculate the magnetic flux density B at the arbitrary point P along the axis of the solenoid,

an infinitesimal element from a loop of the coil marked by d⃗l in Figure 6(b) is considered. According
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to the Biot-Savart law, the magnetic flux density at desired point P can be written as a vector form160

as it follows

dB⃗ =
µ0I

4π

d⃗l × r⃗

r3
=

µ0I

4π

d⃗l × (r⃗p − r⃗′)

r3
=

µ0I

4π

Rdθ⃗eθ⃗ × (x⃗i−Re⃗r⃗′)

|x⃗i−Re⃗r⃗′ |3
, (6)

where I is the current passing through the coils, µ0 is the vacuum permeability that is a constant

4π× 10−7H/m, R is the radius of the coils, e⃗θ⃗, e⃗r⃗′ and i⃗ are the unit vectors in directions of θ⃗, r⃗′ and

x-axis, respectively. Consequently,

dB⃗=
µ0IxR

4π(x2 +R2)
3
2

dθ⃗er⃗′ +
µ0IR

2

4π(x2 +R2)
3
2

dθ⃗i. (7)

DD

L

2

L

2

Figure 6: (colour online) (a) A schematic of the single solenoid actuator (sectional view: the orange dashed
lines express the coil wire, and the dot-circles and cross-circles show the current entering and leaving the cross
section of the wire), which is comprised of a coil and a magnet cylinder linking with a steel rod. (b) The
magnetic flux of an infinitesimal element in a loop of the current coil: dB⃗ denotes the magnetic flux at an
arbitrary point P in x-axis, while dB⃗x,dB⃗r⃗′ represent its axial and radial components, respectively. The box
shows two potential configurations of winding wires, (I) and (II).

Considering the magnetic field at point P generated by the single current coil shown in Figure165

6(b), the magnetic flux in the plane that is parallel to r⃗′ is zero, because integrating the unit vector of

r⃗′ along an entire loop of the coils equals zero. Hence, only the magnetic field in the x-axis direction

needs to be considered, that is,

B⃗x =

∫ 2π

0

µ0IR
2

[x2 +R2]
3
2

dθ i⃗ =
µ0IR

2

2(x2 +R2)
3
2

i⃗. (8)

Taking into account a cross-section along the radius direction of the solenoid, the number of turns

of coils through a unit area is

n =
N

(D2

2 − D1

2 )L
=

2N

(D2 −D1)L
,
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so the current differential element passing through the unit area is

dI = I(ndxdR) = nIdxdR. (9)

By substituting Eq. (9) into Eq. (8), a variation of the magnetic field at an arbitrary point P along170

x−axis is described as

dBx =
µ0R

2

2(x2 +R2)
3
2

dI =
µ0NIR2

(D2 −D1)L(x2 +R2)
3
2

dxdR. (10)

Integrating Eq. (10) over the above-mentioned cross-section, the magnetic flux at point P is obtained

Bx = µ0NI
(D2−D1)·L

∫ D2
2

D1
2

∫ L
2

−L
2

R̃2

[(x−x̃)2+R̃2]
3
2
dx̃dR̃

= µ0NI
2(D2−D1)·L

[
(L− 2x) ln

D2+
√

(2x−L)2+D2
2

D1+
√

(2x−L)2+D2
1

+ (L+ 2x) ln
D2+

√
(2x+L)2+D2

2

D1+
√

(2x+L)2+D2
1

]
.

(11)

Based upon the charge model introduced in [84], the force of the permanent in an external magnet

field can be expressed by

F⃗ =

∫
V

ρB⃗extdv +

∮
s

σB⃗extds, (12)

where B⃗ext is the external magnetic field, M⃗ is the magnetic moment per unit volume of the permanent175

magnet, ρ = −∇ · M⃗ and σ = M⃗ · n⃗ are equivalent volume and surface charge density, respectively.

Additionally, the magnetic moment can be obtained by the equation M⃗ = Br/µ0, where Br is the

residual flux density of the permanent magnet. Note that the cylinder magnetic plunger is polarized

along its axis with fixed and uniform magnetization written as M⃗ = Ms⃗i, hence ρ = −∇ · M⃗ = 0 and

the magnetic force along the x−axis is180

Fx =
∮
s
σBxds. (13)

Let us consider that the magnetic plunger is a hollow cylinder. To evaluate σ, we firstly determine

the unit surface normals as

n⃗ =



−⃗i, xl = x− l
2 ,

i⃗, xr = x+ l
2 ,

−e⃗r⃗, r = d1

2 ,

e⃗r⃗, r = d2

2 ,

where xl and xr are the coordinate of the left and right area of the permanent magnet in x−axis, and

l, d1, d2 are the length, the outer and inner radius of the magnet cylinder, respectively. It should be

pointed out that the centre of the solenoid is selected as the coordinate origin of the x−axis herein.
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Because e⃗r⃗⊥M⃗ , it is known that σ = 0 in the cylindrical surface of the magnet plunger. Suppose that

the left and right hand sides of the permanent magnet are the north and south poles respectively, and185

the charge density in the end surface of the permanent magnet is described as

σ =

 M, xl = x− l
2 ,

−M, xr = x+ l
2 .

