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The propagation of small amplitude stationary profile nonlinear electrostatic excitations in a pair plasma is

investigated, mainly drawing inspiration from experiments on fullerene pair-ion plasmas. Two distinct pair ion

species are considered of opposite polarity and same mass, in addition to a massive charged background species,

which is assumed to be stationary, given the frequency scale of interest. In the pair-ion context, the third species

is thought of as a background defect (e.g. charged dust) component. On the other hand, the model also applies

formally to electron-positron-ion (e-p-i) plasmas, if one neglects electron-positron annihilation. A two-fluid

plasma model is employed, incorporating both Lorentz and Coriolis forces, thus taking into account the interplay

between the gyroscopic (Larmor) frequency ωc and the (intrinsic) plasma rotation frequency Ω0. By employing a

multi-dimensional reductive perturbation technique, a Zakharov-Kuznetsov (ZK) type equation is derived for the

evolution of the electric potential perturbation. Assuming an arbitrary direction of propagation, with respect to

the magnetic field, we derive the exact form of nonlinear solutions, and study their characteristics. A parametric

analysis is carried out, as regards the effect of the dusty plasma composition (background number density),

species temperature(s) and the relative strength of rotation to Larmor frequencies. It is shown that the Larmor

and mechanical rotation affect the pulse dynamics via a parallel-to-transverse mode coupling diffusion term,

which in fact diverges at ωc → ±2Ω0. Pulses collapse at this limit, as nonlinearity fails to balance dispersion.

The analysis is complemented by investigating critical plasma compositions, in fact near-symmetric (T− ≈ T+)

“pure” (n− ≈ n+) pair plasmas, i.e. when the concentration of the 3rd background species is negligible, case in

which the (quadratic) nonlinearity vanishes, so one needs to resort to higher order nonlinear theory. A modified

ZK equation is derived and analyzed. Our results are of relevance in pair-ion (fullerene) experiments and also

potentially in astrophysical environments, e.g. in pulsars.
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1. Introduction
Significant research effort has recently been devoted

to pair plasmas (p.p.), a term denoting large ensembles

of charged matter consisting of charge particle populations

bearing equal masses and opposite charge signs [1, 2]. In
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contrast to ordinary (electron-ion, e-i) plasmas, where the

large mass disparity between plasma constituents imposes

distinct frequency scales, the pair species (of equal but op-

posite charge) respond on the same scale. Not quite ex-

pectedly, plasma wave characteristics cannot always be de-

duced from known results for e-i plasmas by simply tak-

ing a formal limit of equal masses. For instance, paral-

lel propagating linear electromagnetic (EM) waves are not

circularly but linearly polarized in pair plasmas, and Fara-

day rotation [3] is remarkably absent therein [4]. Further-

more, ion-acoustic waves have no counterpart in electron-

positron (e-p) plasmas, where electrostatic wave disper-

sion may bear high frequency (Langmuir-type) character-

istics [1, 2]. Remarkably, the recent production of pair

c© 2009 The Japan Society of Plasma
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fullerene-ion plasmas in laboratory [5] has enabled exper-

imental studies of pair plasmas allowing one to get rid of

intrinsic problems involved in e-p plasmas, namely pair re-

combination (annihilation) processes.

In general, e-p plasmas may also be characterized

by the presence of positive ions, in addition to electrons

and positrons. Electron-positron-ion (e-p-i) plasmas oc-

cur in various astrophysical contexts, such as the early

universe [6], active galactic nuclei (AGN) [7] and in pul-

sar magnetospheres [8], and have also been created in the

laboratory [9]. The standard description of e-p-i plas-

mas adopted here models them as fully ionized plasmas

with two populations of different charge signs possessing

equal masses and absolute charge values (m+ = m− = m,

q+ = −q− = Ze), in addition to a population of positively

charged ions, with m3 = M ≫ m and q3 = +Ze (here e is

the magnitude of the electron charge). On the other hand,

one may anticipate the existence (intrinsically, or by inten-

tional injection/doping) of a small fraction of charged mas-

sive particles (a heavier ion species, or dust particulates,

defect) into fullerene pair-ion plasma [5] in order to realize

three-component plasmas which may accommodate new

physical phenomena. According to these considerations,

we shall henceforth keep the charge sign s = q3/|q3| arbi-

trary in our model.

Experimental investigations of low-amplitude (linear)

electrostatic (ES) oscillations suggest the existence of

three distinct modes [5]. Two of these modes, namely an

acoustic mode and a Langmuir-like high-frequency mode,

are predicted by theory [1, 2, 10, 11]. An intermediate-

frequency mode also reported [5] is still a topic of contro-

versial debate among theoreticians, and various alternative

interpretations have been furnished, in terms of soliton-

trains [12], ion acoustic waves accelerated by surplus elec-

trons [13] or BernsteinGreeneKruskal (BGK)-like trapped

ion modes [14]. Although, the experiments mentioned

above rely on a symmetric pair-component plasma prepa-

ration (“pure” p.p., i.e. equal number densities, and equal

temperatures among the pair species), we shall prefer to

leave the density and temperature ratio(s) of the positive-

to-negative ion species arbitrary, i.e. not necessarily equal

to unity (viz. pure p.p.).

