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Nonlinear dynamics of vortex lattice formation in a rotating Bose-Einstein condensate
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We study the response of a trapped Bose-Einstein condensate to a sudden turn on of a rotating drive by
numerically solving the two-dimensional Gross-Pitaevskii equation. A weakly anisotropic rotating potential
excites a quadrupole shape oscillation and its time evolution is analyzed by a quasiparticle projection method.
In a quadrupolar resonant regime, which depends on the trap anisotropy, simple periodic oscillations in
surface-mode populations disappear and the system exhibits stochastic dynamics. In the presence of the phe-
nomenological dissipation, an initially irrotational condensate is found to undergo damped elliptic deformation
followed by unstable surface ripple excitations, some of which develop into quantized vortices that eventually
form a lattice. Recent experimental results on the vortex nucleation should be explained not only by the
dynamical instability but also by the Landau instability; the latter is necessary for the vortices to penetrate into
the condensate.
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I. INTRODUCTION

Since realization of Bose-Einstein condensates~BECs! of
alkali-metal atomic gases, much attention has been focu
on the dynamical phenomena associated with superfluidit
remarkable feature reflecting superfluidity appears in the
sponse to external rotation. Recent observation of a qu
tized vortex lattice in trapped BECs@1–4# confirmed the
evidence of superfluidity. Madisonet al. observed directly
the nonlinear dynamical phenomena such as the vo
nucleation and lattice formation in a rotating condensate@5#.
Such visualized results have greatly contributed to eluc
tion of static and dynamic properties of quantized vortice

The dynamics of dilute BECs have been successfully
scribed by the Gross-Pitaevskii~GP! mean-field model. For
the quantized vortices in a trapped BEC, various theoret
studies have been made based on this model@6#. The mecha-
nism of vortex nucleation in rotating trapped BECs is one
the important topics. Vortex nucleation of this system diffe
from that of a superfluid helium system in the ratio of t
coherence lengthj to the system sizeL. In the former where
j&L, vortex nucleation is related to the instability of colle
tive excitations whose energy scale is set by the confin
potential. In the latter wherej!L, it is related to the local
dynamics. A number of theoretical papers have discus
possible mechanisms of vortex nucleation@7–21#. However,
only a few papers made full numerical analysis of the tim
dependent GP equation, which is necessary to understan
results in Ref.@5#. Although the imaginary time propagatio
of the GP equation is a powerful scheme to find equilibriu
states@9,13#, the dynamical process toward such states c
not be revealed by this method. Federet al. solved numeri-
cally the time-dependent GP equation in a rotating frame,
the motion of generated vortices remains turbulent, form
no vortex lattice@10#. Tsubotaet al. @14# included a phenom-
enological dissipation into the GP equation to simulate a v
tex lattice formation, obtaining the results consistent w
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those of Madisonet al. @5#. Here a mechanism of the vorte
lattice formation has been clarified as follows:~i! the con-
densate undergoes elliptic deformation,~ii ! surface waves are
excited at the boundary of the condensate, and~iii ! quantized
vortices enter the condensate from the boundary, formin
lattice.

What has remained to be clarified is the relation betwe
the dynamical processes~i!–~iii ! and intrinsic instabilities of
a rotating condensate. There are two important instabili
for vortex nucleation, namely, the dynamical instability@12#
and the Landau instability@7,9,15,16,18,19#. The former
originates from the imaginary frequency of the excitati
mode, giving rise to the exponential growth of the unsta
mode even in the energy-conserving dynamics. The la
occurs when the excitation spectrum has negative eigen
ues in the rotating frameand when the system is subject t
energy dissipation. These two instabilities often occur in d
ferent parameter regimes. Thus, one may ask which insta
ity is important for actual experiments on vortex nucleatio
While the vortex nucleation frequency found in the EN
experiments@1,5# appears to be consistent with that of th
dynamical instability@12# and not with that of the Landau
instability, our later analysis reveals that both instabiliti
play crucial roles in these experiments.

In this paper, we investigate theoretically the detailed d
namics of a BEC subject to external rotation by the nume
cal analysis of the two-dimensional GP equation, and add
the above questions. The first issue of this paper concer
response of a BEC to a sudden turn on of a rotating dr
within the energy-conserving dynamics. The rotating pot
tial excites chiefly the quadrupole surface mode with angu
momentuml 52 and distorts the condensate into an ellip
Because of the anisotropy of the trapping potential and
nonlinear atomic interaction, the different surface modes
coupled to each other, causing complicated nonlinear dyn
ics. To clarify the mode coupling, we use a quasiparti
projection method@22#, which allows us to decompose th
©2003 The American Physical Society10-1
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macroscopic wave function into the condensate and non
densate parts and determine the populations of each m
We find that the condensate makes the simple periodic o
lation for most values of the rotation frequencies; popu
tions of the excited modes restore their initial values in
sense of the Fermi-Pasta-Ulam recurrence@23#. In resonance
of the quadrupole mode, however, the simple recurrenc
replaced by chaotic behavior because of the dynamical in
bility of the rotating condensate@12#. An increase of the trap
anisotropy expands the range of the rotation frequency
the resonance excitation. The chaotic dynamics yields vio
density and phase fluctuations at the condensate surface
generated surface ripples slightly increase of the total ang
momentum, but they never develop into quantized vortice
the energy-conserving simulation.

Next, we consider the dissipative dynamics of the rotat
BECs by extending our previous work@14#. This paper de-
scribes more detailed dynamics of the vortex lattice form
tion by following the time development of the condensa
density and phase simultaneously. The GP equation w
phenomenological dissipation explains the experimental
sults very well. The quasiparticle projection method is a
applicable in the analysis of the dissipative dynamics; t
we can study what modes are excited during the dynam
process of vortex lattice formation. In the presence of dis
pation, the excitations of surface ripple are caused by
surface modes with negative frequencies in the rota
frame@8#; the onset of this instability is given by the Landa
criterion applied to the rotating BEC@7,9,15,16#. Numerical
simulation shows that the surface ripples induced by the L
dau instability certainly develop to quantized vortices. The
fore, it is concluded that vortex nucleation is essentia
caused by the Landau instability. The ENS experiments@1#
should be explained by the two-stage process: vortex nu
ation by the Landau instability after the shape deformat
by the dynamical instability.

This paper is organized as follows. Section II formula
our model that describes the dynamics of a rotating BEC
harmonic trap. Section III studies the energy-conserving
namics of a rotating BEC. The dynamics of the mode c
pling is analyzed by the quasiparticle projection meth
Section IV studies the dissipative dynamics of the vor
generation and lattice formation in detail, and makes so
comments on the origin of the dissipation. Our results
compared with the experimental ones. Section V is devo
to the conclusion.

