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High speed rotating blades are crucial components of modern large aircraft engines. The rotating blades under working
condition frequently suffer from the aerodynamic, elastic and inertia loads, which may lead to large amplitude nonlinear
oscillations. This paper investigates nonlinear dynamic responses of the blade with varying rotating speed in supersonic
airflow. The blade is simplified as a pre-twist and presetting cantilever composite plate. Warping effect of the rectangular
cross-section of the plate is considered. Based on the first-order shear deformation theory and von-Karman nonlinear
geometric relationship, nonlinear partial differential dynamic equations of motion for the plate are derived by using
Hamilton’s principle. Galerkin approach is applied to discretize the partial differential governing equations of motion to
ordinary differential equations. Asymptotic perturbation method is exploited to derive four-degree-of-freedom averaged
equation for the case of 1 : 3 internal resonance-1/2 sub-harmonic resonance. Based on the averaged equation, numerical
simulation is used to analyze the influence of the perturbation rotating speed on nonlinear dynamic responses of the
blade. Bifurcation diagram, phase portraits, waveforms and power spectrum prove that periodic motion and chaotic motion
exist in nonlinear vibration of the rotating cantilever composite plate.

1. Introduction

High-speed rotating blades are essential components of mod-
ern large aircraft engines. Blades are designed with large
aspect ratios and thin-wall structure in order to raise opera-
tional efficiency. In the actual working condition, the rotating
blades are frequently subjected to the aerodynamic, elastic,
and inertia loads. Various types of excitation lead to large
amplitude nonlinear parametric vibrations of the blades,
which can result in the resonance phenomena and undesir-
able disasters, especially when the rotating blades operate
with high speed and huge centrifugal force. According to
the investigation, the vibration failure of the aircraft engine
is more than 60% of the total failure, while the vibration fail-
ure of the blade accounts for more than 70% of the total
vibration failure. Resonance and flutter produced by the
forced vibration and self-excited vibration are the main rea-
son leading to the blade failure. So, it is very important that
a reasonable model is established to accurately predict

nonlinear vibration characteristics and other complex
dynamics of the blade.

In recent years, considerable attention has been given to
the studies on the vibration characteristics of rotating blades.
Lin et al. [1] deduced governing differential equations and
general elastic boundary conditions of a nonuniform pretwist
Timoshenko beam by using Hamilton’s principle. Yao et al.
[2] investigated the nonlinear dynamic responses of the
thin-walled rotating cantilever beam. Sarkar and Ganguli
[3] assumed the modal function as polynomials satisfying
all four boundary conditions and discussed free vibration of
the nonhomogeneous Timoshenko beam. Georgiades et al.
[4] derived equations of motion of a rotating composite
Timoshenko beam by utilizing Hamilton’s principle. Xie
et al. [5, 6] numerically investigated the effect of symmetric
and asymmetric shroud gaps, rotational speeds, and the aero-
dynamic force amplitude on dynamic characteristics of the
rotating Euler-Bernoulli beam with a mass point at the free
end. Huang and Kuang [7] investigated the effect of a near
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root local blade crack on the stability of a bladed disk, in
which an individual blade is modeled simply as a cantilever
Euler-Bernoulli beam.

Currently, plenty of theoretical analyses are focused on
the beam model of the blade, such as the simple Euler-
Bernoulli beam and the pretwist Timoshenko beam. But,
theoretical studies on the plate model of the blade are still
few. Young and Liou [8] established equations of a rotating
cantilever plate with a time-varying speed and numerically
investigated the effect of the Coriolis force on boundaries
of the unstable regions. Yoo and Kim [9] derived linear
equations of motion and analyzed free vibration of rotating
cantilever plates. Sinha and Turner [10] derived governing
partial differential equations of motion for a rotating pre-
twist plate to investigate the static and dynamic frequencies
of the blade. Li and Zhang [11] presented a dynamic model
of a functionally graded rectangular plate undergoing large
overall motions. Kouchakzadeh et al. [12] analyzed the
nonlinear aeroelasticity of a laminated composite plate in
supersonic airflow by using the classical plate theory. Malgaca
et al. [13] tried to control the vibration of the rotating
blade at different speeds by utilizing root-embedded piezo-
electric materials. Kam et al. [14] proposed a procedure to
analyze the structural failure of a composite wind blade
subjected to quasi-static loads. Tang and Chen [15] pre-
sented the solvability conditions of nonlinear partial differ-
ential equations for in-plane moving plates of two cases, in
which the one case is without internal resonance and
another case is under internal resonances, respectively.
Sun et al. [16] used a quadratic layerwise theory and a
new dynamic model to study dynamic behaviors for a mul-
tilayer pretwist rotating blade. Wang et al. [17] established
a time-dependent nonlinear model of a flexible blade-
rotor-bearing system by using the Lagrange method.
Shariyat et al. [18] performed the nonlinear dynamic
analysis of rectangular composite plates. Zhang and Li
[19] adopted the Lagrangian method to acquire dynamic
equations of motion for the pretwist and predeformed
rotating cantilever plate subjected to the harmonic aerody-
namic force. Mendonça et al. [20] considered internal
damping in the shaft to study dynamic behaviors of the
rotors mounted on composite shafts. Banichuk et al.
[21, 22] investigated the stability and bifurcation of the
rotating blade under different conditions.

Based on the shallow shell theory and the Ritz method,
Leissa et al. [23] explored frequencies and mode shapes of
turbomachinery blades with the coupling of bending and
twist. Kee and Kim [24] assumed blades as the moderately
thick open cylindrical shell models. Sun et al. [25] applied
the general shell theory to investigate the influence of param-
eters on natural frequency and damping characteristics of the
shell model blade. Sinha and Zylka [26] simplified the
rotating pretwisted turbomachinery cantilevered airfoil as
an anisotropic shell and derived the free vibration equa-
tions of motion for the transverse deflection of the shell
including the warping effect. Volker and Joachim [27]
analyzed the aeroelastic phenomena of twenty compressor
blades simplified as the spring-damper models mounted
on the hub. Ekici et al. [28] proposed a nonlinear

harmonic balance method to compute the unsteady self-
excited aerodynamic of asymmetry turbomachinery blades.
Farhadi and Hosseini-Hashemi [29] studied aeroelastic
behaviors of a rotating thick plate in the supersonic air-
flow. Lachenal et al. [30] presented the design, analysis,
and realization of a zero stiffness twist morphing wind
turbine blade subjected to the gust loads.

Dynamic modeling of the rotating blade requires an
accurate expression of the aerodynamic force. But, the phys-
ical mechanism of aerodynamic interaction has been mainly
investigated by experimental methods. Models have been
proposed to deal with aerodynamic interaction problems,
which is done with by the piston theory widely. Ashley and
Zartarian [31] firstly proposed the quasi-steady piston theory
to deal with aerodynamic interaction problems. Navazi and
Haddadpour [32] studied the thermal stability of the func-
tionally graded plate subjected to the aerodynamic load
obtained from the first-order piston theory. According to
large deformation geometric relationship, the piston theory
and the quasi-static thermal stress theory, Yuan and Qiu
[33] established the aerodynamic model of a composite stiff-
ened panel and used Hamilton’s principle to derive the equa-
tions of motion for the system. Yang et al. [34] applied a
modified local piston theory to analyze aeroelastic behaviors
of curved panels.

Although extensive studies have been carried out on
rotating cantilever beams, studies on nonlinear dynamic
responses of the pretwist, presetting rotating cantilever plates
are still few. In this paper, nonlinear dynamic behaviors of
the blade with varying rotating speeds under the supersonic
airflow are investigated. Considering the shear deformation
and the warping effect, equations of motion for the cantilever
plate are derived by using Hamilton’s principle. The Galerkin
approach is applied to discretize the partial differential gov-
erning equations of motion to ordinary differential equa-
tions. The asymptotic perturbation method is exploited to
obtain averaged equations of the system in the case of 1 : 3
internal resonance-1/2 subharmonic resonance. Based on
the averaged equations, numerical simulation is applied to
investigate the bifurcation and chaotic dynamics of the rotat-
ing cantilever composite plate. In order to analyze the inter-
nal resonance, we choose the perturbation rotating speed as
the controlling parameter to investigate nonlinear behaviors
of the pretwist and presetting rotating cantilever plate. From
the results of the numerical simulation, it is found that the
system performs periodic and chaotic motions under spe-
cific conditions. It is observed that the perturbation rotating
speed has a significant influence on the nonlinear dynamic
behaviors of the rotating plate. Since we can control the
responses of the system from the chaotic motions to the
periodic motions by changing the perturbation rotating
speed, we can control the large amplitude nonlinear vibra-
tions of the blade.

2. Equations of Motion for the Rotating
Cantilevered Blade

The schematic diagram of the rotating cantilever blade is
shown in Figure 1. The blade is simplified as a pretwist and
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presetting rotating cantilever plate in the following dynami-
cal analysis. Rotating speed of the blade is Ω t =Ω0 +Ω1

cos ωt , where Ω0 is the steady-state rotating speed and Ω1

cos ωt is the periodic perturbation. The shape of the blade
is a rectangular plate, which is characterized by the span
length L, the chord length C, and the thickness h. The
cross-section of the cantilever plate is shown in Figure 2.
The plate is clamped to a rigid hub of radius r. There are a
presetting angle θr in the fixed end and a pretwist angle θR

at the free end. i , j, k is the inertial frame and the origin
of it is in the center of the hub. At the edge of the hub,

there is the rotating coordinate system e
0

x, e
0

y , e
0

z . We

define that the spanwise direction is e
0

x, the chordwise direc-

tion is e
0

y , and the thickness direction is e
0

z . Another local

triad system êx, êy, êz attached to the free end of the plate

is introduced on the plate, which is called the sectional coor-
dinate system.

