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Abstract The regular and chaotic vibrations of a non-

linear structure subjected to self-, parametric, and exter-

nal excitations acting simultaneously are analysed in

this study. Moreover, a time delay input is added to the

model to control the system response. The frequency-

locking phenomenon and transition to quasi-periodic

oscillations via Hopf bifurcation of the second kind

(Neimark–Sacker bifurcation) are determined analyt-

ically by the multiple time scales method up to the

second-order perturbation. Approximate solutions of

the quasi-periodic motion are determined by a second

application of the multiple time scales method for the

slow flow, and then, slow–slow motion is obtained.

The similarities and differences between the van der

Pol and Rayleigh models are demonstrated for regu-

lar, periodic, and quasi-periodic oscillations, as well as

for chaotic oscillations. The control of the structural

response, and modifications of the resonance curves

and bifurcation points by the time delay signal are pre-

sented for selected cases.

Keywords Nonlinear vibrations · Self-excited

system · Multiple time scales method · Time delay ·
Frequency locking · Quasi-periodic oscillations

J. Warminski (B)

Department of Applied Mechanics, Faculty of Mechanical

Engineering, Lublin University of Technology,

Nadbystrzycka 36, 20-618 Lublin, Poland

e-mail: j.warminski@pollub.pl

1 Introduction

Interactions among different vibration types can occur

in various engineering systems. Classical examples are

vortex-induced vibrations occurring owing to fluid flow

[1], which may interact with other vibrations generated

by different mechanisms, such as parametric excitation

or external loading. Under specific conditions, different

vibration interactions may lead to dangerous resonant

states. Interacting self- and parametric vibrations have

led to large riser motion being observed in the offshore

industry [2,3]. The huge riser vibration was caused

by the so-called frequency-locking phenomenon. Self-,

parametric, and external oscillations have also been

studied for a tower under turbulent flow [4,5]. An

interesting example of fluid structure interactions is

rotating composite helicopter blades [6], which per-

formed complex bending–twisting oscillations owing

to structural couplings. By adding aerodynamic forces

and considering the rotation of blades as well as possi-

ble flight manoeuvres, interactions may occur between

self-excitation and other possible vibrations, such as

parametric or external excitations.

An in-depth theoretical study of self- and parametric

systems has been presented by Tondl and co-authors.

The effect of cancelling self-excitation by parametric

vibrations was presented in [7,8]. Detailed bifurcation

analysis through Hopf or Neimark–Sacker bifurcations

leading to the quenching of self-excited systems was

presented by Verhulst [9] and for self-excited auto-

parametric models by Abadi in a Ph.D. thesis [10].
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In the papers of [11,12], new phenomena were

detected for nonlinear systems with an external force

added to a vibrating self-parametric oscillator. If the

frequency of the added force was in the ratio of 1:2

with respect to the frequency of the parametric excita-

tion, the resonance curve changed shape from classical

to new, with an internal loop. It has been demonstrated

that, in the selected frequency domain, up to five steady

states may exist, but stability analysis has indicated that

only two of these are stable. This fact has also been con-

firmed for a two-degree-of-freedom (2-DOF) model for

the principal parametric resonances around the first and

second natural frequencies [13].

To control the structural response, a model with

a time delay was considered with application to the

MEMS oscillator [14]. The delay signals (the time

delay displacement and velocity) were considered in

the study to control the system dynamics. It has been

demonstrated that the existence of the internal loop

inside the resonance curve of the MEMS device can

be controlled by a time delay. Appropriate selection

of the gain and time delay may completely reduce or

create the loop.

The above-mentioned studies have mainly dealt with

the analytical determination of the periodic solutions,

bifurcation points, and scenarios of transition from

periodic to quasi-periodic oscillations through Hopf

(or Neimark–Sacker) bifurcation. However, in recent

years, the interactions among various vibration types

have been of interest in terms of energy harvesting

[15,16]. Authors have considered van der Pol systems

with a time-varying delay amplitude coupled with an

electromagnetic harvester induced by self-excitations

and oscillating near the main parametric resonance. A

delayed Mathieu–van der Pol–Duffing oscillator cou-

pled with a piezoelectric mechanism was presented in

[17]. To optimise the harvested energy, it was necessary

to determine not only the periodic solutions, but also

the quasi-periodic oscillations of the harvester. Quasi-

periodic solutions have been determined by apply-

ing the multiple time scales method twice, firstly to

obtain modulation equations representing the slow flow

and secondly to obtain periodic solutions of the slow

flow. The periodic solutions of the slow flow repre-

sent the quasi-periodic motion of the original system.

This method has been applied to an externally excited

Mathieu oscillator with quadratic and cubic nonlinear-

ities [18] and subsequently to systems with time delay

[19], which has previously been studied for periodic

response in the paper of [20].

In the above-mentioned literature, self-excited oscil-

lations were studied based on a phenomenological

model represented by van der Pol or equivalent

Rayleigh nonlinear damping. In both self-excitation

models, for the appropriate selection of parameters, the

equilibrium position of the system becomes unstable

and the solution tends towards a limit cycle (LC), which

is stable in such a case. This type of self-excitation is

known as soft, in contrast to the so-called hard self-

excitation with an unstable LC. In the latter case, the

solution tends towards a stable equilibrium or, under

certain initial conditions, approaches infinity. Thus,

hard self-excitation is often referred to as catastrophic.

Another method of self-excitation modelling is to apply

the time delay signal, which may also generate an LC.

Therefore, self-excited vibrations are also modelled by

differential equations with a time delay, for example in

the studies of [21–23].

In this study, we investigate a 1-DOF Duffing-type

oscillator, which includes all possible excitation types,

self-excitation, parametric terms, external forcing, and

a time delay signal, which can be treated as a con-

trol input. Furthermore, we compare two different self-

excitation types given by van der Pol or Rayleigh terms

and demonstrate their differences. The solution of such

a general model is determined analytically by the mul-

tiple time scales method, taking into account the peri-

odic motion (slow flow) and quasi-periodic oscillations

(slow–slow flow). The studied general model can be

simplified by equalling certain parameters to zero, and

then, the simpler cases can easily be compared with

results already published in the literature. This study is

a continuation of the paper [14]; however, in this case,

the model considers van der Pol or Rayleigh damping

and nonlinear parametric excitation producing higher-

order terms. The analytical solutions are determined

for periodic as well as quasi-periodic oscillations.

2 Model

Let us consider a model of a structure reduced to an

oscillator with 1-DOF. Despite its structural simplic-

ity, we assume that vibrations can be induced by three

different mechanisms: self-excitation arising from non-

linear damping, parametric excitation caused by peri-

odically varying stiffness, and external periodic force
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Nonlinear dynamics of a driven self-excited oscillator 37

Fig. 1 Nonlinear model of system with self-, parametric, and

external excitations as well as time delay

imposed on the oscillator. All three of these vibra-

tion types may interact, in which case various impor-

tant phenomena may occur. Furthermore, we assume

that there exists an additional time delay signal, which

is considered as an input of the closed-loop control

(Fig. 1). If the gain g1 of the input signal is equal to

zero, the dynamics of the 1-DOF system (the plant)

is not controlled. However, by changing the gain g1

and time delay τ we may influence the plant dynamics,

reduce the oscillations, or induce complex vibrations.

The dynamics of the nonlinear oscillator is governed

by a nonlinear ordinary differential equation given in

the dimensionless form

ẍ + fd(x, ẋ) +
(

ω2
0 − μ cos 2�t

) (

x + γ x3
)

= f cos ωt + g1x (t − τ) . (1)

We assume nonlinear, periodically varied stiffness of

the structure, defined by the parameter μ and fre-

quency 2�, which, owing to the coupling with linear

and nonlinear components of the stiffness character-

istic, generates linear and nonlinear parametric excita-

tion terms. The natural linear frequency of the oscillator

is defined by ω0 and normalised to the dimensionless

value ω0 = 1. However, in the further analytical com-

putations, we maintain the notation ω0 to observe its

influence in the analytical solutions. Cubic nonlinear-

ity is represented by the dimensionless parameter γ .