II. THE MODEL

A. Formulation of the problem

A BEC trapped in an external potential is described b
‘‘macroscopic wave function’’C(r ,t) obeying the GP equa
tion. In the frame rotating with the frequencyV around thez
axis the GP equation reads

i\
]C

]t
5S 2

\2

2m
¹21Vtrap1Vrot2m1guCu22VLzDC.

~1!
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Here g54p\2a/m represents the strength of interactio
characterized by thes-wave scattering lengtha.0, m the
chemical potential, andLz52 i\(x]y2y]x) the angular mo-
mentum. The wave function is normalized by the total p
ticle numberN as*dr uCu25N. An external harmonic trap-
ping potential has the form

Vtrap~r !5 1
2 m$v'

2 ~x21y2!1vz
2z2%, ~2!

and the potential that drives the rotation has the form

Vrot~r !5 1
2 mv'

2 ~exx
21eyy

2! ~3!

with the anisotropy parametersexÞey ; this form describes
approximately the rotating potential used in the ENS exp
ments@1,5#. Such a rotating potential breaks the rotation
symmetry, thus transferring the angular momentum into
condensate through the excitation of surface modes or
generation of vortices.

In order to reduce the system into the two-dimensio
x-y space, we separate the degrees of freedom of the w
function as C(r ,t)5c(x,y,t)f(z), obtaining the two-
dimensional GP equation

i\
]c~x,y,t !

]t
5F2

\2

2m S ]2

]x2
1

]2

]y2D 1
1

2
mv'

2 $~11ex!x
2

1~11ey!y2%2m1ghuc~x,y,t !u2

2VLzGc~x,y,t !, ~4!

where

h[
E dzuf~z!u4

E dzuf~z!u2

, ~5!

andm includes a constant arising from the integral off(z).
The normalization of the two-dimensional wave functio
c(x,y) is determined by the particle numberN2D per unit
length along thez axis as

E E dxdyuc~x,y!u25NS E dzuf~z!u2D 21

5N2D . ~6!

It is convenient to introduce the scales characterizing
trapping potential; the length, time, and wave function a
scaled as

x5ahx̃,t5
t̃

v'

,c5AN2D

c̃

ah
,

respectively, withah5A\/2mv'. Then the GP equation is
reduced to a dimensionless form as
0-2



he

r
s

tio

h
n

q

iu
l

-
tia
o

d
nt

i
th

n

on.
-

n-
ve

20
c-

an
n

l
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i
]c

]t
5F2S ]2

]x2
1

]2

]y2D 1
1

4
$~11ex!x

21~11ey!y2%

2m1Cucu22VLzGc, ~7!

whereC58pahN2D and the tilde is omitted for simplicity.
The two-dimensional approximation may be valid for t

condensate in a ‘‘pancake-shaped’’ potential (l5vz /v'

@1) or the central part of the condensate in a ‘‘ciga
shaped’’ potential (l,1). These two types of situation
yield different forms of the mean-field interaction strengthC.
For l@1 and\vz larger than the interaction energy,f(z) is
approximated by the one-particle ground-state wave func
in a harmonic potential:

f~z!5S 1

A2pahz
D 1/2

expS 2
z2

4ahz
2 D ~8!

with ahz5A\/2mvz5ah /Al. Then,N2D5N and the param-
eterC becomes

C58paNh54AplN
a

ah
. ~9!

On the other hand, for a cigar-shaped condensate witl
,1 one can approximate the system with cylindrical co
figuration, i.e., translation symmetry along thez direction.
By neglecting the spatial derivative term of thez component
in Eq. ~1!, and the third term on the right-hand side of E
~2!, the two-dimensional GP equation of Eq.~4! is obtained.
Then the parameterC is written by

C58pahN2D58paN
E uf~z!u4dz

S E uf~z!u2dzD 2 .
8paN

2Rz
.

~10!

Here Rz is assumed to be the Thomas-Fermi rad
A2m/mvz

2 along the z axis with the chemical potentia
evaluated at the parameterex,y50 andV50:

m5\v'S 15

8
Nl

a

ah
D 2/5

. ~11!

The approximation forl,1 is suitable for the ENS experi
ment @1# which was made under the cigar-shaped poten
whereC @Eq. ~10!# takes the value between 200 and 500. F
the large condensate in the MIT experiment@2# C;10 000,
though they did not use the cigar-shaped potential.

In the two-dimensional analysis, the effect of vortex ben
ing @24,25# is not taken into account. Recent experime
@26# showed that the time scale of the vortex bending
found to be longer than 1 sec, which is much longer than
time scale of the dynamics of vortex lattice formation
(;100 msec). We, therefore, consider our two-dimensio
analysis effective for the present problem.
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B. Numerical method

The numerical calculations of Eq.~7! are done using an
alternating direction implicit method@27#. Defining a time
stepd t and space meshesdx5dy5d, and denoting the dis-
crete wave function asc j ,k

n 5c( j dx ,kdy ,nd t), c j ,k
n develops

into c j ,k
n11 via the intermediate statec j ,k

n1(1/2s) as

c j ,k
n1 1/2 5c j ,k

n 2
Dt

d2
~]x

2c j ,k
n1(1/2)1]y

2c j ,k
n !

2 iVDt~k]xc j ,k
n1(1/2)2 j ]yc j ,k

n !

1
Dt

2
$~Vj ,k1Cuc j ,k

n1(1/2)u2!c j ,k
n1(1/2)

1~Vj ,k1Cuc j ,k
n u2!c j ,k

n % ~12!

and

c j ,k
n115c j ,k

n1(1/2)2
Dt

d2
~]x

2c j ,k
n1(1/2)1]y

2c j ,k
n11!

2 iVDt~k]xc j ,k
n1(1/2)2 j ]yc j ,k

n11!

1
Dt

2
$~Vj ,k1Cuc j ,k

n11u2!c j ,k
n11

1~Vj ,k1Cuc j ,k
n1(1/2)u2!c j ,k

n1(1/2)%. ~13!

Here we denoteDt[d t/2i , ]xc j ,k
n [(c j 11,k

n 2c j 21,k
n )/2,

]x
2c j ,k

n [c j 11,k
n 22c j ,k

n 1c j 21,k
n , and Vj ,k5$(11ex)( j d)2

1(11ey)(kd)2%/4. We used the@2128< j ,k<1128# dis-
cretized space for the two-dimensional numerical simulati
The time stepd t51.031023 is sufficient to ensure the nu
merical stability over sufficiently long propagation.