(14)

Applying Eqs (12) and (14), the force on the permanent magnet plunger is derived as

Fx =
∮
s
σmBxds = M

[
Bx(x− l

2 )−Bx(x+ l
2 )
] ∫ d2

2
d1
2

∫ 2π

0
rdrdϕ

=
Brπ(d

2
2−d2

1)
4µ0

[
Bx(x− l

2 )−Bx(x+ l
2 )
]
,

(15)

where Bx(·) is the function with respect to the variable x. The magnetic force generated by the

actuator is shown in Figure 7, which is plotted by using the parameter values listed in Table 5 and

Br taken as 1.28 T herein. This figure also indicates that the maximum actuation force is produced190

when the centre of the magnet moves close to the coil end for a single solenoid actuator.

Figure 7: (colour online) The force characteristic of the single solenoid actuator for different parameters listed
in Table 5: (a) d2 is set as 0.020 m, 0.025 m, 0.030 m, while other parameters keep unchanged, (b) L is taken
as 0.05 m, 0.10 m, 0.15 m, while other parameters are the same.

Table 4: Parameters of the electromagnetic actuator (see Figure 6 for details).

Parameters of solenoid Symbols Parameters of magnetic plunger Symbols
Current I Residual flux density Br

Turns of coil N Inner diameter d1
Inner diameter D1 Outer diameter d2
Outer diameter D2 Length l

Length L

Figures 8(a) and 8(b) show ten electromagnetic force curves generated by the single solenoid
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Table 5: Parameters for Figure 7 to show the characteristics of solenoid actuation forces.

Line numbers
Parameters

D1(m) D2(m) N I(A) L(m) d1(m) d2(m) l(m)
1 0.05 0.06 540 5 0.05 0.006 0.020 0.02
2 0.05 0.06 540 5 0.05 0.006 0.025 0.02
3 0.05 0.06 540 5 0.05 0.006 0.030 0.02
4 0.05 0.06 1080 5 0.10 0.006 0.030 0.02
5 0.05 0.06 1620 5 0.15 0.006 0.030 0.02

actuator with parameters D1=0.10 m, D2=0.20 m, L=0.15 m, d1=0.006 m, d2=0.03 m, l=0.03 m and

with constant current intensities between 1 A and 10 A. Figure 8(b) demonstrates that there is almost

a linear relationship between the generated force and the magnet location in the solenoid. Hence, the195

actuation force can also be modelled by a polynomial expression as follows

Fm(x, t) = F0 +

n∑
i=1

Gix
i. (16)

To explore the dynamic responses of the oscillator driven by the excitation shown in Figure 8, we take

a typical region enlarged in its panel (b) as an interesting example and model the force curve as a

linear model for the constant current I = I0, that is,

Fm(x, t) = F0 +G1x,

which corresponds to a harmonic-parametric excitation generated by the harmonic alternating current

I = I0cos(Ωt), that is,

Fm(x, t) = (F0 +G1x) cosωt, (17)

where the component of amplitude of force, G1x, is in relation to the displacement x of the magnet.

In particular, when the magnet is placed in the centre of the solenoid, F0 is equal to zero and the200

electromagnetic force becomes a typical parametric excitation.

3.2. An improved design of the electromagnetic actuator

From the above analysis for the single solenoid actuator, it is notable that the amplitude of driving

force is dependent of displacement variance x. To generate a constant force that is independent of

the displacement for the purpose of mechanical experiment, an improved electromagnetic actuator is205

proposed with a pair of identical and coaxial solenoids, where the coils are wound in the opposite

directions and passed through the same currents. See details in Figure 9.

Assume the distance of centres (O′ and O′′) of the two solenoids is d, and choose the middle point

of the axial line O′O′′ is a coordinate origin O of the new system. In addition, it should be pointed
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Figure 8: (colour online) Electromagnetic forces of a single solenoid actuator with D1 = 0.10 m, D2 = 0.20 m,
L = 0.15 m, d1 = 0.006 m, d2 = 0.03 m, l = 0.03 m and the magnitudes of current increasing from 1 A to 10
A by one ampere.

out that the center of the magnetic plunger is located at the origin O along the axial line. By applying210

the Eq. (15), it can be derived that the electromagnetic force is

F = Fx(x− d/2) + Fx(x+ d/2), (18)

where Fx(·) is the function in regard to the variable x.

L

2

L

2

L

2

L

2

Figure 9: (colour online) Schematic of the twin-solenoids actuator (sectional view), where the magnet is placed
at the centre between two identical solenoids. The pair of solenoids are of the same uniformly-wound coils
passing the same current but with an opposite flow direction.

To examine the nature of the magnetic force for the new design, the parameters corresponding to

Line 1 of Table 5 are used to construct the corresponding force curves, which are plotted in Figure 10.

