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Abstract The response of a parametrically excited

cantilever beam (PECB) with a tip mass is investigated

in this paper. The paper is mainly focused on accurate

prediction of the response of the system, in particular,

its hardening and softening characteristics when linear

damping is considered. First, the method of varying

amplitudes (MVA) and the method of multiple scales

(MMS) are employed. It is shown that both Duffing

nonlinearity and nonlinear inertia terms govern the

hardening or softening behaviour of a PECB. MVA

results show that for frequencies around the principal

parametric resonance, the term containing a linear

combination of nonlinear inertia and Duffing nonlin-

earity in the frequency response equation can tend to

zero, resulting in an exponential growth of the

vibrations, and results are validated by numerical

results obtained from direct integration (DI) of the

equation of motion, while theMMS fails to predict this

critical frequency. A criterion for determining the

hardening and softening characteristics of PECBs is

developed and presented using theMVA. To verify the

results, experimental measurements for a PECB with a

tip mass are presented, showing good agreement with

analytical and numerical results. Furthermore, it is

demonstrated that the mass added at the cantilever tip

can change the system characteristics, enhancing the

softening behaviour of the PECB. It is shown that,

within the frequency range considered, increasing the

value of the tip mass decreases the amplitude response

of the system and broadens the frequency range in

which a stable response can exist.

Keywords Parametrically excited � Cantilever
beam � Nonlinear inertia � Duffing nonlinearity �
Method of multiple scales � Method of varying

amplitudes

1 Introduction

Dynamic systems are generally subjected to various

types of excitation. A frequently encountered excitation

is direct excitation, also called forced excitation.

Vibration amplitudes of a systemunder direct excitation

depend on the system parameters, particularly damping

and excitation amplitude. In directly excited systems,

large responses canbe achieved in the presenceof strong

nonlinearities or when the excitation frequency is close

to one of the natural frequencies of the system, where

these large vibration amplitudes can be bounded by

damping or nonlinearity itself. On the other hand,
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parametrically excited systems, where the excitation

appears as time-varying coefficients in the equation of

motion, are subjected to large vibration amplitudes

when the excitation frequency is close to 2x0=n, where

x0 is the undamped natural frequency of the system

and n is a positive integer representing the order of the

parametric resonance, e.g., the first-order parametric

resonance, called the principal parametric resonance,

is achieved when n ¼ 1.

Interaction between the parametric excitation and

properties of the system, such as its natural frequencies,

plays a crucial role in determining the stability of

structural systems. A small excitation amplitude might

lead to a significant response when the system is excited

in a frequency range close to the principal parametric

resonance. As a result, the resulting large vibrations

amplitude can damage components of the system,

leading to severe dynamic instability and potential

system failure. Cable-stayed bridges are generally

subjected to parametric excitation caused by wind,

traffic and earthquakes [1]. Strong coupling between the

parametric excitation and the vibration of the bridge can

lead to catastrophic effects if not taken into account

[2–5]. The roll motion of a shipmay, in some situations,

reach dangerously large amplitudes. The highest possi-

ble amplitudes occur whenwave height exceeds a given

threshold and the excitation frequency from thewaves is

close to twice the natural frequency of the ship. This

rapid change of vibrational amplitude is called para-

metric roll and can endanger safe operation and even

capsize the ship [6]. On the other hand, it has been

pointed out that parametric vibration of risers in realistic

sea conditions is a stochastic process.When an offshore

platform is subjected to waves, it will heave with the

rhythmof thewavemotion; as a result, the tension of the

top displacement of the riser fluctuates with the rhythm

of the platform motion. Therefore, under the action of

wave load, the stochastic heave motion of the platform

can be excited, along with the vibration of the riser

experiencing time-varying axial tension, which will

cause a significant effect on the fatigue damage and

lifetime of the riser [7]. Also, interaction between the

internal moving components of rotating machines such

as gears, shafts and rolling element bearings is consid-

ered as the primary source of excitation in these systems

[8].

Parametric excitation has been exploited exten-

sively in various applications, including vibration

energy harvesting, response amplification, vibration

suppression and signal sensing. Vibration energy

harvesters convert the mechanical energy of ambient

vibration into usable electrical power. When imple-

mented correctly, vibration energy harvesting has

proved to provide a sustainable and efficient energy

supply for the daily use of electronic devices [9]. The

most common mechanical to electrical transduction

mechanisms in vibration energy harvesting are elec-

tromagnetic [10], electrostatic [11], piezoelectric and

magnetostrictive [12]. Exploiting parametric excita-

tion for response amplification can be achieved by

adding the parametric excitation to a directly excited

system, called parametric amplification [13]. It has

been pointed out that interaction between the para-

metric excitation and the direct harmonic excitation

can increase the vibrational amplitude of the system

several times compared to the case when the system is

only under pure direct excitation [14]. Parametric

excitation has also proved to be an effective approach

for vibration suppression. The mechanism of para-

metric vibration suppression is mainly based on

reducing the vibrational amplitudes of the main

(hosting) system. The most common structure

exploited as parametric vibration suppression is the

pendulum [15]. On the other hand, the large vibra-

tional amplitudes achieved at principal parametric

resonance have been extensively exploited in sensing

applications [16]. The principal parametric resonance

is triggered at twice the system’s natural frequency if

the magnitude of the parametric excitation is large

enough to overcome energy dissipation in the system.

The vibrations are eventually damped due to nonlin-

earities in the system.

Parametrically excited cantilever beams (PECBs)

have been studied extensively in various applications

to investigate the dynamic behaviour of parametrically

excited systems [17–23]. Two different aspects of

these systems have been of interest to researchers:

avoiding or controlling the unwanted effects due to

parametric excitation and exploiting parametric exci-

tation, particularly parametric resonance, in these

systems to increase their performance. In order to

investigate any of these two aspects of PECB systems,

understanding their dynamic behaviour is of crucial

significance. The best way to achieve this goal is to

obtain an accurate analytical solution of the equation

of motion of these systems. This will provide useful

insight into the behaviour of these systems, enabling
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optimizing system parameters to achieve optimal

performance. This is one aim of this paper.

Perturbation methods such as the Method of

Multiple Scales (MMS) [24–29] and averaging meth-

ods [30, 31] have been widely applied to the inves-

tigation of the dynamic behaviour of parametrically

excited systems. It has been shown that these methods

can be useful techniques for predicting the response of

such systems, in particular in a frequency range close

to the principal parametric resonance [32]. It has been

pointed out that the conventional MMS can predict the

response accurately only when the essential assump-

tions such as the system parameters being small, weak

excitations and narrow frequency ranges around the

principal parametric resonance are satisfied

[18, 32–39].

The Method of Varying Amplitudes (MVA) has

been seen to be able to accurately predict the dynamic

behaviour of parametrically excited systems. Most

importantly, it has been shown that MVA can

accurately predict the response over the whole

frequency range considered without restricting the

system parameters to be small [40–43].