III. QUADRUPOLE OSCILLATION OF A ROTATING BEC

A. Time development of the deformation parameter

We start by discussing the time evolution from a statio
ary solution in a nonrotating trap. We turn on a rotating dri
following the experimental procedure of Madisonet al. @5#.
The rotation with a frequencyV starts att50, and the trap
anisotoropye5$(11ex)2(11ey)%/$(11ex)1(11ey)% is
increased rapidly from zero to its final value 0.025 in
msec, whereey is fixed to be zero. The strength of intera
tion C is set to be 500, corresponding toa55.77 nm, N
533105, andvz511.832p, l5v' /vz59.2 @5#. The unit
of length is ah5A\/2mv'50.728mms and the period of
the trap 9.21 msec.

A rapid modulation of the trapping anisotropy induces
elliptic oscillation of the condensate. The elliptic oscillatio
is characterized by the deformation parameter@5,28#

a52V
^x2&2^y2&

^x2&1^y2&
, ~14!

where^A& means*dxdyc* Ac. The time evolution ofa for
several values ofV is shown in Fig. 1. For relatively smal
0-3
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KASAMATSU, TSUBOTA, AND UEDA PHYSICAL REVIEW A 67, 033610 ~2003!
values ofV, a undergoes a simple periodic oscillation wi
positive values; the initial axisymmetric condensate is el
gated along they axis because of the small trap anisotropye
(ex.ey). As V increases from zero, both the amplitude a
the period increase gradually, leading to the large amplit
oscillation nearV50.7v' . For V50.75v' , however,a
shows aperiodic behavior as shown in Fig. 1. AsV increases
further, the periodicity is restored, but the sign ofa changes
to negative and its absolute value become smaller
smaller. The negativea means that the longer axis of th
condensate ellipse is perpendicular to the longer axis of
anisotropic trap.

This shape oscillation mainly consists of the collecti
surface mode with angular momentuml 52, i.e., quadrupole
mode. In the Thomas-Fermi limit, the dispersion relation
the surface mode reduces tov l5Alv' @29#. Due to the cen-
trifugal term 2VLz , the surface-mode frequency is shifte
by 2 lV. For l 52, hence, it is expected that the quadrup
mode is resonantly excited atV/v'5A2/2.0.707. As dis-
cussed later, the single resonance does not occur becaus
quadrupole mode couples with various higher-energy mo
through the nonlinear interaction, giving rise to the comp
cated dynamics. We find that for a range of the rotation f
quency 0.72,V/v',0.78, the oscillation becomes irregu
lar. The deviation from the pure resonance frequen
V/v'50.707 is due to the effect of the trap anisotropy a
the nonlinear interaction@see Eq.~23!#.

Figure 2 shows the profile of the condensate den
uc(x,y,t)u2 and that of the phase u(x,y,t)
5tan21(Imc/Rec) (0,u,2p) when the irregular oscilla-
tion occurs. On the surface of the condensate, there ap
surface ripples, which are violent short-wavelength den
fluctuation. In addition, the phase profile shows that ma
phase singularities, i.e., quantized vortices, come into
condensate surface, while inside the condensate the p
features the form of the quadrupoler flow@9,28#. Since the
phase singularities lie on the outskirts of the condens
where the amplitudeucu is very small, they hardly contribute
to both the energy and the angular momentum. Such ph

FIG. 1. Time evolution of the deformation parametera for
V/v'50.65, 0.70, 0.75, 0.80, and 0.85. Note thata shows aperi-
odic behavior atV/v'50.75, where the rotating drive resonant
hits the quadrupole mode.
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singularities, named ‘‘ghost vortices’’ in our previous pap
@14#, are located in the density hollows produced by the s
face ripples.

In the energy-conserving dynamics, such irregular dyna
ics are caused by the dynamical instability associated w
the imaginary frequency of the excitation modes. Sinha a
Castin@12# made a linear stability analysis of an oscillatin
condensate with a quadrupolaransatz, and found the growth
of the fluctuation to be described by polynomials of deg
n53 aroundV/v'50.73. They proposed that the asso
ated dynamical instability triggers vortex nucleation in
condensate rotating in an anisotropic harmonic poten
However, Fig. 2 suggests that the generated surface rip
should be described by polynomials with degrees higher t
n53. Thus, we also make a linear stability analysis forn
54 and 8 by following Ref.@12#, and find that the growth
rates of these higher-order modes are as high asn53.
Hence, the dynamical instability excites such higher-or
excitation modes, generating the surface ripples. Th
ripples slightly increase the total angular momentum beca
of the presence of ghost vortices, but they never penet
into the condensate to form a lattice. Therefore, it is co
cluded that the dynamical instability alone does not lead
‘‘vortex nucleation’’ as observed in the ENS experiments.
Sec. IV, we will show that the dissipation-assisted instabi
can make the surface ripples develop into the quantized
tices.

B. Quasiparticle projection method

The dynamics of the elliptic oscillation can be well e
plained by decomposing the whole dynamics into an ass
bly of fundamental excitation modes. The quasiparticle p
jection method, developed by Morganet al. to study the
nonlinear mixing of collective excitations@22#, enables us to
decompose a wave function into a condensate and non
densate modes, and monitor the time evolution of their po
lations. Here we will use this method to study the time d
velopment of the surface modes excited by the anisotro
rotating trap.

FIG. 2. The density profile~a! and phase profile~b! of the con-
densate withV/v'50.75 at 105 msec. In~b!, the value of the
phase changes continuously from 0~black! to 2p ~white!. There
appear some lines, where the phase changes discontinuously
black to white. These lines correspond to the branch cuts betw
the phases 0 and 2p, and their apexes around which the value
the phase rotates continuously from 0 to 2p represent phase de
fects, i.e., quantized vortices.
0-4
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To construct the mode functions for the projection, we u
the solution of the time-independent GP equation with a n
rotating axisymmetric trap

F2
d2

dr2
2

1

r

d

dr
1

r 2

4
1Cucgu2Gcg~r !5mcg~r !, ~15!

where cg corresponds to the initial nonvortex state in o
simulation. The quasiparticle mode functionsui(r )
5ui(r )eil u and v i(r )5v i(r )eil u are obtained by the
Bogoliubov-de Gennes equations

F2S d2

dr2
1

1

r

d

dr
2

l 2

r 2D 1
r 2

4
2m12Cucgu2Gui~r !

1Ccg
2v i~r !5v iui~r !, ~16a!

F2S d2

dr2
1

1

r

d

dr
2

l 2

r 2D 1
r 2

4
2m12Cucgu2Gv i~r !

1Ccg*
2ui~r !52v iv i~r !. ~16b!

The mode functions are subject to the orthogonality a
symmetry relations

E d2r $ui~r !uj* ~r !2v i~r !v j* ~r !%5d i j , ~17a!

E d2r $ui~r !v j* ~r !2v i~r !uj* ~r !%50. ~17b!