By analysing the characteristics of electromagnetic force generated by a constant direct current like215

those shown in Figure 10, the force can be classified into one of four types including quasi-constant

force (QCF), oblique linear force (OLF), single peak force (SPF) and double peak force (DPF). It

is worth pointing out that the new concept of the quasi-constant force is inspired by our earlier

research on the quasi-zero stiffness vibration isolation [20, 85]. The different types of force reflect the
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Figure 10: (colour online) (a) The quasi-constant force mechanism of the actuator of a pair of identical solenoids.
(b) The force characteristic of the actuator by adjusting the distance between the pair of solenoids, where four
types of force regions are shown, namely, the the quasi-constant force (QCF), the single peak force (SPF), the
double peak force (DPF) and the oblique linear force (OLF).

dependencies between force and displacement, which can be obtained by adjusting the parameters220

of electromagnetic actuator, such as the length, thickness and radius of the solenoid, the number of

turns of the coil, and the distance between a pair of solenoids. Figure 10(b) shows that there is the

QCF zone around x = 0 when d=32.9 mm, and the force curves will become SPFs and DPFs as d

gets bigger and smaller, for examples d=28 mm and d=40 mm, respectively. Similarly, the segments

of OLF and SPF can be seen in Figure 7 for the single solenoid actuator. It should be pointed out225

that the single solenoid actuator can only generate OLFs and SPFs, and the actuator driven by a pair

of identical solenoids can provide the four force types.

3.3. Optimization of quasi-constant force regions

In this section, optimization is carried out aiming at maximizing a quasi-constant force range

shown in Figure 11, for which the selected parameters of the actuator of a pair of identical solenoids230

are listed in Table 6 and to obtain a 5 N quasi-constant force. Figure 11(a) shows the quasi-constant

force region becomes wide as the length of the solenoid L increases with other parameters fixed.

Similarly, Figures 11(b) and 11(c) present that increasing the parameters D1, D2, that is the inner

and outer diameters of the solenoid, can also widen the range of the quasi-constant force. However,

Figure 11(d) indicates changing the parameters of the magnet such as its length l herein has little235

influence on the quasi-constant force region. It is worth to note that for selected parameters of the

solenoids and the magnet, the quasi-constant force can be obtained by adjusting the parameter d,

namely the distance between the pair of solenoids. Importantly, a wide range of closely constant force

can be obtained by fine tuning d to turn the quasi-constant force into a weak double peak force, which

is demonstrated in Figures 11(e) and (f). Figure 11(f) is the enlargement of the small box in Figure240
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11(e) showing that the electromagnetic force at d=0.2394 m is a quasi-constant force depicted by the

line 10, while the curve becomes a double peak force and a single peak force if d is increased and

decreased, respectively. Two examples are depicted for d=0.2394 m and d=0.2200 m by the line 11

and the line 12 in Figure 11(f). It should be pointed out that selecting d=0.2394 m aims at obtaining

a nearly constant force of 5 N with a wide effective range whilst with a small variance of magnitude245

of force. In this example, both of the deviation values from the maximum and minimum in the force

curve 11 to the desired target force, namely 5 N, are 0.027 N, which has only a relative error of

0.54%. Consequently, the study indicates that L, D1, D2 are three dominant parameters to extend

QCF regions, whilst fine tuning parameter d can also help to obtain a nearly constant force with

an effectively wide range. The other parameters has a little influence on the range of quasi-constant250

force. Generally, according to the desired target force, the sizes of a magnet and the gauge of the

coils should be selected in the first instance, and then an optimization procedure can implemented to

obtain a family of optimized parameters.

Table 6: (colour online) Parameters for optimization studies in Figure 11, where the groups of compared parameters
are colourfully marked (D1 in red, D2 in purple, L in green, d in blue, and l in pink) and the other parameters keep
unchanged.

Line numbers
Parameters

D1(m) D2(m) N I(A) L(m) d(m) d1(m) d2(m) l(m)
1 0.20 0.22 1080 3.20171 0.05 0.1457 0.006 0.03 0.030
2 0.20 0.22 1080 1.88308 0.10 0.1243 0.006 0.03 0.030
3 0.20 0.22 1080 1.53718 0.15 0.11464 0.006 0.03 0.030
4 0.10 0.12 1080 1.06385 0.05 0.0699 0.006 0.03 0.030
5 0.15 0.17 1080 1.96777 0.05 0.1064 0.006 0.03 0.030
6 0.20 0.26 3240 1.24809 0.05 0.24809 0.006 0.03 0.030
7 0.20 0.30 5400 0.85848 0.05 0.1713 0.006 0.03 0.030
8 0.20 0.22 1080 4.74394 0.05 0.1437 0.006 0.03 0.020
9 0.20 0.22 1080 3.81624 0.05 0.1446 0.006 0.03 0.025
10 0.30 0.35 2700 2.91007 0.05 0.2394 0.006 0.03 0.030
11 0.30 0.35 2700 3.14655 0.05 0.2594 0.006 0.03 0.030
12 0.30 0.35 2700 2.69990 0.05 0.2200 0.006 0.03 0.030

4. Mathematical model and analysis of the magneto-mechanical (MM) oscillator

In this section, we develop the mathematical model of the MM oscillator and then test its dynamic255

responses. Initially dynamics of the oscillator will be studied to assess the versatility of the electromag-

netic actuator in generating a wide spectrum of excitation. Then primary bifurcation scenarios of the

oscillator under various patterns of excitation will be investigated by the direct numerical simulation

and the harmonic balance method (HBM).
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Figure 11: (colour online) Optimization to obtain wider regions of quasi-constant force, by analysing the
parametric influence of the electromagnetic actuator system, such as parameters: (a-c) the length L, inner
diameter D1, outer diameter D2 of the solenoid, (d) the length l of the permanent cylinder, (e) the distance
between the centres of the twin-solenoids, (f) an enlargement of the small rectangular area from panel (e) to
show the geometries of force curves as d varies.
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4.1. Mathematical model and preliminary dynamic analysis of the MM oscillator260

