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High speed rotating blades are crucial components of modern large aircraft engines. The rotating blades under working
condition frequently suffer from the aerodynamic, elastic and inertia loads, which may lead to large amplitude nonlinear
oscillations. This paper investigates nonlinear dynamic responses of the blade with varying rotating speed in supersonic
airflow. The blade is simplified as a pre-twist and presetting cantilever composite plate. Warping effect of the rectangular
cross-section of the plate is considered. Based on the first-order shear deformation theory and von-Karman nonlinear
geometric relationship, nonlinear partial differential dynamic equations of motion for the plate are derived by using
Hamilton’s principle. Galerkin approach is applied to discretize the partial differential governing equations of motion to
ordinary differential equations. Asymptotic perturbation method is exploited to derive four-degree-of-freedom averaged
equation for the case of 1:3 internal resonance-1/2 sub-harmonic resonance. Based on the averaged equation, numerical
simulation is used to analyze the influence of the perturbation rotating speed on nonlinear dynamic responses of the
blade. Bifurcation diagram, phase portraits, waveforms and power spectrum prove that periodic motion and chaotic motion

exist in nonlinear vibration of the rotating cantilever composite plate.

1. Introduction

High-speed rotating blades are essential components of mod-
ern large aircraft engines. Blades are designed with large
aspect ratios and thin-wall structure in order to raise opera-
tional efliciency. In the actual working condition, the rotating
blades are frequently subjected to the aerodynamic, elastic,
and inertia loads. Various types of excitation lead to large
amplitude nonlinear parametric vibrations of the blades,
which can result in the resonance phenomena and undesir-
able disasters, especially when the rotating blades operate
with high speed and huge centrifugal force. According to
the investigation, the vibration failure of the aircraft engine
is more than 60% of the total failure, while the vibration fail-
ure of the blade accounts for more than 70% of the total
vibration failure. Resonance and flutter produced by the
forced vibration and self-excited vibration are the main rea-
son leading to the blade failure. So, it is very important that
a reasonable model is established to accurately predict

nonlinear vibration characteristics and other complex
dynamics of the blade.

In recent years, considerable attention has been given to
the studies on the vibration characteristics of rotating blades.
Lin et al. [1] deduced governing differential equations and
general elastic boundary conditions of a nonuniform pretwist
Timoshenko beam by using Hamilton’s principle. Yao et al.
[2] investigated the nonlinear dynamic responses of the
thin-walled rotating cantilever beam. Sarkar and Ganguli
[3] assumed the modal function as polynomials satisfying
all four boundary conditions and discussed free vibration of
the nonhomogeneous Timoshenko beam. Georgiades et al.
[4] derived equations of motion of a rotating composite
Timoshenko beam by utilizing Hamilton’s principle. Xie
et al. [5, 6] numerically investigated the effect of symmetric
and asymmetric shroud gaps, rotational speeds, and the aero-
dynamic force amplitude on dynamic characteristics of the
rotating Euler-Bernoulli beam with a mass point at the free
end. Huang and Kuang [7] investigated the effect of a near
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root local blade crack on the stability of a bladed disk, in
which an individual blade is modeled simply as a cantilever
Euler-Bernoulli beam.

Currently, plenty of theoretical analyses are focused on
the beam model of the blade, such as the simple Euler-
Bernoulli beam and the pretwist Timoshenko beam. But,
theoretical studies on the plate model of the blade are still
few. Young and Liou [8] established equations of a rotating
cantilever plate with a time-varying speed and numerically
investigated the effect of the Coriolis force on boundaries
of the unstable regions. Yoo and Kim [9] derived linear
equations of motion and analyzed free vibration of rotating
cantilever plates. Sinha and Turner [10] derived governing
partial differential equations of motion for a rotating pre-
twist plate to investigate the static and dynamic frequencies
of the blade. Li and Zhang [11] presented a dynamic model
of a functionally graded rectangular plate undergoing large
overall motions. Kouchakzadeh et al. [12] analyzed the
nonlinear aeroelasticity of a laminated composite plate in
supersonic airflow by using the classical plate theory. Malgaca
et al. [13] tried to control the vibration of the rotating
blade at different speeds by utilizing root-embedded piezo-
electric materials. Kam et al. [14] proposed a procedure to
analyze the structural failure of a composite wind blade
subjected to quasi-static loads. Tang and Chen [15] pre-
sented the solvability conditions of nonlinear partial differ-
ential equations for in-plane moving plates of two cases, in
which the one case is without internal resonance and
another case is under internal resonances, respectively.
Sun et al. [16] used a quadratic layerwise theory and a
new dynamic model to study dynamic behaviors for a mul-
tilayer pretwist rotating blade. Wang et al. [17] established
a time-dependent nonlinear model of a flexible blade-
rotor-bearing system by using the Lagrange method.
Shariyat et al. [18] performed the nonlinear dynamic
analysis of rectangular composite plates. Zhang and Li
[19] adopted the Lagrangian method to acquire dynamic
equations of motion for the pretwist and predeformed
rotating cantilever plate subjected to the harmonic aerody-
namic force. Mendonga et al. [20] considered internal
damping in the shaft to study dynamic behaviors of the
rotors mounted on composite shafts. Banichuk et al.
[21, 22] investigated the stability and bifurcation of the
rotating blade under different conditions.

Based on the shallow shell theory and the Ritz method,
Leissa et al. [23] explored frequencies and mode shapes of
turbomachinery blades with the coupling of bending and
twist. Kee and Kim [24] assumed blades as the moderately
thick open cylindrical shell models. Sun et al. [25] applied
the general shell theory to investigate the influence of param-
eters on natural frequency and damping characteristics of the
shell model blade. Sinha and Zylka [26] simplified the
rotating pretwisted turbomachinery cantilevered airfoil as
an anisotropic shell and derived the free vibration equa-
tions of motion for the transverse deflection of the shell
including the warping effect. Volker and Joachim [27]
analyzed the aeroelastic phenomena of twenty compressor
blades simplified as the spring-damper models mounted
on the hub. Ekici et al. [28] proposed a nonlinear
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harmonic balance method to compute the unsteady self-
excited aerodynamic of asymmetry turbomachinery blades.
Farhadi and Hosseini-Hashemi [29] studied aeroelastic
behaviors of a rotating thick plate in the supersonic air-
flow. Lachenal et al. [30] presented the design, analysis,
and realization of a zero stiffness twist morphing wind
turbine blade subjected to the gust loads.

Dynamic modeling of the rotating blade requires an
accurate expression of the aerodynamic force. But, the phys-
ical mechanism of aerodynamic interaction has been mainly
investigated by experimental methods. Models have been
proposed to deal with aerodynamic interaction problems,
which is done with by the piston theory widely. Ashley and
Zartarian [31] firstly proposed the quasi-steady piston theory
to deal with aerodynamic interaction problems. Navazi and
Haddadpour [32] studied the thermal stability of the func-
tionally graded plate subjected to the aerodynamic load
obtained from the first-order piston theory. According to
large deformation geometric relationship, the piston theory
and the quasi-static thermal stress theory, Yuan and Qiu
[33] established the aerodynamic model of a composite stiff-
ened panel and used Hamilton’s principle to derive the equa-
tions of motion for the system. Yang et al. [34] applied a
modified local piston theory to analyze aeroelastic behaviors
of curved panels.