While many studies have focused on different

aspects of modelling to predict the dynamic behaviour

of PECB systems in various applications, a thorough

investigation to provide a useful insight into the

response of these systems, in particular the effects of

nonlinear inertia and Duffing-type nonlinearity on the

response of these systems and the hardening and

softening characteristics of the response, is of key

importance. The originality of the work presented in

this paper is to use the link between the system

parameters, including damping, parametric excitation

amplitude, the nonlinear inertia term, the nonlinear

curvature term and themass added at the cantilever tip,

to provide a better understanding of the dynamic

behaviour of PECB systems. The main aspects inves-

tigated in this paper are summarized as the following:

• Closed-form analytical expressions for the steady-

state response of the system are developed and the

stability of the response is analysed using theMMS

and the MVA, where the main focus is on

providing a criterion for determining the hardening

and softening behaviours.

• Effects of the system parameters including the

nonlinear inertia, duffing nonlinearity, damping,

parametric excitation amplitude and the tip mass

on the dynamic behaviour of the PECB are

investigated.

• Experimental measurements of the response of a

PECB with a tip mass for different values of the

excitation acceleration amplitude are taken. The

experimental results for the displacement and

acceleration of the cantilever tip are presented

and compared with the results obtained from the

MMS, the MVA, and numerical results obtained

from Direct Integration (DI) of the equation of

motion.

The paper is organized as follows: Sect. 2 intro-

duces the mathematical formulation of a PECB with a

tip mass followed by the reduced-order model.

Section 3 presents frequency response equations of

the motion of the PECB with a tip mass considered,

where the first-order MMS and the single-term MVA

are employed to develop approximate solutions for the

response and analyse the stability of the system.

Effects of the system parameters on the response of the

PECB with a tip mass are discussed in Sect. 4.

Section 5 presents experimental measurements of the

response of a PECB with a tip mass for various values

of excitation acceleration, where the experimental

results obtained are compared with analytical results

of the MMS and the MVA, and numerical results of

Direct Integration (DI) of the equation of motion.

Finally, the conclusions are drawn in Sect. 6.

2 Mathematical model

Figure 1 illustrates a cantilever beamwith a tipmassm

under parametric excitation, where L indicates the

length of the cantilever, wðtÞ is the displacement of the

clamped end providing parametric excitation, uðs; tÞ
and vðs; tÞ are the axial and transverse deflections of

the cantilever, respectively, s is the coordinate along

the middle plane of the cantilever representing the arc

length, qc is the density of the cantilever, bc represents
the width, tc is the thickness, Ac is the cross-sectional

area, Ec indicates the elastic modulus, Ic is the area

moment of inertia, q is the radius of curvature and h is
the angle of rotation. The tip mass m is considered to

be a point mass added at the cantilever tip (s ¼ L). Its

moment of inertia is assumed to be negligible. The

beam is assumed to be uniform. Also, the thickness of

the beam is assumed to be small compared to its
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length, and the cantilever beam is treated as a Euler–

Bernoulli beam. Therefore, the effects of rotary inertia

and shear deformation are ignored. Additionally, the

damping in the system is assumed to be linear viscous

damping with a coefficient c. Furthermore, the neutral

axis of the cantilever is assumed to be inextensible.

Considering the homogenous boundary conditions,

exploiting the extended Hamilton variational princi-

ple, after applying a series of simplifications, the

governing equation of motion for the cantilever beam

is obtained as [17, 44–46]

qcAcvtt þ cvt þ EcIc vssss þ v2s vssss þ 4vsvssvsss þ v3ss
� �

� qcAc vswtt þ vss

Z s

L

wttdf

� �

þ 1

2
qcAc vs

Z s

0

v2c

� �

tt
dcþ vss

Z s

L

Z 1

0

v2c

� �

tt
dcdf

� �

� mdD s� Lð Þ vswtt þ vss

Z s

L

wttdf

� �

þ 1

2
mdD s� Lð Þ vs

Z s

0

v2c

� �

tt
dcþ vss

Z s

L

Z f

0

v2c

� �

tt
dcdf

� �
¼ 0;

ð1Þ

where dD is the Dirac delta function, and the subscripts

t and s represent derivatives with respect to these

variables, respectively. Introducing

Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EcIc

qcAcL4

s

; ð2Þ

and the non-dimensional parameters

ŝ ¼ s

L
; v̂ ¼ v

L
; ŵ ¼ w

L
; ĉ ¼ c

L
; f̂¼ f

L
; t̂ ¼ tY ;

ĉ ¼ c

qcAcY
; x̂0 ¼

x0

Y
; m̂ ¼ 1

qcAcL
m;

ð3Þ

where x0 is the lowest undamped natural frequency of

the system, Eq. (1) can be expressed in the non-

dimensional form

v̂t̂t̂ þ ĉv̂t̂ þ v̂ŝŝŝŝ þ v̂2ŝ v̂ŝŝŝŝ þ 4v̂ŝv̂ŝŝv̂ŝŝŝ

þ v̂3ŝŝ � v̂ŝ 1þ m̂dD ŝ� 1ð Þð Þŵt̂t̂

� v̂ŝŝ 1þ m̂dD ŝ� 1ð Þð Þ
Z ŝ

1

ŵt̂t̂df̂

þ v̂ŝ 1þ m̂dD ŝ� 1ð Þð Þ
Z ŝ

0

v̂2t̂ŝ þ v̂ŝv̂t̂t̂ŝ
� �

dĉ

þ v̂ŝŝ 1þ m̂dD ŝ� 1ð Þð Þ
Z ŝ

1

Z f̂

0

v̂2t̂ŝ þ v̂ŝv̂t̂t̂ŝ
� �

dĉdf̂ ¼ 0:

ð4Þ

2.1 Single-mode approximation

The nonlinear governing differential Eq. (4) does not

admit a closed-form solution. To develop a reduced-

order model for the parametrically excited cantilever,

the transverse deflection v̂ ŝ; t̂ð Þ can be assumed as a

linear combination of the contributions from N

vibration modes. Hence, v̂ ŝ; t̂ð Þ can be represented in

the form [47]

v̂ ŝ; t̂ð Þ ¼
XN

r¼1

wr ŝð ÞZr t̂ð Þ; ð5Þ

where wrðŝÞ and Zrðt̂Þ are the linear mass-normalized

mode shape functions for the Euler–Bernoulli can-

tilever beam with a tip mass and the non-dimensional

displacement response of the rth vibration mode,

respectively. Considering only the first vibration mode

(N ¼ 1) in Eq. (5) and omitting subscript 1 for clarity

which is valid if the excitation frequency is consid-

erably lower than the second natural frequency of the

system, wðŝÞ is expressed as

Fig. 1 Configuration of a

parametrically excited

cantilever system with a tip

mass
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w ŝð Þ ¼ Rw ŝð Þ; ð6Þ

where

R ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR 1
0

w ŝð Þ
� �2

dŝþ m̂ w ŝ ¼ 1ð Þ
� �2

q ; ð7Þ

w ŝð Þ ¼ cosðkŝÞ � coshðkŝÞð Þ
þ Q sinðkŝÞ � sinhðkŝÞð Þ ½46�; ð8Þ

Q ¼ sin kð Þ � sinh kð Þ þ km̂ cos kð Þ � cosh kð Þð Þ
cos kð Þ þ cosh kð Þ � km̂ sin kð Þ � sinh kð Þð Þ : ð9Þ