Nonlinear excitations predicted to occur in pair plas-

mas and e-p-i plasmas include ES solitons [12, 15], EM

solitons [16] and localized-envelope modulated wavepack-

ets (envelope solitons) of either low-frequency ES [10,11],

high-frequency ES [17] or EM [18] type, relying on an ex-

haustive use of the nonlinear plasma toolbox, including the

Korteweg - de Vries (KdV) and Zakharov-Kuznetsov (ZK)

Equation(s), the Sagdeev pseudopotential formalism and

the nonlinear Schrödinger (NLS) Equation, respectively.

Introducing a different building block of our work,

plasma rotation was first considered as a key element in

plasma dynamics by Chandrasekhar [19] who suggested

that Coriolis forces might play a role in cosmic phenom-

ena, as indeed supported by subsequent studies regarding

astrophysical plasma environments [20]. Several authors

have therefore attempted to investigate wave propagation

in rotating plasmas via linear [21] and nonlinear [22] mod-

els.

In this paper, we investigate the existence and prop-

erties of nonlinear electrostatic structures in rotating mag-

netized three-component pair-plasmas of either the doped

p.p. (as described above) or the e-p-i kind. Nonlinear elec-

trostatic structures are shown to exist, in the form of soli-

tary waves, nonlinear periodic wave-forms and blow-up

pulse excitations. Earlier results on envelope solitons in

p.p. are also briefly reviewed. The role of the station-

ary background species (affecting the charge balance) is

stressed.

2. The Model
We consider the propagation of electrostatic exci-

tations in a magnetized, rotating, collisionless three-

component plasma, consisting of positive ions (mass m,

charge +Ze), negative ions (mass m, charge −Ze), and a

third background species (mass m3, charge s3Z3e = ±Z3e).

Here s j (for j = +,−, 3) denotes the charge sign of species

j, i.e. s+ = −s− = +1 and s3 = s = ±1 (both cases being

possible, in principle). In specific, this description applies

to e-p-i plasmas for Z = 1 and s = +1, or in pair-ion (e.g.

fullerene) plasmas (Z = 1), “doped” by the presence of a

third charged particle species of higher mass (for s = ±1).

The external magnetic field is directed along the

x−axis, i.e., B = B0 x̂ (here B0 is the magnitude of the

ambient magnetic field and x̂ is the unit vector along the

x−axis). Intrinsic plasma rotation is taken into account via

the addition of the Coriolis force felt by the fluid(s), in-

volving the rotation frequency (angular velocity) Ω = Ω0 x̂.

Both senses of rotation (with respect to the magnetic field

orientation) may be understood, since corresponding, say,

to Ω0 (arbitrary real-valued) taking either positive or nega-

tive values.

The dynamics of ES waves is governed, within a two-

fluid model, by a system of moment+Poisson equations for

the negative and positive ion components, distinguished by

the indices + and −, respectively. We consider the (five)

equations

∂n±

∂t
+ ∇·(n±u±) = 0, (1)

m

(

∂

∂t
+ u± · ∇

)

u± = ∓Ze∇φ − 1

n±
∇p±

± Ze

c
(u± × B0 x̂) + 2m(u± × Ω0 x̂) , (2)

∇2φ = 4πe
[

Z(n− − n+) − s3Z3n3

]

. (3)

Here we have defined the number density n± and the

fluid velocity variables u± and the electrostatic potential

φ, while c is the speed of light. The system is closed by

the equation(s) of state pα ∼ n
γ
α, where γ = (2 + f )/ f (for

f degrees of freedom. The Boltzmann constant kB may be
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omitted where obvious. The choice f = 2 is made here,

allowing for analytical tractability and physical insight1.

An equilibrium state is assumed to exist, not excluding the

existence of a finite plasma flow balancing pressure gradi-

ents in the above two-fluid system. For simplicity, we shall

consider a quiescent equilibrium below, however.

Equations (1)–(3) are cast in a reduced (dimension-

less) form, for convenience in manipulation. For the posi-

tive ion fluid, we have

∂ñ+

∂t̃
+
∂ñ+ũ+,x

∂x̃
+
∂ñ+ũ+,y

∂ỹ
= 0 , (4)

∂ũ+,x

∂t̃
+

(

ũ+,x
∂

∂x̃
+ ũ+,y

∂

∂ỹ

)

ũ+,x

+
∂φ̃

∂x̃
+ 2σ

∂ñ+

∂x̃
= 0 , (5)

∂ũ+,y

∂t̃
+

(

ũ+,x
∂

∂x̃
+ ũ+,y

∂

∂ỹ

)

ũ+,y

+
∂φ̃

∂ỹ
+ 2σ

∂ñ+

∂ỹ
− Ω̃+ũ+,z = 0 , (6)

and

∂ũ+,z

∂t̃
+

(

ũ+,x
∂

∂x̃
+ ũ+,y

∂

∂ỹ

)