Although extensive studies have been carried out on
rotating cantilever beams, studies on nonlinear dynamic
responses of the pretwist, presetting rotating cantilever plates
are still few. In this paper, nonlinear dynamic behaviors of
the blade with varying rotating speeds under the supersonic
airflow are investigated. Considering the shear deformation
and the warping effect, equations of motion for the cantilever
plate are derived by using Hamilton’s principle. The Galerkin
approach is applied to discretize the partial differential gov-
erning equations of motion to ordinary differential equa-
tions. The asymptotic perturbation method is exploited to
obtain averaged equations of the system in the case of 1:3
internal resonance-1/2 subharmonic resonance. Based on
the averaged equations, numerical simulation is applied to
investigate the bifurcation and chaotic dynamics of the rotat-
ing cantilever composite plate. In order to analyze the inter-
nal resonance, we choose the perturbation rotating speed as
the controlling parameter to investigate nonlinear behaviors
of the pretwist and presetting rotating cantilever plate. From
the results of the numerical simulation, it is found that the
system performs periodic and chaotic motions under spe-
cific conditions. It is observed that the perturbation rotating
speed has a significant influence on the nonlinear dynamic
behaviors of the rotating plate. Since we can control the
responses of the system from the chaotic motions to the
periodic motions by changing the perturbation rotating
speed, we can control the large amplitude nonlinear vibra-
tions of the blade.

2. Equations of Motion for the Rotating
Cantilevered Blade

The schematic diagram of the rotating cantilever blade is
shown in Figure 1. The blade is simplified as a pretwist and
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F1GURE 1: The model of the pretwist rotating cantilever rectangular
plate.

presetting rotating cantilever plate in the following dynami-
cal analysis. Rotating speed of the blade is Q(t) =Q, +Q,
cos(@t), where Q) is the steady-state rotating speed and Q,
cos(@t) is the periodic perturbation. The shape of the blade
is a rectangular plate, which is characterized by the span
length L, the chord length C, and the thickness h. The
cross-section of the cantilever plate is shown in Figure 2.
The plate is clamped to a rigid hub of radius r. There are a
presetting angle 0, in the fixed end and a pretwist angle 0,

at the free end. (T, ?, E) is the inertial frame and the origin

of it is in the center of the hub. At the edge of the hub,

—0 0 0

there is the rotating coordinate system (e,, e, e,). We

y
—0
define that the spanwise direction is e, the chordwise direc-

0 0
tion is e y and the thickness direction is e,. Another local
triad system (€,,¢,,2,) attached to the free end of the plate

is introduced on the plate, which is called the sectional coor-
dinate system.
The twist rate @' of the blade is expressed as

9’ — (OR - 0r)

®=n) e

and the twist angle 8(x) of the blade is written as
0(x) =6, +0'x. (1b)
Based on the Kirchhoff hypothesis, the first-order
shear deformation theory including the warping effect is
considered to establish the displacement field. Displacements
of any point along x, y, and z directions can be expressed

by the displacement of the neutral plane of the plate as
follows [35]:

N2
u(x, .2, t) = ug (%, y, 1) + 2, (%, y, t) — z(@ ) xw, (2a)
V(% 3,2, 1) = V(% 3, 1) + 2, (%, 3, 1), (2b)

w(x,y, 2, 1) = wy(x, , 1), (2¢)

FIGURE 2: The section of the rotating cantilever plate.

where
ow,
$e=Vie ™ 3,
(2d)
o =y — 2%
y = Vyz dy
Nonlinear strains of the von Karman plate theory are
given as
duy 1 (0wy)*
ox 2\ ox
a1 (@)2
g, ay 2\ 9y
Ve p={e' e} = %+
oy 4
Yz
O
YXy 0x *
Qg Oy OwyOwo | (3)
dy Ox  0x Oy
a(Px N 2 N 2
e~ (7)o (¢) xen.
%,
oy
+z 0 ,
0
%9 , 9
dy  Ox

where {¢°} is the membrane strain and {e'} is the flexural
strain.

For the advanced fiber-reinforced composite material
blade, the constitutive relation of the composite plate is
expressed as follows:

Oxx Ql 1 Q 12 Q 16 Exx
Oy (= Q, Qn Qy &y (o (43)

{Oyz}:k[?44 (:245]{)’%}) (4b)
Oxz Q45 QSS sz



where
E
Q,=-—"2
- Y12Y21
Yi2Es
Q = )
21— Y12Y21
E 4
Q,=—2* (4¢)
21— Y12V
Qs6 = G12>
Qu= G23’
Qs5 =Gy,

where E, is the longitudinal modulus of the fiber, E, is the
transverse modulus, y,, and y,, are the major Poisson’s ratio,
respectively, and G,,, G,;, and G,; are the shear modulus,
respectively.

In-plane force resultants N

XX yy’ Xy;
resultants M, M,,, and M,; and the transverse forces Q,

and Q, are written in matrices as follows:

N.., and N_ ; the moment

{ N} } _[m @ { {e'} } (58)
{M} B] [D]] ({e'}
Jw,
-0 + (p)/
{ Q, } _k lAzm Ags oy , (5b)
Q, Ay Ass ow,
W + ¢x

where k represents the shear coefficient, A;; is called the exten-
sional stiffness, D;; is the bending stiffness, and B;; is the
bending-extensional coupling stiffness, which are defined as

h/2
[Aip By, Dij}zj Qij[l, z, zz]dz, (6a)
—hi2

Iy, I, and I, are mass moments of inertia, which are

defined as

h/2

pl1, z Z]d. (6b)
—h/2

L, I, L] :J

The rotating plate mounted in the hub is rotating with
the variable speed. The displacement of a random point P
without deformation on the plate is expressed as

T (6.2 t)=(Ry+x)e, +ye, +ze,, (7a)

and the deformation displacement of a random point P on
the rotating plate is written as

?(x,y, Zt)=(x+Ry+u)e, +(y+ v)?y +(z+w)e,.
(7b)

where u, v, and w denote displacement components along x,
y, and z directions, respectively.
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When the blade rotates with a constant angular velocity
w, the transient angle ® can be written as

t
0= J [Qy + Q; cos wt]d,. (8)
0

The instantaneous direction of the local unit vector
(e, Ey, ) for any typical point on the blade with respect

to the stationary global Cartesian unit vector (i, j,k) is
given by

—0 —
€x cos® sin® 0 i
Ei =|-sin® cos® 0[{j ¥, (9a)
—0 o
¢ 0 0 0%
0
ARE 0 0 <,
€, 0=|0 cos(Bx+6,) sin(fx+0,) ?2
r 0 —sin(fx+0,) cos(fx+0,) ~

