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Nonlinear dynamics of vortex lattice formation in a rotating Bose-Einstein condensate
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We study the response of a trapped Bose-Einstein condensate to a sudden turn on of a rotating drive by
numerically solving the two-dimensional Gross-Pitaevskii equation. A weakly anisotropic rotating potential
excites a quadrupole shape oscillation and its time evolution is analyzed by a quasiparticle projection method.
In a quadrupolar resonant regime, which depends on the trap anisotropy, simple periodic oscillations in
surface-mode populations disappear and the system exhibits stochastic dynamics. In the presence of the phe-
nomenological dissipation, an initially irrotational condensate is found to undergo damped elliptic deformation
followed by unstable surface ripple excitations, some of which develop into quantized vortices that eventually
form a lattice. Recent experimental results on the vortex nucleation should be explained not only by the
dynamical instability but also by the Landau instability; the latter is necessary for the vortices to penetrate into
the condensate.
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[. INTRODUCTION those of Madisoret al.[5]. Here a mechanism of the vortex
lattice formation has been clarified as follows) the con-
Since realization of Bose-Einstein condensd®SC9 of  densate undergoes elliptic deformati@n), surface waves are
alkali-metal atomic gases, much attention has been focusezkcited at the boundary of the condensate, @ndquantized
on the dynamical phenomena associated with superfluidity. Aortices enter the condensate from the boundary, forming a
remarkable feature reflecting superfluidity appears in the relattice.
sponse to external rotation. Recent observation of a quan- What has remained to be clarified is the relation between
tized vortex lattice in trapped BECJd-4] confirmed the the dynamical processés—(iii) and intrinsic instabilities of
evidence of superfluidity. Madisoat al. observed directly a rotating condensate. There are two important instabilities
the nonlinear dynamical phenomena such as the vortefor vortex nucleation, namely, the dynamical instabi[ify2]
nucleation and lattice formation in a rotating condeng$ate and the Landau instabilitf7,9,15,16,18,1p The former
Such visualized results have greatly contributed to elucidaeriginates from the imaginary frequency of the excitation
tion of static and dynamic properties of quantized vortices. mode, giving rise to the exponential growth of the unstable
The dynamics of dilute BECs have been successfully demode even in the energy-conserving dynamics. The latter
scribed by the Gross-PitaevskitP) mean-field model. For occurs when the excitation spectrum has negative eigenval-
the quantized vortices in a trapped BEC, various theoreticales in the rotating framand when the system is subject to
studies have been made based on this mi@elThe mecha- energy dissipation. These two instabilities often occur in dif-
nism of vortex nucleation in rotating trapped BECs is one offerent parameter regimes. Thus, one may ask which instabil-
the important topics. Vortex nucleation of this system differsity is important for actual experiments on vortex nucleation.
from that of a superfluid helium system in the ratio of the While the vortex nucleation frequency found in the ENS
coherence length to the system sizk. In the former where experimentq1,5] appears to be consistent with that of the
£<L, vortex nucleation is related to the instability of collec- dynamical instability[12] and not with that of the Landau
tive excitations whose energy scale is set by the confiningnstability, our later analysis reveals that both instabilities
potential. In the latter wheré<L, it is related to the local play crucial roles in these experiments.
dynamics. A number of theoretical papers have discussed In this paper, we investigate theoretically the detailed dy-
possible mechanisms of vortex nucleat[@a-21]. However, namics of a BEC subject to external rotation by the numeri-
only a few papers made full numerical analysis of the time-cal analysis of the two-dimensional GP equation, and address
dependent GP equation, which is necessary to understand tHee above questions. The first issue of this paper concerns a
results in Ref[5]. Although the imaginary time propagation response of a BEC to a sudden turn on of a rotating drive
of the GP equation is a powerful scheme to find equilibriumwithin the energy-conserving dynamics. The rotating poten-
stateq9,13], the dynamical process toward such states cantial excites chiefly the quadrupole surface mode with angular
not be revealed by this method. Fedgral solved numeri- momentuml =2 and distorts the condensate into an ellipse.
cally the time-dependent GP equation in a rotating frame, buBecause of the anisotropy of the trapping potential and the
the motion of generated vortices remains turbulent, formingionlinear atomic interaction, the different surface modes are
no vortex latticg 10]. Tsubotaet al.[14] included a phenom- coupled to each other, causing complicated nonlinear dynam-
enological dissipation into the GP equation to simulate a vorics. To clarify the mode coupling, we use a quasiparticle
tex lattice formation, obtaining the results consistent withprojection method22], which allows us to decompose the
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macroscopic wave function into the condensate and noncorHere g=4m#A2%a/m represents the strength of interactions
densate parts and determine the populations of each modeharacterized by the-wave scattering lengt>0, u the
We find that the condensate makes the simple periodic oscithemical potential, and,= —i#% (xd,—ydy) the angular mo-
lation for most values of the rotation frequencies; popula-mentum. The wave function is normalized by the total par-
tions of the excited modes restore their initial values in theticle numberN as fdr|¥|?=N. An external harmonic trap-
sense of the Fermi-Pasta-Ulam recurref3J. In resonance ping potential has the form