ũ+,z

+Ω̃+ũ+,y = 0 . (7)

A similar set of (four) equations describe the negative ion

fluid, upon formally shifting + → − in the index every-

where, in addition to setting φ → −φ and σ → 1. Finally,

the Poisson equation becomes:

∇̃2φ̃ = ñ− − ñ+ − s
Z3

Z
ñ3. (8)

Recall that the density of the heavy plasma component “3”

is taken to be stationary (of fixed density). Physically, this

implies that the heavy background species will react ex-

tremely slowly to variations of the electric potential due to

the fast ion dynamics, so that static equilibrium (for species

3) can be maintained at all times. The effective rotation

frequencies Ω̃− = 2Ω̃0 − ω̃c and Ω̃+ = 2Ω̃0 + ω̃c take into

account both Larmor gyration of the particles and the me-

chanical rotation of the plasma.

The variables appearing in Eqs. (4)–(7), denoted by

a tilde, are all dimensionless, in fact scaled by appro-

priate quantities. Thus, the density n j (for j = +, −,

3) is normalized by the unperturbed negative ion den-

sity n0, uα is scaled by the negative ion thermal speed

Cs− = (kBT−/m)1/2, the potential φ by φ0 = kBT−/(Ze),

the rotation frequency Ω0 and the ion cyclotron frequency

ωc = ZeB0/(mc) by the negative ion plasma period

ωp,− = (4πZ2e2n0/m)1/2. Finally, the space and time

1The qualitative results thus obtained are not expected to differ sub-

stantially from the general choice f = 3 (for three-dimensional evolution)

as known from earlier works.

variables are scaled by the negative ion Debye radius

λD− = [kBT−/(4πZ
2e2n0)]1/2 and plasma period ω−1

p,−, re-

spectively. We have defined the temperature ratio σ =

T+/T− (where T+ and T− are the positive and negative ion

fluid temperatures, respectively). The neutrality condition

implies

1 = δ + β, (9)

where δ = n+,0/n0 (the index ‘0’ denotes the unperturbed

density states) and β = s
Z3

Z

ñ3

n0
. Recall that setting δ = 1 (i.e.

β = 0) recovers the pure pair-plasma limit (in the absence

of background species), in which case the plasma frequen-

cies of both ion species coincide. For δ � 1 (i.e. β � 0)

density disparity among the pair species occurs due to the

background species. Note that δ > 1 (and β < 0) for a neg-

ative background species, while 0 < δ < 1 (and β > 0) for

a positive one (and the latter also holds for e-p-i plasmas).

Retain that β = 1 − δ < 1 by definition, although no lower

boundary exists, for a negative species (s = −1).

The tilde will henceforth be omitted (thus all quanti-

ties below are understood as dimensionless).

3. Zakharov-Kuznetsov (ZK) Equa-
tion for the Electrostatic Potential

The independent variables will be stretched as:

X = ǫ1/2(x − λt) , Y = ǫ1/2y , τ = ǫ3/2t , (10)

where ǫ is a small parameter and λ is the wave propagation

speed. The state variables are expanded as

S = S (0) + ǫS (1) + ǫ2S (2) + . . . (11)

where S (n) is the n-th order contribution to any among the

state variables {n+, n−, u+,x, u−,x, φ}, (equal, at equilibrium,

to {1, δ, 0, 0, 0}). The transverse velocity (y and z compo-

nents) is assumed to vary on a slower scale, hence:

u−,y = ǫ
3/2u

(1)
−,y + ǫ

2u
(2)
−,y + ǫ

5/2u
(3)
−,y + . . . , (12)

(and similar for − → + and/or axis y→ z).

Substituting the above scaling ansatz into the evolu-

tion Eqs. (4)–(8), one may isolate different orders in ǫ and

thus solve for the corresponding variable contributions. We

choose to express all quantities in terms of the 1st-order po-

tential perturbation ψ = φ(1). The lowest-order equations

in ǫ read

n
(1)
− =

−1

λ2 − 2
ψ , u

(1)
−,x =

−λ
λ2 − 2

ψ ,

u
(1)
−,z =

−λ2

Ω−(λ2 − 2)

∂ψ

∂Y
, (13)

and

n
(1)
+ =

δ

λ2 − 2δσ
ψ , u

(1)
+,x =

λ

λ2 − 2δσ
ψ ,
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u
(1)
+,z =

λ2

Ω+(λ2 − 2δσ)

∂ψ

∂Y
. (14)

The Poisson equation provides the relation

1

λ2 − 2
+

δ

λ2 − 2δσ
= 0, (15)

which determines the pulse propagation speed λ as

λ2 =
2(1 − β)(σ + 1)

2 − β
. (16)

A solution for λ exists, provided that λ � ±
√

2, ±
√

2δσ

(which excludes propagation in temperature-symmetric

electron-positron plasmas, viz. δ = σ = 1). Note the

role of the background species (via β) and of the pair-ion

temperature asymmetry (via σ). The expressions obtained

in higher orders in ǫ are omitted here, for brevity.