As mentioned previously, the oscillator is also driven

by an external periodic force with amplitude f and fre-

quency ω and additionally controlled by a time delay

input with gain g1 and delay τ .

The damping of the system is considered as the non-

linear function fd(x, ẋ), producing self-excited vibra-

tions. In the literature, there are two commonly used

phenomenological models of self-excited oscillations,

namely van der Pol or Rayleigh models, which are

defined by the nonlinear functions fv = (−αv+βvx2)ẋ

and fR = (−αR + βR ẋ2)ẋ , with subscripts v and R,

respectively. In the literature, both models are often

treated as equivalent. In fact, starting with the Rayleigh

model

ẍ +
(

−αR ẋ + βR ẋ3
)

+ ω2
0x = 0

and differentiating it with respect to time, we obtain

...
x +

(

−αR ẍ + 3βR ẋ2 ẍ
)

+ ω2
0 ẋ = 0.

Substituting ẋ = z, we have

z̈ +
(

−αv + βvz2
)

ż + ω2
0z = 0 .

It is observed that van der Pol damping can be treated

as an equivalent Rayleigh model if αv = αR and

βv = 3βR . However, the transformation has been per-

formed for linear stiffness. If we consider a nonlinear

system, such as that in the study, expressed by Eq. (1),

the equivalent replacement of the damping fd(x, ẋ)

from Rayleigh to van der Pol, without any transforma-

tion of other terms, does not guarantee the equivalence

of both models. Thus, we study the solution to Eq. (1)

in two variants, for Rayleigh fd = fR or van der Pol

fd = fv nonlinear damping, with no changes in the

remaining nonlinear terms.

3 Analytical approach: multiple time scales

method

We assume that the differential equation of motion is

not strongly nonlinear. Therefore, the nonlinear terms,

damping, external, and parametric excitations, as well

as time delay, can be expressed by the formal small

parameter ε:

ẍ + ω2
0x = ε

[

f̃d(x, ẋ) + μ̃x cos 2�t − γ̃ x3

+ f̃ cos ωt + g̃1x (t − τ)

]

+ ε2γ̃ μ̃x3 cos �t , (2)

where

f̃d(x, ẋ) = f̃v(x, ẋ)

= (−α̃v + β̃vx2)ẋ

for the van der Pol model
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and

f̃d(x, ẋ) = f̃R(x, ẋ)

= (−α̃R + β̃R ẋ2)ẋ for the Rayleigh model.

The coefficients in Eq. (2) are expressed by the for-

mal small parameter α = εα̃, β = εβ̃, γ = εγ̃ ,

μ = εμ̃, f = ε f̃ , and g1 = εg̃1. To simplify the

notation, we omit the ‘tilde’ in further analytical com-

putations.

Owing to nonlinear parametric excitation, the sys-

tem is excited parametrically in both the first and sec-

ond perturbation orders; therefore, an analytical solu-

tion should be sought, at least up to the second approx-

imation order.

The system response depends on the excitation fre-

quency, and in the case of parametric and external exci-

tations acting simultaneously, we may have an infi-

nite number of combinations of parametric and exter-

nal excitations leading to parametric and/or external

resonances [24]. The parametric resonances occur for

m� ≈ nω0, where n and m are natural numbers.

In this study, we concentrate on the principal para-

metric resonance, which is the most essential from

a practical point of view. Therefore, we assume that

� ≈ ω0. Furthermore, we assume excitation of the

external force ω = �. This means that parametric

and external terms excite the system in the ratio of 2:1

around its linear natural frequency ω0. Thus, for the

accepted assumptions, we can write

�2 = ω2
0 + εσ1, (3)

where σ1 is the frequency detuning parameter.

To determine the analytical solution, we apply the

multiple time scales method. According to Nayfeh [25,

26], the solution is expressed in a series of the small

parameter

x(t, ε) = x0(T0, T1, T2) + εx1(T0, T1, T2)

+ ε2x2(T0, T1, T2)

xτ (t, ε) = x0τ (T0, T1, T2) + εx1τ (T0, T1, T2)

+ ε2x2τ (T0, T1, T2), (4)

where x j (T0, T1, T2) and x jτ (T0, T1, T2) denote the

solution and delayed solution, respectively, in the

zeroth, first, and second perturbation orders ( j =
0, 1, 2). According to this method, the time is also

expressed by scales of the small parameter

t = T0, T1 = εt, T2 = ε2t, (5)

where T0 is the fast time scale (fast flow) and T1 and

T2 are the slow time scales (slow flow).

The time definition (5) yields new definitions of the

first- and second-order time derivatives

d

dt
=

∂

∂T0
+ ε

∂

∂T1
+ ε2 ∂

∂T2
= D0 + εD1 + ε2 D2

d2

dt2
= D2

0 + 2εD0 D1 + ε2
(

2D0 D2 + D2
1

)

, (6)

where Dk
j = ∂k

∂T j
k denotes the kth-order partial deriva-

tive with respect to the T j time scale.

Solutions are sought near the principal parametric

resonance (3). Thus, substituting (4) into (2) and con-

sidering the definitions of the time scales (5) and time

derivatives (6), we obtain a set of successive ordinary

differential equations in the zeroth, first, and second

perturbation orders:

D2
0 x0 + �2x0 = 0 (7)

D2
0 x1 + �2x1 = σ1x0 − 2D0 D1x0 + Fd0

+μx0 cos 2�T0 − γ x3
0

+ f cos �T0 + g1x0τ (8)

D2
0 x2 + �2x2 = σ1x1 − 2D0 D1x1 − 2D0 D2x0

− D2
1 x0 + Fd1 − 3γ x2

0 x1 + μx1 cos 2�T0

+μγ x3
0 cos 2�T0 + gx1τ . (9)

The functions Fd0 and Fd1 are defined in “Appendices

A and B” for the van der Pol (40) and Rayleigh (48)

models, respectively.

The solution to Eq. (7) takes the form

x0(T0, T1, T2) = A(T1, T2) exp(i�T0)

+ Ā(T1, T2) exp(−i�T0)

x0τ (T0, T1, T2) = A(T1, T2) exp [i(�T0 − τ)]

+ Ā(T1, T2) exp [−i(�T0 − τ)] ,

(10)

where i is the imaginary unit, A is the complex ampli-

tude, and Ā is its complex conjugate.

Following substitution of (10) into (8) and grouping

the exponential terms, we obtain

D2
0 x1 + �2x1

= ST1ei�T0 +
(

1

2
μA − γ A3 + Q3

)

e3i�T0 + cc,

(11)

where cc denotes the complex conjugate functions for

the right-side terms and ST1 represents the secular gen-

erating terms of the first order, which must vanish to
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Nonlinear dynamics of a driven self-excited oscillator 39

eliminate the secular terms in the solution. Thus, sub-

stituting ST1 = 0 yields

2i�D1 A − σ1 A − Q1 + 3γ A2 Ā

−
1

2
μ Ā − g1�Ae−iτ −

1

2
f = 0. (12)

The functions Q1 and Q3 are defined by (41) and (49)

for the van der Pol and Rayleigh models, respectively.

Next, for ST1 = 0, we determine the particular solu-

tions to Eq. (11):

x1 =
1

16�2

(

2γ A3 − μA − 2Q3

)

e3i�T0 + cc. (13)

Substituting solutions (13) into (9), we obtain

D2
0 x2 + �2x2 = N ST2 + ST2ei� T0 + cc, (14)

where N ST2 are nonsecular generating terms of the

second order and, for the sake of brevity, are not

reported in this paper, while ST2 are secular generating

terms which we consider as equal to zero:

D2
1 A + 2i�D2 A + P1 +

1

32�2
μ2 A +

3

8�2
γ 2 A3 Ā2

−
1

2
γμA

(

A2 + 3 Ā2
)

(

1 +
1

8�2

)

= 0, (15)

with P1 defined by (42) and (50) for both damping

models.