In Eqs. (8) and (9) k is the eigenvalue of the first

vibration mode for which the relation

k ¼
ffiffiffiffiffiffi
x̂0

p
; ð10Þ

holds. Additionally, k satisfies the characteristic

equation

1þ cosh kð Þ cos kð Þ
þ m̂k cos kð Þ sinh kð Þ � sin kð Þ cosh kð Þð Þ
¼ 0: ð11Þ

The axial motion of the clamped end of the

cantilever beam is assumed to be harmonic, with an

acceleration amplitude ap, i.e., wtt can be expressed as

wtt ¼ ap cos Xpt
� �

; ð12Þ

whereXp is the parametric excitation frequency which

can be expressed in the non-dimensional form

X̂p ¼
Xp

Y
: ð13Þ

Therefore, considering Eq. (3), the non-dimen-

sional acceleration of the clamped end (ŵt̂t̂) is obtained

as

ŵt̂t̂ ¼ âp cos X̂pt̂
� �

; ð14Þ

where âp is the non-dimensional acceleration ampli-

tude defined as

âp ¼
1

LY2
ap: ð15Þ

Consequently, substituting Eq. (5) for the first

vibration mode into Eq. (4), multiplying the resultant

equation by wðŝÞ, and integrating over the non-

dimensional length, the final, reduced-order equation

of motion for the system is obtained as [48]

€Z þ b _Z þ x̂2
0 1þ P cos X̂pt̂

� �� �
Z þ gZ3

þ a _Z2 þ Z €Z
� �

Z
¼ 0; ð16Þ

where the derivatives are with respect to t̂, and b, P, g
and a are the coefficients of damping, parametric

excitation amplitude, Duffing-type nonlinearity and

nonlinear inertia term, respectively, which are defined

as

b ¼ ĉ; P ¼ h2
x̂2

0h1
âp; g ¼ h3

h1
; a ¼ h4 þ h5

h1
; ð17Þ

where

h1 ¼
Z 1

0

w2dŝ; ð18Þ

h2 ¼
Z 1

0

1� ŝð Þwwŝŝ � wwŝð Þdŝ� m̂w 1ð Þwŝ 1ð Þ;

ð19Þ

h3 ¼
Z 1

0

w w2
ŝwŝŝŝŝ þ 4wŝwŝŝwŝŝŝ þ w3

ŝŝ

� �
dŝ; ð20Þ

h4 ¼
Z 1

0

wwŝ

Z ŝ

0

wĉ ĉð Þ
� �2

dĉ

� �
dŝ; ð21Þ

h5 ¼
Z 1

0

wwŝŝ

Z ŝ

1

Z f̂

0

wĉ ĉð Þ
� �2

dĉdf̂

 !

dŝ: ð22Þ

3 Frequency response approximations

The mathematical model for a PECB with a tip mass

was developed in Sect. 2. In this section, approximate

solutions for Eq. (16) are developed using the first-

order approximation of the MMS and the single-term

MVA approximation.

3.1 First-order MMS solution

Assuming the system parameters including b, P, g and
a to be small and of the same order e, Eq. (16) is scaled
as

123

Nonlinear dynamics of parametrically excited cantilever beams with a tip mass considering 7255



€Z þ ebe _Z þ x̂2
0 1þ ePe cos X̂pt̂

� �� �
Z þ egeZ

3

þ eae _Z2 þ Z €Z
� �

Z
¼ 0; ð23Þ

where [49]

ebe ¼ b; ePe ¼ P; ege ¼ g; eae ¼ a: ð24Þ

In the first-order approximation of the MMS, the

response Z is approximated as [49]

Z t̂; eð Þ ¼ Z0 T0; T1ð Þ þ eZ1 T0; T1ð Þ þ O e2
� �

; ð25Þ

where T0 ¼ t and T1 ¼ et represent time scales.

Substituting Eq. (25) into Eq. (23) and taking only

terms of order Oðe0Þ and Oðe1Þ into account results in

the equation

D2
0Z0 þ e D2

0Z1 þ 2D0D1Z0
� �

þ ebe D0Z0ð Þ þ egeZ
3
0

þ x̂2
0 1þ ePecos X̂pt̂

� �� �
Z0 þ eZ1ð Þ

þ eaeZ0 D0Z0ð Þ2þZ0 D2
0Z0

� �� �
¼ 0;

ð26Þ

where the derivatives are with respect to t̂. Equating

terms of the same order of e in Eq. (26) yields

Oðe0Þ : D2
0Z0 þ x̂2

0Z0 ¼ 0; ð27Þ

Oðe1Þ : D2
0Z1 þ x̂2

0Z1 ¼ �2D0D1Z0

� beD0Z0 � geZ
3
0 � aeZ0 D0Z0ð Þ2

� aeZ
2
0D

2
0Z0 �

1

2
x̂2

0Pe eiX̂pT0 þ e�iX̂pT0
� �

Z0:

ð28Þ

The solution for Eq. (27) can be expressed in the

form

Z0 ¼ aMMS1 T1ð Þeix̂0T0 þ aMMS1 T1ð Þe�ix̂0T0 : ð29Þ

Substituting Eq. (29) into Eq. (28) yields

D2
0Z1 þ x̂2

0Z1 ¼ �2ix̂0D1aMMS1 � ix̂0beaMMS1ð

� 1

2
x̂2

0Pe �aMMS1e
i X̂p�2x̂0ð ÞT0 � 3gea

2
MMS1 �aMMS1

þ 2aex̂
2
0a

2
MMS1 �aMMS1Þeix̂0T0

þ NSTþ CC,

ð30Þ

where NST represents the non-secular terms and CC is

the complex conjugate of the preceding terms.

Considering the case of principal parametric reso-

nance, where X̂p � 2x̂0, the frequency detuning

parameter r̂p for the parametric excitation frequency

is defined as

X̂p � 2x̂0 ¼ er̂p: ð31Þ

Considering Eqs. (24) and (31), eliminating the

secular terms in Eq. (30) yields

2ix̂0

daMMS1

dt̂
þ ix̂0baMMS1 þ

1

2
x̂2

0PaMMS1e
i X̂p�2x̂0ð Þt̂

þ 3ga2MMS1aMMS1 � 2ax̂2
0a

2
MMS1aMMS1

¼ 0:

ð32Þ

In order to solve Eq. (32), aMMS1ðt̂Þ is expressed in

the polar form

aMMS1ðt̂Þ ¼
1

2
AMMS1ðt̂ÞeikMMS1ðt̂Þ; ð33Þ

where AMMS1ðt̂Þ and kMMS1ðt̂Þ are real. Substituting
Eq. (33) into Eq. (32) yields

ix̂0A
0
MMS1 � x̂0AMMS1k

0
MMS1 þ

1

2
ix̂0bAMMS1

�

þ 1

4
x̂2

0PAMMS1e
i X̂p�2x̂0ð Þt̂�2kMMS1ð Þ þ 3

8
gA3

MMS1

� 1

4
ax̂2

0A
3
MMS1

�
eikMMS1 ¼ 0;