Eliminating the second-order perturbed quantities and

making use of the first-order results, we obtain a nonlin-

ear partial-derivative equation (PDE) in the form of the

Zakharov-Kuznetsov (ZK) equation,

∂ψ

∂τ
+ Aψ

∂ψ

∂X
+
∂

∂X

(

B
∂2ψ

∂X2
+C
∂2ψ

∂Y2

)

= 0 . (17)

The nonlinearity coefficient A and the diffusion coefficients

B and D are given by

A = B

[

3δλ2

(λ2 − 2δσ)3
− 3λ2

(λ2 − 2)3

]

, (18)

B =

[

2λ

(λ2 − 2)2
+

2δλ

(λ2 − 2δσ)2

]−1

, (19)

C = B

[

1 +
1

Ω2
−

λ4

(λ2 − 2)2
+

δλ4

Ω2
+(λ2 − 2δσ)2

]

. (20)

Note that λ may be eliminated, in favor of σ, by making

use of the constraint (16). One thus obtains

A = − 3λ2B

(1 − β)2

[

1 + (1 − β)2

(λ2 − 2)3

]

, (21)

B =
1 − β

2λ

[

(λ2 − 2)2

2 − β

]

, (22)

and

C = B

{

1 +
λ4

(λ2 − 2)2

[

1

Ω2
−
+

1

Ω2
+(1 − β)

]

}

. (23)

Alternatively, it is straightforward to eliminate λ – since

prescribed by (15) – so one obtains a set of expressions

(omitted) in terms of σ and β.

Note that the dispersion coefficients B and C are al-

ways positive (since β < 1), while the sign of A is positive

for λ below
√

2 (λ is assumed to be positive throughout

this text), and negative above. As one may already antici-

pate (from earlier knowledge on the ZK or the KdV equa-

tion), this leads to positive (negative) pulses prescribed be-

low (above) a critical Mach number (scaled pulse speed)

threshold of
√

2. The sign of A can therefore be de-

duced upon simple inspection of Fig. 1 (b) (the regions

above/below the left oblique curve therein correspond to

negative/positive A). It turns out that A is generally positive

for a positively charged species 3 (and, in e-p-i plasmas).

For equal-pair-species-temperature plasmas (at σ = 1),

the addition of negatively charged defects should lead to

negative pulses being created, while positive background

should have the inverse effect (positive pulses). Notice that

B vanishes at λ =
√

2, while C remains finite, and A di-

verges as ∼ −1/(λ2 − 2), thus intuitively suggesting that no

balance among dispersion and nonlinearity may occur for

symmetric pure p.p.. Inversely, if pulses are to be observed,

the plasma should present an asymmetry among the pair-

ions, either in concentration or in temperature.

The Zakharov-Kuznetsov equation (17) constitutes

the key outcome of this model. The anticipated balance

among dispersion and nonlinearity gives rise to localized

solitary wave solutions, to be reviewed in the following.

4. Travelling Wave Analysis - Pulse
Shaped Localized Solutions

We shall use the travelling wave transformation ζ =

LxX + LyY −MT , where M is a real variable (representing

a constant speed, scaled by the negative ion thermal speed),

Lx and Ly are the directional cosines of the wave vector k

along the X and Y axes, so that L2
x + L2

y = 1, A0 = ALx and

B0 = LxR, where R = BL2
x + CL2

y (> 0 here). Note that

this ansatz represents propagation in a direction oblique

with respect to the magnetic field, at a certain angle, say

θ = arctan(Ly/Lx). See that purely transverse propagation

(⊥ B) is not covered by this model, since vanishing Lx

would imply vanishing A0 = B0 = 0.

Equation (17) is now reduced to the ordinary partial

differential equation:

−Mu′ + A0uu′ + B0u′′′ = 0, (24)

where we have substituted ψ by u = u(ζ) for simplicity,

and the prime here denotes differentiation with respect to

ζ.

Integrating Eq. (24) once, and assuming the boundary

conditions u, u′ and u′′ → 0 for ζ → ±∞, we obtain an

energy-balance-like equation

1

2
u′2 + S (u) = 0. (25)

The evolution of a solitary excitation is analogous to the

problem of motion of a unit mass in a (Sagdeev-like) pseu-

dopotential, given by

S (u) =
1

B0

(−M

2
u2 +

A0

6
u3
)

. (26)

A localized solution exists if d2S/du2
∣

∣

∣

u=0
< 0, i.e. if the

origin in the (u − S (u)) plane is a local maximum (see that

dS/du|u=0 = 0). We have
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d2S/du2 = −M/B0 < 0. (27)

This relation is always satisfied here; the case β = 1 is

meaningless physically (implying no positive ions, hence

no pair plasma) and thus excluded. One concludes that sta-

tionary solitary waves can always propagate in pair plas-

mas (except for λ =
√

2, where finite dispersion fails to

balance the significant nonlinearity).