Applying the so-called reconstitution method [25,

27,28], based on Eqs. (12) and (15), we reconstruct the

ordinary differential equation describing the complex

amplitudes A:

2i� Ȧ = ε

(

G1+
1

2
μ Ā−3γ A2 Ā+σ1 A1+

1

2
f +g1e−iτ

)

+ ε2

{

G2 +
1

2�2
A

(

1

2
σ 2

1 −
3

16
μ2

+
15

4
γ 2 A2 Ā2 − 3γ σ1 AĀ

)

+
1

2
γμA

[

1

8�2

(

7A2−3 Ā2
)

+A2+3 Ā2

]

+
1

4�2
f

[

1

2
σ1−

1

4
μ+3γ A

(

1

2
A+3 Ā

)]

+
1

2�2
g1

[(

1

4
f +σ1 A+

1

4
μ Ā−

9

2
γ A2 Ā

)

e−iτ

+ Ā

(

−
1

4
μ +

3

2
γ A2

)

eiτ

]

+
1

4�2
g2

1 Ae−2iτ

}

, (16)

where G1 and G2 are defined by (43) and (51).

The complex amplitude A is expressed in the polar

form:

A =
1

2
aeiφ, (17)

with a and φ as the amplitude and phase, respectively.

Substituting (17) into (16) and separating the real and

imaginary parts, we obtain the modulation equations

for the amplitude a and phase φ, the so-called slow

flow, in the form

2�
da

dt
= ε

(

W1 −
1

2
aμ sin 2φ − g1a sin τ − f sin φ

)

+ε2

{

W2 +
1

4
μγ a3

(

5

8�2
− 1

)

sin 2φ

+
1

4�2
f

(

1

2
μ − σ1 +

9

4
γ a2

)

sin φ

+
1

2�2
g1

[

a

(

−σ1 +
3

2
γ a2

−
1

2
μ cos 2φ

)

sin τ −
1

2
f sin φ cos τ

]

−
1

4�2
g2

1a sin 2τ

}

(18)

2�a
dφ

dt
= ε

(

3

4
a3γ − aσ1 −

1

2
aμ cos 2φ

− g1a cos τ − f cos φ)

+ ε2

{

W3 +
3

32�2
aμ2 +

3

8�2
a3γ σ1

−
1

4�2
aσ 2

1 −
15

128
γ 2a5

−
1

2
μγ a3

(

1

8�2
+ 1

)

cos 2φ

+
1

4�2
f

(

1

2
μ − σ1 +

3

4
γ a2

)

cos φ

+ g1

[

1

2�2
a

(

3

4
γ a2 − σ1 −

1

2
f cos φ

)

cos τ

+
1

2
(aμ sin 2φ + f sin φ) sin τ

]

−
1

4�2
g2

1a cos 2τ

}

, (19)

where W1, W2, and W3 are defined by (44) and (52).

The approximate solution is constructed based on

Eq. (4). Applying (17) and thereafter transforming the

exponential into trigonometric functions, the final form

of the solution is obtained:

x (t) = a cos (�t + φ)

−
1

16�2
aε [μ cos (3�t + φ)
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−
1

2
γ a2 cos 3 (�t + φ)

+ C1 sin 3 (�t + φ)] , (20)

with C1 provided in (45) and (53). The amplitude a

and phase φ in the above solution are defined by the

modulation equations (18) and (19). In the steady state,
da

dt
= 0 and

dφ

dt
= 0, and thus, by equalling the right-

hand sides of Eqs. (18) and (19) to zero, we obtain

the amplitude and phase for the steady-state solution,

which correspond to the periodic oscillations of the

original system.

4 Steady-state periodic oscillations

The system dynamics can be analysed based on the

modulation equations (18) and (19). However, we begin

from the modulation equations, taking into account

the first-order perturbation, and then, we move to the

second-order approximation. Therefore, in the first

step, we neglect terms of the ε2 order in the modu-

lation equations (18) and (19). For a steady state, we

obtain

W1 −
1

2
aμ sin 2φ − g1a sin τ = f sin φ

3

4
a3γ − aσ1 −

1

2
aμ cos 2φ

− g1a cos τ = f cos φ. (21)

The above equations allow for preliminary analysis of

the system and understanding the meaning of the terms

responsible for the self-excitation (parameters α and

β included in the variable W1), parametric excitation

(coefficient μ), external force (coefficient f ), and time

delay (gain g1 and delay τ ). The above set of equations

can be solved analytically for the case without external

force, namely f = 0. By eliminating the functions

sin 2φ and cos 2φ, we can obtain the resonance curve

equation

a4

(

9

16
γ 2 + U1

)

+ a2

[

U2 −
3

2
γ (σ1 + g1 cos τ)

]

+ g2
1 + σ 2

1 −
1

4
μ2 + U3 = 0, (22)

with the coefficients U1, U2, and U3 defined in (46)

for the van der Pol model and in (54) for the Rayleigh

model. From Eq. (22), we can determine the amplitude

of oscillations in a steady state for a self-parametric

system with time delay. Setting a = 0 in Eq. (22), we

can also determine the bifurcation points of the trivial

(a = 0) into nontrivial (a > 0) solutions, defined as

�1,2 =

√

2ω2
0 − α2 − 2g1 cos τ ∓

√
�

2
, (23)

where

� =
√

α4+μ2−4α2ω2
0+4g1α(α cos τ+2� sin τ)−2g2

1(1− cos 2τ).

(24)

The bifurcation points of the trivial into nontrivial solu-

tions exist if � > 0; thus, we obtain

μ≥
√

α2(4ω2
0−α2)−4g1α(cos τ+2� sin τ)+2g2

1(1− cos 2τ).

(25)

We note that condition (25) does not depend on the β

parameters, which means that it does not depend on

a model of self-excitation, and the conditions of exis-

tence are the same for the van der Pol and Rayleigh

models.

In the case without time delay, namely g1 = 0, we

obtain

�1,2 =

√

√

√

√
2ω2

0 − α2 ∓
√

α4 + μ2 − 4α2ω2
0

2
, (26)

and assuming that α is small, which results in α4 ≈ 0,

we obtain the approximate condition for the existence

of the bifurcation points

μ

α
≥ 2. (27)

For the complete model with self-, parametric, and

external force, we must solve the set of Eq. (21). Then,

the solution depends on all parameters of the system

and has been determined numerically.

5 Slow–slow motion of self-excited oscillator with

time delay, and parametric and external

excitations

Modulation equations allow for determining oscilla-

tions in a steady state by equalling them to zero. The

obtained fixed points correspond to the periodic solu-

tions of the original system (1). Nevertheless, the mod-

ulation equations (18) and (19) also provide infor-

mation on the transient behaviour or periodic motion

of the slow motion, which corresponds to the quasi-

periodic oscillations of the original system. Therefore,

123



Nonlinear dynamics of a driven self-excited oscillator 41

using Eqs. (18) and (19), we may attempt to deter-

mine the slow motion of the slow flow, the so-called

slow–slow motion. Thus, we expect to obtain analyti-

cal solutions for the quasi-periodic oscillations, which

play an important role in the studied problem. For this

purpose, we apply an extension of the multiple time

scales method proposed by Belhaq and Houssni in [18]

for parametric and externally excited systems and later

also applied to the oscillator with time delay [19] or a

more advanced model of a self-excited MEMS device

[16,17].

Returning to the original definitions of the param-

eters involving ε, the modulation equations (18) and

(19) are rewritten in the following forms:

ȧ = S1a + S8a cos 2φ + S9a sin 2φ + 3S3a2 sin φ

+ S16a2 cos φ + S4a3 + S10a3 cos 2φ

+ S11a3 sin 2φ + S14 sin φ + S15 cos φ + S7a5

aφ̇ = S2a − S8a sin 2φ + S9a cos 2φ + S3a2 cos φ

− 3S16a2 sin φ + S5a3 + S12a3 cos 2φ

+ S13a3 sin 2φ + S14 cos φ

− S15 sin φ + S6a5. (28)

The definitions of the coefficients Si (with i =
1, . . . , 16) result from regrouping the modulation equa-

tions (18) and (19), and these are provided in (47) and

(55).