The MM oscillator is modelled as one degree-of-freedom nonlinear dynamical system driven by

the electromagnetic force and its equation of motion for the magneto-mechanical oscillator can be

expressed as

mx′′ + Fd + Fb(x) = Fm(t, x), (19)

where m denotes the proof mass including the tip lumped mass and the mass of permanent magnet

but neglecting the mass of leaf springs, Fd = Cẋ is the damping force, Fb and Fm are the restoring265

force of beam and the electromagnetic excitation. Based on the analysis undertaken in Section 2, we

apply the restoring force model as a 7-th order polynomial, hence Fb = F7. For convenience of further

analysis, Eq. (19) is nondimentionalised to the following form

ẍ+ 2ζẋ+ x+ b3x
3 + b5x

5 + b7x
7 = fm(τ, x), (20)

where ω0 =
√

a1/m, ζ = C
2mω0

, τ = ω0t, b3 = a3

mω2
0
, b5 = a5

mω2
0
, b7 = a7

mω2
0
, fm(x, τ) =

Fm(x, t)
mω2

0
.

The relation between the electromagnetic force and the location of the magnet in the solenoid and270

its influence on the oscillator behaviour are investigated. Figure 12 shows examples of restoring force

characteristics (panel (a)), basins of attraction (panel (b)), as well as characteristics of electromagnetic

(EM) driving force for various time histories (panel (c)).

Figure 12(a) depicts three electromagnetic force curves for the single solenoid actuator at three

current intensities. In Figure 12(a), there are six points marked by the upper-roman letters from A275

to F , respectively, which are used to study the EM driving force characteristics for different magnet

locations in the actuator. Figure 12(b) shows the basins of attraction and phase portraits of the

MM oscillator driven by magnet at locations in the solenoid as those marked in Figure 12(a), where

harmonic currents of intensity I0 and frequency Ω=54 rad/s are used. It should be pointed out that

the Poincaré map of the stroboscopic time T = 2π/Ω is constructed to implement the attraction basin280

analysis and to obtain the bifurcations diagrams (refer to [85] for more details). From the first three

sub-figures of Figure 12(b), which have the same amplitude of excitation force of 5 N, it can clearly

be seen that the basins of attraction and phase portraits are different, while the last three panels of

Figure 12(b) further illustrate the effect of magnet locations on the dynamic responses. The column

sub-figures of right-hand side in Figure 12(c) shows the characteristics of electromagnetic driving285

forces, which corresponds to time histories plotted in the left side sub-figures for cases from A to E.

The driving force characteristics indicate that the single solenoid can be used as a harmonic exciter

only in very small vibration amplitudes, such as in cases A and D for responses in blue, but no longer

serving an ideal harmonic exciter for large amplitudes of vibration.
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Figure 12: (colour online) (a) Electromagnetic forces of the single solenoid actuator with parameters D1=0.05
m, D2=0.06 m, L=0.10 m, d1=0.006 m, d2=0.02 m, l=0.02m. (b) Basins of attraction and phase portraits of
the MM oscillator for harmonic input currents in solenoid of the current intensity I0 and the frequency Ω=54
rad/s, where the magnet locates at positions that are marked by corresponding letters in (a) and the seventh
order model of beam structure is adopted (see Figure 5). (c) Time histories of dynamic response shown in (b)
and their corresponding electromagnetic driving forces, where the time histories of driving force are plotted
by using the same colour with response curves, and meanwhile the ideal harmonic force curves are plotted in
red solid curves for the marked point in (a). 19



4.2. Nonlinear dynamic analysis290

The nonlinear dynamic analysis is carried our by a suite of techniques including the Harmonic

Balance Method (HBM), path following and direct numerical integration, where the last is used to

assess the accuracy of the other methods. The amplitude-frequency curves are computed by the HBM

and path following. Furthermore, bifurcation analysis of the MM oscillator subjected to different types

of electromagnetic excitations, such as harmonic, parametric and harmonic-parametric excitations, is295

carried out. These three types of excitations are often used to study linear and nonlinear vibration

systems.

First we investigate dynamic behaviour of the MM oscillator excited harmonically with Fm =

F cos(Ωt) is firstly discussed, which corresponds to fm = f cos(ωτ) in Eq. (20). When applying the

HBM, the solution of Eq. (20) is assumed to be x = A sinωτ +B cosωτ . This solution is substituted300

into the equation of motion leading to a long expression given in Appendix C. By letting coefficients of

terms cos(ωτ) and sin(ωτ) be equal to zero, two following amplitude-frequency equations are obtained

35b7B
7 + 105b7A

2B5 + 105b7A
4B3 + 35b7A

6B + 40b5B
5 + 80b5A

2B3 + 40b5A
4B+

48b3B
3 + 48b3A

2B − 64ω2B + 64B + 64ζωA− 64f = 0,

35b7AB6 + 105b7A
3B4 + 105b7A

5B2 + 35b7A
7 + 40b5AB4 + 80b5A

3B2 + 40b5A
5+

48b3AB2 + 48b3A
3 − 64ζωB − 64ω2A+ 64A = 0.