The twist rate θ′ of the blade is expressed as

θ′ =
θR − θr
R − r

, 1a

and the twist angle θ x of the blade is written as

θ x = θr + θ′x 1b

Based on the Kirchhoff hypothesis, the first-order
shear deformation theory including the warping effect is
considered to establish the displacement field. Displacements
of any point along x, y, and z directions can be expressed
by the displacement of the neutral plane of the plate as
follows [35]:

u x, y, z, t = u0 x, y, t + zφx x, y, t − z θ′
2
xω0, 2a

v x, y, z, t = v0 x, y, t + zφy x, y, t , 2b

w x, y, z, t =w0 x, y, t , 2c

where

ϕx = γxz −
∂w0

∂x
,

ϕy = γyz −
∂w0

∂y

2d

Nonlinear strains of the von Karman plate theory are
given as

εxx

εyy

γyz

γxz

γxy

= ε0 + z ε1 =

∂u0
∂x

+
1

2

∂w0

∂x

2

∂v0
∂y

+
1

2

∂w0

∂y

2

∂w0

∂y
+ φy

∂w0

∂x
+ φx

∂u0
∂y

+
∂v0
∂x

+
∂w0

∂x

∂w0

∂y

+ z

∂φx

∂x
− θ′

2
w0 − θ′

2
xw0,x

∂φy

∂y

0

0

∂φx

∂y
+
∂φy

∂x

,

3

where ε0 is the membrane strain and ε1 is the flexural
strain.

For the advanced fiber-reinforced composite material
blade, the constitutive relation of the composite plate is
expressed as follows:

σxx

σyy

σxy

=

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

εxx

εyy

γxy

, 4a

σyz

σxz
= k

Q44 Q45

Q45 Q55

γyz

γxz

, 4b
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Figure 1: The model of the pretwist rotating cantilever rectangular
plate.
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Figure 2: The section of the rotating cantilever plate.
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where

Q11 =
E1

1 − γ12γ21
,

Q12 =
γ12E2

1 − γ12γ21
,

Q22 =
E2

1 − γ12γ21
,

Q66 =G12,

Q44 =G23,

Q55 =G13,

4c

where E1 is the longitudinal modulus of the fiber, E2 is the
transverse modulus, γ12 and γ21 are the major Poisson’s ratio,
respectively, and G12, G23, and G13 are the shear modulus,
respectively.

In-plane force resultants Nxx, Nyy, and Nxy; the moment

resultants Mxx, Myy, and Mxy ; and the transverse forces Qx

and Qy are written in matrices as follows:

N

M
=

A B

B D

ε0

ε1
, 5a

Qy

Qx

= k
A44 A45

A45 A55

∂w0

∂y
+ ϕy

∂w0

∂x
+ ϕx

, 5b

where k represents the shear coefficient,Aij is called the exten-

sional stiffness, Dij is the bending stiffness, and Bij is the

bending-extensional coupling stiffness, which are defined as

Aij, Bij, Dij =
h/2

−h/2

Qij 1, z, z2 dz , 6a

I0, I1, and I2 are mass moments of inertia, which are
defined as

I0, I1, I2 =
h/2

−h/2

ρ 1, z, z2 dz 6b

The rotating plate mounted in the hub is rotating with
the variable speed. The displacement of a random point P
without deformation on the plate is expressed as

r x, y, z, t = R0 + x e x + y e y + z e z , 7a

and the deformation displacement of a random point P on
the rotating plate is written as

R x, y, z, t = x + R0 + u e x + y + v e y + z +w e z

7b

where u, v, and w denote displacement components along x,
y, and z directions, respectively.

When the blade rotates with a constant angular velocity
ω, the transient angle Θ can be written as

Θ =
t

0

Ω0 +Ω1 cos ωt dt 8

The instantaneous direction of the local unit vector

e x, e y, e z for any typical point on the blade with respect

to the stationary global Cartesian unit vector i , j, k is
given by

e
0

x

e
0

y

e
0

z

=

cos Θ sin Θ 0

−sin Θ cos Θ 0

0 0 0

i

j

k

, 9a

e x

e y

e z

=

1 0 0

0 cos βx + θr sin βx + θr

0 −sin βx + θr cos βx + θr

e
0

x

e
0

y

e
0

z

9b

The speed and the acceleration of any random point P on
the plate are described as follows:

R = u cos Θ − x + R0 + u sin Θ ⋅Ω − v cos θ sin Θ

− y + v cos θ cos Θ ⋅Ω +w sin θ sin Θ

+ z +w sin θ cos Θ ⋅Ω i + u sin Θ

+ x + R0 + u cos Θ ⋅Ω + v cos θ cos Θ

− y + v cos θ sin Θ ⋅Ω −w sin θ cos Θ

+ z +w sin θ sin Θ ⋅Ω j + v sin θ +w cos θ k ,

10a

R = u cos Θ − 2u sin Θ ⋅Ω − x + R0 + u cos Θ ⋅Ω
2

− x + R0 + u sin Θ ⋅Ω − v cos θ sin Θ − 2v cos θ cos Θ

⋅Ω + y + v cos θ sin Θ ⋅Ω
2
− y + v cos θ cos Θ ⋅Ω

+w sin θ sin Θ + 2w sin θ cos Θ ⋅Ω − z +w sin θ sin Θ

⋅Ω
2 + z +w sin θ cos Θ ⋅Ω i + u sin Θ + 2u cos Θ

⋅Ω − x + R0 + u sin Θ ⋅Ω
2 + x + R0 + u cos Θ ⋅Ω

+ v cos θ cos Θ − 2v cos θ sin Θ ⋅Ω − y + v cos θ cos Θ

⋅Ω
2
− y + v cos θ sin Θ ⋅Ω −w sin θ cos Θ

+ 2w sin θ sin Θ ⋅Ω + z +w sin θ cos Θ ⋅Ω
2

+ z +w sin θ sin Θ ⋅Ω j + v sin θ +w cos θ k ,

10b

where

θ = θ x = θr + θ′x 10c
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The variation of the kinetic energy is given by

A large centrifugal force will be generated when the com-
pressor blade of the aircraft engine operates with the high
rotating speed. Components of centrifugal forces along the
spanwise and chordwise directions are described by Fs and
Fc, which can be expressed as

Fs =
L

x

ρΩ2 r + x dx, 12a

Fc =
±C/2

y

ρΩ2y sin2θdy 12b

The variation of the potential energy δU consists the
variation of the strain energy δU1 and the variation of
the centrifugal potential energy δU2, namely, δU = δU1 +
δU2, where

δU1 =
Ω0

h/2

−h/2

σxx δε 0
xx + zδε 1

xx

+ σyy δε 0
yy + zδε 1

yy + σxy δγ 0
xy + zδγ 1

xy

+ σxzδγ
0
xz + σyzδγ

0
yz dz dxdy,

13a

δU2 =
h/2

−h/2

Fs

1

2
δ

∂w

∂x

2

+
∂v

∂x

2

+Fc

1

2
δ

∂w

∂y

2

+
∂u

∂y

2

dz dxdy

13b

Aerodynamic forces of the blade derived by the first-
order piston theory are written as

Δpy = C
∞
ρ
∞

∂v

∂t
+U t

y

∂v

∂x

= C
∞
ρ
∞

v + P sin θ
∂v

∂x
,

14a

Δpz = C
∞
ρ
∞

∂w

∂t
+U t

z

∂w

∂x

= C
∞
ρ
∞

w + P cos θ
∂w

∂x
,

14b

where ρ
∞
is the air density, C

∞
is the speed of sound, P is the

speed of the airflow, and U t
y = P sin θ, U t

z = P cos θ.

The variation of the virtual work of aerodynamic forces is
expressed as follows:

δK = −

V

ρRδRdV

=
s

I0 u0 cos Θ − v0 cos θ sin Θ +w0 sin θ sin Θ − 2 u0 sin Θ + v0 cos θ cos Θ

−w0 sin θ cos Θ ⋅Ω − x + R0 + u0 cos Θ − y + v0 cos θ sin Θ +w0 sin θ sin Θ ⋅Ω
2

− x + R0 + u0 sin Θ − y + v0 cos θ cos Θ −w0 sin θ cos Θ ⋅Ω ⋅ δu0

+ I0 u0 sin Θ − v0 cos θ cos Θ −w0 sin θ cos Θ + 2 u0 cos Θ + v0 cos θ sin Θ

+w0 sin θ sin Θ ⋅Ω − x + R0 + u0 sin Θ + y + v0 cos θ cos Θ −w0 sin θ cos Θ ⋅Ω
2

+ x + R0 + u0 cos Θ − y + v0 cos θ sin Θ −w0 sin θ sin Θ ⋅Ω ⋅ δv0

+ I0 v0 sin θ +w0 cos θ − I2θ′
2
x ϕx − θ′

2
xw0 cos Θ − ϕy cos θ sin Θ

− 2 ϕx − θ′
2
xw0 + ϕy cos θ cos Θ ⋅Ω − ϕx − θ′

2
xw0 cos Θ − ϕy cos θ sin Θ + sin θ sin Θ

⋅Ω
2
− ϕx − θ′

2
xw0 sin Θ + ϕycos θ cos Θ − sin θ cos Θ ⋅Ω δw0

+ I2 ϕx − θ′
2
xw0 cos Θ − ϕy cos θ sin Θ − 2 ϕx − θ′

2
xw0 + ϕy cos θ cos Θ ⋅Ω − ϕx − θ′

2
xw0 cos Θ

− ϕy cos θ sin Θ + sin θ sin Θ ⋅Ω
2
− ϕx − θ′

2
xw0 sin Θ + ϕy cos θ cos Θ − sin θ cos Θ ⋅Ω δϕx

+ I2 ϕx − θ′
2
xw0 sin Θ + ϕy cos θ cos Θ + 2 ϕx − θ′

2
xw0 cos Θ − ϕy cos θ sin Θ ⋅Ω

− ϕx − θ′
2
xw0 sin Θ + ϕy cos θ cos Θ − sin θ cos Θ ⋅Ω

2 + ϕx − θ′
2
xw0 cos Θ

− ϕycos θ sin Θ + sin θ sin Θ ⋅Ω δϕy dxdy

11
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δW =
S

Δpzδwdxdy +
S

− Δpyδvdxdz

=
S

Δpzδw +
∂z

∂y
Δpyδv dxdy

15

Nonlinear dynamic equations of motion for the rotating
blade are established by using Hamilton’s principle.