ð34Þ

where the derivatives are with respect to t̂. Separating

the real and imaginary parts in Eq. (34) yields

AMMS1k
0
MMS1 ¼

3

8

gA3
MMS1

x0

þ 1

4
x̂0PAMMS1cos X̂p � 2x̂0

� �
t̂ � 2kMMS1

� �

� 1

4
ax̂0A

3
MMS1;

ð35Þ

A0
MMS1 ¼ � 1

2
bAMMS1

� 1

4
x̂0PAMMS1sin X̂p � 2x̂0

� �
t̂ � 2kMMS1

� �
:

ð36Þ

In order to eliminate the presence of time explicitly

in Eqs. (35) and (36), and make this system of

equations autonomous, a new function ŝ is defined as
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ŝ ¼ X̂p � 2x̂0

� �
t̂ � 2kMMS1: ð37Þ

Therefore, the system of Eqs. (35) and (36) is

simplified as

AMMS1ŝ0 ¼ AMMS1 X̂p � 2x̂0

� �
�

3g� 2ax̂2
0

� �
A3
MMS1

4x̂0

� 1

2
x̂0PAMMS1cos ŝð Þ;

ð38Þ

A0
MMS1 ¼ � 1

2
bAMMS1 �

1

4
x̂0PAMMS1sin ŝð Þ: ð39Þ

Consequently, solving Eqs. (38) and (39) for the

steady-state response A0
MMS1 ¼ 0; ŝ0 ¼ 0

� �
, the fre-

quency response equation is obtained as

AMMS1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4x̂0

3 g� 2
3
ax̂2

0

� � X̂p � 2x̂0

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
x̂0P

� �2

�b2

s0

@

1

A

vuuut :

ð40Þ

It can be found from Eq. (40) that for a steady-state

nontrivial solution AMMS1 6¼ 0ð Þ to exist, the condition

b� 1

2
x̂0P ð41Þ

should hold. Furthermore, it can be seen that the

second radicand in Eq. (40) does not depend on the

excitation frequency X̂p. Therefore, Eq. (40) does not

provide a bounded response.

3.1.1 Stability analysis of MMS solution

The stability of the nontrivial solution can be inves-

tigated by considering the Jacobian matrix

JMMS NT ¼

oA0
MMS1

oaMMS1

oA0
MMS1

oŝ
oŝ0

oAMMS1

oŝ0

oŝ

0

BB@

1

CCA: ð42Þ

Therefore, considering Eqs. (38) and (39), JMMS NT

for the steady-state solution A0
MMS1 ¼ 0; ŝ0 ¼ 0

� �
is

obtained as

JMMS NT ¼ JMMS NT;11 JMMS NT;12

JMMS NT;21 JMMS NT;22

� �
; ð43Þ

where

JMMS NT;11 ¼ 0; JMMS NT;22 ¼ �b; JMMS NT;12

¼
3g� 2ax̂2

0

� �
A3
MMS1

8x̂0

� 1

2
X̂p � 2x̂0

� �
AMMS1;

ð44Þ

JMMS NT;21 ¼ �
3g� 2ax̂2

0

� �
AMMS1

2x̂0

: ð45Þ

For b[ 0, the trace of the Jacobian matrix in

Eq. (43) is negative. Therefore, the response is

stable only if DetðJMMS NTÞ[ 0. Consequently, for

the case when g� 2ax̂2
0

	
3[ 0, the response of the

system shows a hardening behaviour, and the positive

and negative signs in the frequency response Eq. (40)

represent the stable and unstable solutions starting

from the critical frequencies

X̂p;s1 ¼ 2x̂0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
x̂0P

� �2

�b2

s

;

X̂p;s2 ¼ 2x̂0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
x̂0P

� �2

�b2

s

;

ð46Þ

respectively. On the other hand, for the case when

g� 2ax̂2
0

	
3\0, the response of the system shows a

softening behaviour, and the positive and negative

signs in the frequency response Eq. (40) represent the

unstable and stable solutions, respectively; the unsta-

ble solution starts from the frequency X̂p;s1 while the

stable solution starts at the frequency X̂p;s2.

To analyse the stability of the trivial solution

AMMS1 ¼ 0ð Þ, the Cartesian form of the response is

used as

AMMS1ðt̂Þ ¼
1

2
M � iNð Þe1

2
i X̂p�2x̂0ð Þt̂; ð47Þ

where M, N are real. Applying Eq. (47) to the

modulation Eq. (32) and separating the real and

imaginary parts leads to the system of equations

M0 ¼ � 1

2
X̂p � 2x̂0

� �
N � 1

2
bM

þ
3g� 2ax̂2

0

� �
N

8x̂0

M2 þ N2
� �

� 1

4
x̂0PN; ð48Þ
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N 0 ¼ 1

2
X̂p � 2x̂0

� �
M � 1

2
bN

�
3g� 2ax̂2

0

� �
M

8x̂0

M2 þ N2
� �

� 1

4
x̂0PM ð49Þ

Therefore, the Jacobian matrix for the trivial

solution is obtained as

JMMS�T ¼
oM0

oM

oM0

oN
oN 0

oM

oN 0

oN

0

B@

1

CA: ð50Þ

Consequently, the trivial solution is stable for

frequencies X̂p\X̂p;s1; X̂p [ X̂p;s2, and is unstable for

frequencies within the range X̂p;s1\X̂p\X̂p;s2. Intro-

ducing the new parameter g�MMS, where

g�MMS ¼ g� 2

3
ax̂2

0; ð51Þ

it can be found that when g�MMS is replaced by g,
Eq. (40) reduces to the frequency response equation

for the nonlinear Mathieu equation with a Duffing-

type nonlinearity [32]. From Eq. (51) it follows that

for a fixed value of g, the value of the nonlinear inertia
term a determines whether the dynamic behaviour of

the PECB is hardening or softening.

3.2 Single-term MVA solution

In the single-term approximation of the MVA, the

response of the system is expressed as [41]

Z t̂ð Þ ¼ B t̂ð Þ cos 1

2
X̂pt̂

� �
þ C t̂ð Þ sin 1

2
X̂pt̂

� �
; ð52Þ

where B t̂ð Þ and C t̂ð Þ are time-varying amplitudes.