Following the method of Ref.@22#, we introduce a set o
excitations that are orthogonal tocg . This is achieved by
projecting out the overlap withcg from the solutions of the
Bogoliubov-de Genne equations, the resulting quasipart
wave functions being defined by

ũi~r !5ui~r !2cicg~r !, ~18a!

ṽ i* ~r !5v i* ~r !1ci* cg~r !, ~18b!

whereci5*d2r @cg* ui #52*d2r @cgv i #. The orthogonal re-
lations Eq.~17! still hold for these modified wave functions
The wave function can be expanded as

c~r ,t !5$11bg~ t !%cg~r !1(
i .0

$ũi~r !bi~ t !1 ṽ i* ~r !bi* ~ t !%.

~19!

It is easy to show that 11bg andbi satisfy the relations

11bg~ t !5E d2rcg* ~r !c~r ,t !, ~20!

bi~ t !5E d2r $ũi* ~r !c~r ,t !2 ṽ i* ~r !c* ~r ,t !%. ~21!

The populations of the ground state and the excitation
given by u11bgu2 and ubi u2.
03361
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In the following discussion, we take only those mo
functions that carry angular momentuml but do not possess
any radial node, i.e., surface modes. Here the indexi of ũi

and ṽ i is replaced withl. For lÞ0, the overlap integralcl

vanishes because*0
2pdueil u50, so thatũl5ul and ṽ l5v l .

Since our system has even parity for the spatial coordin
no surface modes with oddl are excited.

C. Fermi-Pasta-Ulam recurrence and chaotic dynamics

By using Eq.~21!, we project the time evolution of the
excitation modesubl u2 with l 52,4, . . . ,20from c(r ,t). Fig-
ure 3~a! shows the time evolution ofub2u2, ub4u2, ub6u2, and
u11bgu2 for V50.7v' ; other ubl u2’s are negligibly small.

FIG. 3. Time evolution of the surface mode populationsubl u2 for
~a! V/v'50.7 and~b! V/v'50.75. ~c! represents the time evolu
tion of u11bgu2 ~dashed curve! and ub2u2 ~solid curve! in the two-
mode approximation.
0-5
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The rotating potential of Eq.~3! dominantly excites thel
52 mode which causes the elliptic deformation. The sm
populations of higher modes (l 54,6, . . . ) also appear fol-
lowing the increase ofub2u2. After a certain period of time
populations of all excited modes return to the initial valu
almost completely. This simple recurrence repeats peri
cally in time.

For V50.75v' , the evolution is somewhat complicate
as illustrated in Fig. 3~b!. The recurrence is no longer com
plete, but some quasiperiodicity still remains. As compa
with the simple recurrence dynamics, the depletion of
ground-state population becomes remarkably large, wh
means that more higher-energy modes are excited. The
perposition of such higher-energy modes produces the
face ripples in the condensate density as shown in Fig. 2

From a general point of view, we face the problem kno
as the Fermi, Pasta, and Ulam recurrence phenomenon@23#.
They studied statistical behavior in the chain of nonlinea
coupled oscillators, and found a quasiperiodic behavior
this system characterized by returns of the energy to the
tial excited mode. Later, it was shown that there exist
threshold for the onset of ‘‘stochastization’’ which is broug
by high-energy excitations. For BECs in an anisotropic p
tential, the nonlinearities inside the condensate may give
to the stochasticity in its time evolution@30–32#.

D. Two-mode analysis

The simple analysis of the equation of motion for t
quasiparticle population helps us understand the behavio
Figs. 3~a! and 3~b!. Substituting Eq.~19! into Eq.~7!, we get

i
]bg

]t
5E d2rcg* Vrot~cg1D!1CE d2r @~bg1bg* !ucgu4

12uDcgu21D2cg*
21DuDu2cg* #, ~22!

i
]bl

]t
5~v l2 lV!bl~ t !1E d2rul* Vrot~cg1D!

1CE d2rul* @2uDu2cg1D2cg* 1DuDu2

1ucgu2cg~bg1bg* !#1E d2rv l* Vrot~cg1D* !

1CE d2rv l* @2uDu2cg* 1D* 2cg1D* uDu2

1ucgu2cg* ~bg1bg* !#, ~23!

where D5bgcg1( l$ul(r )bl(t)1v l* (r )bl* (t)% and Vrot

5(exx
21eyy

2)/4. The presence ofVrot makes the integrals
*d2rcg* Vrotul or *d2rul 8

* Vrotv l ••• finite, and these terms
are reduced to the formT0d l ,l 81T1d l ,l 8221T2d l ,l 812 after
the integral ofu component~if ex5ey , the off-diagonal
terms vanishes!. Hence, the ground state is coupled direc
only to thel 52 mode in Eq.~22! throughVrot . The remain-
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ing terms withC couple the various modes with the sam
parity to each other, resulting in a complicated time evo
tion.

As seen in Fig. 3~a!, the dominant contribution to the
dynamics comes from the change of the populationsu1
1bgu2 andub2u2. To understand the basic properties, we ta
only terms with l 50 and 2~two-mode approximation!. In
addition, we neglect the contribution ofv2(r ), because this
term represents the excitation traveling oppositely to the
tation. Then Eqs.~22! and ~23! reduce to

i
]bg

]t
5T00~11bg!1P00$2Re~bg!1ubgu2%~11bg!

1P02~11bg!ub2u21T02b2 , ~24a!

i
]b2

]t
5~v222V1T22!b21P22ub2u2b21P02$2Re~bg!

1ubgu2%b21T02~11bg!, ~24b!

where

T005E d2rcg* Vrotcg ,

T225E d2ru2* Vrotu2T025E d2rcg* Vrotu2

5E d2ru2* Vrotcg ,

P005CE d2r ucgu4,

P225CE d2r uu2u4,

P0252CE d2r ucgu2uu2u2.

It is convenient to represent the complex valuesbg andb2 in
terms of the amplitude and the phase as 11bg5u1
1bgueiug and b25ub2ueiu2. Since the total populationu1
1bgu21ub2u2 is a constant of motion, Eqs.~24! have two
variables: population differencep5u11bgu22ub2u2 and
relative phaseu5ug2u2. Then, Eqs.~24! reduce to

dp

dt
52T02A12p2 sinu, ~25!

du

dt
5Up2T02

2p

A12p2
cosu2Dv ~26!
0-6



th
l p

r
-
P

ro
r
-

s
.

, a

im
nu
lo
on

f
io
vo
rte

in
-
-

ate
mber
is
la-

s is
lue
el-
en-
the
nt
ty.

me

ua-

f
he
s

n

is
all

ut

den-
GP

fin
d
the
etic
ate
ss the
n.