(9b)

The speed and the acceleration of any random point P on
the plate are described as follows:

R=[i1cos ® — (x + Ry + u) sin ® - Q — v cos Osin O
—(y+v)cosBcos ©-Q+wsinOsin O

+(z+w)sin6cos®-0ﬁ+[usin®
+ (x+Ry+u)cos®-Q+1vcosHcos ©

(
(y +v) cos 0sin © - Q) — wsin 6 cos O

+(z+w) sin sin ©- Q] j + (vsin 0 + w cos O)k,
(10a)

R=[itcos ® —2i1sin ©- Q — (x + Ry +u) cos © - O

— (x+Ry+u)sin ®-Q— ¥ cos Osin © — 27 cos 0 cos ©
“Q+ (y+v)cosOsin®- Q% — (y+v) cos 0 cos O - Q
+Wsin Osin ® + 2w sin 6 cos O - Q) — (z + w) sin O sin O
-Qz+(z+w)sin0cos®-ﬂﬁ + [it sin © + 2it cos O
-Q—(x+R0+u)sin®~Qz+(x+R0+u)cos®-Q
+1Vcos 6 cos ® —2vcos 0sin®-Q— (y+v)cos 6 cos ©
Q% ~ (y+v) cos Osin © - Q) — iby sin 6 cos @
+2wsin 0sin ® - Q + (z + w) sin O cos O - O
+(z+w) sin@sin@-ﬂ]?+(i}sin0+ﬁ)c056)i,

(10b)

where

0=0(x)=6,+0'x. (10c)
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The variation of the kinetic energy is given by

8K = —J pRSRd,,
\4

:J {Io{ilo cos © — ¥ cos 0 sin O + 1y, sin 6 sin @ — 2(i4, sin O + v, cos 6 cos O
N

— W, sin 0 cos @) - Q — [(x + Ry + 1) cos ® — (y + v,) cos O sin © + wy sin O sin O] - Q°
— [(x+ Ry + tg) sin © — (y + ;) cos O cos © — wy sin 6 cos O] - Q} - u

+ I {ity sin © — ¥, cos 0 cos O — W, sin O cos O + 2(it, cos O + v, cos O sin O

+ 1w, sin 0 sin ®) - Q — [(x + Ry + 1) sin © + (y + v,) cos O cos © — w; sin O cos O] - Q°

+[( + Ry + 4y) cos © — (y + v;) cos 0 sin ® — wy sin Osin O] - Q} - S,

+ {Io (i?o sin 6 + W, cos 9) - 126’2x{ ((/)x - 0/2xii)0> cos O — (';'Sy cos 0 sin ®

-2 [gbx - G/Zxd)o + gby cos 6 cos @} Q- [(([)x - O'wao) cos @ — ¢, cos Osin © + sin 0 sin @}

S0 - [(qﬁx - B/wao)sin © + ¢,cos 6 cos © — sin 6 cos @} . Q} }Swo

+ Iz{ ((,bx - G'szi)()) cos © — ¢y cos 0sin © —2 [(px - Glzxwo + (}5), cos 0 cos @} Q- [((px - 9'2xw0) cos ©

— ¢, cos 0'sin © + sin 6 sin @} 0 - [(qﬁx - G'wao)sin © + ¢, cos 6 cos © —sin 0 cos @] . Q}&px

+ Iz{ ((,bx - G'ini)o> sin © + (';'Sy cos 0 cos © + 2 [((px - Glzxwo) cos O — (l)y cos 0 sin @} -Q

- [(qﬁx - G'wao) sin ® + (;Sy cos 0 cos ® — sin 6 cos ®} SQF [(gbx - G'wao)cos ®

- ¢,cos 0 sin O + sin 0 sin G)} . Q}é‘gby}dxdy.

A large centrifugal force will be generated when the com-
pressor blade of the aircraft engine operates with the high
rotating speed. Components of centrifugal forces along the
spanwise and chordwise directions are described by F_ and
F_, which can be expressed as

L
F,= J pQ*(r+x)d,,

X

(12a)

+CJ2
F. = J pQly sinZGdy.

. (12b)
y

The variation of the potential energy SU consists the
variation of the strain energy 6U, and the variation of
the centrifugal potential energy 6U,, namely, dU =8U, +
8U,, where

hi2
oU, = J J [O‘xx (58)(3() + 2883(;2)
Q, | J-nn

0 1 0 1
+0y, (88}(,),) + z8s)(,y)) +0,, (6)/)((} + zéy;}))

+ axzéyfg) + ayz(?yﬁ)} d, } d.d,

(13a)

ou={ [ e3a ()~ (3))
e (RO

Aerodynamic forces of the blade derived by the first-
order piston theory are written as

(13b)

ov , OV
Apy = Coopoo E + Uya

14
=C, v+ P 'nGav e
=LooPo |V 51 a >
ow , ow
Apz - Coopoo (W + Uz a)
(14b)

ow
= 1 P —_— 5
CooPoo (w +Pcos 6 ax>

where p_ is the air density, C_, is the speed of sound, P is the
speed of the airflow, and U}, = Psin 6, U}, = P cos 6.

The variation of the virtual work of aerodynamic forces is
expressed as follows:
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W = LAPZ5wdxdy + L — Ap,dvd,d, J (0K -8U +6W)d, =0. (16)
. (15) ’

= Js (Apzéw + 3 Apy(SV) dd,. Substituting (11), (13a), (13b), and (15) into (16), the

nonlinear partial governing equations for nonlinear vibration
Nonlinear dynamic equations of motion for the rotating  of the rotating blade expressed in terms of displacement var-

blade are established by using Hamilton’s principle. iables can be derived as follows:
o’u *u o*u 0%, 0%, 0%, 2 0w 2 dw
dug: Ay ax20 +2456 axao +Ags ayzo +A16W20 + Ay =— 3y? + (A + Ags) axa; ~2B,6' Ox © - B0 °x % 20
ow, 0*w, ow, 0°w, ow, 0*w, ow, 0*w, ow, 0°w, dw, 0*w,
07 70 07 70 0z 0 0 70 207 0 L (AL + A )00
*Au ax ax2 % ox 0y? o6 ox 0x0y 4 dy 0x? * 4 oy 0y? * (A + Ag) 0y 0x0y
2w, 0%, %9, ¢, ¢, ¢, o’¢ 2 0w,
B166 xaxay B66 ay 2B166 ay Bll Ox2 Bl6 Ox2 B26 a (BIZ B66)Wa; _B166 W

=1I,{(ity cos ® — ¥ cos 0 sin O + i sin O sin @) — 2 (it sin O + ¥, cos 6 cos O — w, sin O cos O) -
— [(x + Ry + 49)cos © — (y+v;) cos 0 sin @ +wy, sin O sin @] - Q?~[(x + R+ 14y) sin © + (y +v,) cos O sin O +w, sin O cos O - O}

ow ou, c? ) C o*u
2 2 2 2 0.2 L2 2 0.2
+2I,y sin“0 —— 8)/ -Q? +2[0ysm6 )/ -Q° =1 sin 6( y) 5y -Q° =1 sin 6<I—y>a7y2.0,