Substituting Eq. (52) into Eq. (16), separating the

coefficients of cosðX̂pt̂=2Þ and sinðX̂pt̂=2Þ in the

resultant equation, while neglecting the higher-order

harmonics, results in

€Bþ b _Bþ X̂p
_C þ 1

2
bX̂pC þ 3

4
B B2 þ C2
� �

g� 1

6
aX̂2

p

� �
þ x̂2

0 1þ 1

2
P

� �
� 1

4
X̂2

p

� �
B

þ 1

4
C2 þ 3B2
� �

€Bþ 2BC €C
�

þ 2C _B _C þ 3B _B2

þ 2X̂p B2 þ C2
� �

_C þ B _C2
�
¼ 0;

ð53Þ

€C � X̂p
_Bþ b _C � 1

2
bX̂pBþ 3

4
C B2 þ C2
� �

g� 1

6
aX̂2

p

� �
þ x̂2

0 1þ 1

2
P

� �
� 1

4
X̂2

p

� �
C

þ 1

4
B2 þ 3C2
� �

€C þ 2BC €B
�

þ 2B _B _C þ 3C _C2

�2X̂p B2 þ C2
� �

_Bþ C _B2
�
¼ 0:

ð54Þ

The steady-state solution is obtained by setting the

all derivatives in Eqs. (53) and (54) to zero

( _B ¼ _C ¼ €B ¼ €C ¼ 0), yielding

1

2
bX̂pC þ 3

4
B B2 þ C2
� �

g� 1

6
aX̂2

p

� �

þ x̂2
0 1þ 1

2
P

� �
� 1

4
X̂2

p

� �
B

¼ 0; ð55Þ

� 1

2
bX̂pBþ 3

4
C B2 þ C2
� �

g� 1

6
aX̂2

p

� �

þ x̂2
0 1� 1

2
P

� �
� 1

4
X̂2

p

� �
C

¼ 0: ð56Þ

Solving the system of Eqs. (55) and (56) with

respect to the constant coefficientsB andC, the steady-

state response of the system can be obtained, which

can be expressed as

Zðt̂Þ ¼ AMVA1ðt̂Þ cos
1

2
X̂pt̂ þ hMVA1ðt̂Þ

� �
: ð57Þ

AMVA1ðt̂Þ and hMVA1ðt̂Þ in Eq. (57) are the ampli-

tude and phase, where

AMVA1ðt̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bðt̂Þ2 þ Cðt̂Þ2

q
; hMVA1 t̂ð Þ

¼ tan�1 �Cðt̂Þ
Bðt̂Þ ð58Þ

Consequently, the frequency response equation of

the system described by Eq. (16) is obtained as.

From Eqs. (57) and (59), hMVA1ðt̂Þ is such that

sin 2hMVA1ð Þ ¼ bX̂p

.
x̂2

0P. It can be found from

Eq. (59) that the nontrivial solution exists only if
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AMVA1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3 g� 1
6
aX̂2

p

� � X̂2
p � 4x̂2

0 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x̂2
0P

� �2� bX̂p

� �2
r !vuuut :

ð59Þ

X̂p �
x̂2

0P

b
: ð60Þ

3.2.1 Stability analysis of MVA solution

In order to investigate the stability of the solutions in

the frequency response Eq. (59), the following param-

eters are defined:

x1 ¼ B; x3 ¼ C; _x1 ¼ x2; _x3 ¼ x4: ð61Þ

The Jacobian matrix JMVA is then expressed as the

4	 4 matrix whose ði; jÞth element is

JMVA;ij ¼ o _xi
	
oxj. Consequently, for the nontrivial

solution, the trace Tr JMVA�NTð Þ and the determinant

Det JMVA�NTð Þ of the Jacobian matrix are obtained as

Tr JMVA�NTð Þ ¼ �2b; ð62Þ

Det JMVA�NTð Þ ¼ 3

4
g� 1

6
aX̂2

p

� �
x1 þ x3ð Þ2

3 g� 1

6
aX̂2

p

� �
x1 þ x3ð Þ2� X̂2

p � 4x̂2
0

� �� �
:

ð63Þ

For b[ 0, Tr JMVA�NTð Þ\0. Therefore, the

response is stable only if Det JMVA�NTð Þ[ 0. Conse-

quently, for the frequency range such that

g� aX̂2
p

.
6[ 0, the response of the system shows a

hardening behaviour, and the positive and negative

signs in the frequency response Eq. (59) represent the

stable and unstable solutions beginning at the

frequencies

X̂p;c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4x̂2
0 � 2b2 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 b2 � 4x̂2

0

� �
þ Px̂2

0

� �2
qr

;

ð64Þ

X̂p;c2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4x̂2
0 � 2b2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 b2 � 4x̂2

0

� �
þ Px̂2

0

� �2
qr

;

ð65Þ

respectively. Otherwise, if g� aX̂2
p

.
6\0, the

response of the system shows a softening behaviour.

For this case, the positive and negative signs in the

frequency response Eq. (59) represent the unstable and

stable solutions, respectively; the unstable solution

starts from the frequency X̂p;c1 while the stable solution

starts at the frequency X̂p;c2.

The stability of the trivial solutions can be inves-

tigated using the Jacobian matrix for x1 ¼ x3 ¼ 0.

Therefore, the trace and the determinant of the

Jacobian matrix for the trivial solution are obtained as

Tr JMVA�Tð Þ ¼ �2b; ð66Þ

Det JMVA�Tð Þ ¼ 1

16
X̂4

p þ X̂2
p 4b2 � 8x̂2

0

� �
þ 4x̂4

0 4� P2
� �� �

:

ð67Þ

Consequently, the trivial solution is stable for

frequencies X̂p\X̂p;c1; X̂p [ X̂p;c2, and is unsta-

ble when X̂p;c1\X̂p\X̂p;c2. This is in contrast to the

stability analysis for the MMS solution which resulted

in the critical frequencies X̂p;s1 and X̂p;s2 in Eq. (46).

4 Effects of system parameters on the response

The frequency response equations for the PECB

illustrated in Fig. 1 were developed and presented in

Sect. 3. This section aims to discuss the effects of the

system parameters including nonlinear inertia, Duff-

ing-type nonlinearity, damping, parametric excitation

amplitude, and the added mass at the cantilever tip on

the dynamic behaviour of PECB systems.

Fig. 2 Steady-state frequency–response diagrams for a PECB

with a hardening behaviour; comparing the results obtained

from the MMS1 using Eq. (40) (red coloured results), the

MVA1 using Eq. (59) (blue coloured results), and numerical

results obtained from Direct Integration (DI) of the equation of

motion (16) (black coloured data points). Solid lines and dashed

lines represent the stable and unstable solutions, respectively,

obtained from MMS1 and MVA1. The system parameters are

x̂0 ¼ 1, b ¼ 0:005, P ¼ �0:02, g ¼ 11, and a ¼ 10
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4.1 Effect of nonlinear inertia and Duffing

nonlinearity

From the frequency response Eq. (59) obtained from

the MVA it can be found that, in the absence of the

nonlinear inertia term a, the Duffing nonlinearity term
g will determine the hardening or softening charac-

teristics of the behaviour of the system, which is in

accordance with the frequency response equation for

the nonlinear parametrically excited system modelled

as Mathieu equation [32]. This is while, for the PECB,

the parameter

g�MVA ¼ g� 1

6
aX̂2

p; ð68Þ

is the criterion determining hardening or softening

behaviour. If, for a certain value of the excitation

frequency, g�MVA ’ 0, the vibrations will grow expo-

nentially, which is in agreement with results of direct

numerical integration of the equation of motion (16)

[50]. As a result, a bounded response cannot be

achieved. When X̂p ’ 2x̂0, if g�MVA [ 0 (hardening

behaviour), increasing X̂p to frequencies away from

the principal parametric resonance, the term X̂2
p can

decrease g�MVA significantly such that g�MVA ’ 0.