(21)

These algebraic equations are solved by using the Newton-Raphson iteration algorithm and arc-length

continuation method, and later the Floquet theory is employed to analyze the stability of period-

ic solutions obtained by the HBM [14, 86–88]. Consequently, Figure 13 is computed showing the305

amplitude-frequency response curve for F=5.0 N and C=0.5 N ·m/s.

In order to asses the optimization process presented in Subsection 3.3, the same parameters as in

Figure 11(e) are used, while the frequency of the input current is chosen at Ω=60 rad/s, which is the

resonant frequency as presented in Figure 13. Figures 14(a) and 14(d) show phase portraits obtained

for the harmonic force, 5 cos(60t), the electromagnetic forces with the same parameters as those for310

Figure 11(e) and the current frequency of 60 rad/s. The phases trajectories shown in 14(a), which

are almost identical, are obtained for the corresponding excitation forces presented in Figure 14(b).

Figure 14(c) presents the variances between the driving forces and the harmonic force, namely the

former minus the latter, which indicates that the quasi-constant force type is the best choice with

a maximum variance of about 1.1 × 10−5 N, and the double peak force is also good with a small315

variance of 0.02736 N, while the single peak force has a big variance of 0.7332 N. A similar pattern

is manifested by the oscillator for Figures 14(e) and 14(f). In the case of large amplitudes which

correspond to large deflection of the beam structure with a maximum amplitude of about 0.0569 m,
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SN

Figure 13: (colour online) The amplitude-frequency response curves for linear (green) and nonlinear (blue and
red) cases together with basins of attraction computed for three frequencies of 52.5, 54.0, 60.0 rad/s.

the variances for the double peak, quasi-constant and the single peak forces at resonance are 0.0258 N,

0.1643 N and 0.6990 N, respectively. In this case, the maximum relative error of the double peak force320

is only 0.516%, while it is 3.286% for the quasi-constant force. In conclusion, the quasi-constant force

type can generate a harmonic force for oscillations with designed small amplitudes. In addition, it is

an effective method to extend the range of nearly constant force to tune the parameter d to transform

the quasi-constant force into a weak double peak force.

Next, bifurcation analysis of the magneto-mechanical oscillator is undertaken for the simplified325

model described by Eq. (17) and compared with the original model, namely Eq. (15). This cor-

responds to the physical configuration where if the magnet being placed in the middle point of the

single solenoid actuator, then F0=0, else F0 is nonzero. Figure 15(a) depicts the bifurcation diagrams

for the displacement x versus I0 and G1 for the original model and the simplified model, where the

driving forces are expressed by Eqs (15) and (17), respectively. The other parameters used in Figure330

15 as same as those in Figure 8 and Ω=54 rad/s. Figure 15(a) indicates that the simplified model is

in a good agreement with the original model. The phase portraits of the oscillator for I0=6 A and the

corresponding G1=1680.7 N/m further validate this point. In this figure we see a pair of saddle-node

(SN) bifurcations occurring at about I0=2.94 A, which means G1=817.74 N/m, where the stable and

unstable period-1 solutions are paired up. It should be pointed out that the description of bifurcation335
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Figure 14: (colour online) Comparisons of responses of the magneto-mechanical oscillator under the configures
of the quasi-constant force, the double peak force, the single peak force as well as driven by the desired
harmonic force: (a) and (d) the non-resonant and resonant trajectories, respectively, (b) and (e) the driving
forces for corresponding trajectories in (a) and (d), (c) and (f) the variances of driving forces compared with
the harmonic force. 22



scenarios and the method of attraction basin analysis used in this paper are similar to the approach

taken in [14, 85].

Figure 15(b) shows that the bifurcation diagram of the simplified model subjected to harmonic-

parametric excitations, where F0=5 N and Ω=54 rad/s and G1 varies. It can be observed that at

small G1 an unstable and two stable periodic solutions co-exist, for instance, when G1=0 N/m, that340

is, only driven by the harmonic excitation, the frequency response curve in Figure 13 confirms the

same frequency of Ω=54 rad/s. When increasing G1 to 1644.16 N/m, a saddle-node bifurcation occurs

accompanying with a pair of stable and unstable period-1 solutions.