t

0

δK − δU + δW dt = 0 16

Substituting (11), (13a), (13b), and (15) into (16), the
nonlinear partial governing equations for nonlinear vibration
of the rotating blade expressed in terms of displacement var-
iables can be derived as follows:

δu0 A11

∂
2u0
∂x2

+ 2A16

∂
2u0

∂x∂y
+ A66

∂
2u0
∂y2

+ A16

∂
2v0
∂x2

+ A26

∂
2v0
∂y2

+ A12 + A66

∂
2v0

∂x∂y
− 2B11θ′

2 ∂w0

∂x
− B11θ′

2
x
∂
2w0

∂x2

+ A11

∂w0

∂x

∂
2w0

∂x2
+ A66

∂w0

∂x

∂
2w0

∂y2
+ 2A16

∂w0

∂x

∂
2w0

∂x∂y
+ A16

∂w0

∂y

∂
2w0

∂x2
+ A26

∂w0

∂y

∂
2w0

∂y2
+ A12 + A66

∂w0

∂y

∂
2w0

∂x∂y

− B16θ′
2
x
∂
2w0

∂x∂y
+ B66

∂
2ϕx
∂y2

+ 2B16

∂
2ϕx

∂x∂y
+ B11

∂
2ϕx
∂x2

+ B16

∂
2ϕy
∂x2

+ B26

∂
2ϕy
∂y2

+ B12 + B66

∂
2ϕy

∂x∂y
− B16θ′

2 ∂
2w0

∂y

= Io u0 cos Θ − v0 cos θ sin Θ +w0 sin θ sin Θ − 2 u0 sin Θ + v0 cos θ cos Θ −w0 sin θ cos Θ ⋅Ω

− x + R0 +u0 cos Θ− y+ v0 cos θ sin Θ+w0 sin θ sin Θ ⋅Ω
2
− x+R+u0 sin Θ+ y+ v0 cos θ sin Θ+w0 sin θ cos Θ ⋅Ω

+2I0y sin
2θ

∂w0

∂y
⋅Ω

2 +2I0y sin
2θ

∂u0
∂y

⋅Ω
2
− I0 sin

2θ
C2

4
− y2

∂
2w0

∂y2
⋅Ω

2
− I0 sin

2θ
C2

4
− y2

∂
2u0
∂y2

⋅Ω
2,

17

δv0 A16

∂
2u0
∂x2

+A26

∂
2u0
∂y2

+ A12 +A66

∂
2u0

∂x∂y
+A66

∂
2v0
∂x2

+A22

∂
2v0
∂y2

+2A26

∂
2v0

∂x∂y
− 2B16θ′

2 ∂w0

∂x

−B16θ′
2
x
∂
2w0

∂x2
+A16

∂w0

∂x

∂
2w0

∂x2
+A26

∂w0

∂x

∂
2w0

∂y2
+ A12 +A66

∂w0

∂x

∂
2w0

∂x∂y
+A22

∂w0

∂y

∂
2w0

∂y2

+A66

∂w0

∂y

∂
2w0

∂x2
+2A26

∂w0

∂y

∂
2w0

∂x∂y
+B16

∂
2ϕx
∂x2

+B26

∂
2ϕx
∂y2

v+ B12 +B66

∂
2ϕx

∂x∂y
+B66

∂
2ϕy
∂x2

+B22

∂
2ϕy
∂y2

+2B26

∂
2ϕy

∂x∂y
−B12θ′

2
x
∂
2w0

∂x∂y
−B12θ′

2 ∂w0

∂y
+C

∞
ρ
∞

v0 + zϕy + p sin θ
∂v0
∂x

+ z
∂ϕy
∂x

∂z

∂y

= I0 u0 sin Θ+ v0 cos θ cos Θ−w0 sin θ cos Θ +2 u0 cos Θ− v0 cos θ sin Θ+w0 sin θ sin Θ ⋅Ω− x+R0 +u0 sin Θ

+ y+v0 cos θ cos Θ−w0 sin θ cos Θ ⋅Ω
2 + x+R0 +u0 cos Θ− y+ v0 cos θ sin Θ+w0 sin θ sin Θ ⋅Ω