Assuming the boundary conditions ψ → 0 and

dψ/dζ → 0 at |ζ | → ∞, we obtain a solitary wave solu-

tion of Eq. (25) as

ψ = φ0sech2 (ζ/W) , (28)

where

φ0 = 3M/A0 , W =
√

4B0/M (29)

provide the maximum potential amplitude φ0 and the pulse

width W. The localized pulses predicted here may be either

positive or negative, depending on the sign of the nonlin-

earity coefficient A. The characteristics of these pulses will

be discussed below.

5. An Alternative Solution Method
Going beyond the “traditional” solution of the ZK

equation (17) by quadrature (see in the previous Section),

we shall now adopt an alternative method, namely the im-

proved Modified Extended Tanh-Function (iMETF) tech-

nique [23].

We anticipate a solution in the form

u(ζ) = a0+a1ω+a2ω
2+

b1

α1 + ω
+

b2

(α2 + ω)2
, (30)

with

dω

dζ
= k + ω2, (31)

where a0, a1, a2, b1, b2 and k are arbitrary constants and ω,

α1 and α2 are functions of ζ (to be determined).

The general solutions of the Riccati Eq. (31) are sum-

marized in the following. For k < 0

ω = −
√
−k tanh(

√
−kζ), (32)

or, alternatively, ω = −
√
−k coth(

√
−kζ). For k = 0, ω =

−1/ζ. Finally, for k > 0,

ω =
√

k tan(
√

kζ) or ω = −
√

k cot(
√

kζ). (33)

Combining Eqs. (30) and (31) into (24), a polynomial

equation in ω(ζ) is obtained. Equating the coefficients of ω

to zero will result in an overdetermined system of algebraic

differential equations in terms of the parameters a0, a1, a2,

b1, b2, α1, α2, k, Lx, Ly and M. Combining with (32)–(33),

we obtain a complete new set of solutions, to be presented

in the following.

For k < 0, two different solutions are obtained,

u(ζ) =
M − 8kB0

A0

+
12kB0 tanh2(

√
−kζ)

A0

, (34)

or

u(ζ) =
M − 8kB0

A0

+
12kB0

A0

[

tanh2(
√
−kζ) + coth2(

√
−kζ)
]

.

(35)

For k = 0, we have u(ζ) = M
A0

(

1 − 12B0

ζ2 M

)

. For k > 0,

u(ζ) =
M − 8kB0

A0

− 12kB0 tan2(
√

kζ)

A0

, (36)

or

u(ζ) =
M − 8kB0

A0

−12kB0

A0

[

tan2(
√

kζ) + cot2(
√

kζ)
]

.

(37)

Finally, for k = −1 and M = 4B0, we obtain

u(ζ) =
12B0

A0

(1 − c2)

×
[

1 − 2c

c − tanh ζ
− 1 − c2

(c − tanh ζ)2

]

, (38)

where c is a real function of ζ. Note that A0 � 0 and B0 � 0

is understood everywhere above.

5.1 Pulse-shaped localized solutions via the
iMETF method

Anticipating localized solutions which vanish far from

the origin, we may impose u, u′ and u′′ → 0 for ζ → ±∞,

leading to the constraint k = −M/4B0. In this case, the so-

lution (34) above reduces to the pulse-shaped solution (28)

above, here smoothly recovered via the iMETF method.

However, the method employed in this Section also pro-

vides other types of solutions, in addition to the latter one

(potential pulse), which are discussed in [24].

In order to elucidate the characteristics of the soli-

tary structure represented by Eq. (28), we have numerically

analyzed the potential amplitude u0 and investigated how

the phase velocity λ and the ion-to-electron density ratio β

change the profile of the maximum potential perturbation.

Our main results are presented below.

The dependence of the wave propagation speed λ

(given by Eq. (15)) on the density (β) and temperature (σ)

ratios is analyzed in Fig. 1. The phase velocity λ is affected

by the ion-to-electron density ratio β, and in fact decreases

with increasing β. Therefore, in the case of a positive back-

ground species, the higher the fixed species’ density (or,

the more ions present in e-p-i plasmas), the slower soli-

tary waves will be. The opposite effect (faster excitations)

should occur, the higher negative background species con-

centration is. Supersonic excitations should occur, gener-

ally, for realistic (small) values of β (say, β < 0.6 − 0.7;
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Fig. 1 The solitary wave velocity λ (given by Eq. (16)) is de-

picted vs. β and σ. Lighter regions in (b) correspond

to higher values of λ. The right separatrix (thick line)

shows the sonic limit |λ| = 1, attained for β ≃ 0.6 - 0.7

(unlikely, physically). Realistic (small) values of β corre-

spond to supersonic excitations. The left line corresponds

to |λ| =
√

2, separating regions of positive from negative

A (and thus, potential pulse polarity; see in the text).

see Fig. 1 (b)); however, if the positive ion concentration

exceeds, say, β ≃ 0.6 - 0.7, subsonic excitations may

propagate in the plasma. The positive-to-negative ion (or,

positron-to-electron in e-p-i plasmas) temperature ratio σ

also affects the phase velocity λ, yet rather more for small

(absolute) values of β; see Fig. 1 (b). For high values of β

(> 0.6 approximately), σ does not quite affect λ. Admit-

tedly, values of β are expected to be small (since species

3 is here introduced as a minority background population),

so high values of β (and subsonic excitations) are rather

unlikely to occur in doped pair plasmas.