(17)

o*u 82u o*u % % o*v 2 0w,
Svy: A ax;’ + Ay 52 + (A, +Agg) o aO +A66a—2° +A22W2° +2A26Waoy —2B,0' a—xo
2 0w, dw, 0°w, awoa w ow, 0°w, ow, 0*w,
B0 o2 +A16WW thAx o 7 +(Ap+Ag) =— 3x 9xdy + 25 5p
dw, 0w, ow, dw, 7o, %9, 2’9, o’¢
+A668—y—6x2 +2 268—y8x8y+316 B + By 5 v+ (B, +Bg )a 5 B“—axzy
0*¢ 0°¢ 2 Q'w, 20w v, a¢ 0z
y y 1 o _g g o oz
+B,, B +2B,, axdy B,0 x Bxay 120 o +CoPoo {(v0+z¢y) +p sin 6(8 Bx)} 3
=1,{ (i1, sin ® + v, cos O cos ® — 1, sin O cos O) +2(i1, cos ® — v, cos O sin O +w, sin O sin O) - Q—[(x + R, +u,) sin O
01{Ho 0 ) 0 0 o ot Uy

+(y+vy) cos 6 cos @ —wy sin O cos O] - Q2 +[(x+ Ry + 1) cos O — (y+v,) cos O sin @ +w, sin O sin O] - Q}

2 2
a0 202 ) 20 2 [r(n-x )+ 2 (12-) | S 02 g [rr -+ S 2oy | 2o
6x ox 2 0x? 2 0x?

(18)

6w0:;A“(%>2—azw°+(A66+%A12> (%)2_92%+3A16<awo> Pwy 3y OWdwe Dy wy 0wy Pwy

ox ) 0x? ox ) 0y? ox ) oxdy $79x 0y o0x? % 0x 0y 0y2
2y 3 SO THL g P TNT Uy ,OT O 3y g PO 2 (i;;)aa;’
+<A66+1A12) (aa_uy«))z% 34 (aa_uy’“> %—2 0'x g;;‘)aauy’o ~2B,0"x aa'“‘;‘)aa_l;‘w H%% +2A16§;—g;%
+A66aaz—;°%+ lé%%+ 26%2—)?%+(A12+A66);C—g;%— 11<%> + 66882—;[;"%+ 16%%
2°¢, 0w, *¢, dw, 5 0*¢, dw, ¢, dw, 0%u, dw, 0*u, 0w, 0%u, 0w,

+Bn—a R (R %6752 ox +(B12+366)—axay—ax T 5,2 3 + %37 3y +(A12+A66)—axay—ay
0%v, 0w, 0%v, 0w, 0%, dw, 0%¢, dw, ¢, dw, ¢, dw, az% ow,
+A A 424, V0% g 9090 p IO g oy p 2T p 7 TyTWo
%o gy Ange gy Tugg,G, TBege 5, TBeg g, T Bt g 5 v Bl Ga )
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az(p aw az(p aw 2 aw 2 au 82w 81/ azw 81,4 82w 821/ 82w
4By, 270 4op —VTT0 g gt (0 424, 07 0 4o, “ 07 0 4oa Z07 0 4o = 07 70
2 0y 0 26 9x0 oy 0 16°9x 9xdy 29y 9xdy % 9y 0x0 % dx 0x0

y y y y y 0xdy )y 0xdy y

0, 0w, 2 0 wo 09, 0*w 0¢, 0*w 0¢, 0’w Ouy 0’w, v, 0w
2B -2B,0"w, _VZ 70 4o tx” 70 _vZ 0 2707 70 0”70
TP 5y axay ~ 20167 Wogxay TP 5 axay T U6 5y axay T % ox axdy | ox ax2 123y ox
duy 0°w, 0%v, 0*w, 06, D*w, 2 0w, 2’9, 0*w, 2%¢, dw, ¢, 0*w,
Hsg, g Ty e TPy g Bl Woga tBag t o t B T e B 0
Ouy 0°w, v, 0’w, Oy 0°w, v, 0’w, 9¢, 0*w, 2, 0w, 12 0w, 0*w,
+A12§8—y2 + 22@8—)/2 + zsaa—yz + 268_? + 126—? - B,0 wy——- 3y —-B,0 x % 3y

09, 0*w, 0¢. 0*w 09, 0*w, » du 2 0%, 2 0%u 2 0%
"0y g a0 g T 0 B 0k 0 B Lo ko0 — B0 ko0 — B0 k0
TEnG g TP, 5 TP 5 o Yoxdy T Yoxay T Yox
2 angx 4+ Qw 4 0%u az¢ 2 82¢ az¢ o*w, 0¢
D6 x5 =200 x— 2 = D,f x =2 - D,,0"x e ~Dyf x5 =t 5 - D,0"x 52 thszo) a° kg2
*w, 0, *w, 99, w ¢, ,
+ kAgy —— 3 2 + kAg; == e +kAy —— 3 2 + kA == 3y kA“SWa; + kA —= 3y + Coo oWy + Coo o, P cOs Ga—xo

=1I,(¥, sin 0 + iy, cos 0) — 1,0’ x{ ((px -0 xwo) cos © - ¢, cos 0 sin © — Z(gox - 9'2xw0 +¢, cos 6 cos @) -Q

- [((px - G'wao)cos © - ¢, cos 6 sin O + sin O sin ®} S0 - [((px - GlszO)sin © +¢, cos 6 cos © —sin 6 cos @} . Q}

. ow, ou, C? o*w . C? o’y
- 2I,y sin®0 ——> ay -0F - 21,y sin®0 -2 ay * + 1, sin 6<4 _yz) ayzo Q% +1, sin®0 <4 —y2> WZO ok
ow, v, 1 0w, 1 0%,
~Io(r+x)— > Q= Iy(r+x) == = SO+ 1, {(L—x)+2(L2—x2)} -QZ—IO[r(L—x)+2(L2—x)]

2
0x2 g

ox?
(19)
*u, *u, 0*u, 0%, 0%, 0%, ow, 0*w,
1572 +2316W +Bé6a—y2 +Bis—5 2 (BIZ+B66)a xdy +B26a_yz +BHWW
+B %azwo N %Bzwo . ow, 62w0 ow, 0°w, +B ow, 0*w, +B %azwo
1 0x 0x2 9y ox2 1279y 0xdy 69x 0xdy 9y 0xdy 0y 0y2