− I0 r + x
∂w0

∂x
⋅Ω

2
− I0 r + x

∂v0
∂x

⋅Ω
2 + I0 r L− x +

1

2
L2 − x2

∂
2w0

∂x2
⋅Ω

2
− I0 r L− x +

1

2
L2 − x2

∂
2v0
∂x2

⋅Ω
2,

18

δw0

3

2
A11

∂w0

∂x

2
∂
2w0

∂x2
+ A66 +

1

2
A12

∂w0

∂x

2
∂
2w0

∂y2
+3A16

∂w0

∂x

2
∂
2w0

∂x∂y
+3A16

∂w0

∂x

∂w0

∂y

∂
2w0

∂x2
+3A26

∂w0

∂x

∂w0

∂y

∂
2w0

∂y2

+ 2A12 +3A66

∂w0

∂x

∂w0

∂y

∂
2w0

∂x∂y
− 3B11θ′

2
x
∂w0

∂x

∂
2w0

∂x2
− 4B16θ′

2
x
∂w0

∂x

∂
2w0

∂x∂y
− 3B16θ′

2
x
∂w0

∂x

∂w0

∂y
+
3

2
A22

∂w0

∂y

2
∂
2w0

∂y2

+ A66 +
1

2
A12

∂w0

∂y

2
∂
2w0

∂x2
+3A26

∂w0

∂y

2
∂
2w0

∂x∂y
− 2B12θ′x

∂
2w0

∂y∂x

∂w0

∂y
− 2B16θ′

2
x
∂
2w0

∂x2
∂w0

∂y
+A11

∂
2u0
∂x2

∂w0

∂x
+2A16

∂
2u0

∂x∂y

∂w0

∂x

+A66

∂
2u0
∂y2

∂w0

∂x
+A16

∂
2v0
∂x2

∂w0

∂x
+A26

∂
2v0
∂y2

∂w0

∂x
+ A12 +A66

∂
2v0

∂x∂y

∂w0

∂x
− 2B11

∂w0

∂x

2

+B66

∂
2ϕx
∂y2

∂w0

∂x
+2B16

∂
2ϕx

∂x∂y

∂w0

∂x

+B11

∂
2ϕx
∂x2

∂w0

∂x
+B16

∂
2ϕy
∂x2

∂w0

∂x
+B26

∂
2ϕy
∂y2

∂w0

∂x
+ B12 +B66

∂
2ϕy

∂x∂y

∂w0

∂x
+A16

∂
2u0
∂x2

∂w0

∂y
+A26

∂
2u0
∂y2

∂w0

∂y
+ A12 +A66

∂
2u0

∂x∂y

∂w0

∂y

+A66

∂
2v0
∂x2

∂w0

∂y
+A22

∂
2v0
∂y2

∂w0

∂y
+2A26

∂
2v0

∂x∂y

∂w0

∂y
+B16

∂
2ϕx
∂x2

∂w0

∂y
+B26

∂
2ϕx
∂y2

∂w0

∂y
+ B12 +B16

∂
2ϕx

∂x∂y

∂w0

∂y
+B66

∂
2ϕy
∂x2

∂w0

∂y
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+ B22

∂
2ϕy
∂y2

∂w0

∂y
+ 2B26

∂
2ϕy

∂x∂y

∂w0

∂y
+ B12θ′

2 ∂w0

∂y

2

+ 2A16

∂u0
∂x

∂
2w0

∂x∂y
+ 2A26

∂v0
∂y

∂
2w0

∂x∂y
+ 2A66

∂u0
∂y

∂
2w0

∂x∂y
+ 2A66

∂
2v0
∂x

∂
2w0

∂x∂y

+ 2B16

∂ϕx
∂x

∂
2w0

∂x∂y
− 2B16θ′

2
w0

∂
2w0

∂x∂y
+ 2B26

∂ϕy
∂y

∂
2w0

∂x∂y
+ 2B66

∂ϕx
∂y

∂
2w0

∂x∂y
+ 2B66

∂ϕy
∂x

∂
2w0

∂x∂y
+ A11

∂u0
∂x

∂
2w0

∂x2
+ A12

∂v0
∂y

∂
2w0

∂x2

+ A16

∂u0
∂y

∂
2w0

∂x2
+ A16

∂
2v0
∂x

∂
2w0

∂x2
+ B11

∂ϕx
∂x

∂
2w0

∂x2
− B11θ′

2
w0

∂
2w0

∂x2
+ B12

∂
2ϕy
∂y

∂
2w0

∂x2
+ B16

∂
2ϕx
∂y

∂
2w0

∂x2
+ B16

∂ϕy
∂x

∂
2w0

∂x2

+ A12

∂u0
∂x

∂
2w0

∂y2
+ A22

∂v0
∂y

∂
2w0

∂y2
+ A26

∂u0
∂y

∂
2w0

∂y2
+ A26

∂v0
∂x

∂
2w0

∂y2
+ B12

∂ϕx
∂x

∂
2w0

∂y2
− B12θ′

2
w0

∂
2w0

∂y2
− B12θ′

2
x
∂w0

∂x

∂
2w0

∂y2

+ B22

∂ϕy
∂y

∂
2w0

∂y2
+ B26

∂ϕx
∂y

∂
2w0

∂y2
+ B26

∂ϕy
∂x

∂
2w0

∂y2
− B11θ′

2
x
∂
2u0
∂x2

− B12θ′
2
x
∂
2v0

∂x∂y
− B16θ′

2
x
∂
2u0

∂x∂y
− B16θ′

2
x
∂
2v0
∂x2

−D11θ′
2
x
∂
2ϕx
∂x2

− 2D11θ′
4
x
∂
2w0

∂x
−D11θ′

4
x
∂
2u0
∂x2

−D12θ′
2
x
∂
2ϕy

∂x∂y
−D16θ′

2
x
∂
2ϕx

∂x∂y
−D16θ′

2
x
∂
2ϕy
∂x2

+ kA45

∂
2w0

∂x∂y
+ kA45

∂ϕy
∂x

+ kA55

∂
2w0

∂x2
+ kA55

∂ϕx
∂x

+ kA44

∂
2w0

∂y2
+ kA44

∂ϕy
∂y

+ kA45

∂
2w0

∂x∂y
+ kA45

∂
2ϕx
∂y

+ C
∞
ρ
∞
w0 + C

∞
ρ
∞
P cos θ

∂w0

∂x

= I0 v0 sin θ +w0 cos θ − I2θ′
2
x φx − θ′

2
xw0 cos Θ − φy cos θ sin Θ − 2 φx − θ′

2
xw0 + φy cos θ cos Θ ⋅Ω

− φx − θ′
2
xw0 cos Θ − φy cos θ sin Θ + sin θ sin Θ ⋅Ω

2
− φx − θ′

2
xW0 sin Θ + φy cos θ cos Θ − sin θ cos Θ ⋅Ω

− 2I0y sin
2θ

∂w0

∂y
⋅Ω

2
− 2I0y sin

2θ
∂u0
∂y

⋅Ω
2 + I0 sin

2θ
C2

4
− y2

∂
2w0

∂y2
⋅Ω

2 + I0 sin
2θ

C2

4
− y2

∂
2u0
∂y2

⋅Ω
2

− I0 r + x
∂w0

∂x
⋅Ω

2
− I0 r + x

∂v0
∂x

⋅Ω
2 + I0 r L − x +

1

2
L2 − x2

∂
2w0

∂x2
⋅Ω

2
− I0 r L − x +

1

2
L2 − x2

∂
2v0
∂x2

⋅Ω
2,

19

δϕx B11

∂
2u0
∂x2

+ 2B16

∂
2u0

∂x∂y
+ B66

∂
2u0
∂y2

+ B16

∂
2v0
∂x2

+ B12 + B66

∂
2v0

∂x∂y
+ B26

∂
2v0
∂y2

+ B11

∂w0

∂x

∂
2w0

∂x2

+ B11

∂w0

∂x

∂
2w0

∂x2
+ B16

∂w0

∂y

∂
2w0

∂x2
+ B12

∂w0

∂y

∂
2w0

∂x∂y
+ 2B16

∂w0

∂x

∂
2w0

∂x∂y
+ B66

∂w0

∂y

∂
2w0

∂x∂y
+ B26

∂w0

∂y

∂
2w0

∂y2

+ B66

∂w0

∂x

∂
2w0

∂y2
− 2D11θ′

2 ∂w0

∂x
−D11θ′

2
x
∂
2w0

∂x2
−D16θ′

2
x
∂
2w0

∂x∂y
+D11

∂
2ϕx
∂x2

+ 2D16

∂
2ϕx

∂x∂y
+D66

∂
2ϕx
∂y2

+D16

∂
2ϕy
∂x2

+ D12 +D66

∂
2ϕy

∂x∂y
+D26

∂
2ϕy
∂y2

− kA45ϕy − kA55

∂w0

∂x
− kA45

∂w0

∂y
− kA55ϕx − kA45ϕy

= I2 ϕx − θ′
2
w0x cos Θ − ϕy cos θ sin Θ − 2 ϕx − θ′

2
xw0 + ϕy cos θ cos Θ ⋅Ω

− ϕx − θ′
2
xw0 cos Θ − ϕycos θ sin Θ + sin θ sin Θ ⋅Ω

2
− ϕx − θ′

2
xw0 sin Θ + ϕy cos θ cos Θ − sin θ sin Θ ⋅Ω ,

20

δϕy B16

∂
2u0
∂x2

+ B12 + B66

∂
2u0

∂x∂y
+ B26

∂
2u0
∂y2

+ B66

∂
2v0
∂x2

+ B22

∂
2v0
∂y2

+ 2B26

∂
2v0

∂x∂y
+ B16

∂w0

∂x

∂
2w0

∂x2
+ 2B26

∂w0

∂y

∂
2w0

∂x∂y

+ B66

∂w0

∂y

∂
2w0

∂x2
+ B66 + B12

∂w0

∂x

∂
2w0

∂x∂y
+ B22

∂w0

∂y

∂
2w0

∂y2
+ B26

∂w0

∂x

∂
2w0

∂y2
− 2D16θ′

2 ∂w0

∂x
−D16θ′

2
x
∂
2w0

∂x2

−D12θ′
2
x
∂
2w0

∂x∂y
+D16

∂
2ϕx
∂x2

+ D12 +D66

∂
2ϕx

∂x∂y
+D26

∂
2ϕx
∂y2

+D66

∂
2ϕy
∂x2

+D22

∂
2ϕy
∂y2

+ 2D26

∂
2ϕy

∂x∂y
− kA44

∂w0

∂y

− kA45

∂w0

∂x
− kA45ϕx − kA44ϕy −D12θ′

2
x
∂
2w0

∂x∂y
+ C

∞
ρ
∞

w0 + P cos θ ⋅
∂w0

∂x
⋅ z
∂z

∂y

= I2 ϕx − θ′
2
xw0 sin Θ + ϕycos θ cos Θ + 2 ϕx − θ′

2
xw0 cos Θ − ϕycos θ sin Θ ⋅Ω

− ϕy − θ′
2
xw0 sin Θ + ϕy cos θ cos Θ − sin θ cos Θ ⋅Ω

2 + ϕx − θ′
2
xw0 cos Θ − ϕy cos θ sin Θ + sin θ sin Θ ⋅Ω

21
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The boundary conditions are given as follows:

x = 0 u = v =w = ϕx = ϕy = 0,

x = L Nxy =Nxx =Mxx =Mxy =Qx = 0,

y = 0 Nxy =Nyy =Myy =Mxy =Qy = 0,

y = C Nxy =Nyy =Myy =Mxy =Qy = 0

22

The dimensionless variables and parameters are intro-
duced as follows:

u0 =
u0
L
,

v0 =
v0
C
,

w0 =
w0

h
,

x =
x

L
,

y =
y

C
,

ϕx = ϕx,

ϕy = ϕy,

θ = θ,

θ′ = Lθ′,

r =
r

L
,

Aij =
LC 1/2

Eh2
,

Bij =
LC 1/2

Eh3
Bij,

Dij =
LC 1/2

Eh4
Dij,

Ii =
1

ρ LC 1+i /2
,

Ω =Ω
ρCL

E
,

t = t
E

ρCL
,

C
∞
= C

∞

ρ

E
,

p = p
ρ

E
,

ρ
∞
=
ρ
∞
L2

ρA

23

Substituting (23) into (17), (18), (19), (20), and (21), we
obtain the dimensionless governing equations of motion for
the blade.