To determine a periodic solution of the modulation

equations, we transform them into the Cartesian form

by substituting new coordinates

u = a cos φ , v = −a sin φ. (29)

Then, by introducing a new small parameter as a book-

keeping device, we obtain

du

dt
= (S2 − S9) v + S15

+ ε

[

S7u5 + 3S16v
2 + u3

(

S10 + S4 + 2S7v
2
)

+ u
(

S1 + S8 − 2S3v + (S4 − S10 − 2S13)v
2

+ s7v
4
)

+ S6v(u4 + v4) + v3(S5 − S12)

+ u2
(

S16 + 2S6v
3 + v(S12 − 2S11 + S5)

)]

dv

dt
= − (S2 + S9) u − S14

+ ε

[

(S1 − S8)v − S6u5 + S7u4v

− 3S3v
2 + (S4 − S10)v

3

+ S7v
5 − u3(S12 + S5 + 2S6v

2)

+ u2
(

v(S10 + 2S13 + S4) + 2S7v
3 − S3

)

+ u(−2S16v + (S12

− 2S11 − S5)v
2 − S6v

4)

]

. (30)

Solutions to the equation in (30) are sought in the form

of

u(t) = u0(T1, T2) + εu1(T1, T2) + O(ε2)

v(t) = v0(T1, T2) + εv1(T1, T2) + O(ε2). (31)

Substituting (31) into (30), taking into account the

derivative definitions (6), and collecting the ε0 and ε1

terms, we obtain

D2
1u0 + λ2u0 = S14(S9 − S2)

D1u0 = (S2 − S9)v0 + S15 (32)

D2
1u1 + λ2u1 = − S6(S2 − S9)u

5
0 − (−S1S2

+ S8(S2 − S9) + S1S9)v0 − S7(S9

− S2)u
4
0v0 + 3S3(S2 − S9)v

2
0

+ (S10S2 − S2S4 − S10S9 + S4S9)v
3
0

+ S7(S2 − S9)v
5
0 − (S12S2 + S2S5

− S12S9−S5S9+2S6(S2−S9)v
2
0)u3

0

+ (S3(S2 − S9) + (−S2(S10

+ 2S13S4) + (S10 + 2S13 + S4)S9)v0

+ 2S7(−S2 + S9)v03 + u0(2S16(S2

− S9)v0 + (S2(2S11 − S12 + S5)

+ (−2S11 + S12 − S5)S9)v
2
0

+ S6(S2−S9)v
4
0))+D1u0(−S1 − S8

− 5S7u4
0 + 2S3v0 − 4S6u3

0v0

+ (S10 + 2S13 − S4)v
2
0 − S7v

4
0

+ 3u2
0(−S10 − S4 − 2S7v

2
0) + 2u0

(−S16 + (2S11 − S12 − S5)v0

− 2S6v
3
0)) + D1v0(−S6u4

0 − 6S16v0

− 4S7u3
0v0 + 3(S12 − S5)V 2

0

− 5S6v
4
0 + u2

0(2S11 − S12 − S5

− 6S6v
2
0) + 2u0(S3

+ (S10 + 2S13 − S4)v0 − 4S7v
3
0))

+ D2v0(S2 − S9) + D1 D2u0

D1u1 = (S2 − S9)v1 − D2u0 + (S1 + S8)u0

+ S16u2
0 + (S10 + S4)u

3
0 + S7u5

0

− (S3u0 + (2S11 − S12 − S5)u
2
0

− S6u4
0)v0 + (3S16 + (S10 + 2S13
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− S4)u0 − 2S7u3
0)v

2
0 − (S12 − S5

− 2S6u2
0)v

3
0 − S7u0v

4
0

− S6v
5
0(S2 − S9)v1, (33)

where λ =
√

S2
2 − S2

9 represents the LC frequency and

depends on the parameters S2 and S9.

The solution of Eq. (32) takes the form

u0 = R(T2) cos [λT1 + θ(T2)] +
S14(S9 − S2)

λ2

v0 = R(T2)
λ

S9 − S2
sin [λT1 + θ(T2)]

+
S15

(S9 − S2)
. (34)

Substituting the solutions in (34) into the first-order

perturbation, expanding the nonlinear terms into the

sine and cosine functions of multiple angles, and then

grouping the harmonics, we can determine the secular

generating terms, which must be equal to zero. Thus,

we obtain modulation equations of the second kind,

which represent the amplitude and phase of the quasi-

periodic motion

dR

dt
= c1 R5 + c2 R3 + c3 R

R
dθ

dt
= d1 R5 + d2 R3 + d3 R, (35)

where the coefficients c and d depend on the parameters

S1 . . . S15. By setting Eq. (35) equal to zero, we deter-

mine the steady state, which is defined by the amplitude

R =

√

√

√

√

−
c2 ±

√

c2
2 − 4c1c3

2c1
. (36)

The amplitude of the quasi-periodic vibrations a =√
u2 + v2 can be computed from (34) in the first

approximation order and takes the following form:

a =

√

R2cos2φ +
2RS14(S9 − S2)

λ2
cos φ +

S2
15λ

2 + S2
14(S9 − S2)4 + 2R15λ5 sin φ + R2λ6 sin2 φ

λ4(S9 − S2)
. (37)

The envelope of the modulated amplitude is defined by

the maximal amax and minimal amin values of Eq. (37).

The frequency of a LC corresponding to the quasi-

periodic oscillations of the original system is defined

by the parameter λ. Considering the definitions of S2

and S9, we obtain

λ =
1

64�3

√

[

8σ 2
1 + 32σ1�2 − 3μ2 + 8α2�2 + 16g1

(

σ1 + 2�2
)

cos τ + 8g2
1 cos 2τ

]2 − 256μ2�4. (38)

The derived equations facilitate determining the ampli-

tude of slow–slow motion and its frequency λ, which

correspond to a quasi-periodic limit cycle of the origi-

nal system. When analysing Eq. (38), we note that the

period of the modulated amplitude Tλ = 2π/λ depends

on the detuning parameter σ1, damping coefficient α,

and parametric excitation μ, as well as the delay param-

eters g1 and τ . It is interesting to note that it is inde-

pendent of the nonlinear component of the nonlinear

damping β and external force f , taking into account

the first-order approximation of the slow–slow motion.

This result is in agreement with the results presented

in the paper of [15].

6 Analysis of self- and parametrically excited

system with time delay

The analytical solutions obtained in the previous sec-

tions enable the analysis of a very general Duffing-type

oscillator, which consists of self-excitation, a paramet-

ric term, external loading, and time delay input. The

approximate solutions are also determined for peri-

odic and quasi-periodic oscillations. By equalling the

selected parameters to zero, we can study several inter-

esting dynamic cases.

Let us consider the self- and parametric excitation

acting on the model. Therefore, we set the external

force equal to zero, namely f = 0. For numerical

examples, we take the following parameters:

α = 0.01 , βv = 0.05 , βR =
1

3
βv ,

γ = 0.1 , μ = 0.2 , ω0 = 1. (39)

The values of the parameters provided in (39) are

treated as basic, but several can be varied in specific

analyses. The parameter of nonlinear damping β is

maintained in an appropriate ratio to compare the van

der Pol and Rayleigh models.
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(b)(a)

van der Pol

Rayleigh

a

HBR

HBv

a

HBR

HBv

Fig. 2 Resonance curve for nonlinear system with self- and

parametric excitations for van der Pol model (black curve) or

Rayleigh model (magenta curve): a full resonance curve; b zoom

near Hopf bifurcation point; data (39), g1 = 0, f = 0. (Color

figure online)

(b)(a)

Fig. 3 Resonance curves for nonlinear system with self- and

parametric excitations for a van der Pol and b Rayleigh mod-

els for selected values of the parametric excitation amplitude:

μ = 0.2: black, μ = 0.1: red, μ = 0.05: green, and μ = 0.02:

blue; data (39), g1 = 0, f = 0. (Color figure online)

The resonance curves for the principal paramet-

ric resonance are obtained based on the second-order

approximation by equalling Eqs. (18) and (19) to

zero and then determining the amplitude a as a func-

tion of the frequency �. The comparison of the

resonance curves for the van der Pol (black) and

Rayleigh (magenta) models is presented in Fig. 2.