0¢,: B

ow, 0°w, 12 0w, 2 07w, 2 0w, ¢, *¢ )
———— —2D;;0 " —— -D,,0"x -D,0 x D +2D ~ +D =
% x 9 M ox o Xoxay T Gxz T 16 gxpy T V68 5y
o, 0’9, ¢, ow
+ D= 2 +(Dy; + Dgg) 5—=— dxdy + Dy = dy? — kA9, — kAss B kA45 8 —kAss§, —kAys9,

:Iz{(qﬁx—@ ii)ox> cos®—</,’>y cos@s1n®—2(¢x—0'2xwo+¢y cos 6 cos ®) -Q

- [((/)x - G'wa()) cos © — ¢, cos 0'sin O + sin 0 sin ®] S0 - K(/)X - Glzxwo) sin @ + ¢, cos 0 cos © — sin 0 sin @} . Q},

(20)
82u o*u o*u % % %y ow, 0*w, ow, 0*w,
6¢y Bis=— 2 +(Byy + Bgs) % ao sta—zo +B6GWZO +B,, ayzo 2By Fy ao 16 5—0720 + 2Dy 8—)/0?8)0/
dw, 0w, ow, 82w0 dw, 0w, dw, 0°w, 12 0w, 2 0’w,
+B66W FI% + (Bg + Biy) 5 ox axay 228—8—)/2 + zega—yz —2D,s0 ox —Dy0" x o

2 azwo D 62¢x

2 2 aZ aZ 82
+ (D + D) %2 4, 0% L % 0,0 op, TP a0

D129 xaxay + 16 ax2 Ox a 26 ayz 66 axz 22 a 2 26 Ox a 44 T 7 a
ow 2 dw, ow, 0z
ks>  — kAo, —kAu$, - D0 x - a oPoo <w0 +PcosO- ax0> 25

= Iz{ [(qﬁx -0 xii)o)sin 0+ @cos 0 cos © + 2(¢X - Q'wao)cos 0 - <}5},cos 0sin @} -Q
- [(gby - G'inj)o) sin O + ¢, cos 6 cos © — sin 6 cos G)] 0P+ [((;SX - Q/wao)cos © — ¢, cos f sin © + sin 6 sin @} : Q}
(21)



The boundary conditions are given as follows:
x=0ru=v=w=¢,=¢ =0,
x=L:N,=N,=M,=M,=Q,
y=0:N, =N, =M, =M, =Q,
y=C:N,=N,=M, =M, =Q,=

(22)

0,
0.

The dimensionless variables and parameters are intro-
duced as follows:

Lt
o= 7
s %
Y=
_ wy
w, = I
_ X
X=-,
L
Y
y_ C’
¢x_¢x’
¢y:¢y’
0=0,
' =10,
_ r
r=—,
L
o LC 1/2
4= (Eh)2 ’
(LC)I/Z (23)
0T g
~ (LC)I/Z
Y Eh* Dip
T 1
i p(LC)(”’)/Z,
Q=0 p_CL
E bl
t=t £
= Pﬁ’
c P
COO:COO E,
5=p, [P
p=r\%
_ Pl
poo: A :
p.

Substituting (23) into (17), (18), (19), (20), and (21), we
obtain the dimensionless governing equations of motion for
the blade.
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Based on the practical working condition of the blade,
and theoretical and numerical studies given by Dowell
et al. [36, 37], it is known that vibrations of the first two
order modes for the blade play an important role during
vibration. The Galerkin approach is applied to obtain ordi-
nary differential equations of motion in the dimensionless
form. The Galerkin approach is derived by the Taylor
expansion method, which is a mathematically convergent
method. The first two order mode functions can produce
convergent results. Mode functions of the plate u(x,y,t),
v(%y,t), w(x, p;t), ¢.(x,9,1), and ¢, (x,y,t) are given as
follows based on a combination method of beam functions

. TIX y . 3nx 2my
> at = t ~r —_ t —_— —_—
u(x, y, t) = uy (t)sin oL < @ + u,(t)sin TRl
_ . X . Ty . 3nx . 2my
v(x, y,t) =v,(t)sin oL Sin & +v,(t)sin —p Sn
w(x y, 1) =w (HX; (%) Y1 (y) +w, ()X, (x) Y2 (),
. TIX my . TIX 2my
¢ (%9, 1) =¢,,(t)sin LS ¢, (t)sin T s =

¢, (%, t) = ¢, (t)sin T[—é/ (1 —cos %)

. 2my X
+¢,,(t)sin ol (1 —cos T),
(24a)

where

ij

kix k.x kx
X, =cosh L= —cos = —ﬁ(sinh L _sin ]>, (24b)
a a J a a

_ kiy kiy o ky o ky
Y, = cosh - teos - - (smh - tsin - ) (24¢)

where k; are coefficients related to frequencies, k} = k}* = w?
pA/E], k; and A; are coefficients of beam functions as follows:

_ cosh k;b - cos k;b

= — 1=3,4,5,...),
5= Snhkb—sinkp )

(24d)

cosh kja - cos kja

(j=1,2,3,...). (24e)

77 sinh kja —sin kja

Substitute (24a), (24b), (24c), (24d), and (24e) into the
dimensionless governing equations of motion and express
u, v, ¢,, and ?, with w. Ordinary differential equations
of transverse vibration for the first mode and the second
mode of the rotating blade in the dimensionless form are
derived through the Galerkin method as follows:
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w, + [(xl +f11Qsin(@t) + f1,Q, cos(wt) +f13Qf cosz(&)t)}
cwy + oy + f,Q cos(wt)|w, + oc3w12 + W, w,
+ oW Wy + AW, AW, + AW, F oW, + dgw,’
+ [“10 + f 150 cos(wt) + f1,Q;sin(wt) +f17Q% cosz([btﬂ
“Wy + [y + [ cos(@t) |w, + ay, i,
= a5 + f1oQ,co8(@t) + f,oQysin(@t) + f,,QF cos’(@t),
(25a)
W, + [By + f3,5in(@1) + f 3, cos(@t) + f 1,7 cos” (@) |
‘W, + [Py + [ 350 cos(wi) [w, + ﬁ3w§ + Byw w,
+ ﬂswfwz + ﬁﬁwgwl + ﬁ7w§ + ﬁsw% + ﬁ9w?
+ [Bro + f 350, cos(@t) + f 3,0y sin(t)
+ [0 cosz(d)t)]wl + By + f35Qcos(@t) |y + B,
= B3 + f30Q cos(wt) + f 4, sin(wt) +f4Ich0s2((Dt),
(25b)
where expressions of coefficients &, B, and f; are described
in the appendix.