.
hi

NONLINEAR DYNAMICS FOR VORTEX LATTICE . . . PHYSICAL REVIEW A 67, 033610 ~2003!
with the conserved Hamiltonian

H~p,u!5 1
2 Up212T02A12p2 cosu2Dvp, ~27!

where U5(P001P2222P02)/2 and Dv5v222V1T22
2T001U. These formula are the same with those used in
Josephson dynamics of the condensate in a double-wel
tential, and the exact solution ofp(t) is expressed by the
Weierstrassian elliptic function@33#. For C5500, we nu-
merically find asv251.438v' , U520.05, dv5v222V
13e20.05 andT0251.14e from the calculatedcg andu2.
The solutions of Eqs.~25! and ~26! with these paramete
values are shown in Figs. 3~c!. The periodicity and the am
plitude of u11bgu2 reproduce well the results of the G
equation.

Figure 4 shows the dependence of the maximum ofub2u2

on V/v' . The maximum grows nearV50.7v' . Note that
as e increases the peak is shifted from the purel 52 reso-
nance frequencyV5v2/250.719v' to the larger value of
V. The dynamics of the GP equation does not show p
nounced resonance ofub2u2 because the transition into highe
energy modes occurs. Fore50.025, we found that the cha
otic oscillation occurs in 0.72,V,0.78, which correspond
to the range where the maximum ofub2u2 exceeds 0.4 in Fig
4. Following this criterion, we obtain theV2e parameter
region where the large amplitude oscillation is expected
shown in the inset of Fig. 4~shaded region!. In this region,
the mode coupling via the nonlinear interaction becomes
portant, leading to chaotic dynamics. We confirm by the
merical simulation that the simple recurrence is indeed
in this region. We will discuss the relevance of such a n
linear coupling to vortex nucleation in Sec. IV E

IV. DYNAMICS OF VORTEX LATTICE FORMATION

In this section, we focus on the dissipative dynamics o
trapped condensate following the sudden turn on of rotat
The dissipation is necessary to simulate the dynamics of
tex lattice formation by the GP equation, because a vo

FIG. 4. The dependence of the maximum ofub2u2 on V/v' in
the two-mode approximation fore50.01, 0.025, 0.05, and 0.08
The shaded region in the inset shows the parameter region in w
the large amplitude oscillation with max(ub2u2).0.4 occurs.
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lattice corresponds to a local minimum of the total energy
the configuration space@34,35#. Preliminary results were re
ported in Ref.@14#. This section deals with the detailed dy
namics by following the time development of the condens
density and the phase simultaneously, and presents a nu
of previously unpublished results. Although the dissipation
treated phenomenologically in the GP equation, the simu
tion reproduces the experimental results very well.

The results show that the generation of surface ripple
also achieved by the instability of negative eigenva
modes, i.e., Landau instability, and the following time dev
opment certainly leads to vortex penetration into the cond
sate. The experimental results on vortex nucleation by
ENS group@1,5# can be understood by taking into accou
both the dynamical instability and the Landau instabili
This is described in Sec. IV E.

A. Phenomenological dissipative equation

Before discussing the detailed dynamics, we make so
comments on the dissipation. As in the previous study@14#,
the dissipation is treated phenomenologically in the GP eq
tion. The time derivative term of Eq.~7! is modified as

~ i 2g!
]c

]t
5F2S ]2

]x2
1

]2

]y2D 1
1

4
$~11ex!x

21~11ey!y2%

2m1Cucu22VLzGc, ~28!

where the dimensionless parameterg describes the degree o
dissipation. This form of the dissipative equation follows t
study of Choiet al. @36# and that of other superfluid system
@37#. Choi et al. determined the value ofg to be 0.03 by
fitting their theoretical results with the MIT experiments o
collective damped oscillations@38#. Thus, we also useg
50.03 throughout this work. Since this dissipative term
much smaller than other terms in the GP equation, a sm
variation ofg does not change the dynamics qualitatively b
only modifies the relaxation time scale.

The phenomenological dissipative Eq.~28! may be related
to the recent numerical work by Jackson and Zaremba@39#
on the coupled dynamics of a condensate and a noncon
sate. Their simulation is based on the the generalized
equation at finite temperatures

i\
]C

]t
5S 2

\2¹2

2m
1Vtrap1gn12gñ2 iG DC. ~29!

This equation was derived by Zaremba, Nikuni, and Grif
@40#, wheren(r ,t)5uC(r ,t)u2 is the condensate density an
ñ(r ,t) is the noncondensate density. The dynamics of
noncondensate was described by the Boltzmann kin
equation for the distribution function of the noncondens
atoms. The noncondensate atoms are assumed to posse
single-particle Hartree-Fock spectrum in their formulatio
The numerical simulation by Jackson and Zaremba@39# well
explains the experimental results by Marago` et al. @41# and
Jin et al. @42#.

ch
0-7
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FIG. 5. Time development of the condensate densityucu2 after the trapping potential suddenly begins to rotate att50 with V
50.7v' .
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Equation ~28! can be derived from Eq.~29! with some
additional approximations. We treat the noncondensate as
ing in static thermal equilibrium, and neglect the mean fi
of the noncondensate under the assumptionn@ñ. Then, the
dissipation of the condensate motion is associated with
term G(r ,t)5(\/2n)G125(\/2n)*$dp/(2p\)3%C12 with
the collision integralC12 between the condensate and no
condensate atoms. Under the local equilibrium distribut
of the thermal atoms,G12 is proportional to the difference o
the local chemical potential between condensate and non
denate as G12}mnc(r ,t)2m(r ,t) @40#. Approximating
m(r ,t)C.2 i\(]C/]t) @44#, we obtain

~ i 2g!\
]C

]t
5S 2

\2

2m
¹21Vtrap1guCu22 igmncDC.

~30!

Compared with Eq.~28!, the chemical potential of this equa
tion is replaced by that of noncondensatemnc, yielding the
imaginary termigmnc. Note that the relationm5mnc is sat-
isfied for the equilibrium condensate. If the space and ti
dependence ofmnc is neglected, this equation becomes E
~28! by the transformationC→Ce2 imnct/\ andmnc→m.

The time development of Eq.~28! conserves neither th
norm of the wave function nor the energy. In our simulatio
the chemical potentialm is adjusted at each time step
order to conserve the norm and to decrease the total en
monotonically. Recently, Eq.~30! was also derived by Gar
diner et al. by another approach@45#, applied to the simula-
tion of vortex lattice formation from a rotating thermal clou
@46#. They made the numerical simulation with the fixe
chemical potential, finding that the norm ofC decreased or
03361
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increased as the system evolved. In actual experiments,
a loss in the number of condensate atoms is caused by
rotation-induced heating@3#, so that the generated therm
component might affect the dissipative dynamics of the v
tex generation. However, under the phenomenolog
model, the change of the norm is only a few percent, be
chemical potential fixed or not. The detailed quantitati
study of a loss of atoms is beyond the scope of this pa
our treatment using the fixed chemical potential is adequ
to describe the actual dissipative dynamics.