The two considered models exhibit similar qualitative

behaviour. The curves represent periodic oscillations,

which occur following Hopf bifurcation of the sec-

ond kind (Neimark–Sacker bifurcation), as indicated

by H Bv or H BR for the van der Pol or Rayleigh mod-

els, respectively. The Hopf bifurcation point occurs ear-

lier, and the resonance zone is wider for the van der
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(b)(a)

Fig. 4 Influence of amplitude of parametric excitation μ on

bifurcation scenario for a van der Pol and b Rayleigh mod-

els of self-excitation and fixed parametric excitation frequency:

� = 0.95: black, � = 1.0: blue, and � = 1.2: green; data (39),

g1 = 0, f = 0. (Color figure online)

Pol model (see Fig. 2b). This fact is also confirmed in

Fig. 3 for various parametric excitation parameters μ.

For smaller values of parametric excitation, the reso-

nance zone decreases and the amplitude is smaller. The

decreasing tendency of the resonance zones is stronger

for the Rayleigh function of self-excitation.

The bifurcation points of the trivial into nontrivial

solutions (points at which the resonance curves arise)

can be determined from Eq. (26) and depend on the

parameters μ and α, but not on β. Thus, considering

the first-order approximation, they are located in the

same place for the van der Pol and Rayleigh models.

Furthermore, they may exist if the condition (27) is sat-

isfied. In fact, for μ = 0.02, the resonance curve arises

almost from a single point, as illustrated in Fig. 3a, b

by the blue resonance curves. For values of μ smaller

than the determined critical μ = 0.02, the resonance

curves do not bifurcate from the trivial solutions, but

form the shape of a separate island located above the

axis (not presented here).

To determine the influence of the parametric excita-

tion amplitude on the system dynamics, we fix the exci-

tation frequency �, while maintaining the remaining

parameters as provided in (39), and then compute the

amplitude versus bifurcation parameter μ. In Fig. 4a, b,

we present the bifurcation diagrams for the van der Pol

and Rayleigh functions, respectively. The bifurcation

curves computed for � = 0.95, � = 1.0, and � = 1.2

begin from unstable periodic solutions, which, while

increasing μ, become stable periodic oscillation. Two

possible scenarios exist: (1) after supercritical bifurca-

tion of the trivial solution, the curve becomes stable

above the Hopf bifurcation point, which corresponds

to bifurcation of quasi-periodic to periodic motion, and

(2) the curve starts from subcritical bifurcation of the

trivial solution and then becomes stable after the limit

point (turning point). The first scenario is presented in

Fig. 4a for � = 0.95 and � = 1.0 (black and blue

curves, respectively) and Fig. 4b for � = 0.95 (black

curve). The second scenario is observed in Fig. 4a for

� = 1.2 (green line) and Fig. 4b for � = 1.0 (blue

curve) and � = 1.2 (green curve). The behaviour of

the two models is completely different in the studied

cases. The periodic solutions in the Rayleigh model are

stable for large values of the parameter μ, while for the

van der Pol model, the second turning point occurs and

the solutions become unstable.

The periodic solutions presented above exist near

the principal parametric resonance zone. When moving

beyond this zone, the system response is no longer peri-

odic, but becomes quasi-periodic. To obtain the ana-

lytical solutions of quasi-periodic motion, the second

type of multiple time scales is applied, as presented in

Chapter 5.
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Fig. 5 a Comparison of amplitude of quasi-periodic and peri-

odic oscillations around principal parametric resonance for van

der Pol (black) and Rayleigh (magenta) self-excitation models;

b comparison of analytical (AR) and direct numerical simulation

(NS) results; data (39), g1 = 0, f = 0. (Color figure online)

The maximal and minimal values of the modulated

amplitude, as well as the periodic resonance curves,

are presented in Fig. 5a. The black lines represent the

analytical solutions the for van der Pol model, while

the solutions for the Rayleigh model are plotted in

magenta. The dynamics of both models is qualitatively

similar. However, for the Rayleigh model, the modu-

lations are smaller either before or after the resonance

zone, and the transition from quasi-periodic to peri-

odic oscillations begins slightly earlier and ends later

for the van der Pol model. This is in agreement with the

result presented earlier in Fig. 2b, where a shift in the

Hopf bifurcation point for both self-excitation models

is illustrated. The numerical verification of the analyt-

ical results by means of direct numerical simulation of

the original model for the van der Pol self-excitation is

presented in Fig. 5b. The blue vertical lines indicate the

maximal and minimal values of the modulated ampli-

tude, while the blue dots represent the amplitudes of

the periodic motion. The analytical prediction of the

periodic solutions exhibits very strong agreement with

the numerical simulations, while the analytical results

of the quasi-periodic motion exhibit larger differences.

This can be explained by the fact that the slow–slow

flow is solved in the first-order approximation, while

the periodic motion is determined up to the second-

order perturbation terms.

The period of slow–slow motion Tλ computed from

(38) is independent of the self-excitation type, at least

up to the first-order approximation, but depends on the

parametric excitation amplitude μ. When approaching

the resonance zone, the modulated amplitude period

tends towards infinity (Fig. 6). For higher values of

parametric excitation μ, the increasing tendency of the

period Tλ is higher, as indicated by the blue curve in

Fig. 6. The period of slow–slow motion for μ = 0.2

obtained from the analytical formula is presented in

Fig. 6 by a black solid line, while the results of the

corresponding direct numerical simulation are marked

by black dots. The gain of the input signal is equal to

zero in the mentioned solutions, namely g1 = 0. The

solution is in strong agreement with a slight shift of the

analytical curves into the lower frequency direction.

The solutions for the period Tλ do not exist in the zone

near � = 1, as in this domain, only periodic motion

may exist. The analytical prediction of the amplitude

and period of the quasi-periodic motion enables iden-

tification of the most important features of the system

dynamics.
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Fig. 6 Period of quasi-periodic oscillations around principal

parametric resonance: μ = 0.2: black, μ = 0.1: red, μ = 0.5:

blue; data (39), g1 = 0, f = 0

The analytical results are further verified by a bifur-

cation diagram (Fig. 7) plotted based on the direct

numerical simulation of Eq. (1). The solution is com-

puted starting from various basins of attraction, and

the transient response is neglected by the rejection of

200 periods. The stroboscopic effect based on the exci-

tation frequency � is used to create the diagram. The

periodic response versus excitation frequency � is rep-

resented by the double solid line, which indicates the

subharmonic solution in the principal parametric res-

onance zone. The quasi-periodic solutions with mod-

ulated amplitudes are represented by the dark areas.

The transition from quasi-periodic motion to the so-

called frequency-locking zone with periodic oscilla-

tions for the van der Pol oscillator is demonstrated by

Poincaré sections in Fig. 8. Starting from low frequen-

cies and moving forward in the bifurcation diagrams

in Figs. 5b and 7, we approach the resonance zone.

The Poincaré portraits in Fig. 8a–d demonstrate the

changes in the system response. For � = 0.95, we

observe a quasi-periodic LC with an unstable focus

(UF) point in the centre. For � = 0.962, two unsta-

ble focuses arise inside the LC, with a saddle point in

the centre, while for � = 0.967, the UFs bifurcate

into two stable focuses (SFs) inside the LC. A small

increase in � up to � = 0.968 leads to destruction of

the LC, and only periodic oscillations represented by

double SF may exist. Moving backwards, starting from

Fig. 7 Bifurcation diagram of van der Pol–Mathieu–Duffing

oscillator against excitation frequency � around principal para-

metric resonance; direct numerical simulation; data (39), g1 = 0,

f = 0

� = 1.11 in Fig. 8e, depending on the initial condi-

tions, the response may be quasi-periodic, represented

by a LC with UF in the centre, or periodic, with two SF

points located outside of the LC. A small variation in

the bifurcation parameter up to � = 1.105 destroys the

LC, and in Fig. 8f, only the periodic solution exists.