3. Perturbation Analysis

There are both square nonlinear terms and cubic terms in (25a)
and (25b), so the asymptotic perturbation method is exploited
to derive average equations. The small parameter ¢ is intro-
duced. The scale transformation is performed as follows:

a, — ay,
fu— 82f11’
2
fo—¢f 1
fis3— 82f13’
a, — a,,
fu—€fe
Qpo— 32“10’
2
fis— €15
fie— €fie
fir— €2f17’
0 82"‘11’
2
fis—¢€f1p
o, — ey,
Ap3— 32“13’
2
fro— € 19
2
foo—€f0
fa— szle’
B — 32/31’
2
fa— ¢ s
2
fo—¢& 3

fyn— 52f33’

B,— €B,,

fau—fs0

Bio— € Brp»

fy—Ef5

Bii— B>

fis— Ef s

Bro— By

Biz— 82/313’

fr9— €fs,

fao— Ef

fa—&fy (26)
The case of 1:3 internal resonance-1/2 sub-harmonic

resonance for the rotating plate is considered. Relationship
between w, and w, is expressed as

3w, = w,,
i 2
W = S0+ eoy,
2 (27)
~ 2
Wy = =0+ €0,
255 2
w=Q,
where 0, and o0, are two detuning parameters.
Substituting (26) and (27) into (25a) and (25b), we obtain
the following equation
. o
)+ |-+ Qo e’ +&'o? |w,
+ [, + €1 1,0, cos(@t)|w, + aw,
+ 0, W W, + AW W5 + W, W, + aw,’
+ g, + agw,’ + [0 + €215, cos (@)
+ &' f16Q, sin(@t) + €°f ,QF cos® (1) |w,
+ [820611 +&f g cos(d)t)] W, + ey, i,
=elay; + 2f 1o Q) cos(@t) + €2f 5, Q, sin(@t)
+&*f,,QF cos*(@t),

(28a)

.. 9
i, + |= Q% +3Q0,& + £'03 |w,
4

+ [82,814 +&f 50 cos(&)t)}w2 + fyw;
+fww, + ﬁswlzwz + ﬁ6w§wl + ﬁ7wg
+ ﬁswf + /391"? + [ezﬁw + 52f3591 cos(wt)

+ &' f35Q sin(@t) + € f 3,07 cos’ (@) |w,

(28b)

+ [ezﬁ“ +&7f 5,0 cos(@t)|w, + & B,
=& + &[5, cos(@t) + &7f ,,Q, sin(@t)
+&*f,,QF cos’(@t).
The time scale transformation is introduced as

T = ¢t (29)
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where g is the positive rational number, which will be deter-
mined in the following deduction.

Functions x(t) and y(¢) are the solutions of (28a) and
(28b), which can be expressed as a power series of small
parameter &.

x(t) = z ey, (1,€)e 1 (30a)
= eng e (30)

In (30a) and (30b), if n # 0, then r,, = |n|, otherwise r, = r.
In the following derivation, we will fix r,,.
The real part of x(t) and y(¢) are written as follows:

(31a)
(31b)

u/n (T’ 8) = u/—n* (T’ 8),
¢n (T’ 8) = ¢—n* (T’ 8),

where the item with the asterisk on the right-hand side is the
complex conjugate of the item on the left-hand side.

Solutions of (28a) and (28b) can be rewritten more
explicitly as follows:

x(t) = gfv,o('r, €) + ey, (7, s)efi(Q/z)t

+ ey, (1, 8)e ™ + ey, (1, €)1V (32a)
+ ety (1, e)e ) 4 cc+o(€),

Y(t) = €'y (T, €) + ¢, (T, €)e Y
+ &2, (1, 8)e Y 1+ 3¢, (1, )e VD! (32b)
+ €4¢4(T, s)e—i60t Fec+ 0(85),

where cc denotes terms of the complex conjugate of functions
on the right-hand side.

Solutions of (28a) and (28b) can be expressed as har-
monic functions, whose coefficients are related to small
parameter & as shown in (32a) and (32b). Functions
y,(1,¢) and ¢, (7,€) are given by

v, (1,€) = fsiwn(i> (1), (33a)
b.(5.6)= 3 6,0 (330)

i=0
We suppose when ¢ — 0, the limits of v, (7,¢) and
¢,(7,¢€) exist. Meanwhile, we define y(» =y . ¢ =¢

for n#1 and 1//§0> =Y and gb(lo) =¢ for n=1. When n=2, we
obtain the derivative results as follows:

d . Q d .
i (ll/ne’m(m)f) = <—in51//n +¢l %) e (@)t (34a)
t

di(gbne-m(mﬁ) - (_ingﬂqsn +el %) GO (34)
t

In order to solve the coefficients of v, (7, ¢) and ¢, (7, ),
substituting (30a) and (30b) into (28a) and (28b), we obtain
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equations for each harmonic with order » and a fixed order
of approximation on the perturbation parameter .
When 71 =0, we get the following expressions:

1 2.r * 2 * 2
ZQ Yo+ 2050, 1€ + 205y, Y1 €

= [0 sin(@t)e? — f 1,0 cos(@t)e” (352)
— £, QF cos*(@t)e” — ayze” =0,
9 r * *
2925 G0 + 250,97 €” + 2By €l
(35b)

= Pis€® — faoQusin(@)e” - f1,Q, cos(@t)e?
— f0, Q4 cos*(@t)e” = 0.

The solvability of (35a) and (35b) requires r = 2. Thus, we
obtain the following expressions:

1 * * s (T
Vo=~ 2 (8azy, Yy +Bagy ¢) — 4f 5, sin(wr) (36a)
—4f 1, Q cos(@t) — 4f,,QF cos®(@t) — 4ays),
4 * * : -~
¢y = o002 (8B3¢191 + 8Bsw 1y — 4By = 4f 4 sin(wt)
—4f 15Q; cos(@t) — 4f ,, QF cos®(@t)).
(36b)

When 7 =2, considering derivative forms of (34a) and
(34b) yields

3
Ay + oy, - ZQZ% =0, (37a)
27
/33‘/’% - ZQZ‘Pz =0. (37b)
Then, the following equations are obtained
_ %“3% + i (38a)
2 3 QZ ’
_ 4B 38b
¢z - ﬁ Qz : ( )

When 7 =1, for the balance of the nonlinear and linear
terms, we must make q=2. Equations can be derived as
follows:

—1OD, (y,) + 20593y + dupo¥y + upr ¥ + 305y
+ 2039,y + agdyy + Qoy, — %IQcos(d)t)fMQlwl
+ 205y, 6,07 — %IQ(XZI//I =0,
(39a)
=31QD; () +2B3$o$, + Bubrvo + Bovi + 30,9,
#2B,6,67 + 3, 8161 + 2By, - 2 10cS(@1) 1,08,

. 3
+2B5y, vy — Elﬂﬁzflsl =0.
(39b)
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Substitute (36a) and (36b) and (38a) and (38b) into (39a)
and (39b), differential equations about , and ¢, are derived as

Di(y,) = (91 +Q,g, —loy +1hy + IO hy +IQ%h2)V/1

+Ih,y ¢, + IhsWT2¢1 + Ihé‘/’f‘//f’
(40a)

D (¢,) = (g3 +Qg, — oy +Iky + IOk +IQ%k2)§D1
+ Ty y, ;7 + Ths@y o7 + Thys.