The assumption of the static noncondensate may be a
cable to the experimental condition in Refs.@1–3,5#. Accord-
ing to the estimation by Guery-Odelin@47#, the spin up time
for the whole noncondensed atoms to catch up with the
tating trap is about 15 sec in collisionless regime. Since
typical time for the vortex formation of the condensate is
few hundred milliseconds, the condensate motion is se
rated from the noncondensate one under the rotating pe
bation. However, the dynamic coupling via the mean-fie
interaction between condensate and noncondenate cause
condensate motion to be damped~known as Landau damp
ing!, which is not included in Eq.~28!.

The value ofg is estimated by following the formulation
for a uniform Bose gas@43#. The parameterg, in which
length and energy are scaled byah and\v' , has the form

g516A2pAna3S ah

a DATC

T
A\v'

kBT
. ~31!

Here A is a factor of order unity forT.0.5TC and ap-
proaches zero asT→0. Using typical experimental param
eters, for example,T50.5TC , TC5500 nK, a55.5 nm,n
0-8
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FIG. 6. Phase profiles ofc corresponding to the density profiles of Fig. 5. The value of the phase changes continuously from 0~black!
to 2p ~white!. The discontinuous lines between black and white correspond to the branch cut of the complex plane, and their edges
quantized vortices. The unit of length is the same as that of Fig. 5.
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s of
;1014 cm23, and v'510032p Hz, we obtain g;A
31022 which is consistent with 0.03 used in this paper.

B. Dynamics from a nonvortex state to a vortex state

Using Eq.~28!, we discuss the dynamics of vortex lattic
formation in more detail. As in the preceeding section
sudden switch on of rotation is made for the condensate w
C5500. Figure 5 shows the time development of the c
densate densityuc(x,y,t)u2 for V/v'50.7 @48#. Initially, the
condensate undergoes a quadrupole oscillation, but the o
lation is damped due to dissipation. After a few hundr
milliseconds, the boundary surface of the condensate
comes unstable, generating the surface ripples that propa
along the surface as shown in Fig. 5~c!. The excitations are
likely to occur on the surface whose curvature is low, i.
parallel to the longer axis of the ellipse. Then the waves
the surface develop into the vortex cores in a very short t
@Figs. 5~d! and 5~e!#. As is well known in the study of rotat
ing superfluid helium@34,35#, the rotating drive pulls vorti-
ces toward the rotation axis, while repulsive interaction
tween vortices tends to push them apart; this competi
yields a vortex lattice whose vortex density depends on
rotation frequency. In the presence of dissipation, six vorti
enter the condensate, eventually forming a vortex lattice.
the vortex lattice is being formed, the axisymmetry of t
condensate shape is recovered.

The rotating potentialVrot has even parity with respect t
the coordinate. Accordingly, the number of the genera
vortices is always even. To remove this restriction, we int
duced an infinitesimal artificial perturbation with odd par
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in Vtrap. This perturbation allows the system to develop in
an a fivefold symmetric steady state as shown in Fig. 5~h!,
the energy of which is lower than that in Fig. 5~g!. It takes a
few hundred milliseconds for the transition from Fig. 5~g! to
5~h!.

The corresponding time development of the phase
c(x,y,t) is shown in Fig. 6. As seen in the energ
conserving dynamics, as soon as the rotation starts, the p
field inside the condensate takes the form of quadrup
flow u(x,y)5axy1const, and just outside the Thoma
Fermi boundary there appear ghost vortices; for exam
Fig. 6~b! shows about 20 vortices. Ghost vortices move
ward the rotation axis, but their invasion into the condens
is prevented at the Thomas-Fermi boundary. However, as
surface ripples are generated, the ghost vortices start to
etrate the condensate. There takes place the selection o
defects to penetrate, because their further invasion costs
ergy and angular momentum. For example, Fig. 6 shows
six vortices enter the condensate and form a lattice, w
other excessive vortices are repelled and escape to the
side.

As seen from Fig. 5, vortex invasion is likely to occur o
the surface parallel to the longer axis of the ellipse. This
simply understood by the velocity field of the elliptic con
densatev5¹axy5(ay,ax) as seen in Fig. 6~b!. Near the
condensate surface parallel to the longer axis of an ellip
this velocity field has the same direction as the velocity fi
produced by the ghost vortices. There the additive veloc
field v works as an attractive force that pulls the ghost v
tices into the condensate. On the other hand, the velocitie
0-9
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KASAMATSU, TSUBOTA, AND UEDA PHYSICAL REVIEW A 67, 033610 ~2003!
the condensate and the ghost vortices have the opposit
rection near the surface parallel to the shorter axis, where
condensate dislikes the invasion of the ghost vortices. Th
fore, the vortices enter the condensate from the surface
allel to the longer axis.

Figure 7 shows the time evolution of the deformation p
rameter and that of the angular momentum per atom,z /\
5*dxdyc* (Lz /\)c in our dynamics of Figs. 5 and 6. The
very well reproduce the experimental results of Ref.@5#. Be-
fore 300 msec, botha and ,z /\ undergo damped oscilla
tions. When vortices enter the condensate,a falls abruptly to
a value below 0.05 and,z /\ increases to 4 reflecting th
number of the generated vortices.

The final equilibrium value of,z depends on the numbe
of the vortices that form a lattice. Figure 8 shows the dep
dence of the number of vortices on the frequencyV/v' and
the angular momentum per atom,z /\ for C5250, 500, and
1500 at 800 ms after the rotation starts. The increase iC
stabilizes the lattices of more vortices for the same f
quency, and reduces the critical frequency at which the
vortex appears. Note that the value of,z /\ is about a half of
the number of vortices. This is understood by the sim
model in which the condensate with a vortex lattice make
rigid-body rotation. Then the mean angular momentum
atom at r 5Ax21y2 is ,z /\5mVr 2. The average of the
angular momentum per atom averaged over the whole c
densate is given by

^,z /\&5

E ucu2~,z /\!dr

E ucu2dr
. ~32!