Consequently, the vibrations will grow rapidly

(Fig. 2). Similarly, for a system with a softening

behaviour (g�MVA\0 at X̂p ’ 2x̂0), for a positive

value of g, moving away from the principal parametric

resonance, g�MVA ’ 0, resulting in an exponential

growth of the vibrations (Fig. 3). It can be seen from

Figs. 2 and 3 that unlike the MVA results and the

numerical results obtained from Direct Integration

(DI) of the equation of motion, the analytical results

predicted by the MMS do not show a rapid increase in

the response amplitude at frequencies around which

g�MVA ’ 0. This is consistent with the frequency

response Eq. (40) and the fact that g�MMS does not

depend on the excitation frequency X̂p. As seen from

Fig. 3 Steady-state frequency–response diagrams for a PECB

with a softening behaviour. Comparing the results obtained from

the MMS1 using Eq. (40) (red coloured results), the MVA1

using Eq. (59) (blue coloured results), and numerical results

obtained from Direct Integration (DI) of the equation of motion

(16) (black coloured data points). Solid lines and dashed lines

represent the stable and unstable solutions, respectively,

obtained from MMS1 and MVA1. The system parameters are

x̂0 ¼ 1, b ¼ 0:005, P ¼ �0:02, g ¼ 6, a ¼ 16

Fig. 4 Steady-state frequency–response diagrams for a PECB

with a hardening behaviour. Comparing the results obtained

from the MMS1 using Eq. (40) (red coloured results), the

MVA1 using Eq. (59) (blue coloured results), and numerical

results obtained from DI (black coloured data points) for

x̂0 ¼ 3, g ¼ 35, a ¼ 2, and different values of b and P; a
b ¼ 0:02, P ¼ �0:02, b b ¼ 0:02, P ¼ �0:06, c b ¼ 0:07,
P ¼ �0:06. Solid lines and dashed lines represent the stable and
unstable solutions, respectively, obtained from MMS1 and

MVA1
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Figs. 2 and 3, the MVA captures qualitative behaviour

of the system, but there is some quantitative difference

compared to the numerical results for frequencies

when g�MVA is close to zero. To get a better quantitative

agreement, one needs to take more harmonics in the

MVA approximation, as has been discussed in [41].

4.2 Effect of damping and parametric excitation

amplitude

While the Duffing nonlinearity g and the nonlinear

inertia a play crucial roles in determining the harden-

ing or softening characteristics of the behaviour of the

PECB, the damping term b and the parametric

excitation term P affect the critical frequencies at

which the stable and unstable analytical solutions

begin and the amplitude response of the PECB.

Considering the critical frequencies X̂p;s1, X̂p;s2 in

Eq. (46) obtained from the MMS, and X̂p;c1, X̂p;c2 in

Eqs. (64) and (65) obtained from the MVA, it can be

seen that these frequencies are functions of x̂0, b, and
P. Therefore, for a fixed value of x̂0, b and P can be

chosen such that desired values of X̂p;s1, X̂p;s2, X̂p;c1,

and X̂p;c2 are achieved, both in a hardening behaviour

(Fig. 4) and in a softening behaviour (Fig. 5). Fur-

thermore, as can be seen in these figures, within the

frequency range considered, increasing P or decreas-

ing b will increase the amplitude response of the

PECB, which can be found from the frequency

response Eqs. (40) obtained from the MMS and (59)

obtained from the MVA, and is in agreement with the

numerical results obtained from direct integration of

the equation of motion (16).

4.3 Effect of tip mass

It was shown that the parameters g, a, x̂0, b and P

determine the hardening or softening behaviour of the

PECB, or change the amplitude response, and the

critical frequencies at which the stable and unsta-

ble analytical solutions begin.

It can be seen from Eqs. (7), (10), and (11) that the

point mass added at the cantilever tip will change the

Fig. 5 Steady-state frequency–response diagrams for a PECB

with a softening behaviour. Comparing the results obtained from

the MMS1 using Eq. (40) (red coloured results), the MVA1

using Eq. (59) (blue coloured results), and numerical results

obtained from DI (black coloured data points) for x̂0 ¼ 3,

g ¼ 25, a ¼ 8, and different values of b and P; a b ¼ 0:02,
P ¼ �0:02, b b ¼ 0:02, P ¼ �0:06, c b ¼ 0:07, P ¼ �0:06.
Solid lines and dashed lines represent the stable and unsta-

ble solutions, respectively, obtained from MMS1 and MVA1

Table 1 Material and geometric properties of the cantilever

beam

Property Value

Density qc; kgm�3 7800

Young’ modulus Ec; GPa 210

Length L; m 0:3

Width bc; m 0:03

Thickness tc; m 5	 10�4
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mode shape functions wðŝÞ and the non-dimensional

undamped natural frequency x̂0. As a result, the

system parameters g, a, and P expressed in Eqs. (17)-

(22) will change, altering the dynamic behaviour of

the PECB.

To investigate the effect of tip mass on the response

of the PECB, a cantilever beam with the material and

geometric properties presented in Table 1 is consid-

ered. The non-dimensional acceleration amplitude and

the non-dimensional damping b are chosen to be

âp ¼ 0:2361, b ¼ 0:05, respectively. For different

values of the non-dimensional tip mass (m̂ ¼ 0:0569,

m̂ ¼ 0:0854, and m̂ ¼ 0:1139), and for a narrow

frequency range around the principal parametric

resonance, the frequency response diagrams are illus-

trated in Fig. 6.

For m̂ ¼ 0:0569 (Fig. 6a), using Eqs. (30), (10), and

(11), the undamped natural frequency of the system is

obtained as f0 ¼ x̂0=2p ¼ 4:2000 HZ. The other

system parameters are obtained as x̂0 ¼ 3:1712,

P ¼ �0:0445, g ¼ 27:5099 and a ¼ 6:6884 using

Eqs. (18)-(22). For the frequency range considered

g�MVA is negative, leading to a softening behaviour. At

the principal parametric resonance frequency

g�MVA ¼ �17:3314. It can be seen that the MVA

results show good agreement with the numerical

results obtained from DI; the amplitude response

obtained from DI, MVA, and MMS at the frequency

ratio X̂p=x̂0 ¼ 1:95 is found to be 0.2612, 0.2520, and

0.2363, respectively.

Increasing the value of the non-dimensional tip

mass to m̂ ¼ 0:0854, the values of f0, x̂0 and g
decrease to 4.0158 Hz, 3.0322, and 21.7987, respec-

tively. Also, the nonlinear inertia term and the

parametric excitation amplitude are obtained as

a ¼ 7:3077, P ¼ �0:0530. As a result, the magnitude

of g�MVA will increase, enhancing the softening

behaviour (at the principal parametric resonance

frequency g�MVA ¼ �22:9937). Therefore, as can be

seen in Fig. 6b, within the frequency range consid-

ered, X̂p;s1, X̂p;c1 decrease, X̂p;s2, X̂p;c2 increase, while

the amplitude response decreases.