Figure 15: (colour online) Bifurcation diagrams of the MM oscillator calculated for Ω=54 rad/s and for (a) the
original and simplified system together, where the magnet is placed at the centre of the solenoid and I0 and
G1 are branching parameters, respectively; (b) the simplified system, where F0=5 N and G1 is a branching
parameter.
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Figure 16: (colour online) Bifurcation diagrams of x versus Ω of the simplified MM system calculated for
harmonic, parametric and harmonic-parametric EM driving forces: (a) F0=5.0 N, G1=0.0 N/m, (b) F0=0.0
N, G1=2801.2 N/m, (c) F0=5.0 N, G1=2801.2 N/m.
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In addition to effects of the force amplitude which are directly related to the above-mentioned input

current intensity, Figure 16 presents the bifurcations with respect to the excitation frequency, which345

are vital to understand the global dynamic behaviour. Figure 16(a) shows the bifurcation diagram of

x versus Ω for the harmonic forcing, F=5.0 cos(Ωt), which describes the same bifurcation scenario as

in Figure 13, that is, two saddle-node (SN) bifurcation points at 52.33 rad/s and 102.59 rad/s, which

correspond to jump-up and jump-down frequencies when the frequency is swept. Figure 16(b) depicts

that the bifurcation diagram for the case of the parametric excitation, F=2801.2x cos(Ωt), indicating350

the system can not oscillate at the lower frequency than the pitch-fork (PF) bifurcation frequency

46.95 rad/s, and through this bifurcation, a pair of stable period-1 solutions is born. The pair of

period-1 orbits disappear via the SN bifurcations at around 104.06 rad/s. There still exists another

PF bifurcation at about 50.79 rad/s and a period-doubling (PD) bifurcation at about 86.05 rad/s.

Last but not least, a special bifurcation, called a stability exchange (SE) bifurcation herein, occurs355

at 113.75 rad/s, where a flip saddle becomes a stable equilibrium. Figure 16(c) shows the bifurcation

scenarios for the harmonic-parametric excitation F=(5.0+2801.2x) cos(Ωt) and when compared to the

two previously discussed cases, presents richer bifurcation scenarios. Firstly, the two SN bifurcations

shown panel (a) still exist, and secondly, the PD bifurcation and the stability bifurcation are preserved

at almost the same frequencies as in panel (b). Different from the above two bifurcations, there are two360

symmetry breaking (SB) bifurcations at 32.18 rad/s and 33.11 rad/s and other four SN bifurcations

at 42.05 rad/s, 42.05 rad/s, 49.47 rad/s and 87.52 rad/s, respectively.

5. Experimental validation of MM oscillator model

In this section, we aim to provide an experimental validation of the developed model of the MM

oscillator, which is based on the recent studies undertaken in the Centre for Applied Dynamics Re-365

search (CADR) at the University of Aberdeen [78, 79]. Figure 1 shows the experimental apparatus and

its physical model, where the main parameters are D1=0.03 m, D2=0.044 m, L=0.05 m, d1=0.006

m, d2=0.02 m, l=0.02 m. In addition, the distance of the centre of the magnet in relation to the

centre of the coil is denoted as dc. The effective length, width and thickness of each leaf spring in the

experimental MM oscillator are 125 mm, 40 mm and 0.5 mm, respectively, and the total mass of the370

lumped mass together with the magnet and the steel linked rod is 1.325 kg.

Panels of Figure 17 explains the adopted approach, where the full nonlinear force-displacement

curves, the calibrated force-current relationship, the time history of input current and the comparison

between experimental and predicted generated force are shown in subsequent panels. The empirical

formula for the electromagnetic force F and the input current I, that is, Fcoil(t) = aI(t), where a=0.799375

was experimentally obtained and is valid for alternating input currents with amplitudes up to 2.5 A

and frequencies from 6 to 10 Hz. Figure 17(a) shows a series of analytical curves computed using Eq.
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(15) for electromagnetic force versus constant currents for I=0.1 A and increasing it from 0.5 A to 5 A

by 0.5 A. The red dashed line denotes the rest position the magnet in the coil with dc = 11 mm, and

the green crosses marked electromagnetic forces corresponding to different values of current I. Figure380

17(b) compares the analytical and experimental electromagnetic forces under various currents marked

with green crosses and red solid dots, respectively. Figures 17(c) and (d) show the time histories of

the input alternating current and the corresponding electromagnetic force. The predicted force is also

plotted in panel (d) with red dashed lines, which indicates that the analytical results are in a good

agreement with the experimental counterparts.385

Figure 17: (colour online) Calibration of force versus current dependency: (a) analytical electromagnetic force
computed for current I=0.1 A increasing the input current from 0.5 A to 5 A by 0.5 A; (b) measured and
analytical force versus static current at the rest position marked with red dots and green crosses, respectively,
where the fit line is plotted in purple for analytical curve with the coefficient 0.802; (c) input current time
histories; (d) measured and predicted force time histories corresponding to the input current in (c) plotted in
black solid and red dashed curves, respectively.

Figure 18 depicts the response characteristics of the MM oscillator under the alternating current

input, that is, I = I0cos(ωt), where I0=0.40 A. A sweep frequency experiment is implemented by

increasing and decreasing frequencies from 6 Hz to 10 Hz and from 10 Hz to 6 Hz, for which the

amplitude-frequency (AF) responses are marked with black circles and red asterisk, respectively. To

calculated the AF curves analytically, the linear and nonlinear stiffness models of the parallel leaf390
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springs are firstly constructed by using the method in Section 2.