(40b)

Make v, and ¢, as follows:
v, =X +iX,, (41a)
¢y = x5 + ixy. (41b)

Substitute (41a) and (41b) into (40a) and (40b), averaged
equation in the Cartesian form is obtained as

X =(g,+Q1g,)%; + (01 —hy = Qb - Qﬁhz)xz
= hgx, (%7 +x3) = hyx, (x5 +x7) (42a)

2 2
= hsxy (x] = x3) + 2hsx, X, %3,

X, = —(01 —hy—Qyh, - Q%hz)’ﬁ +(9: +Q,9,)%,
+ hex, (x +x3) + hyx, (x5 + x3) (42b)

+ sy (x7 = x3) + 2hsx, X,%,,
X3= (g5 + Qugy)x, + (‘72 —ky = Qyk; - Q%kz)xz
— kg (%7 +X3) — ks, (x5 +x3)

— kgx, (3x7 — x3),

(42¢)

Xy = _(02 —ky = Qyky - Q%kz)’ﬁ
+(g3 + Q194)%, + kyx; (xf + x%) (42d)
+ ks (x5 + x7) + kexy (5] = 3x3),
where expressions of coefficients o;, g,, h
described in the appendix.

» and k; are

4. Numerical Simulation of
Nonlinear Vibrations

4.1. Comparison about Frequencies. In this section, based on
the kinetic energy and the potential energy of the blade
deduced in the previous section, the Chebyshev polynomial
and Ritz method are used to calculate the frequency of the
model, which are compared with the frequency obtained by
finite element method.

To validate the model proposed, we compare frequencies
theoretically calculated with frequencies obtained by the
finite element method. Geometrical parameters and physical
properties of the compressor blade are selected as the span-
wise length L =0.0534 m, the chordwise length C =0.03773
m, the mounting angle 6 = 34.49°, the hub radius r = 0.0845
m, the density p =7800kg/m>, the Poisson’s ratio y=0.3,
the elastic modulus E =1.96 GPa, the inlet velocity v;, =

11
TaBLE 1: Frequency comparison.
Ist 2nd 3rd

FEM C-R FEM C-R FEM C-R
O0rpm 11304 1076.6 40384 31172 6288.6 6253.9
30000rpm 1133.4 1080.6 4039.1 3118.7 6291.8 6257.7
6000rpm 11422 1092.8 4041 31232 6301.2 6269.2
9000rpm  1156.6 1112.7 40442 3130.6 63169 6288.3
12000rpm  1176.6 1140  4048.7 3141 6338.8 63149

15000rpm 1201.7 1156.2 4054.5 3169.9 6366.9 6341

FiGure 3: Bifurcation diagram on the plane (x;,Q;) when the
perturbation rotating speed (), varies in the interval Q; =0~1.5.
The initial condition is x;5=0.2, x5, =0.101, x5, =-0.26, and
X4 =1.2.

39.0496 m/s, the inlet mass flow M, =2.557kg/s, the real
flow velocity V,, =78.472m/s. Table 1 shows frequencies of
different orders obtained by two methods above. When the
rotating speed increases from 0rpm to 15000 rpm, frequen-
cies calculated by those two methods are in good agreement.
So, the model is reasonable.

4.2. Numerical Simulation. Based on (42a), (42b), (42¢c),
and (42d), we consider the influences of dimensionless
parameters on nonlinear vibration behaviors of the rotat-
ing cantilever blade. Numerical simulation is utilized to
investigate nonlinear dynamics of the rotating cantilever
composite plate subjected to the aerodynamic force and
the centrifugal force. Nonlinear oscillation of the system
is investigated by choosing the perturbation rotating speed
Q, as the controlling parameter. When other parameters
and the initial condition do not vary, we only change Q,
to detect the influence of the periodic perturbation rotat-
ing speed on vibration of the rotating cantilever composite
blade. The Runge-Kutta algorithm and the Poincare map
theory are used to construct numerical results of the bifurca-
tion diagram, which describes the vibration law of the dis-
placement x,, when Q; changes in a certain region.

When the parameter Q, is chosen in the interval Q, =
0 ~ 1.5, and other parameters and the initial condition are,
respectively, chosen as o, =3.68, 0,=1.88, g, =-0.0015,
g, =0.0012, g, =—0.0015, g, =0.0012, h, =5.95, h, =0.29,
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F1GURE 4: The multiperiodic motion of the blade with varying rotating speeds when ), = 0.076. (a) The phase portrait on the plane (x,, x, );
(b) the waveform on the plane (f, x, ); (c) the phase portrait on the plane (x5, x,); (d) the waveform on the plane (%, x5 ); (e) the phase portrait
in the three-dimensional space (x;, x,, x5 ); and (f) the power spectrum on the plane (f, x; ).

hy=12, hy=-3.57, hs=64, h =639, k =825, k=
0.2925, ky =0.18, k, =19.9, ks =—1.4, ks =1.25, x,,=0.2,
X5 = 0.101, x5, =—-0.26, and x,, = 1.2, we obtain Figure 3.
Figure 3 describes the bifurcation diagram on the plane
(x1,Q,) when Q, varies in the interval (0,1.5). It can
be observed that periodic motion and chaotic motion appear
in the vibration of the blade. With the increase of the pertur-
bation rotating speed ), Figure 3 presents the following law:

periodic motion — chaotic motion — periodic motion —
chaotic motion — periodic motion.

The chaotic and periodic responses can be identified by
several conventional criteria. Thus, based on the bifurcation
diagram, the waveform, phase portraits, and the power spec-
trum are utilized to further verify the existence of the chaotic
and periodic motion of the blade. Figures 4 and 5 illustrate
that the system occurs multiperiodic motion when the
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F1gure 5: The multiperiodic motion of the blade with varying rotating speeds when ), = 0.412. (a) The phase portrait on the plane (x;, x,);
(b) the waveform on the plane (f, x, ); (c) the phase portrait on the plane (x5, x,); (d) the waveform on the plane (%, x5 ); (e) the phase portrait
in the three-dimensional space (x,, x,, x;); and (f) the power spectrum on the plane (f, x,).

perturbation rotating speed ), is chosen as ); =0.076 and
Q, =0.412, respectively. Figures 4(a) and 4(c) represent the
phase portraits on the planes (x;,x,) and (x;, x,), respec-
tively. Figures 4(b) and 4(d) give the waveform on the plane
(t,x,) and (t,x;), respectively. Figure 4(e) represents the
three-dimensional phase portrait in the space (x,x,,x;).
Figure 4(f) describes the power spectrum on the plane

(f,x;). It can be shown from Figure 4 that the amplitude
of the first-order mode is larger than that of the second-
order mode. Figure 6 indicates that the chaotic motion of
the system appears when Q, = 0.8. Figures 7 and 8 illustrate
that multiperiodic motion of the rotating composite plate
occur, when the perturbation rotating speed ), continues
to increase and is selected as ,=0.93 and Q,=1.1,
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Ficure 6: The chaotic motion of the blade with varying rotating speeds when Q, = 0.8. (a) The phase portrait on the plane (x;, x,); (b) the
waveform on the plane (f, x, ); (c) the phase portrait on the plane (x;, x,); (d) the waveform on the plane (t, x;); (e) the phase portrait in the
three-dimensional space (x;, x,, x3); and (f) the power spectrum on the plane (f, x,).

respectively. Figure 9 shows that the chaotic motion of the
rotating cantilever composite plate exists when Q; =1.201.
Figure 10 illustrates that the system exhibits multiperiodic
motion when (), increases to (0, = 1.33.