Analysing Eq. (38), we notice that the control

parameters g1 and τ influence the period of slow–slow

motion. Thus, we consider the quasi-periodic system

response before and after the resonance zone. We fix the

excitation frequency as � = 0.8 and � = 1.2 and vary

the control parameters g1 and τ . The three-dimensional

(3D) plots of the period Tλ computed based on the ana-

lytical solution (38) are presented in Fig. 9. We may

effectively change the period and amplitude of the mod-

ulated oscillations; however, the tendency when select-

ing the control parameters for the slow–slow motion

before and after the resonance zone is the opposite. As

observed in Fig. 9a (� = 0.8), when varying the time

delay τ from zero we decrease the period Tλ, while in

Fig. 9b (� = 1.2), the period is increased.

The time delay signal enables control of the periodic

and quasi-periodic response in terms of the frequency

and amplitudes, as well as a shift in the resonance zone.

This means we can design the system response accord-

ing to the required criteria, based on the analytical solu-

tion, which may differ, for example for energy harvest-

ing or vibration absorption. In this study, we do not

present a detailed analysis of any specific dedicated

control strategy, but in Fig. 10 we provide an exam-
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(a) (b) (c)

(d) (e) (f)

Fig. 8 Poincaré maps corresponding to bifurcation diagram

in Figs. 5b and 7 for van der Pol model of self-excitation

around principal parametric resonance: direct numerical simu-

lation results for � = 0.95, � = 0.962, � = 0.967, � = 0.968,

� = 1.11, and � = 1.105; data (39), g1 = 0, f = 0

Fig. 9 Effect of time delay parameters g1 and τ on period of slow–slow motion for a � = 0.8 and b � = 1.2; data (39)
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Fig. 10 Amplitude of quasi-periodic and periodic oscillations

around principal parametric resonance for van der Pol model

without control: g1 = 0 and τ = 0 (black colour) and with delay

control signal: g1 = 0.05 and τ = 0.1 (magenta); data (39).

(Color figure online)

ple of the possible influence of delay parameters for

the van der Pol model. By introducing a small gain

g1 = 0.05 and delay τ = 0.1, we can reduce the peri-

odic oscillations slightly and move the resonance curve

towards the lower frequencies, in addition to reducing

the amplitudes of the quasi-periodic response. This is

demonstrated by the magenta curves in Fig. 10.

The change in the response for the quasi-periodic

oscillations is confirmed by the time histories computed

for selected excitation frequencies � = 0.9 and � =
1.15 by direct numerical integration of Eq. (1). The

time histories in black in Fig. 11a–c correspond to a

system without control, while those in magenta, (b) and

(d), correspond to a system with control. The results

demonstrate very strong agreement with the analytical

solution presented in Fig. 10.

The obtained analytical solutions provide very deep

insight into the system dynamics and its possible con-

trol; however, they are limited to mainly weakly nonlin-

ear systems. To determine the difference between the

van der Pol and Rayleigh self-excitation for a strongly

nonlinear model and large oscillations, we perform

numerical analysis of Eq. (1). The two bifurcation dia-

grams in Fig. 12 illustrate the difference in response

of the self- and periodically excited oscillator when the

parametric excitation amplitude is increased with a fre-

quency � = 1 and the remaining parameters are fixed,

as given in (39).

Fig. 11 Time histories of

quasi-periodic motion for

van der Pol model without

time delay for a � = 0.9

and c � = 1.15, and

influence of time delay b

� = 0.9, g1 = 0.05,

τ = 0.1, and d � = 1.15,

g1 = 0.05, τ = 0.1; data

(39)
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Fig. 12 Bifurcation

diagrams versus parametric

excitation μ for nonlinear

oscillator with a van der Pol

and b Rayleigh

self-excitation models; data

(39), � = 1.0, g1 = 0,

f = 0

(a) (b)

Fig. 13 Basins of attraction

of van der Pol model for

parametric excitation: a

μ = 1.55 and b μ = 1.60;

data (39), � = 1.0, g1 = 0,

f = 0. (Color figure online)

For very small values of μ, we obtain the quasi-

periodic oscillations represented by a black zone on the

left-hand side of the bifurcation diagrams in Fig. 12a,

b, which, by means of the second type of Hopf bifur-

cation, bifurcates into periodic, subharmonic motion,

represented by the double line. For large values of the

bifurcation parameter μ ≈ 1.4, period-doubling bifur-

cation occurs. However, above this point, the bifurca-

tion scenarios differ for varying self-excitation mod-

els. For the van der Pol model, after period doubling,

a cascade of period doubling takes place and the sys-

tem enters chaotic motion (Fig. 12a). Then, after the

boundary crisis bifurcation, the system returns to regu-

lar subharmonic oscillations. The transition from chaos

to regular motion is illustrated in Fig. 13. For μ = 1.55

(Fig. 13a), a regular attractor, represented by the double

point, coexists with a strange chaotic attractor located

in the middle of the phase plane, which almost touches

the boundaries of its attraction basins. A small change

in the bifurcation parameter μ = 1.60 destroys the

chaotic attractor (owing to the boundary crisis), and the

periodic oscillation is maintained, with a fractal basin

of attractions in the middle (Fig. 13b).

The analysed 1-DOF nonlinear oscillator with

Rayleigh self-excitation does not demonstrate a chaotic

response for the range of studied parameters. In con-

trast, chaotic motion is detected for the van der Pol

oscillator with equivalent parameters.

7 Influence of external force on self- and

parametrically excited system

We now consider the self-, parametric, and externally

excited system. We assume that the system is excited

by three different mechanisms simultaneously. There-
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(a) (b)

(c) (d)

Fig. 14 Resonance curves around principal parametric resonance for model with van der Pol and parametric terms as well as external

force: a f = 0.01; b f = 0.1; c f = 0.1875; d f = 0.1875: zoom of zone A; data (39), g1 = 0

fore, an external force occurs on the right-hand side

of Eq. (1). We assume that the parametric term and

external force excite the system in a ratio of 2:1. This

means that we analyse the oscillations near the princi-

pal resonance zone, with the additional external force

having a frequency corresponding to the subharmonic

system response. Such a situation is common in numer-

ous mechanical systems [14].

The influence of the external force is illustrated in

Fig. 14 for the van der Pol model. By imposing a very

small force f = 0.01 on the system, we obtain a reso-

nance curve with an internal loop and two Hopf bifurca-

tion points, located very close to one another (Fig. 14a).

This is a qualitatively new response with five periodic

solutions; however, only the two upper branches are

stable, while the three lower ones are unstable (dashed

line). The periodic solutions beyond the resonance zone

are unstable. The phenomenon of the resonance curve

with the loop and double Hopf bifurcation point is

observed for very small values of the external force f .

If the force f is increased, the loop becomes smaller

and the Hopf bifurcation point located on the left side

of the loop disappears (Fig. 14b). A further increase in

the parameter f eliminates the loop and stabilises part
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(a) (b)

Fig. 15 Resonance curves around principal parametric resonance for a van der Pol and b Rayleigh models of self-excitation; data (39),

f = 0.05, g1 = 0

(a) (b)

Fig. 16 Effect of external force on resonance curves around principal parametric resonance: a f = 0.1 and b f = 0.3. Comparison of

van der Pol (black) and Rayleigh (magenta) models; data (39), g1 = 0. (Color figure online)

of the lower branch of the resonance curve, with a new

Hopf bifurcation point occurring on the right side of

the resonance curve. This situation of the loop almost

disappearing is illustrated in Fig. 14c and a zoom pre-

senting the very small loop in Fig. 14d.