The analytical study proves that the cubic model is good enough to describe the stiffness of the MM

oscillator when the amplitude of vibration is smaller than 20 mm. Without the mass considered, the

coefficients are K1 = 4.3009×103 N/m and K3= 4.5807×105 N/m3 and K1 = 4.2995×103 N/m and

K3= 5.1232×105 N/m3 when data in vibration amplitude 1.5 mm and 20 mm are taken, respectively.395

The fit results are in keeping with the traditional linear and cubic nonlinear results obtained from

Eq. (B.3), which gives K1 = 4.3008× 103 N/m and K3= 2.8312× 105 N/m3. In the case of the mass

influence considered, the coefficients are K1 = 4.4255× 103 N/m, K3= 5.6013× 105 N/m3 and K1 =

4.4256× 103 N/m, K3= 5.2282× 105 N/m3, when those data in vibration amplitudes of 1.5 mm and

20 mm are adopted, respectively. However, it should be pointed out that the machining accuracy for400

the beam can have a strong influence on its real stiffness. Hence, to calibrate the theoretical result,

Figure 18 will adopt K1 = 4.331 × 103 N/m and K3 = 5.2 × 105 N/m3 as linear and cubic stiffness

coefficients and C=0.27 kg/s2, of which the linear stiffness coefficient and the damping coefficient are

derived experimentally to see [79] for details.

It is shown that the analytical results of the linear and nonlinear AF curves are in a good agreement405

with the experimental results except for at resonant frequencies, e.g., 9.1 Hz and 9.2 Hz. Hence, Figure

18 further compares the phase trajectories for those two frequencies to show the experimental and

numerical results by using the electromagnetic force model and the harmonic force model, that is, Eq.

(15) and Fm = F cos(Ωt). The numerical trajectories are in good agreement with the experimental

results at 9.1 Hz and for the case of small amplitude of co-existing responses at 9.2 Hz. However,410

for the large amplitude of phase trajectory at 9.2 Hz, Figure 18 shows that the numerical results for

selected cubic stiffness K3 = 5.2× 105 N/m3 and K3 = 7.6× 105 N/m3, which cannot match with the

experimental result well enough in shape and is worthy of further study.

6. Conclusions

This paper presents a new magneto-mechanical oscillator model focusing on the large-deflection415

of parallel leaf springs and the electromagnetic actuator. We proposed a new analytical approach de-

scribing the large deflection beam, where the equilibrium equation was transformed into a boundary

value problem, from which the formulas for the restoring force were derived. The final mathemati-

cal expression for the restoring force dependent on the deflection was obtained by the least square

polynomial fit method.420

The model describing magnetic forces generated by a single solenoid actuator was developed by

using the infinitesimal element analysis method and the charge model. It was found that the elec-

tromagnetic force of the single solenoid actuator strongly depends on the position of the permanent
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Figure 18: (colour online) Amplitude-frequency (AF) Responses at I0 = 0.40 A : experimental, analytical, and
numerical results are shown comparatively, where the used corresponding symbols are marked right-upper side
in the panel. Experimental amplitudes of responses are obtained by increasing (forward sweep) and decreasing
(backward sweep) excitation frequency, which are marked with black circles and red asterisk, respectively. EM
and HM forces denote electromagnetic and harmonic force models. The nonlinear amplitude-frequency curve
and numerical trajectories at 9.1 Hz and 9.2 Hz are plotted for stiffness coefficients K1 = 4.331 × 103 N/m
and K3= 5.2× 105 N/m3. In addition, the co-existing orbits computed at 9.2 Hz for K1 = 4.331× 103 N/m
and K3= 7.6 × 105 N/m3 is also plotted with a purple long dashed line. Numerical response amplitudes at
9.1 Hz and 9.2 Hz are also marked with cyan solid dots that are in a good agreement with analytical results.
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magnet in the solenoid, so it cannot supply a purely harmonic excitation for large oscillation ampli-

tudes.425

Another contribution of this paper is a new design of an electromagnetic actuator with a pair of

identical solenoids. The new concept of the quasi-constant force (QCF) was introduced to generate

a nearly constant amplitude excitation when passing constant current through the solenoid. Hence,

the twin-solenoids actuator with the QCF design can supply a wide range of excitations, for instance,

a harmonic alternating input current can generate a harmonic excitation and similarly a stochastic430

current would generate a stochastic excitation. To widen the QCF region, an optimization procedure

was carried out for the new design, which found that by increasing the lengths, inner and outer diam-

eters of the solenoids can broaden the QCF range. The study demonstrated that the electromagnetic

force curves can be classified into four kinds of segments by considering their local geometry, that

is, the quasi-constant, linear, single-peak and double-peak forces. The four local forces can also be435

modelled with polynomials. Furthermore, the effective constant force range can be improved by a fine

adjustment of the distance between the pair of solenoids, which changes the quasi-constant force into

the weak double peak force.

The dependency between the electromagnetic driving forces and the position of magnet in the

actuator was discussed and its effect on the system dynamics was examined by constructing basins440

of attraction and phase portraits for various types of excitations. The obtained amplitude-frequency

response curves computed for a harmonic excitation showed the classical nonlinear resonance phe-

nomena, which were further investigated via the bifurcation analysis for the original and simplified

electromagnetic excitations, where rich bifurcation scenarios were observed. Last but not least, a

short experimental validation of our theoretical models was given showing a good agreement between445

the developed model and the previous experiments.

CRediT authorship contribution statement

Zhifeng Hao: Conceptualization, Investigation, Methodology, Software, Writing-original draft,

Writing-review & editing. DanWang: Conceptualization,Investigation, Methodology, Software, Writing-

original draft, Writing-review & editing. MarianWiercigroch: Supervision, Conceptualization, Method-450

ology, Writing-review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships

that could have appeared to influence the work reported in this paper.