From Fig. 2, it is seen that increasing the propagation

speed λ leads to a decrease in the soliton amplitude u0 for a

given (any, fixed) value of the ion-to-electron density ratio

β. At a critical velocity λ =
√

2, the sign of A – and hence

of the pulse amplitude u0 – shifts to negative, so the effect

Fig. 2 The soliton amplitude u0 (as given in Eq. (29)) is depicted

against β and λ, for Lx = 0.3. The negative λ (1st frame)

and positive λ (2nd frame) are separated by the curve λ =√
2 (see in the text). Light-shaded regions in the 3rd frame

correspond to higher values of the soliton amplitude u0.

is inversed: higher speed λ then corresponds to a higher

negative pulse amplitude (i.e., absolute value of u0). The

ratio β also has a two-fold effect on the potential amplitude

u0, i.e., for low propagation speed λ < 1.44 the amplitude
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Fig. 3 The soliton width W (defined in Eq. (29)) is depicted vs.

β and λ, for Lx = 0.3, Ω0 = 0.1, and ωc = 0.3. Light-

colored regions in the lower frame correspond to higher

values of W.

increases as the positive-to-negative ion density ratio β in-

creases. However, for high propagation speed λ > 1.44,

increasing β leads to an increase of the soliton amplitude

u0.

The dependence of the spatial extension (width) W on

the phase velocity λ, the ion-to-electron density ratio β, the

rotation frequency Ω0 and the electron (positron) gyrofre-

quency ωc are displayed in Figs. 3 and 4. In Fig. 3, we see

Fig. 4 The soliton width W (defined by Eq. (29)) against Ω0 and

ωc is depicted, for β = 0.4, λ = 0.6, and Lx = 0.7. Light-

colored regions in the lower frame correspond to higher

values of W.

that increasing the propagation speed λ leads to a decrease

of the width W, for low λ (< 0.6 approximately; though

rather unlikely to occur: see discussion above). For higher

λ (and everywhere in the supersonic region), by increasing

the speed λ the width increases. Increasing the positive-

to-negative ion density ratio β leads to a decrease of the

soliton width, in both cases. For certain values of λ (low

phase speed) and β (high ion-to-electron density ratio), one

can notice a reduction of the width; see Fig. 3 (c). In Fig. 4,

we analyze the effect of the rotation frequency Ω0 and of

the gyrofrequency ωc on the soliton width W. We see that

the width W is affected by both the rotation frequency Ω0

and the cyclotron frequency ωc. In particular, an interest-

ing effect is witnessed when ωc − 2Ω0 → 0, where the

width W diverges. This occurs when the dispersion is neg-

ligible, and thus fail to balance nonlinearity; our solutions

are not expected to occur in that region, i.e. near the white

region in Fig. 4 (lower frame).

It is also appropriate to analyze the nonlinearity coef-

ficient A in the β − σ plane. Eliminating λ, it is straight-
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Fig. 5 The critical temperature ratio threshold σcr,1 is shown

against β. The shaded (white) region below (above) the

curve corresponds to values ofσwhere A is positive (neg-

ative), i.e. where positive (negative) potential pulses are

predicted to occur.

forward to show that A (= A(σ, β) then) changes sign, for

given say β, at a critical temperature ratio

σcr,1 = 1/1 − b .

The value of σcr,1 increases with β everywhere; see in

Fig. 5. Recall that positive/negative values of β correspond

to a positive/negative background species charge (so, only

the positive semi-axis is relevant in e-p-i plasmas, for in-

stance). The interpretation of Fig. 5 is straightforward: for

values of σ above σcr,1, A is negative, and thus negative

pulses will occur, while for σ below σcr,1, A > 0. For small

β (minority background species), σcr,1 is in the vicinity of

1, as expected. T herefore, in “pure” p.p., say (β = 1),

a temperature mis-balance T+ > T− will lead to negative

pulses, and vice versa. Increasing the concentration of pos-

itive dust leads to positive pulses occuring in an extended

region, while increasing the concentration of negative dust

shrinks that region.

6. Critical Plasma Compositions
It is obvious, from expressions (18) and (19) (in com-

bination with (15, 16), for a rigorous study) that the non-

linearity coefficient may acquire very small values if δ and

σ take values near unity, or for |λ| in the vicinity of
√

2

(which is the same; cf. (16)). In that region, nonlinearity

may fail to balance dispersion, so higher order nonlinear-

ity may have to be included in the description. Physically,

this seems to suggest that for near-symmetric (T− ≈ T+)

“pure” (n− ≈ n+) pair plasmas (or ideal e-p plasmas), i.e.

unless a finite (non-negligible) concentration of the “3rd”

background species is present, the above results may not

be valid. Therefore, it may be appropriate to investigate

the situation when higher-order nonlinearity is also taken

into account.