Based on the practical working condition of the blade,
and theoretical and numerical studies given by Dowell
et al. [36, 37], it is known that vibrations of the first two
order modes for the blade play an important role during
vibration. The Galerkin approach is applied to obtain ordi-
nary differential equations of motion in the dimensionless
form. The Galerkin approach is derived by the Taylor
expansion method, which is a mathematically convergent
method. The first two order mode functions can produce
convergent results. Mode functions of the plate u x, y, t ,
v x, y, t , w x, y, t , ϕx x, y, t , and ϕy x, y, t are given as

follows based on a combination method of beam functions

u x, y, t = u1 t sin
πx

2L
cos

πy

C
+ u2 t sin

3πx

2L
cos

2πy

C
,

v x, y, t = v1 t sin
πx

2L
sin

πy

C
+ v2 t sin

3πx

2L
sin

2πy

C
,

w x, y, t =w1 t X1 x Y1 y +w2 t X2 x Y2 y ,

ϕx x, y, t = ϕx1 t sin
πx

2L
cos

πy

C
+ ϕx2 t sin

πx

L
cos

2πy

C
,

ϕy x, y, t = ϕy1 t sin
πy

C
1 − cos

πx

2L

+ ϕy2 t sin
2πy

C
1 − cos

πx

L
,

24a

where

X j = cosh
kjx

a
− cos

kjx

a
− βj sinh

kjx

a
− sin

kjx

a
, 24b

Y i = cosh
kiy

b
+ cos

kiy

b
− αi sinh

kiy

b
+ sin

kiy

b
, 24c

where ki are coefficients related to frequencies, k4i = k4j = ω2

ρA/EJ , κi and λj are coefficients of beam functions as follows:

κi =
cosh kib − cos kib

sinh kib − sin kib
  i = 3, 4, 5,… , 24d

λj =
cosh kja − cos kja

sinh kja − sin kja
  j = 1, 2, 3,… 24e

Substitute (24a), (24b), (24c), (24d), and (24e) into the
dimensionless governing equations of motion and express
u, v, φx , and φy with w. Ordinary differential equations

of transverse vibration for the first mode and the second
mode of the rotating blade in the dimensionless form are
derived through the Galerkin method as follows:
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w1 + α1 + f 11Ω1sin ωt + f 12Ω1cos ωt + f 13Ω
2
1 cos

2 ωt

w1 + α2 + f 14Ω1cos ωt w1 + α3w1
2 + α4w1w2

+ α5w1w2
2 + α6w1

2w2 + α7w1
3 + α8w2

2 + α9w2
3

+ α10 + f 15Ω1cos ωt + f 16Ω1sin ωt + f 17Ω
2
1 cos

2 ωt

w2 + α11 + f 18Ω1cos ωt w2 + α12w2

= α13 + f 19Ω1cos ωt + f 20Ω1sin ωt + f 21Ω
2
1 cos

2 ωt ,

25a

w2 + β1 + f 31sin ωt + f 32Ω1cos ωt + f 33Ω
2
1cos

2 ωt

w2 + β14 + f 35Ω1cos ωt w2 + β3w
2
2 + β4w1w2

+ β5w
2
1w2 + β6w

2
2w1 + β7w

3
2 + β8w

2
1 + β9w

3
1

+ β10 + f 35Ω1cos ωt + f 36Ω1sin ωt

+ f 37Ω
2
1 cos

2 ωt w1 + β11 + f 38Ω1cos ωt w1 + β12w1

= β13 + f 39Ω1cos ωt + f 40Ω1sin ωt + f 41Ω
2
1cos

2 ωt ,

25b

where expressions of coefficients αi, βi, and f ij are described

in the appendix.

3. Perturbation Analysis

There are both square nonlinear terms and cubic terms in (25a)
and (25b), so the asymptotic perturbation method is exploited
to derive average equations. The small parameter ε is intro-
duced. The scale transformation is performed as follows:

The case of 1 : 3 internal resonance-1/2 sub-harmonic
resonance for the rotating plate is considered. Relationship
between ω1 and ω2 is expressed as

3ω1 = ω2,

ω1 =
1

2
ω + ε2σ1,

ω2 =
3

2
ω + ε2σ2,

ω =Ω,

27

where σ1 and σ2 are two detuning parameters.
Substituting (26) and (27) into (25a) and (25b), we obtain

the following equation

w1 +
Ω

2

4
+Ωσ1ε

2 + ε4σ21 w1

+ ε2α2 + ε2 f 14Ω1 cos ωt w1 + α3w1
2

+ α4w1w2 + α5w1w
2
2 + α6w1

2w2 + α7w1
3

+ α8w2
2 + α9w2

3 + ε2α10 + ε2 f 15Ω1 cos ωt

+ ε2 f 16Ω1 sin ωt + ε2 f 17Ω
2
1 cos

2 ωt w2

+ ε2α11 + ε2 f 18Ω1 cos ωt w2 + ε2α12w2

= ε2α13 + ε2 f 19Ω1 cos ωt + ε2 f 20Ω1 sin ωt

+ ε2 f 21Ω
2
1 cos

2 ωt ,

28a

w2 +
9

4
Ω

2 + 3Ωσ2ε
2 + ε4σ2

2 w2

+ ε2β14 + ε2 f 35Ω1 cos ωt w2 + β3w
2
2

+ β4w1w2 + β5w1
2w2 + β6w

2
2w1 + β7w

3
2

+ β8w
2
1 + β9w

3
1 + ε2β10 + ε2 f 35Ω1 cos ωt

+ ε2 f 36Ω1 sin ωt + ε2 f 37Ω
2
1 cos

2 ωt w1

+ ε2β11 + ε2 f 38Ω1 cos ωt w1 + ε2β12w1

= ε2β13 + ε2 f 39Ω1 cos ωt + ε2 f 40Ω1 sin ωt

+ ε2 f 41Ω
2
1 cos

2 ωt

28b

The time scale transformation is introduced as

τ = εqt, 29

α1 ⟶ ε2α1,

f 11⟶ ε2 f 11,

f 12⟶ ε2 f 12,

f 13⟶ ε2 f 13,

α2 ⟶ ε2α2,

f 14⟶ ε2 f 14,

α10⟶ ε2α10,

f 15⟶ ε2 f 15,

f 16⟶ ε2 f 16,

f 17⟶ ε2 f 17,

α11⟶ ε2α11,

f 18⟶ ε2 f 18,

α12⟶ ε2α12,

α13⟶ ε2α13,

f 19⟶ ε2 f 19,

f 20⟶ ε2 f 20,

f 21⟶ ε2 f 21,

β1 ⟶ ε2β1,

f 31⟶ ε2 f 31,

f 32⟶ ε2 f 32,

f 33⟶ ε2 f 33,

β2⟶ ε2β2,

f 34⟶ ε2 f 34,

β10⟶ ε2β10,

f 37⟶ ε2 f 37,

β11⟶ ε2β11,

f 38⟶ ε2 f 38,

β12⟶ ε2β12,

β13⟶ ε2β13,

f 39⟶ ε2 f 39,

f 40⟶ ε2 f 40,

f 41⟶ ε2 f 41 26
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where q is the positive rational number, which will be deter-
mined in the following deduction.

Functions x t and y t are the solutions of (28a) and
(28b), which can be expressed as a power series of small
parameter ε.

x t = 〠
∞

n=−∞

εrnψn τ, ε e−in Ω/2 t , 30a

y t = 〠
∞

n=−∞

εrnϕn τ, ε e−in 3Ω/2 t 30b

In (30a) and (30b), if n ≠ 0, then rn = n , otherwise r0 = r.
In the following derivation, we will fix rn.

The real part of x t and y t are written as follows:

ψn τ, ε = ψ
−n

∗ τ, ε , 31a

ϕn τ, ε = ϕ
−n

∗ τ, ε , 31b

where the item with the asterisk on the right-hand side is the
complex conjugate of the item on the left-hand side.

Solutions of (28a) and (28b) can be rewritten more
explicitly as follows:

x t = εrψ0 τ, ε + εψ1 τ, ε e−i Ω/2 t

+ ε2ψ2 τ, ε e−iΩt + ε3ψ3 τ, ε e−i 3Ω/2 t

+ ε4ψ4 τ, ε e−i 4Ω/2 t + cc + o ε5 ,

32a

y t = εrϕ0 τ, ε + εϕ1 τ, ε e−i 3Ω/2 t

+ ε2ϕ2 τ, ε e−3iΩt + ε3ϕ3 τ, ε e−i 9Ω/2 t

+ ε4ϕ4 τ, ε e−i6Ωt + cc + o ε5 ,

32b

where cc denotes terms of the complex conjugate of functions
on the right-hand side.

Solutions of (28a) and (28b) can be expressed as har-
monic functions, whose coefficients are related to small
parameter ε, as shown in (32a) and (32b). Functions
ψn τ, ε and φn τ, ε are given by

ψn τ, ε = 〠
+∞

i=0

εiψn
i τ , 33a

ϕn τ, ε = 〠
+∞

i=0

εiϕn
i τ 33b

We suppose when ε→ 0, the limits of ψn τ, ε and

ϕn τ, ε exist. Meanwhile, we define ψ 0
n = ψn and ϕ 0

n = ϕn
for n ≠ 1 and ψ

0
1 = ψ and ϕ

0
1 = ϕ for n = 1. When n = 2, we

obtain the derivative results as follows:

d

dt
ψne

−in Ω/2 t = −in
Ω

2
ψn + εq

dψn

dτ
e−in Ω/2 t , 34a

d

dt
ϕne

−in 3Ω/2 t = −in
3

2
Ωϕn + εq

dϕn
dτ

e−in 3Ω/2 t 34b

In order to solve the coefficients of ψn τ, ε and ϕn τ, ε ,
substituting (30a) and (30b) into (28a) and (28b), we obtain

equations for each harmonic with order n and a fixed order
of approximation on the perturbation parameter ε.