29



Acknowledgement455

ZH and DW acknowledge the financial supports of CSC (China Scholarship Council) and the

Natural Science Foundation of Shandong Province (No.ZR2017BA031, ZR2017QA005), the National

Natural Science Foundation of China (No.11702111, 11732014). The authors also thank Drs Dimitri

Costa and Vahid Vaziri for their experimental support.

Appendix460

Appendix A. Constitutive relations of beam structure

The relationships between the bending angular θ and the deflection ω of beam

ω′ = tan θ,

cos θ = 1√
1+tan2θ

= 1√
1+ω′2

,

sin θ = cos θ tan θ = ω′√
1+ω′2

.

(A.1)

Additionally, taking the first order approximation of M(s+ ds) and Q(s+ ds) and neglecting the

higher orders, that is,

M(s+ ds) = M(s) + dM,

Q(s+ ds) = Q(s) + dQ,

M(s+ ds)−M(s)− (Q+ dQ)ds = 0,

(A.2)

it can derive out that465

Q =
dM

ds
. (A.3)

Appendix B. Stiffness formula of beam structure in small deflection

Consider the entire parallel leaf spring beam as a free body by referring to [46], shown in Figure

B.1, the reaction of the beam at O is −P . Cut through the beam at a point K with a distance x

from the fixed end O, and then see the left-hand side part of the beam as a free body. Consider the

equilibrium equations of the body, the shear force P and bending moment m at K satisfy470

M(x) = −Px− (−PL−m),

θ(x) = 1
EI [

−P
2 x2 − (−PL−m)x+ C],

ω(x) = 1
EI [

−P
6 x3 − 1

2 (−PL−m)x2 + Cx+D],

(B.1)

where M(x), θ(x) and ω(x) are the bending moment, the rotation angular and the deflection, respec-

tively. Note the boundary conditions of parallel leaf spring beam are ω(0) = 0, θ(0) = 0, θ(L) = 0,
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hence it can be derived out from Eq. (B.1) that D = 0, C = 0,m = −PL
2 , and ω(L) = PL3

12EI . Hence,

the stiffness of the moving end of the parallel spring beam under small deflection can be expressed as

k =
P

ω(L)
=

12EI

L3
. (B.2)

Another result in literature [60] presents the dynamic stiffness of the beam of parallel leaf springs is

Figure B.1: Shear-force and bending-moment diagram for a simplified parallel leaf spring beam with a concen-
trated load P .

475

k(x) = 12
EI

L3
+

1296

35

EI

L5
x2, (B.3)

which considers the cumulative effect of nonlinearity of beam and retains the first two terms of Taylor

series for sin θ, namely θ − θ3

6 , instead of only the linear term, where θ is the inclination angle of the

beam section. The nonlinear formulas is more precise than the above-mentioned linear result in a

relative large deflection.

Appendix C. Equations for harmonic solutions480

( 34 b3B
3 + 5

4 b5A
2B3 + 105

64 b7A
2B5 + 105

64 b7A
4B3 + 5

8 b5B
5 + 35

64 b7A
6B + 35

64 b7B
7 + 3

4 b3A
2B−

Bω2 + 5
8 b5A

4B + ζ Aω +B − f) cos(ω t) + ( 3564 b7A
7 + 35

64 b7AB6 + 105
64 b7A

5B2 + 5
8 b5A

5+

5
8 b5AB

4 + 105
64 b7A

3B4 + 5
4 b5A

3B2 + 3
4 b3AB

2 + 3
4 b3A

3 − ζ Bω −Aω2 +A) sin(ω t)+

( 58 b5A
3B2 + 15

16 b5AB
4 + 3

4 b3AB
2 − 1

4 b3A
3 − 5

16 b5A
5 + 63

64 b7AB6 + 105
64 b7A

3B4 − 21
64 b7A

7+

21
64 b7A

5B2) sin(3ω t) + ( 2164 b7B
7 − 105

64 b7A
4B3 + 1

4 b3B
3 − 15

16 b5A
4B − 63

64 b7A
6B − 3

4 b3A
2B+

5
16 b5B

5 − 21
64 b7A

2B5 − 5
8 b5A

2B3) cos(3ω t)+

( 1
16 b5B

5 + 35
64 b7A

6B + 7
64 b7B

7 − 63
64 b7A

2B5 − 5
8 b5A

2B3 + 5
16 b5A

4B − 35
64 b7A

4B3) cos(5ω t)+

( 1
16 b5A

5 + 7
64 b7A

7 + 35
64 b7AB

6 − 5
8 b5A

3B2 − 35
64 b7A

3B4 + 5
16 b5AB4 − 63

64 b7A
5B2) sin(5ω t)+

(− 7
64 b7A

6B + 35
64 b7A

4B3 + 1
64 b7B

7 − 21
64 b7A

2B5) cos(7ω t)+

(− 1
64 b7A

7 − 35
64 b7A

3B4 + 7
64 b7AB

6 + 21
64 b7A

5B2) sin(7ω t) = 0.

(C.1)
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