Consequently, increasing the value of m̂ increases

the frequency range in which the stable solution can

exist and decreases the amplitude response of the

PECB. The frequency response diagram for m̂ ¼
0:1139 is illustrated in Fig. 6c. For this case, the

system parameters are f0 ¼ 3:8535 HZ, x̂0 ¼ 2:9096,

P ¼ �0:0623, g ¼ 16:2577, and a ¼ 8:1286. It can be

seen that, as expected, the softening behaviour is

Fig. 6 Amplitude response as a function of the frequency ratio

for the parametrically excited cantilever beam with the material

and geometric properties presented in Table 1. Comparing the

results obtained from the MMS1 (red coloured results), MVA1

(blue coloured results), and DI (black coloured data points) for

âp ¼ 0:2361 and different values of m̂; a m̂ ¼ 0:0569, b
m̂ ¼ 0:0854, c m̂ ¼ 0:1139. Solid lines and dashed lines

represent the stable and unstable solutions, respectively,

obtained from MMS1 and MVA1

Fig. 7 A schematic block diagram of the experimental set-up
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enhanced, which is due to the larger magnitude of

g�MVA within the frequency range considered; for this

case, at the principal parametric resonance frequency

g�MVA ¼ �29:6188.

5 Experiments on a PECB system with a tip mass

This section concerns the experimental measurements

of the response of a PECB with a tip mass. The main

aspects investigated in this section are summarized as

the following: the criteria presented in Eqs. (51) and

(68) are investigated experimentally for a cantilever

beam with a tip mass and with a positive value of the

Duffing nonlinearity g. Experimental measurements

of the response of a PECB with a tip mass for different

values of the excitation acceleration amplitude

(ap ¼ 1:7g; 1:8g; 1:9g and 2:0g) are taken. Then,

the experimental results for the displacement and

acceleration of the cantilever tip are presented and

compared with the results obtained from theMMS, the

MVA and DI.

5.1 Experimental set-up and methodology

A schematic block diagram of the experimental set-up

used to conduct the experiments, consisting of a

vibration controller, power amplifier, shaker, can-

tilever beam, signal analyser, data acquisition com-

puter, and two accelerometers, is illustrated in Fig. 7

and the set-up is shown in Fig. 8.

To excite the cantilever beam system, a time

harmonic signal with a constant acceleration ampli-

tude was generated using the vibration controller

VR9500 and VibrationView software. The generated

signal was then routed to a power amplifier type

APS125 and in turn to the APS113 shaker. The three-

axis piezoelectric accelerometer type PCB356A32,

attached to the shaker, was used to measure the

reference signal. A cantilevered stainless-steel beam

with material and geometric properties presented in

Table 2 was connected to the shaker using a fixture,

such that the generated acceleration signal was

transferred to the clamped end of the cantilever,

exciting the cantilever in the longitudinal direction

(parametric excitation). The transverse vibration of the

Fig. 8 Configuration of a

parametrically excited

cantilever system with a tip

mass

Table 2 Material and geometric properties of the cantilever

beam used in experiments

Property Value

Density qc; kgm�3 7880

Young’ modulus Ec; GPa 190

Length L; m 0:288

Width bc; m 0:027

Thickness tc; m 0:001
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beam was then measured using a piezoelectric

accelerometer type PCB352C22, attached to the free

end of the cantilever beam, which was considered as a

tip mass (m ¼ 0:5g). The real time acceleration data of

the tip accelerometer was measured using a Data

Physics Quattro-DP240 signal analyser and

SignalCalc ACE 900 series software installed in a

data acquisition computer.

The free vibration response of the system was used

to estimate the natural frequency and the damping

ratio (n) of the system. Tapping the tip of the beam,

from the corresponding FFT of the transient response

of the system, the natural frequency of the first mode

of vibration of the cantilever beam was estimated as

9:40 HZ. Also, using the logarithmic decrement

method, the damping ratio for this vibration mode

was estimated as 0.561%. To investigate the response

of the system to harmonic excitation, the steady-state

acceleration and displacement of the cantilever beam

tip in a frequency range close to the principal

parametric resonance was obtained using the Sig-

nalCalc software, applying a Flat-Top window, with

the measurement time long enough for any transient

disturbance to decay (Fig. 9). Furthermore, 100 mea-

surements of the acceleration were taken at each

excitation frequency and averaged. First, the excita-

tion frequency was swept up slowly within the

frequency range considered, and the results were

obtained and recorded. Then, the results for the case

when the excitation was swept down slowly within the

frequency range considered were obtained.

A photograph of the cantilever beam when it was

driven axially at an acceleration amplitude ap ¼ 2:0g

and excitation frequency Xp ¼ 18:70 HZ is shown in

Fig. 10. The frequency spectrums for the displacement

and acceleration of the cantilever for this case are

shown in Fig. 9. As can be seen in this figure, the

response of the system is dominated by a frequency

equal to half the excitation frequency, which is the

main characteristic of parametrically excited systems.

6 Results and discussion

The steady-state displacement and acceleration of the

cantilever beam with the material and geometric

properties presented in Table 2, were measured for

different values of excitation acceleration amplitude

(ap ¼ 1:7g; 1:8g; 1:9g and 2:0g) using the approach

described in Sect. 5.1. The small accelerometer

attached at the cantilever tip is considered to be a

0:5g tip mass and effects of its rotational inertia are

assumed to be very small. To compare the experi-

mental results with the analytical results of the MMS

Fig. 9 Experimental measurements of the cantilever beam tip

response when driven at ap ¼ 2:0g andXp ¼ 18:70 Hz at which

the maximum response for the case when the excitation

frequency was swept up slowly from 18:61 Hz to 18:99 Hz

(Xp=x0 ’ 1:98 to Xp=x0 ’ 2:02) was obtained. Frequency

spectra for (a) displacement and (b) acceleration of the

cantilever tip

Fig. 10 Photograph of the cantilever beam when driven axially

at ap ¼ 2:0g and Xp ¼ 18:70 Hz at which the maximum

response for the case when the excitation frequency was swept

up from 18:61 Hz to 18:99 Hz (Xp=x0 ’ 1:98 to

Xp=x0 ’ 2:02) was obtained
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and MVA, and the numerical results of DI, using

Eqs. (2), (3), and (5), the magnitude of the displace-

ment w and acceleration a of the cantilever tip are

expressed as

w ¼ Lwð1ÞA; ð69Þ

a ¼ 1

4
LY2wð1ÞX̂2

pA; ð70Þ

where wð1Þ is the value of the fundamental mode

shape of the beam at the tip (s=L ¼ 1), and A is the

non-dimensional amplitude obtained from the MMS

and the MVA using the frequency–response Eqs. (40)

and (59), respectively, and DI.

Using Eqs. (10) and (17)-(22), the system param-

eters are x̂0 ¼ 3:4548, g ¼ 36:2329, and a ¼ 5:5682.