When n = 0, we get the following expressions:

1

4
Ω

2εrψ0 + 2α8ϕ1ϕ
∗

1 ε
2 + 2α3ψ1ψ

∗

1 ε
2

− f 20Ω1 sin ωt ε2 − f 19Ω1 cos ωt ε2

− f 21Ω
2
1 cos2 ωt ε2 − α13ε

2 = 0,

35a

9

4
Ω

2εrϕ0 + 2β3ϕ1ϕ
∗

1ε
2 + 2β8ψ1ψ

∗

1ε
2

− β13ε
2
− f 40Ω1 sin ωt ε2 − f 39Ω1 cos ωt ε2

− f 41Ω
2
1 cos

2 ωt ε2 = 0

35b

The solvability of (35a) and (35b) requires r = 2. Thus, we
obtain the following expressions:

ψ0 = −
1

Ω
2
8α3ψ1ψ

∗

1 + 8α8ϕ1ϕ
∗

1 − 4f 20Ω1 sin ωt

− 4f 19Ω1 cos ωt − 4f 21Ω
2
1 cos2 ωt − 4α13 ,

36a

ϕ0 = −
4

9Ω2
8β3ϕ1ϕ

∗

1 + 8β8ψ1ψ
∗

1 − 4β13 − 4f 40Ω1 sin ωt

− 4f 39Ω1 cos ωt − 4f 41Ω
2
1 cos

2 ωt

36b

When n = 2, considering derivative forms of (34a) and
(34b) yields

α3ψ
2
1 + α4ψ

∗

1ϕ1 −
3

4
Ω

2ψ2 = 0, 37a

β3ϕ
2
1 −

27

4
Ω

2ϕ2 = 0 37b

Then, the following equations are obtained

ψ2 =
4

3

α3ψ
2
1 + α4ψ

∗

1ϕ1
Ω

2
, 38a

ϕ2 =
4

27

β3ϕ
2
1

Ω
2

38b

When n = 1, for the balance of the nonlinear and linear
terms, we must make q = 2. Equations can be derived as
follows:

−IΩD1 ψ1 + 2α3ψ0ψ1 + α4ϕ0ψ1 + α4ϕ1ψ
∗

2 + 3α7ψ
2
1ψ

∗

1

+ 2α3ψ2ψ
∗

1 + α6ϕ1ψ
∗

1 +Ωσ1ψ1 −
1

2
IΩcos ωt f 14Ω1ψ1

+ 2α5ψ1ϕ1ϕ
∗

1 −
1

2
IΩα2ψ1 = 0,

39a

−3IΩD1 ψ1 + 2β3ϕ0ϕ1 + β4ϕ1ψ0 + β9ψ
3
1 + 3Ωσ2ϕ1

+ 2β3ϕ2ϕ
∗

1 + 3β7ϕ
2
1ϕ

∗

1 + 2β8ψ1ψ2 −
3

2
IΩcos ωt f 34Ω1ϕ1

+ 2β5ψ1ϕ1ψ
∗

1 −
3

2
IΩβ2ϕ1 = 0

39b
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Substitute (36a) and (36b) and (38a) and (38b) into (39a)
and (39b), differential equations aboutψ1 and ϕ1 are derived as

D1 ψ1 = g1 +Ω1g2 − Iσ1 + Ih3 + IΩ1h1 + IΩ2
1h2 ψ1

+ Ih4ψ1ϕ1ϕ
∗

1 + Ih5ψ
∗2
1 ϕ1 + Ih6ψ

∗

1ψ
2
1,

40a

D1 φ1 = g3 +Ω1g4 − Iσ2 + Ik3 + IΩ1k1 + IΩ2
1k2 φ1

+ Ik4φ1ψ1ψ
∗2
1 + Ik5φ

∗

1φ
2
1 + Ik6ψ

3
1

40b

Make ψ1 and ϕ1 as follows:

ψ1 = x1 + ix2, 41a

ϕ1 = x3 + ix4 41b

Substitute (41a) and (41b) into (40a) and (40b), averaged
equation in the Cartesian form is obtained as

x1 = g1 +Ω1g2 x1 + σ1 − h3 −Ω1h1 −Ω
2
1h2 x2

− h6x2 x21 + x22 − h4x2 x23 + x24

− h5x4 x21 − x22 + 2h5x1x2x3,

42a

x2 = − σ1 − h3 −Ω1h1 −Ω
2
1h2 x1 + g1 +Ω1g2 x2

+ h6x1 x21 + x22 + h4x1 x23 + x24

+ h5x3 x21 − x22 + 2h5x1x2x4,

42b

x3 = g3 +Ω1g4 x1 + σ2 − k3 −Ω1k1 −Ω
2
1k2 x2

− k4x4 x21 + x22 − k5x4 x23 + x24

− k6x2 3x21 − x22 ,

42c

x4 = − σ2 − k3 −Ω1k1 −Ω
2
1k2 x1

+ g3 +Ω1g4 x2 + k4x3 x21 + x22

+ k5x3 x23 + x24 + k6x1 x21 − 3x22 ,

42d

where expressions of coefficients σi, gi, hi, and ki are
described in the appendix.

4. Numerical Simulation of
Nonlinear Vibrations

4.1. Comparison about Frequencies. In this section, based on
the kinetic energy and the potential energy of the blade
deduced in the previous section, the Chebyshev polynomial
and Ritz method are used to calculate the frequency of the
model, which are compared with the frequency obtained by
finite element method.

To validate the model proposed, we compare frequencies
theoretically calculated with frequencies obtained by the
finite element method. Geometrical parameters and physical
properties of the compressor blade are selected as the span-
wise length L = 0 0534m, the chordwise length C = 0 03773
m, the mounting angle θ = 34 49o, the hub radius r = 0 0845
m, the density ρ = 7800 kg/m3, the Poisson’s ratio γ = 0 3,
the elastic modulus E = 1 96GPa, the inlet velocity vin =

39 0496m/s, the inlet mass flow Min = 2 557 kg/s, the real
flow velocity V in = 78 472m/s. Table 1 shows frequencies of
different orders obtained by two methods above. When the
rotating speed increases from 0 rpm to 15000 rpm, frequen-
cies calculated by those two methods are in good agreement.
So, the model is reasonable.

4.2. Numerical Simulation. Based on (42a), (42b), (42c),
and (42d), we consider the influences of dimensionless
parameters on nonlinear vibration behaviors of the rotat-
ing cantilever blade. Numerical simulation is utilized to
investigate nonlinear dynamics of the rotating cantilever
composite plate subjected to the aerodynamic force and
the centrifugal force. Nonlinear oscillation of the system
is investigated by choosing the perturbation rotating speed
Ω1 as the controlling parameter. When other parameters
and the initial condition do not vary, we only change Ω1

to detect the influence of the periodic perturbation rotat-
ing speed on vibration of the rotating cantilever composite
blade. The Runge-Kutta algorithm and the Poincare map
theory are used to construct numerical results of the bifurca-
tion diagram, which describes the vibration law of the dis-
placement x1, when Ω1 changes in a certain region.

When the parameter Ω1 is chosen in the interval Ω1 =
0 ~ 1 5, and other parameters and the initial condition are,
respectively, chosen as σ1 = 3 68, σ2 = 1 88, g1 = −0 0015,
g2 = 0 0012, g3 = −0 0015, g4 = 0 0012, h1 = 5 95, h2 = 0 29,

Table 1: Frequency comparison.

1st 2nd 3rd
FEM C-R FEM C-R FEM C-R

0 rpm 1130.4 1076.6 4038.4 3117.2 6288.6 6253.9

30000 rpm 1133.4 1080.6 4039.1 3118.7 6291.8 6257.7

6000 rpm 1142.2 1092.8 4041 3123.2 6301.2 6269.2

9000 rpm 1156.6 1112.7 4044.2 3130.6 6316.9 6288.3

12000 rpm 1176.6 1140 4048.7 3141 6338.8 6314.9

15000 rpm 1201.7 1156.2 4054.5 3169.9 6366.9 6341

3

2

1

0

−1

−2

−3
0 0.5 1 1.5

x1

Ω1

Figure 3: Bifurcation diagram on the plane x1,Ω1 when the
perturbation rotating speed Ω1 varies in the interval Ω1 = 0~1 5.
The initial condition is x10 = 0 2, x20 = 0 101, x30 = −0 26, and
x40 = 1 2.
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h3 = 1 2, h4 = −3 57, h5 = 6 4, h6 = 6 39, k1 = 8 25, k2 =
0 2925, k3 = 0 18, k4 = 19 9, k5 = −1 4, k6 = 1 25, x10 = 0 2,
x20 = 0 101, x30 = −0 26, and x40 = 1 2, we obtain Figure 3.
Figure 3 describes the bifurcation diagram on the plane
x1,Ω1 when Ω1 varies in the interval 0, 1 5 . It can
be observed that periodic motion and chaotic motion appear
in the vibration of the blade. With the increase of the pertur-
bation rotating speedΩ1, Figure 3 presents the following law:

periodic motion → chaotic motion → periodic motion →
chaotic motion→ periodic motion.

The chaotic and periodic responses can be identified by
several conventional criteria. Thus, based on the bifurcation
diagram, the waveform, phase portraits, and the power spec-
trum are utilized to further verify the existence of the chaotic
and periodic motion of the blade. Figures 4 and 5 illustrate
that the system occurs multiperiodic motion when the
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Figure 4: The multiperiodic motion of the blade with varying rotating speeds when Ω1 = 0 076. (a) The phase portrait on the plane x1, x2 ;
(b) the waveform on the plane t, x1 ; (c) the phase portrait on the plane x3, x4 ; (d) the waveform on the plane t, x3 ; (e) the phase portrait
in the three-dimensional space x1, x2, x3 ; and (f) the power spectrum on the plane f , x1 .
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perturbation rotating speed Ω1 is chosen as Ω1 = 0 076 and
Ω1 = 0 412, respectively. Figures 4(a) and 4(c) represent the
phase portraits on the planes x1, x2 and x3, x4 , respec-
tively. Figures 4(b) and 4(d) give the waveform on the plane
t, x1 and t, x3 , respectively. Figure 4(e) represents the
three-dimensional phase portrait in the space x1, x2, x3 .
Figure 4(f) describes the power spectrum on the plane

f , x1 . It can be shown from Figure 4 that the amplitude
of the first-order mode is larger than that of the second-
order mode. Figure 6 indicates that the chaotic motion of
the system appears when Ω1 = 0 8. Figures 7 and 8 illustrate
that multiperiodic motion of the rotating composite plate
occur, when the perturbation rotating speed Ω1 continues
to increase and is selected as Ω1 = 0 93 and Ω1 = 1 1,
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Figure 5: The multiperiodic motion of the blade with varying rotating speeds when Ω1 = 0 412. (a) The phase portrait on the plane x1, x2 ;
(b) the waveform on the plane t, x1 ; (c) the phase portrait on the plane x3, x4 ; (d) the waveform on the plane t, x3 ; (e) the phase portrait
in the three-dimensional space x1, x2, x3 ; and (f) the power spectrum on the plane f , x1 .
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respectively. Figure 9 shows that the chaotic motion of the
rotating cantilever composite plate exists when Ω1 = 1 201.
Figure 10 illustrates that the system exhibits multiperiodic
motion when Ω1 increases to Ω1 = 1 33.