Plasmas at critical compositions, where the quadratic

nonlinearity coefficient acquires negligible values, may re-

quire a different perturbative scaling. A detailed discussion

can be found e.g. in [25]. In this Section, we shall adopt

this scenario, by adjusting our parameter scaling appropri-

ately.

We shall adopt the stretched variables

X = ǫ(x − λt) , Y = ǫy , τ = ǫ3t , (39)

and will use the expansion (11), together with

uα = ǫ
2u(1)
α + ǫ

3u(2)
α + ǫ

4u(3)
α + . . . . (40)

Substituting from (39), (11) and (40) into the fluid evo-

lution equations, the lowest-order in ǫ yields the relations

(13)–(14). The higher orders in ǫ yields a set of expres-

sions (here omitted) relating the 2nd and 3rd order contri-

butions to the first-order potential contribution ψ.

Eliminating the 3rd-order variables, we obtain an ex-

tended Zakharov-Kuznetsov (EZK) equation in the form

∂ψ

∂τ
+ Aψ

∂ψ

∂X
+ Dψ2 ∂ψ

∂X

+
∂

∂X

(

B
∂2ψ

∂X2
+C
∂2ψ

∂Y2

)

= 0, (41)

where the coefficients A, B and C are given by (18)–(20)

above; the cubic nonlinearity coefficient D reads

D =
3

2
B

[

δλ2(5λ2 + 8δσ)

(λ2 − 2δσ)5
+
λ2(5λ2 + 8)

(λ2 − 2)5

]

. (42)

7. Solution of the EZK Equation
The EZK equation (41) may be solved by using the

traveling-wave transformation introduced in Sec. 4 (refer

to the definitions therein), and integrating. Assuming van-

ishing boundary conditions, we have

1

2

(

dψ

dζ

)2

+ S (ψ) = 0. (43)

The evolution of a localized excitation is therefore analo-

gous to the problem of motion of a unit mass in the pseu-

dopotential

S (u) =
1

B0

(−M

2
u2 +

A0

6
u3 +

DLx

12
u4
)

. (44)

Here, A0, B0 and Lx are as defined in Sec. 4 above. Com-

pare to (26) to see the contribution of the cubic nonlinearity

via the last term in the rhs.

We shall now discuss the solutions of Eq. (44).

7.1 Existence conditions for a solitary-wave
solution

A localized solution of Eq. (44) exists if S ′′(ψ = 0) <

0. We thus obtain an explicit condition for solitary wave

existence. Equation (44) can take the form

(

dψ

dζ

)2

= −D
6R
ψ2
(

ψ2 + 2A
D
ψ − 6M

DLx

)

= −D
6R
ψ2(ψ − ϕ1)(ψ − ϕ2), (45)
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where ϕ1/2 = − 1
D

(A ±
√
∆) , ∆ = A2 + 6MD

Lx
. We are

looking for stationary soliton solutions, obeying ψ → 0

and ψ′(ζ) → 0 at |ζ | → ∞. These are found by integrating

Eq. (45) appropriately. In the case2 A > 0 and D > 0, the

details of the solution method can be found in [26] and are

thus omitted here. One (then) obtains the (two) expressions

φ
(1)

+/− =
6M

D

[

ϕ1/2 sinh2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

2

√

M

R
ζ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

− ϕ2/1 cosh2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

2

√

M

R
ζ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

]−1

, (46)

which represent, respectively (for the upper/lower sub-

scripts), positive and negative pulse-shaped excitations for

the electric potential. Note that, interestingly, although for

positive A, say, only positive pulse solitons would be pre-

scribed by the ZK Eq. (see previous Section), here both op-

tions in (46) are possible, provided that A2 + 6MD
Lx
≥ 0 is

ensured, for reality. The same is true for negative3 A.

7.2 Double-layer (kink) solutions
For a kink-shaped potential double-layer (DL) solu-

tion to exist, the potential S (ψ) should take negative val-

ues among ψ = 0 and some double root φm. We therefore

impose S (u) = S ′(u) = 0 at u = 0 and at u = φm (to

be defined), in addition to S ′′(0) < 0. Applying constant

boundary conditions, we obtain the condition for the exis-

tence of double layers,

φm = −A/D and M = −A2Lx/(6D), (47)

i.e., ∆ = 0 (see above). The DL propagation speed (correc-

tion) M is prescribed by (47). The pseudopotential in (44)

now takes the form

V(ψ) =
D

12R
ψ2(ψ − φm)2. (48)

See that D < 0 must be imposed for reality, viz. V(ψ) < 0.

Therefore, (47) suggests that the double root φm [of S (ψ),

corresponding to the potential polarity: see (48)] bears the

same sign as the nonlinearity coefficient A (i.e., ψ > 0 in

(48) if A > 0 – as in Fig. 8 – and vice versa). In regions

where D < 0 and A > 0, positive DLs (kinks) may occur,

while for D < 0 and A < 0 negative DLs (antikinks) exist.