Also b ¼ 2nx̂0 ¼ 0:0387, where n ¼ 0:561% is the

damping ratio of the first vibration mode. As can be

seen, both the nonlinear curvature term g and the

nonlinear inertial term a are positive. Nevertheless, at

X̂p ’ 2x̂0, both g�MMS and g�MVA obtained from the

MMS and the MVA in Eqs. (51) and (68), respec-

tively, are negative. Therefore, a softening behaviour

for the cantilever beam considered for the experiments

is predicted by both the MMS and the MVA.

For a frequency range around the principal para-

metric resonance (Xp=x0 ’ 1:98 to Xp=x0 ’ 2:02),

and for ap ¼ 1:7g; 1:8g; 1:9g and 2:0g, both condi-

tions (41) and (60) hold true: for these values of the

acceleration amplitude, using Eqs. (17)-(19), P is

Fig. 11 Steady-state frequency–response diagrams for the

parametrically excited cantilever beam with the material and

geometric properties presented in Table 2 and the acceleration

amplitude ap ¼ 1:7g. Comparing the results obtained from the

MMS1 (red), MVA1 (blue), DI (black data points), the

experimental results when the excitation frequency was swept

up (green triangles), and the experimental results when the

excitation frequency was swept down (brown squares); a
displacement at the cantilever tip, b acceleration at the

cantilever tip. Solid lines and dashed lines represent the

stable and unstable solutions, respectively, obtained from

MMS1 and MVA1. The system parameters x̂0 ¼ 3:4548,
b ¼ 0:0387, g ¼ 36:2329, a ¼ 5:5682, P ¼ �0:0268

Fig. 12 Steady-state frequency–response diagrams for the

parametrically excited cantilever beam with the material and

geometric properties presented in Table 2 and the acceleration

amplitude ap ¼ 1:8g. Comparing the results obtained from the

MMS1 (red), MVA1 (blue), DI (black data points), the

experimental results when the excitation frequency was swept

up (green triangles), and the experimental results when the

excitation frequency was swept down (brown squares); a
displacement at the cantilever tip, b acceleration at the

cantilever tip. Solid lines and dashed lines represent the

stable and unstable solutions, respectively, obtained from

MMS1 and MVA1. The system parameters x̂0 ¼ 3:4548,
b ¼ 0:0387, g ¼ 36:2329, a ¼ 5:5682, P ¼ �0:0284
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obtained as �0:0268, �0:0284, �0:0300, and

�0:0316, respectively.

For the values of the input acceleration amplitude

considered, the experimental results are presented and

compared with the results obtained from theMMS, the

MVA and DI in Figs. 11, 12, 13 and 14, respectively. It

can be seen that, as predicted by the MVA and the

MMS, the cantilever beam shows a softening beha-

viour. The experimental results for all cases are in

good agreement with the theoretical results obtained

from the MVA and the MMS, and the numerical

results obtained from DI. The measured critical

frequencies at which the stable solution begins, for

the cases when the excitation frequency was both

swept up and swept down, show good agreement with

X̂p;s2 and X̂p;c2 predicted by the MMS and the MVA in

Eqs. (46) and (65), respectively. Additionally, as

predicted by the analysis presented in Sect. 4.2, it can

be seen that increasing the value of P within the

frequency range considered increases the magnitude

of the response amplitude and the frequency range in

which stable solutions can exist. Experimental results

show that the response of the system is bounded.

However, the corresponding maximum response value

is lower than predicted theoretically. This is believed

to be due to other effects such as the nonlinear

damping effects not included in the employed theo-

retical model. As discussed in Sect. 4, when linear

damping is considered, the term containing a linear

combination of the Duffing nonlinearity term and the

Fig. 13 Steady-state frequency–response diagrams for the

parametrically excited cantilever beam with the material and

geometric properties presented in Table 2 and the acceleration

amplitude ap ¼ 1:9g. Comparing the results obtained from the

MMS1 (red), MVA1 (blue), DI (black data points), the

experimental results when the excitation frequency was swept

up (green triangles), and the experimental results when the

excitation frequency was swept down (brown squares); a
displacement at the cantilever tip, b acceleration at the

cantilever tip. Solid lines and dashed lines represent the

stable and unstable solutions, respectively, obtained from

MMS1 and MVA1. The system parameters x̂0 ¼ 3:4548,
b ¼ 0:0387, g ¼ 36:2329, a ¼ 5:5682, P ¼ �0:0300

Fig. 14 Steady-state frequency–response diagrams for the

parametrically excited cantilever beam with the material and

geometric properties presented in Table 2 and the acceleration

amplitude ap ¼ 2:0g. Comparing the results obtained from the

MMS1 (red), MVA1 (blue), DI (black data points), the

experimental results when the excitation frequency was swept

up (green triangles), and the experimental results when the

excitation frequency was swept down (brown squares); a
displacement at the cantilever tip, b acceleration at the

cantilever tip. Solid lines and dashed lines represent the

stable and unstable solutions, respectively, obtained from

MMS1 and MVA1. The system parameters x̂0 ¼ 3:4548,
b ¼ 0:0387, g ¼ 36:2329, a ¼ 5:5682, P ¼ �0:0316
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nonlinear inertia term in the frequency response

equation obtained by the MVA can tend to zero

around the principal parametric resonance, resulting in

an exponential growth of vibrations which was

validated by the numerical results obtained from DI.

7 Conclusions

The response of a parametrically excited cantilever

beam (PECB) with a tip mass was investigated in this

paper. The paper focused on prediction of the response

of the system, in particular its hardening or softening

characteristics when linear damping was considered.

The Method of Varying Amplitudes (MVA) and the

Method of Multiple Scales (MMS) were employed to

develop steady-state frequency–response approxima-

tions for the response of the system and investigate the

stability of the solutions. The analytical results were

validated by numerical results obtained from Direct

Integration (DI) of the equation of motion. Further-

more, experimental measurements of the response of a

PECB with a tip mass were presented and the

experimental results were compared with theoretical

results obtained from the MMS and the MVA and

numerical results obtained from DI. These investiga-

tions led to the following main findings:

• The analytical results obtained from the MVA

showed that the response of the system is highly

dependent on the values of the Duffing-type

nonlinearity term and the nonlinear inertia term.

It was shown that, for frequency ranges around the

principal parametric resonance, the term contain-

ing a linear combination of these parameters in the

frequency response equation can tend to zero,

resulting in an exponential growth of the vibra-

tions. The MVA results were validated by numer-

ical results obtained from DI, while the MMS

failed to predict this critical frequency.

• It was shown that the mass added at the cantilever

tip can change the system parameters, enhancing

the softening behaviour of the PECB. It was shown

that, within the frequency range considered,

increasing the value of the tip mass decreases the

amplitude response of the system and broadens the

frequency range in which a stable response can

exist.

• The experimental results of the displacement and

acceleration of the cantilever tip showed good

agreement with the theoretical results of the MMS

and the MVA, and the numerical results of DI.

Furthermore, the theoretical expressions presented

for the critical frequency at which the nonzero

stable solution begins were demonstrated to be

capable to predict this frequency with a good

accuracy.
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