Numerical simulation indicates that the system performs
complex dynamic behaviors, such as multiperiodic motion
and chaotic motion, when Ω1 changes in a certain region.

The perturbation rotating speed Ω1 affects the dynamic
behaviors of the system significantly.

5. Conclusions

In this paper, nonlinear vibration behaviors of the high
rotating cantilever plate subjected to the centrifugal force
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Figure 6: The chaotic motion of the blade with varying rotating speeds when Ω1 = 0 8. (a) The phase portrait on the plane x1, x2 ; (b) the
waveform on the plane t, x1 ; (c) the phase portrait on the plane x3, x4 ; (d) the waveform on the plane t, x3 ; (e) the phase portrait in the
three-dimensional space x1, x2, x3 ; and (f) the power spectrum on the plane f , x1 .
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and the aerodynamic force are investigated. Nonlinear
partial differential governing equations of the rotating
blade are derived by utilizing Hamilton’s principle. The
Galerkin method is applied to discretize the nonlinear partial
differential governing equations. The method of asymptotic

perturbation is adopted to obtain the four-dimension nonlin-
ear averaged equation of motion for the blade in the case of
1 : 3 internal resonance-1/2 subharmonic resonance. Numer-
ical simulations are used to study nonlinear dynamic
responses of the blade.
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Figure 7: The multiperiodic motion of the blade with varying rotating speeds whenΩ1 = 0 93. (a) The phase portrait on the plane x1, x2 ; (b)
the waveform on the plane t, x1 ; (c) the phase portrait on the plane x3, x4 ; (d) the waveform on the plane t, x3 ; (e) the phase portrait in
the three-dimensional space x1, x2, x3 ; (f) the power spectrum on the plane f , x1 .
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The bifurcation diagram, phase portrait, and power spec-
trum are conducted to demonstrate that periodic motions
and chaotic motions occur in nonlinear vibrations of the
rotating blade under certain conditions. In this paper, the
perturbation rotating speed is selected as the controlling

parameter. Numerical simulation shows that nonlinear
dynamic motions of the blade are sensitive to the perturba-
tion rotating speed. The periodic motion and chaotic motion
of the blade appear alternately. Periodic motions and chaotic
motions exist in the averaged equations. It is well known that

x2

x1

−2

−2

−1

−1

0

0

1

1

2

2

(a)

x1

t

−2

−1

0

1

2

105010401030102010101000

(b)

x4

x3

−1

−1

−0.5

−0.5

0

0

0.5

0.5

1

1

(c)

x3

t

−2

−1

0

1

2

105010401030102010101000

(d)

x3

x2 x1

−2

−2 −2

0

0
0

2

2

2

(e)

x1

f

0.03

0.02

0.01

0.20.150.10.05

0

0

(f)

Figure 8: The multiperiodic motion of the blade with varying rotating speeds whenΩ1 = 1 1. (a) The phase portrait on the plane x1, x2 ; (b)
the waveform on the plane t, x1 ; (c) the phase portrait on the plane x3, x4 ; (d) the waveform on the plane t, x3 ; (e) the phase portrait in
the three-dimensional space x1, x2, x3 ; and (f) the power spectrum on the plane f , x1 .
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periodic motions and chaotic motions in the averaged
equations can lead to amplitude-modulated periodic and
chaotic vibrations in the original system under certain

conditions. Therefore, amplitude-modulated periodic and
chaotic motions occur in the rotating blade. Occurrence of
the chaotic motion means that the rotating cantilever blade
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Figure 9: The chaotic motion of the blade with varying rotating speeds when Ω1 = 1 201. (a) the phase portrait on the plane x1, x2 ; (b) the
waveform on the plane t, x1 ; (c) the phase portrait on the plane x3, x4 ; (d) the waveform on the plane t, x3 ; (e) the phase portrait in the
three-dimensional space x1, x2, x3 ; and (f) the power spectrum on the plane f , x1 .
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may perform large amplitude nonlinear vibration, which
leads to the damage of the system. We can control the
responses of the system from the chaotic motions to the peri-
odic motions by changing the perturbation rotating speed.
Finally, the large-amplitude vibrations of the blade can be
controlled. Thus, study on nonlinear behavior of the blade
is of great significance.

Analytical results of this paper can be widely used in
the practical aircraft engines. Large amplitude nonlinear

vibration produced by the forced vibration and self-
excited vibration occasionally leads to the undesirable
disaster of the blade. Since chaotic motion is the large
amplitude nonlinear vibration, we can adjust the perturba-
tion rotating speed to control the responses of the system
in order to avoid the appearance of the chaotic motion.
Moreover, the possibility of aircraft engine failure caused
by nonlinear vibration is reduced to ensure the safety of
the aeroplane.
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Figure 10: The multiperiodic motion of the blade with varying rotating speeds when Ω1 = 1 33. (a) The phase portrait on the plane x1, x2 ;
(b) the waveform on the plane t, x1 ; (c) the phase portrait on the plane x3, x4 ; (d) the waveform on the plane t, x3 ; (e) the phase portrait
in the three-dimensional space x1, x2, x3 ; and (f) the power spectrum on the plane f , x1 .
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Appendix

Coefficients in Equations

Coefficients represented in (25a) and (25b) are given as follows:

α1 =
1

α0
−1 963c97 + 0 653Ω2

0 + 0 33c106p10 cos Θ +
h8
α0

,

α2 =
1

α0
0 653c104 − 0 949c96 + 0 33Ω0c103p10 ,

α3 =
h1
α0

,

α4 =
h2
α0

,

α5 =
h3
α0

,

α6 =
h4
α0

,

α7 =
h5
α0

,

α8 =
h6
α0

,

α9 =
h7
α0

,

α10 =
1

α0
−3 401c97 + 1 131Ω2

0 + 0 33c106p11 cos Θ +
h9
α0

,

α11 =
1

α0
1 131c104 − 1 644c96 + 0 33Ω0c103p11 ,

α12 =
1

α0
0 329c100p11 + 1 131c101 cos Θ +

1

α0
1 71c99,

α13 =
1

α0
0 563c109sin Θ + 0 3297c109p12cos Θ Ω

2
0 +

h10
α0

,

f11 =
1

α0
−0 626c111 − 0 33c110p10 ω sin Θ ,

f12 =
1

α0
1 305c107 − 0 659c106p10 Ω0 cos Θ ,

f13 =
1

α0
0 33c106p10 + 0 653c107 cos Θ ,

f14 =
1

α0
0 653c104 + 0 33c103p10 ,

f15 =
1

α0
−1 131c111ω − 0 33c110p11 sin Θ ,

f16 =
1

α0
2 261c107 − 0 659c106p11 Ω0 cos Θ ,

f17 =
1

α0
0 33c106p11 + 1 131c107 cos Θ ,

f18 =
1

α0
1 131c104 + 0 33c103p11 ,

f19 =
1

α0
1 127c109sin Θ + 0 6595c106p12cos Θ Ω0 ,

f20 =
1

α0
−0 563c113cos Θ − 0 3297c110p12sin Θ ω ,

f21 =
1

α0
−0 563c109 sin Θ − 0 3297c106p12 cos Θ ,

β1 =
1

β0

−1 963c97 + 0 653Ω2
0 + 0 33c106p10 cos Θ +

h18
β0

,

β2 =
1

β0

1 131c104 + 0 571c103p10 − 0 262c105p4 Ω0

− 0 547c105p1 − 1 644c96 ,

β3 =
h11
β0

,

β4 =
h12
β0

,

β5 =
h13
β0

,

β6 =
h14
β0

,

β7 =
h15
β0

,

β8 =
h16
β0

,

β9 =
h17
β0

,

β10 =
1

β0

−3 401c97 + 1 131Ω2
0 + 0 33c106p11 cos Θ +

h19
β0

,

β11 =
1

β0

2 593c104 + 0 571c103p11 Ω0,

β12 =
1

β0

−0 468p17 + 0 111p14 c98 + 3 921c99

+ 0 571c100p11 + 2 593c101 cos Θ,

+ −0 262c102p5 − 0 547c102p2 sin Θ ,

β13 =
1

β0

0 9756c109 + 0 262c108p16 − 0 547c112p3 Ω
2
0 sin Θ

+ 0 571c106p12Ω
2
0 cos Θ +

h20
β0

,

f31 =
1

β0

−0 626c111 − 0 33c110p10 ω sin Θ ,

f32 =
1

β0

1 305c107 − 0 659c106p10 Ω0 cos Θ ,

f33 =
1

β0

0 33c106p10 + 0 653c107 cos Θ ,

f34 =
1

β0

1 131c104 + 0 571c103p10

− 0 262c105p4 − 0 547c105p1 ,

f35 =
1

β0

−1 131c111ω − 0 33c110p11 sin Θ ,

f36 =
1

β0

2 261c107 − 0 659c106p11 Ω0 cos Θ ,
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f37 =
1