Assuming the spatially homogeneous density, we ob
^,z /\&5mVR2/2\ with the typical radiusR of the conden-
sate. In the limit of a rigid-body rotation, the number
vortices Nv

lattice at the rotation frequencyV is given by
Feynman’s rule,

FIG. 7. Time evolution of the distortion parametera ~solid
curve! and the angular momentum per atom,z /\ ~dashed curve! in
the dynamics of Figs. 5 and 6. The dotted curve showsa for the
dynamics starting from the initial state with one vortex.
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Nv
lattice5pR2nv5pR2

2V

k
5

mVR2

\
, ~33!

wherenv represents the number of vortices per unit area
k the quanta of circulation. Hence, one obtains^,z /\&
5Nv

lattice/2. The numerical result better agrees with this es
mation for largerV and largerC because the condensa
with a dense vortex lattice mimics a rigid-body rotation@49#.
The small disagreement may be attributed to a small de
tion from Feynman’s rule and the inhomogeneous densit

C. Dynamics starting from an initial state with one vortex:
Metastable state

Next, we discuss the time evolution starting from a on
vortex state. As seen from Figs. 5 and 6, as soon as
rotation is turned on to the irrotational condensate, the c
densate makes the quadrupole deformation and its p
takes the formu(x,y)5axy1const. This behavior will be
changed if the dynamics starts from the initial state with o
vortex that has already the circulating phase field. Referen
@19# and @20# discuss the stability of the condensate with
vortex against the quadrupole mode. To investigate this pr
lem, we prepare an initial state with one vortex forC5500
andV50.4v' that is larger than the thermodynamical cri
cal frequency for the stabilization of a one-vortex sta
@8,9,11,24#. We then start to rotate the system withV
50.7v' as before. The time evolution of the phase is sho
in Fig. 9. The numerical simulation reveals the nontriv
structure of the phase field; at the center of the conden
the phase maintains the circulation carried by an origi
vortex, while in the outer region the phase makes the q
drupolar flow@Fig. 9~b!#. Therefore, the condensate with on
vortex also makes quadrupole deformation. The correspo
ing time evolution of the deformation parametera is shown
in Fig. 7 by the dotted curve. The small amplitude ofa
compared to the previous result is due to the shift of
resonance frequency of the quadrupole mode because o
presence of a vortex@50#.

FIG. 8. The number of vortices~solid curve! and angular mo-
mentum per atom~dotted curve! versusV/v' , for C5250 ~with
empty circles!, 500 ~with filled circles!, and 1500~with crosses!.
0-10
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NONLINEAR DYNAMICS FOR VORTEX LATTICE . . . PHYSICAL REVIEW A 67, 033610 ~2003!
After that, the dynamics follows the same process as
fore. The final steady state is the lattice with seven vortic
This state is energetically higher than that of Fig. 5~h! with
six vortices. Therefore, by starting from different initi
states, one can obtain various metastable states with diffe
configuration of a vortex lattice, as studied in rotating sup
fluid helium @34#.

D. Surface ripple excitation via the Landau instability

As stated above, vortices are initially generated outs
the Thomas-Fermi boundary of the condensate, where
energy cost to create phase singularities is small becaus
the extremely low density. However, their penetration in
the condensate was accomplished with the help of the
face ripples, induced by the instabilities in the nonvort
state. The quasiparticle projection method is useful to rev
the instability of the surface mode in this dissipative dyna
ics. Note that the time derivative term of Eqs.~22! and ~23!
is modified as (i 2g)]/]t. Then, the nonvortex state be
comes unstable when at least one excitation frequencyṽ l
5v l2 lV1O(e) becomes negative, causing the exponen
growth like bl(t);e2gṽ l t. Isoshima and Machida examine
that the instability associated with the negative excitat
frequency gives rise to the vortex formation@8#, and calcu-
lated the critical frequencyVc at which the first vortex ap-
pears within the Bogoliubov theory. Garcı´a-Ripoll and Pe´rez-
Garcı́a calculatedVc under more realistic conditions@11#.
The critical frequency can be expressed by the Landau c
rion applied to the rotating BECs@7#:

Vc5minS v l

l D . ~34!

The angular momentuml c that yieldsVc takes a value large
than 4 with the parameter used in experiments@7,8,15#; for
C5500 used in this paper,l c58 andVc50.5v' .

FIG. 9. Phase profile of the simulation starting from one-vor
state.
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Our simulation confirms that this instability actually lea
to the generation of vortices, where the hollows of the s
face ripples always evolve into the vortex cores. The vor
core near the condensate surface has the size of the c
ence lengthj determined by the local density. The number
the vortices generated at the condensate surface may b
proximately given byNv

surf;2pR/j. The numerical solution
shows 2pR/j is nearly equal tol c . This is understood by the
fact that the surface mode withl c has the wavelength of the
order ofj as discussed in Ref.@7#.

Note thatNv
surf differs generally from the number of vor

ticesNv
lattice, depending onV, in an eventual vortex lattice

This fact classifies the dynamics of a vortex invasion in
two regimes. WhenNv

surf.Nv
lattice, the vortices that invade

the condensate are chosen fromNv
surf vortices generated a

the surface and form a lattice following the dissipative vort
dynamics, the extraNv

surf2Nv
lattice vortices being expelled ou

@35#. This dynamics is shown in Fig. 10~a! in terms of the
quasiparticle populations forNc. l c58 andNv

lattice52; for
V50.57v' , the excitation frequenciesv l with l 54 –14 are
negative. At the moment the vortices are about to enter
condensate (t;1.0 sec), the modes withl 54, 6, and 8~with
ubl u2.0.02) are excited. These modes rapidly decay as

x

FIG. 10. Time evolution of the surface-mode amplitudeubl u2 in
the dissipative dynamics for~a! V50.57v' and ~b! V50.86v'

under the same condition in Sec. IV. In~b!, we plot only modes
with l 52,10,12, and 14, which are important in the discussion. T
inset shows the density profile of the final steady state. The o
inset in ~b! showsub10u2, ub12u2, andub14u2 neart50.3 sec.
0-11
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KASAMATSU, TSUBOTA, AND UEDA PHYSICAL REVIEW A 67, 033610 ~2003!
vortices penetrate into the condensate. After the vortex in
sion, the final growth of the projected population of thel
52 mode reflects the phase structure in the surface regio
the lattice with two vortices.

On the other hand, ifNv
surf,Nv

lattice, the number of the
vortices first generated at the condensate surface is not
ficient to form a final lattice, so that successive invasion
vortices is needed. This situation is shown in Fig. 10~b! with
Nv

lattice514. The frequencyṽ2 is already negative atV
50.86v' , which causes the exponential growth ofub2u2.
When the condensate deforms elliptically att;0.2 sec,
many kinds of surface modes are excited violently. Then
quasiparticle populations with high angular momentum@ l
510, 12, and 14 are plotted in Fig. 10~b!# oscillate during a
short time after this burst. Finally,ub14u2 grows when 14
vortices enter the condensate completely. Note that thl
514 mode does not grow shortly after the burst, but it gro
gradually through the excitation of the lower angular m
mentum modes.