Numerical simulation indicates that the system performs
complex dynamic behaviors, such as multiperiodic motion
and chaotic motion, when (), changes in a certain region.

The perturbation rotating speed Q, affects the dynamic
behaviors of the system significantly.

5. Conclusions

In this paper, nonlinear vibration behaviors of the high
rotating cantilever plate subjected to the centrifugal force
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Ficure 7: The multiperiodic motion of the blade with varying rotating speeds when Q, = 0.93. (a) The phase portrait on the plane (x,, x,); (b)
the waveform on the plane (¢, x); (c) the phase portrait on the plane (x5, x,); (d) the waveform on the plane (¢, x;); (e) the phase portrait in
the three-dimensional space (x;, x,, x;); (f) the power spectrum on the plane (f, x; ).

and the aerodynamic force are investigated. Nonlinear
partial differential governing equations of the rotating
blade are derived by utilizing Hamilton’s principle. The
Galerkin method is applied to discretize the nonlinear partial
differential governing equations. The method of asymptotic

perturbation is adopted to obtain the four-dimension nonlin-
ear averaged equation of motion for the blade in the case of
1:3 internal resonance-1/2 subharmonic resonance. Numer-
ical simulations are used to study nonlinear dynamic
responses of the blade.
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F1GURE 8: The multiperiodic motion of the blade with varying rotating speeds when Q; = 1.1. (a) The phase portrait on the plane (x;, x,); (b)
the waveform on the plane (¢, x, ); (c) the phase portrait on the plane (x5, x,); (d) the waveform on the plane (¢, x5 ); (e) the phase portrait in
the three-dimensional space (x;, x,, x;); and (f) the power spectrum on the plane (f, x, ).

The bifurcation diagram, phase portrait, and power spec-  parameter. Numerical simulation shows that nonlinear
trum are conducted to demonstrate that periodic motions  dynamic motions of the blade are sensitive to the perturba-
and chaotic motions occur in nonlinear vibrations of the  tion rotating speed. The periodic motion and chaotic motion
rotating blade under certain conditions. In this paper, the  of the blade appear alternately. Periodic motions and chaotic
perturbation rotating speed is selected as the controlling  motions exist in the averaged equations. It is well known that
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Ficure 9: The chaotic motion of the blade with varying rotating speeds when Q, = 1.201. (a) the phase portrait on the plane (x,, x,); (b) the
waveform on the plane (f, x, ); (c) the phase portrait on the plane (x;, x,); (d) the waveform on the plane (t, x;); (e) the phase portrait in the

three-dimensional space (x,, x,, x3); and (f) the power spectrum on the plane (f, x,).

periodic motions and chaotic motions in the averaged
equations can lead to amplitude-modulated periodic and
chaotic vibrations in the original system under certain

conditions. Therefore, amplitude-modulated periodic and
chaotic motions occur in the rotating blade. Occurrence of
the chaotic motion means that the rotating cantilever blade
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F1Gure 10: The multiperiodic motion of the blade with varying rotating speeds when Q, = 1.33. (a) The phase portrait on the plane (x,, x,);
(b) the waveform on the plane (f, x, ); (c) the phase portrait on the plane (x5, x,); (d) the waveform on the plane (%, x5 ); (e) the phase portrait
in the three-dimensional space (x;, X, x3); and (f) the power spectrum on the plane (f, x; ).

may perform large amplitude nonlinear vibration, which
leads to the damage of the system. We can control the
responses of the system from the chaotic motions to the peri-
odic motions by changing the perturbation rotating speed.
Finally, the large-amplitude vibrations of the blade can be
controlled. Thus, study on nonlinear behavior of the blade
is of great significance.

Analytical results of this paper can be widely used in
the practical aircraft engines. Large amplitude nonlinear

vibration produced by the forced vibration and self-
excited vibration occasionally leads to the undesirable
disaster of the blade. Since chaotic motion is the large
amplitude nonlinear vibration, we can adjust the perturba-
tion rotating speed to control the responses of the system
in order to avoid the appearance of the chaotic motion.
Moreover, the possibility of aircraft engine failure caused
by nonlinear vibration is reduced to ensure the safety of
the aeroplane.
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Appendix
Coefficients in Equations

Coeflicients represented in (25a) and (25b) are given as follows:
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Coefficients represented in (42a), (42b), (42¢), and (42d)
are as follows:
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Nomenclature
Q: Rotating speed
Q: Steady-state rotating speed
Q;: Periodic perturbation amplitude of
the rotating speed
w: Angular velocity of the blade
L: Plate spanwise length
C: Plate chordwise length
h: Plate thickness
r: Radius of the rigid hub
0,: Presetting angle
Og: Pre-twist angle
T Inertial frame
(1, j, k)
—0" 0 —0 i i
(e, e, e.): Rotating coordinate system
(68, 2.): Local triad system
o' Twist rate
0: Twist angle
Uy, Vo> Wyt Components of displacement of a
point at the neutral plane
u, v, w: Components of displacement of a
random point
b @) Angular displacement

Exx> Sy > sz’ Yz ny:
%
1

e
K Aj:
Or Oy Oy Oy O

04, 0y

E,, E;:

Y120 Yar+

Gy Gys, Gy
NXX’ Ny}/’ NX)/
M.,M, ,M

xx> Vyy> YVyz> Yxz> xy:

Components of strains of a point
Membrane strain

Flexural strain

Coeflicients of beam functions
Components of stresses of a point
Plane stress-reduced stiffnesses
Detuning parameters
Longitudinal modulus and transverse
modulus of the fiber

Poisson’s ratio

Shear modulus

In-plane force resultants

Moment resultants
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Q,, Qy: Transverse forces

k: Shear coeflicient

Ay Extensional stiffness

Dyj: Bending stiffness

By Bending-extensional coupling stiffness

I, 1,1, Mass moments of inertia

7 Displacement of a point without
deformation

O: Rotating angle of the blade

R, R: Speed and acceleration

K: Kinetic energy

F,, F_ Components of the centrifugal force

p: Density of the blade

U: Potential energy

Up: Strain energy

U,: Centrifugal potential energy

P Air density

Cy: Speed of sound

P: Speed of the airflow

W: Virtual work of aerodynamic forces

o: The variation

& Small parameter

W), Wy The first two mode frequencies

T Time scale transformation

q: Positive rational number

Vi Inlet velocity

M, Inlet mass flow

Vi Real flow velocity.
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