The DL solution reads (recall that D < 0 < R)

ψ =
φm

2

[

1 ± tanh(ζ/WDL)
]

, (49)

where the width of the DL is WDL = 2
√
−6RD/|A| .

2Note that only the case A > 0 and D > 0 was studied in [26]. We

therefore consider the solution (46) for D > 0 here. The general case

will be investigated in a more detailed report, to appear. (The assumption

A > 0 in fact poses no restriction: see the next footnote.)
3In the case A < 0, one can use the transformation ψ → −ψ in the

ZK Eq. (41) to obtain A → −A > 0 in the new equation thus obtained,

and thus be led to the same results (same expressions, eventually slightly

different quantitative interpretation).

Let us analyze D in the β − σ plane. Eliminat-

ing λ from (16) (as explained above), it is straight-

forward to show that D (= D(σ, β) then) is, in fact,

∼ −(σ − σcr,2)/(σ − σcr,1), and thus changes sign, for

given say β, at σ = σcr,1(β) (defined previously) and

also at a second temperature ratio threshold σcr,2(β) =

(4 − 22β + 22β2 − 9β3)/(4 + 10β − 10β2 + 5β3), which is

depicted in Fig. 6. The interpretation is straightforward,

upon inspection of Figs. 5 and 6. Four regions are distin-

guished in Fig. 7. In the upper white region, both D and A

are negative, and thus negative double layers will occur. In

the lower white region, D < 0 < A, and thus positive dou-

ble layers will occur (in addition to positive pulses). See

that this happens up to a certain value β ≃ 0.23. D is posi-

tive, and thus DL existence is excluded, for σ values in the

right shaded area in Fig. 7 and in the left shaded area (lo-

calized pulses do exist, nevertheless, in these regions; see

above). For small β (minority background species), σcr,1 is

in the vicinity of 1. Therefore, in “pure” p.p., say (β = 1),

a temperature perturbation (such that T+ � T−) will en-

Fig. 6 The temperature ratio threshold σcr,2 is depicted vs. β.

The shaded region corresponds to values of σ where the

quantity σ − σcr,2 is negative. Since, in fact, D ∼ −(σ −
σcr,2)/(σ − σcr,1), combining with Fig. 6, one obtains the

regions where D is negative, i.e. where double layers may

exist.

Fig. 7 The combination of Figs. 5 and 6 is shown. No DLs exist

in the shaded areas, while negative (positive) DLs exist in

the upper (lower) white regions.
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Fig. 8 The double layer excitation (49) (for the upper plus

sign, here) is depicted (arbitrary parameter variables), in

its kink/antikink form (continuous/dashed line, respec-

tively).

able the occurrence of double layers (by shifting, say, the

original state (0, 1) vertically in Fig. 7), while a positive

background species variation (β � 0) might then destabi-

lize the excitations occurring in the plasma (moving across

the separatrix).

8. Discussion and Summary
We have studied the nonlinear propagation of electro-

static excitations in rotating magnetized doped pair-ion (or,

electron-positron-ion) plasmas. A two-fluid plasma model

was employed, incorporating both Lorentz and Coriolis

forces, to take into account the interplay between the gy-

roscopic (Larmor) frequency ωc and the intrinsic rotation

frequency Ω0.

A Zakharov-Kuznetsov (ZK) type equation was de-

rived for the evolution of the electric potential perturbation.

Assuming an arbitrary direction of propagation, with re-

spect to the magnetic field, we have derived the exact form

of pulse-shaped solutions, and discussed their characteris-

tics. It was shown that the Larmor and mechanical rotation

affect the pulse dynamics via a parallel-to-transverse mode

coupling diffusion term in the ZK equation, which in fact

diverges at ωc → ±2Ω0. Pulses collapse at this limit, as

nonlinearity fails to balance dispersion.

The analysis was complemented by investigating crit-

ical plasma compositions, in which the (quadratic) nonlin-

earity vanishes, so one needs to resort to higher order non-

linear theory. An extended ZK equation was derived and

its solutions were discussed.

A parametric analysis was carried out, as regards the

effect of the pair-plasma composition (background number

density), species temperature(s) and the relative strength

of rotation to Larmor frequencies. It was shown that

the plasma composition (meaning the pair-ion density and

temperature balance, essentially) affects the existence and

the dynamics of solitary waves both qualitatively and quan-

titatively. It is therefore suggested that the occurrence

of impurities or pair-component asymmetry (either inten-

tional or intrinsic) should be considered in p.p. experi-

ments, for rigor.

Our results are of relevance in pair-ion (fullerene) ex-

periments, wherein a small population of massive charged

defects may modify the dynamics dramatically. They may

also be relevant in astrophysical environments, in particu-

lar in pulsar magnetospheres, where a co-existence of elec-

trons, positrons and ions in a rotating plasma may occur.
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