E. Relation between dynamical instability and Landau
instability in the experiments on vortex nucleation

For an irrotational BEC subject to rotation, we have cla
fied by the numerical simulation of the GP equation th
there exist two instabilities that are relevant for vortex ge
eration. The dynamical instability appears when the quad
pole surface mode is resonantly excited. The Landau in
bility associated with the negative excitation frequency
effective only in the presence of the dissipation. In this s
tion, we discuss which instability is more important for a
tual vortex lattice formation by referring to the experimen
results.

In the experiments@1,2,5#, the authors observed that vo
tices are nucleated most frequently nearV50.7v'. Thus,
vortices are generated when the condensate becomes
nant with the rotating perturbation that excites a quadrup
mode. These results appear to support the dynamical in
bility scenario by Sinha and Castin@12#. However, they also
observed the vortices at lower off-resonant frequenc
which cannot be understood by the dynamical instability.
the other hand, the critical frequency at which the first v
tices appear is extensively discussed by several auth
based on the Landau criterion@7,8,11,15–18#. The relation
between the dynamical instability and Landau instability
still controversial; thus we discuss these relations in
range of on- and off-resonant frequency separately.

In the resonant regime 0.72,V,0.78, the surface ripple
are excited, but the dissipation is necessary for vortice
penetrate into the condensate. Here the dissipation may o
nate in the thermal component, which should be almost n
ligible in the experiment of the atomic gas at very low te
peratures. However, in the dynamical process of
condensate, there is a possibility that the thermal compo
will be produced under a strong perturbation. The exp
mental result of ENS@1# may be explained as follows. Con
sider a situation in which there is almost no dissipation
very low temperatures, namely, Landau instability does
work there. In a quadrupole resonance, however, the dyna
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cal instability causes stochasticity in condensate oscillatio
leading to the creation of the thermal component@30–32#.
Indeed, Hodbyet al. in Oxford has reported that temperatu
of the system increases from 0.5Tc to 0.8Tc during the vor-
tex formation procedure@3#. The time spent in this process
determined by the growth time of the dynamical instabili
which is expected to be about 100 msec@12#. Then, the cre-
ated thermal component makes the dissipation effective
the vortices can penetrate into the condensate via the Lan
instability. To make clear this hypothesis, we need the an
sis beyond the GP equation and leave this issue for fu
study.

In the off-resonant regime, a condensate makes on
stable quadrupole oscillation without dissipation. Howev
our results show that vortices may be generated at frequ
cies beyondVc whenever finite dissipation works. There
fore, if we make the experiment in which the temperature
high enough that the dissipation works effectively, it is po
sible to observe the critical frequency given by Landau c
terion. For the weakly anisotropic rotating potential used
the ENS experiments and in this paper, excitations of higl
modes can be made only through thel 52 excitation, so that
it takes very long time for the vortex formation near th
critical frequency. Figure 11 represents the relaxation ti
for vortex lattice formation in our simulation withC5500
and g50.03 (Vc50.5). Here the relaxation time is dete
mined as the time needed for the angular momentum of
system to become half of the final equilibrium value. We a
show the growth time via Laudau instabilityt l52$g(v l
2 lV)v'%21 for l 52, 4, and 6. ForV,0.7v' , wherev2
22V.0, the relaxation time is longer thant l with l
54, 6, 8, . . . , because high-l modes are only excited
through thel 52 mode which has no instability. Near th
critical frequencyVc , one finds a very long relaxation tim
about 1 sec. AsV increases higher than 0.8v' , wherev2
22V,0, the relaxation time matchest2. The ENS group
found no vortices in the off-resonant range nearVc , presum-
ably because the observation time was not long enou
(.1 sec is need for vortex nucleation in this regime!.

FIG. 11. The circles represent the relaxation time of vortex
tice formation by the numerical simulation forC5500 and g
50.03. Thin solid curves show thet l52$g(v l2 lV)v'%21 for l
52, 4, and 6 obtained from Eq.~16!
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V. CONCLUSIONS

We investigate the detailed dynamics of a rotating BEC
a trapped condensate following the sudden turn on of r
tion. The numerical analysis of the two-dimensional G
equation shows a series of nonlinear dynamics that had
been clarified so much. In the energy-conserving dynam
we study the quadrupole oscillation induced by an ani
tropic rotating potential, and the time development of ex
tation modes by the quasiparticle projection method. In
resonance range of the quadrupole mode, the large ampl
oscillation causes via the dynamical instability the nonlin
mode coupling that leads to the excitations of higher-ene
mode. This nonlinear process leads to generation of sur
ripples, but not to nucleation of vortices. In the dissipat
dynamics, the vortex lattice formation is studied in deta
The vortex penetration into the condensate is achieved by
surface modes excitation with negative frequencies in
rotating frame, so that the critical frequency for vortex ge
eration is determined by the Landau instability. Two possi
instabilities for vortex generation are discussed by comp
son with the experiments. While the dynamical instabil
helps induce vortex nucleation and may increase a ther
component, such an instability alone cannot explain the
perimental results. Vortex nucleation and penetration
eventually caused by the Landau instability.

In this paper, we confine ourselves to the rotating la
beam whose size is larger than the condensate size. This
allows us to use the form of the potential in Eq.~3! which
excites the collective surface mode. Recently, Ramanet al.
studied vortex formation by using a narrow stirring bea
with two-point patterns, and found no resonance in the nu
ber of nucleated vortices@2#. In addition, they observe vor
tices at lower rotation frequencies thanVc of Eq. ~34!. In
this case, the mechanism of vortex nucleation is presum
due to the local instability of the superflow around a narr
ys
.
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potential rather than to the instabilities of collective surfa
modes. Numerical simulations of the GP equation show t
the vortex pairs are created by the object that moves fa
than a certain critical speed@51#. Such an excitation is ex
pected to lead to the heating of the condensate@52#, thereby
a vortex lattice being formed. This different mechanism m
make it possible to stabilize a vortex lattice below the critic
frequencyVc given by the Landau criterion of the surfac
mode.

A similar competition between the dynamical instabili
and the Landau instability has been found in the center
mass oscillation of a BEC in a one-dimensional optical l
tice @53#. They observed the critical superfluid speed abo
which the dissipative dynamics starts. Its main features,
cluding the parameter range of instability, can be explain
by the simulation of the dissipationless GP equation@54#,
which means that the observed phenomena may be cause
a dynamical instability. However, the ensuring developm
of a condensate is not explained by the dynamical instab
alone; the dissipation-assisted instability such as the Lan
instability is necessary to describe the dynamics@53#. These
problems on the dissipative dynamics of BECs associa
with vortex lattice formation offer a unique testing groun
for a much-needed framework beyond the GP equation.
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