The external force influences both self-excited oscil-

lators in a similar manner. The resonance curves for

f = 0.05 are presented in Fig. 15 for the (a) van

der Pol and (b) Rayleigh models. In both cases, we

can observe the existence of five solutions, with � ∼
(1.05, 1.32) for the van der Pol and � ∼ (1.07, 1.23)

for the Rayleigh models. The stability analysis based

on the modulation equations (18), (19) and then con-

firmed numerically demonstrates that only the two

upper branches of the curve are stable (solid line), while

the three lower ones are unstable (dashed line). A direct

comparison of the resonance curves for f = 0.1 for

both models is presented in Fig. 16a. We note that,
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Fig. 17 Bifurcation

diagrams versus excitation

frequency � for nonlinear

oscillator with a van der Pol

and b Rayleigh models, and

parametric and external

excitations for α = 0.01,

β = 0.05, γ = 0.1,

μ = 0.2, f = 0.2, and

g1 = 0

(a) (b)

for the van der Pol model, the Hopf bifurcation point

is located further beyond the resonance zone, and the

loop is larger compared to that of the Rayleigh model

(see black and magenta curves in Fig. 16a). The loop in

the resonance zone for the Rayleigh model is smaller

and disappears earlier if the amplitude of excitation f

is increased, as illustrated in Fig. 16b.

The accuracy of the analytical solutions is verified by

means of direct numerical simulation of Eq. (1). Bifur-

cation diagrams of the solution x versus frequency �

for f = 0.2 are presented in Fig. 17 for the (a) van

der Pol and (b) Rayleigh models. The dark zones cor-

respond to quasi-periodic oscillations, while the solid

lines indicate stable periodic solutions. The unstable

solutions are not presented in the figures. The solu-

tions corresponding to the internal loop are located in

the negative parts of the diagrams, which means that

they are shifted in phase compared to the excitation

phase. The dynamics of the response can be changed

by adding a time delay signal. We can modify the solu-

tion stability, shift the resonance zone, move the Hopf

bifurcation points, and eliminate the additional reso-

nance loop. The influence of the delay parameters on

the periodic and quasi-periodic dynamics of the overall

system will be elaborated in detail in a separate paper.

8 Conclusions

The interactions among self-, parametric, and exter-

nal oscillations have been studied for two different

self-excitation models, represented by the van der Pol

or Rayleigh functions. For a weakly nonlinear sys-

tem and relatively small oscillations, both considered

models exhibit quantitatively similar behaviours. The

frequency- locking phenomenon is observed for the

system with self- and parametric excitations near the

principal resonance zone. The system transits from

quasi-periodic to periodic oscillations via Hopf bifurca-

tion of the second kind. The periodic and quasi-periodic

solutions are obtained by applying the multiple time

scales method twice to determine the amplitudes of the

periodic motion (slow flow) and next amplitude of the

quasi-periodic motion (slow–slow flow). The solutions

are in strong agreement with the direct numerical sim-

ulations.

In general, the vibration amplitudes and resonance

zones are smaller for the Rayleigh model compared to

its van der Pol counterpart. Moreover, the Hopf bifur-

cation points are slightly shifted. The amplitude of the

modulated quasi-periodic response demonstrates sim-

ilar tendencies. The time delay signal enables control

of the dynamics of self-parametric systems, with either

periodic or quasi-periodic motions. The analytical solu-

tions obtained provide deep insight into the system

dynamics and may aid in the design of a dedicated

control strategy.

For strongly nonlinear vibrations, the system

response differs quantitatively and qualitatively for

varying self-excitation functions. The increase in the

parametric excitation transits the van der Pol model to

chaotic motion by means of period-doubling bifurca-

tion and then escapes from chaotic motion to a peri-

odic response by means of boundary crisis bifurca-

tion. For the Rayleigh model and equivalent param-

eters, only period doubling is observed. The van der

123



Nonlinear dynamics of a driven self-excited oscillator 53

Pol model demonstrates a higher tendency of moving

to chaotic oscillations. For the Rayleigh 1-DOF model,

chaotic motion is not observed in the studied parame-

ters domain.

The added small external force changes the dynam-

ics essentially. Near the principal parametric resonance

zone, additional solutions occur with an internal loop

shape. The stability analysis demonstrates that only

the upper parts of the resonance curve are stable. If

the amplitude of the external force increases, the loop

decreases or totally disappears. The effect of the loop

exists for both studied models and is quantitatively

similar; however, it exhibits a tendency of decreasing

amplitudes for the Rayleigh model.
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Appendix A: Multiple time scales method—van der

Pol model

Analytical expressions for van der Pol model

Fd0 = αD0x0 − βD0x0x2
0

Fd1 = α (D0x1 + D1x0)

−β

[

x2
0 (D0x1 + D1x0) + 2x0x1 D0x0

]

(40)

Q1 = i�A
(

α − β AĀ
)

Q3 = −iβ�A3 (41)

P1 = −αD1 A + β

[

A2 Ā + 2AĀD1 A −
1

8
A3 Ā2

+
1

2�
iγ A3 Ā2 −

1

16�
μ

(

i A3 − �AĀ2
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]

(42)

G1 = i�A
(

α − β AĀ
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α2 A +

7
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β2 A3 Ā2 −
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16�
iβμAĀ2 −
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iβμA3

+ f
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1

8�
iα +

1

4�
iβ A

(

1

2
A + Ā

)]

+
1

4�
g1iβ A2 Ā

(

e−iτ + eiτ
)

(43)

W1 = �a

(

α −
1

4
βa2

)

W2 = −
3

8�
αγ a3 +

1

16�
βγ a5

+
1

4�
f

(

−α +
1

4
βa2

)

cos φ

+
1

32�
βμa3 cos 2φ

W3 = −
1

4
aα2 +

1

4
αβa3 −

7

128
β2a5

−
1

16�
βμa3 sin 2φ

+
1

4�
f

(

α −
3

4
βa2

)

sin φ

−
1

8�
g1βa3 sin τ (44)

C1 = −
1

32�
βa2 (45)

U1 =
β2�2

16

U2 = −
1

2
αβ�2 +

1

2
g1β� sin τ

U3 = α2�2 (46)

Analytical expressions for van der Pol model—

modulation equations (28)

S1 =
1

2
α −

1

2�
g1 sin τ

(

1 +
σ1

2�2
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−
1

4�3
g2
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)
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+
1

16�2
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Appendix B: Multiple time scales method—Rayleigh

model

Analytical expressions for Rayleigh model
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Analytical expressions for Rayleigh model—

modulation equations (28)
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+
3

16
g1

(

β sin τ +
1

�2
γ cos τ

)

S6 =
3

256

(

−
5

�3
γ 2 + 3β2�3

)

S7 = −
3

32
βγ

S8 = −
1

8�3
g1μ sin τ

S9 = −
1

4�
μ

S10 =
7

64
βμ

S11 =
1

64�3
γμ

(

8�2 − 5
)

S12 = −
1

4�

(

1 +
1

8�2

)

γμ

S13 =
5

32
βμ

S14 =
1

2�
f

[

−1 +
1

4�2

(

1

2
μ − σ1 − g1 cos τ

)]

S15 = −
1

8�2

(

α + g1
1

�
sin τ

)

S16 =
15

32
fβ

S17 =
3

32
fβ (55)

References

1. Wang, D., Chen, Y., Wiercigroch, M., Cao, Q.: A three-

degree-of-freedom model for vortex-induced vibrations

of turbine blades. Meccanica 51(11), 2607–2628 (2016).

https://doi.org/10.1007/s11012-016-0381-7

2. Keber, M., Wiercigroch, M., Warminski, J.: Parametric study

for lock-in detection in vortex-induced vibration of flexible

risers. IUTAM Book series, vol. 32, pp. 147–158 (2013).

https://doi.org/10.1007/978-94-007-5742-4_12

3. Keber, M., Wiercigroch, M.: Dynamics of a vertical riser

with weak structural nonlinearity excited by wakes. J. Sound

Vib. 315(3), 685–699 (2008). https://doi.org/10.1016/j.jsv.