β0

0 33c106p11 + 1 131c107 cos Θ ,

f38 =
1

β0

2 593c104 + 0 571c103p11

− 0 262c105p5 − 0 547c105p2 ,

f39 =
1

β0

−1 0947c108 + 0 524c108p6 + 1 951c109 Ω0 sin Θ

+ 1 142c106p12Ω0 cos Θ ,

f40 =
1

β0

0 547c112p3 + 0 262c112p6 − 0 976c113 ω cos Θ

− 0 571c110p12ω sin Θ ,

f41 =
1

β0

0 9756c109 − 0 262c108p6 − 0 547c108p3 sin Θ

− 0 571c106p12 cos Θ ,

A 1

where

α0 = 0 33c100p10 + 0 653c101 cos Θ + 0 987c99,

β0 = 0 111p13 + 0 468 c98 + 1 7099c99

+ 0 571c100p10 + 1 131c101 cos Θ

+ −0 262c102p4 − 0 547c102p1 sin Θ,

c96 =
C
∞
ρ
∞

A11

2L2

3h4
A,

c97 =
C
∞
ρ
∞

A11

2L LC

3h4
Acos θ,

c98 =
2I0
3A11

CL4

h5
sin θ,

c99 =
I0
A11

2L4

3h4
cos θ,

c100 = −
I2
A11

2CL4

3h5
θ′

2
,

c101 =
I2
A11

2CL3

3h4
θ′

4
,

c102 =
I2
A11

2CL4

3h5
θ′

2
cos θ,

c103 = −
4I2
3A11

CL4

h5
θ′

2

c104 =
4I2
3A11

CL3

h4
θ′

4
,

c105 = −
4I2
3A11

CL4

h5
θ′

2
cos θ,

c106 = −
I2
A11

2CL4

3h5
θ′

2
,

c107 =
I2
A11

2CL3

3h4
θ′

4
,

c108 =
I2
A11

2CL4

3h5
θ′

2
cos θ,

c109 = −
I2
A11

2CL4

3h5
θ′

2
sin θ,

c110 = −
I2
A11

2CL4

3h5
θ′

2
,

c111 =
I2
A11

2CL3

3h4
θ′

2
,

c112 = −
I2
A11

2CL4

3h5
θ′

2
cos θ,

c113 =
I2
A11

2CL4

3h5
θ′

2
sin θ,

p1 =
s71
n5

,

s71 = h71t3 + h72t9 + h73t15 + h74t21 + h76m43

m53m61 + h71t3m51 + h71t4m61 + h72t9m51

+ h72t10m61 + h73t15m51 + h73t16m61

+ h74t21m51 + h74t22m61 + h76m43m51

+ h76m44m61 + h77m53m61 + h71t1 + h72t7

+ h73t13 + h74t19 + h76m41 + h77m51,

p2 =
s72
n5

,

s72 = h71t3 + h72t9 + h73t15 + h74t21 + h76m43

m53m62 + h71t3m52 + h71t4m62 + h72t9m52

+ h72t10m62 + h73t15m52 + h73t16m62

+ h74t21m52 + h74t22m62 + h76m43m52

+ h76m44m62 + h77m53m62 + h71t2 + h72t8

+ h73t14 + h74t20 + h76m42 + h77m52 + h75,

p3 =
s73
n5

,

s73 = h71t3 + h72t9 + h73t15 + h74t21 + h76m43

m53m64 + h71t3m55 + h71t4m64 + h72t9m55

+ h72t10m64 + h73t15m55 + h73t16m64

+ h74t21m55 + h74t22m64 + h76m43m55

+ h76m44m64 + h77m53m64 + h71t6 + h72t12

+ h73t14 + h73t18 + h74m24 + h76m46 + h77m55,

n5 = h71t3 + h72t9 + h73t15 + h74t21 m53m63

+ h76m43m53m63 + h71m54t3 + h71m63t4

+ h72m54t9 + h72m63t10 + h73m54t15 + h73m63t16

+ h74m54t21 + h74m63t22 + h76m43m54 + h76m44m63

+ h77m53m63 + h71t5 + h72t11 + h73t17 + h74t23

+ h76m45 + h77m54 + h78,
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p4 =m63m71 +m61,

p5 =m63m72 +m62,

p6 =m63m73 +m64

p10 =m43m53m63m71 +m43m53m61 +m43m54m71

+m44m63m71 +m43m51 +m44m61 +m45m71 +m41,

p11 =m43m53m63m72 +m43m53m62 +m43m54m72

+m44m63m72 +m43m52 +m44m62 +m45m72 +m42,

p12 =m43m53m63m73 +m43m53m64 +m43m54m73

+m44m63m73 +m43m55 +m44m64 +m45m73 +m46,

p16 =m21m33m43 m53p4 +m54p1 +m51 +m21m33m45p1
+m21m34 m53p4 +m54p1 +m24m43 m54p1 +m53p4

+m21m33m41 +m21m34m51 +m21m35p4 +m21m36p1
+m24m43m51 +m24m44p4 +m24m45p1 +m25m53p4
+m25m54p1 +m21m31 +m24m41 +m25m51 +m26p4

+m27p1 +m22,

p17 =m21m33m43 m53p5 +m54p2 +m52 +m21m33

m44p5 +m45p2 +m21m34 m53p5 +m54p2

+m24m43 m53p5 +m54p2 +m21m33m42 +m21m34m52

+m21m35p5 +m21m36p2 +m24m43m52 +m24m44p5

+m24m45p2 +m25m53p5 +m25m54p2 +m21m32

+m24m42 +m25m52 +m26p5 +m27p2 +m23

A 2

Coefficients represented in (42a), (42b), (42c), and (42d)
are as follows:

g1 = −
1

2
α2,

g2 = −
1

2
cos ωt f14,

g3 = −
1

2
β2,

g4 = −
1

2
cos ωt f34,

h1 = −
I

Ω
3

8α3 f19 cos ωt +
4

9
α4 f40 sin ωt + 8α3 f20 sin ωt

+
4

9
α4 f39 cos ωt ,

h2 = −
I

Ω
3

8α3 f21 cos
2 ωt +

4

9
α4 f41 cos

2 ωt ,

h3 = −
I

Ω
3

8α3α13 +
4

9
α4β13 ,

h4 = −
2Iα5
Ω

+
I

Ω
3

16α3α8 −
4

3
α24 +

8

9
α4β3 ,

h5 = −
Iα6
Ω

−
4Iα3α4
Ω

3
,

h6 = −
3Iα7
Ω

+
I

Ω
3

40

3
α23 +

8

9
α4β8 ,

k1 = −
I

3Ω3
4β4 f19 cos ωt +

8

9
β3 f40 sin ωt + 4β4 f20

sin ωt +
8

9
β3 f39 cos ωt ,

k2 = −
I

3Ω3
4β4 f21 cos

2 ωt +
8

9
β3 f41 cos

2 ωt ,

k3 = −
I

3Ω3
4β4α13 +

8

9
β3β13 ,

k4 = −
2Iβ5

3Ω
+

I

3Ω3
8α3β4 −

8

3
α4β8 +

16

9
β8β3 ,

k5 = −
Iβ7

Ω
+
8Iβ4α8
3Ω3

+
40Iβ2

3

81Ω3
,

k6 = −
Iβ9

Ω
−
8β8α3
9Ω3

A 3

Nomenclature

Ω: Rotating speed
Ω0: Steady-state rotating speed
Ω1: Periodic perturbation amplitude of

the rotating speed
ω: Angular velocity of the blade
L: Plate spanwise length
C: Plate chordwise length
h: Plate thickness
r: Radius of the rigid hub
θr : Presetting angle
θR: Pre-twist angle

i , j, k : Inertial frame

e
0

x, e
0

y , e
0

z : Rotating coordinate system

êx, êy , êz : Local triad system

θ′: Twist rate

θ: Twist angle
u0, v0, w0: Components of displacement of a

point at the neutral plane
u, v, w: Components of displacement of a

random point
ϕx, ϕy: Angular displacement

εxx, εyy, γyz , γxz , γxy : Components of strains of a point

ε0: Membrane strain

ε1: Flexural strain
κi, λj: Coefficients of beam functions

σxx, σyy , σyz , σxz , σxy: Components of stresses of a point

Qij: Plane stress-reduced stiffnesses

σ1, σ2: Detuning parameters
E1, E2: Longitudinal modulus and transverse

modulus of the fiber
γ12, γ21: Poisson’s ratio
G12, G23, G13: Shear modulus
Nxx , Nyy, Nxy : In-plane force resultants

Mxx, Myy , Mxy: Moment resultants
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Qx , Qy: Transverse forces

k: Shear coefficient
Aij: Extensional stiffness

Dij: Bending stiffness

Bij: Bending-extensional coupling stiffness

I0, I1, I2: Mass moments of inertia

r : Displacement of a point without
deformation

Θ: Rotating angle of the blade

R, R: Speed and acceleration

K : Kinetic energy
Fs, Fc: Components of the centrifugal force
ρ: Density of the blade
U : Potential energy
U1: Strain energy
U2: Centrifugal potential energy
ρ
∞
: Air density

C
∞
: Speed of sound

P: Speed of the airflow
W: Virtual work of aerodynamic forces
δ: The variation
ε: Small parameter
ω1, ω2: The first two mode frequencies
τ: Time scale transformation
q: Positive rational number
vin: Inlet velocity
Min: Inlet mass flow
V in: Real flow velocity.
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