2008.03.023

4. Luongo, A., Zulli, D.: Parametric, external and self-

excitation of a tower under turbulent wind flow. J. Sound

Vib. 330(13), 3057–3069 (2011). https://doi.org/10.1016/j.

jsv.2011.01.016

5. Zulli, D., Luongo, A.: Bifurcation and stability of a two-

tower system under wind-induced parametric, external and

self-excitation. J. Sound Vib. 331(2), 365–383 (2012).

https://doi.org/10.1016/j.jsv.2011.09.008

6. Latalski, J., Warminski, J., Rega, G.: Bending-twisting

vibrations of a rotating hub-thin-walled composite beam

system. Math. Mech. Solids 22(6), 1303–1325 (2016).

https://doi.org/10.1177/1081286516629768

7. Tondl, A.: Quenching of Self-Excited Vibrations, vol. 12.

Elsevier, Amsterdam (1991)

8. Dohnal, F.: Damping by parametric stiffness excitation: res-

onance and anti-resonance. J. Vib. Control 14(5), 669–688

(2008). https://doi.org/10.1177/1077546307082983

9. Verhulst, F.: Quenching of self-excited vibrations. J. Eng.

Math. 53(3–4), 349–358 (2005). https://doi.org/10.1007/

s10665-005-9008-z

10. Abadi, A.: Nonlinear Dynamics of Self-excitation in

Antoparametric Systems. Ph.D. Thesis, University of

Utrecht, University of Utrecht (2003)

11. Szabelski, K., Warminski, J.: Parametric self-excited

nonlinear-system vibrations analysis with inertial excitation.

Int. J. Non-Linear Mech. 30(2), 179–189 (1995). https://doi.

org/10.1016/0020-7462(94)00037-B

12. Szabelski, K., Warminski, J.: Self-excited system vibra-

tions with parametric and external excitations. J. Sound Vib.

187(4), 595–607 (1995). https://doi.org/10.1006/jsvi.1995.

0547

13. Szabelski, K., Warminski, J.: Vibration of a non-linear self-

excited system with two degrees of freedom under exter-

nal and parametric excitation. Nonlinear Dyn. 14(1), 23–36

(1997). https://doi.org/10.1023/A:1008227315259

14. Warminski, J.: Frequency locking in a nonlinear MEMS

oscillator driven by harmonic force and time delay. Int. J.

Dyn. Control 2015(Vol.3 (2)), 122–136 (2015). https://doi.

org/10.1007/s40435-015-0152-7

15. Belhaq, M., Hamdi, M.: Energy harvesting from quasi-

periodic vibrations. Nonlinear Dyn. 86(4), 2193–2205

(2016). https://doi.org/10.1007/s11071-016-2668-6

16. Ghouli, Z., Hamdi, M., Lakrad, F., Belhaq, M.: Quasiperi-

odic energy harvesting in a forced and delayed Duffing har-

vester device. J. Sound Vib. 407, 271–285 (2017). https://

doi.org/10.1016/j.jsv.2017.07.005

17. Belhaq, M., Ghouli, Z., Hamdi, M.: Energy harvesting in

a Mathieu-van der Pol-Duffing MEMS device using time

delay. Nonlinear Dyn. 94(4), 2537–2546 (2018). https://doi.

org/10.1007/s11071-018-4508-3

18. Belhaq, M., Houssni, M.: Quasi-periodic oscillations, chaos

and suppression of chaos in a nonlinear oscillator driven by

parametric and external excitations. Nonlinear Dyn. 18(1),

1–24 (1999). https://doi.org/10.1023/A:1008315706651

19. Kirrou, I., Belhaq, M.: On the quasi-periodic response

in the delayed forced Duffing oscillator. Nonlinear

Dyn. 84(4), 2069–2078 (2016). https://doi.org/10.1007/

s11071-016-2629-0

20. Rusinek, R., Weremczuk, A., Kecik, K., Warminski, J.:

Dynamics of a time delayed Duffing oscillator. Int. J. Non-

Linear Mech. 65, 98–106 (2014). https://doi.org/10.1016/j.

ijnonlinmec.2014.04.012

21. Stépán, G., Insperger, T., Szalai, R.: Delay, parametric exci-

tation, and the nonlinear dynamics of cutting processes. Int.

J. Bifurc. Chaos 15(09), 2783–2798 (2005). https://doi.org/

10.1142/S0218127405013642

22. Kalmár-Nagy, T., Stépán, G., Moon, F.C.: Subcritical hopf

bifurcation in the delay equation model for machine tool

vibrations. Nonlinear Dyn. 26(2), 121–142 (2001). https://

doi.org/10.1023/A:1012990608060

123

https://doi.org/10.1007/s11012-016-0381-7
https://doi.org/10.1007/978-94-007-5742-4_12
https://doi.org/10.1016/j.jsv.2008.03.023
https://doi.org/10.1016/j.jsv.2008.03.023
https://doi.org/10.1016/j.jsv.2011.01.016
https://doi.org/10.1016/j.jsv.2011.01.016
https://doi.org/10.1016/j.jsv.2011.09.008
https://doi.org/10.1177/1081286516629768
https://doi.org/10.1177/1077546307082983
https://doi.org/10.1007/s10665-005-9008-z
https://doi.org/10.1007/s10665-005-9008-z
https://doi.org/10.1016/0020-7462(94)00037-B
https://doi.org/10.1016/0020-7462(94)00037-B
https://doi.org/10.1006/jsvi.1995.0547
https://doi.org/10.1006/jsvi.1995.0547
https://doi.org/10.1023/A:1008227315259
https://doi.org/10.1007/s40435-015-0152-7
https://doi.org/10.1007/s40435-015-0152-7
https://doi.org/10.1007/s11071-016-2668-6
https://doi.org/10.1016/j.jsv.2017.07.005
https://doi.org/10.1016/j.jsv.2017.07.005
https://doi.org/10.1007/s11071-018-4508-3
https://doi.org/10.1007/s11071-018-4508-3
https://doi.org/10.1023/A:1008315706651
https://doi.org/10.1007/s11071-016-2629-0
https://doi.org/10.1007/s11071-016-2629-0
https://doi.org/10.1016/j.ijnonlinmec.2014.04.012
https://doi.org/10.1016/j.ijnonlinmec.2014.04.012
https://doi.org/10.1142/S0218127405013642
https://doi.org/10.1142/S0218127405013642
https://doi.org/10.1023/A:1012990608060
https://doi.org/10.1023/A:1012990608060


56 J. Warminski

23. Insperger, T., Stépán, G., Turi, J.: On the higher-order

semi-discretizations for periodic delayed systems. J. Sound

Vib. 313(1–2), 334–341 (2008). https://doi.org/10.1016/j.

jsv.2007.11.040

24. Nayfeh, A.H.: Nonlinear Interactions: Analytical, Computa-

tional, and Experimental Methods. Wiley, New York (2000)

25. Nayfeh, A.H.: Introduction to Perturbation Techniques.

Wiley, New York (1981)

26. Nayfeh, A.H.: Problems in Perturbation. Wiley, New York

(1985)

27. Sanchez, N.E., Nayfeh, A.H.: Prediction of bifurcations in a

parametrically excited duffing oscillator. Int. J. Non-Linear

Mech. 25(2–3), 163–176 (1990). https://doi.org/10.1016/

0020-7462(90)90048-E

28. Zavodney, L.D., Nayfeh, A.H., Sanchez, N.E.: Bifurca-

tions and chaos in parametrically excited single-degree-of-

freedom systems. Nonlinear Dyn. 1(1), 1–21 (1990). https://

doi.org/10.1007/BF01857582

Publisher’s Note Springer Nature remains neutral with regard

to jurisdictional claims in published maps and institutional affil-

iations.

123

https://doi.org/10.1016/j.jsv.2007.11.040
https://doi.org/10.1016/j.jsv.2007.11.040
https://doi.org/10.1016/0020-7462(90)90048-E
https://doi.org/10.1016/0020-7462(90)90048-E
https://doi.org/10.1007/BF01857582
https://doi.org/10.1007/BF01857582

	Nonlinear dynamics of self-, parametric, and externally excited oscillator with time delay: van der Pol versus Rayleigh models
	Abstract
	1 Introduction
	2 Model
	3 Analytical approach: multiple time scales method
	4 Steady-state periodic oscillations
	5 Slow–slow motion of self-excited oscillator with time delay, and parametric and external excitations
	6 Analysis of self- and parametrically excited system with time delay
	7 Influence of external force on self- and parametrically excited system
	8 Conclusions
	Acknowledgements
	Appendix A: Multiple time scales method—van der Pol model
	Appendix B: Multiple time scales method—Rayleigh model
	References