of the quadrupole mode, however, the simple recurrence is

replaced by chaotic behavior because of the dynamical insta- Viad 1) = sm{w? (x> +y?) + 027%}, 2)
bility of the rotating condensaféd 2]. An increase of the trap

anisotropy expands the range of the rotation frequency foand the potential that drives the rotation has the form

the resonance excitation. The chaotic dynamics yields violent

density and phase fluctuations at the condensate surface. The Vil 1) = 3ma? (e,x2+ &y?) (3)
generated surface ripples slightly increase of the total angular

momentum, but they never develop into quantized vortices i

) : . With the anisotropy parametees# e, ; this form describes
the energy-conserving simulation.

. B . . approximately the rotating potential used in the ENS experi-
Next, we consider the dissipative dynamics of the rotatingyens1,5]. Such a rotating potential breaks the rotational

BECs by extending our previous wofk4]. This paper de- oy mmetry. thus transferring the angular momentum into the

scribes more detailed dynamics of the vortex lattice forma+;densate through the excitation of surface modes or the

tion by following the time development of the condensate eneration of vortices.

density and phase simultaneously. The GP equation wit

: ST . X In order to reduce the system into the two-dimensional
phenomenological dissipation explains the experimental re)-(_y space, we separate the degrees of freedom of the wave

sults very well. The quasiparticle projection method is als ; _ - .
applicable in the analysis of the dissipative dynamics; thuofuncuon as W(r,h) =y(x.y,)¢(2), obtaining the two

we can study what modes are excited during the dynamica
process of vortex lattice formation. In the presence of dissi-
pation, the excitations of surface ripple are caused by theih’w(x*y't) _
surface modes with negative frequencies in the rotating at
frame[8]; the onset of this instability is given by the Landau
criterion applied to the rotating BE{7,9,15,18. Numerical +(1+ €)Yt — utgnlg(xy.)]?
simulation shows that the surface ripples induced by the Lan-
dau instability certainly develop to quantized vortices. There- —0L
fore, it is concluded that vortex nucleation is essentially z
caused by the Landau instability. The ENS experiméhis
should be explained by the two-stage process: vortex nuclgypere
ation by the Landau instability after the shape deformation
by the dynamical instability.

This paper is organized as follows. Section Il formulates J dzl¢(2)|*
our model that describes the dynamics of a rotating BEC in a =—— (5)
harmonic trap. Section Ill studies the energy-conserving dy- f dZ é(2)|2
namics of a rotating BEC. The dynamics of the mode cou-
pling is analyzed by the quasiparticle projection method.
Section IV studies the dissipative dynamics of the vortexand u includes a constant arising from the integral¢fz).
generation and lattice formation in detail, and makes som&he normalization of the two-dimensional wave function
comments on the origin of the dissipation. Our results araj(x,y) is determined by the particle numbbl, per unit
compared with the experimental ones. Section V is devotetength along thez axis as
to the conclusion.

imensional GP equation

ﬁ2
- 2m

(92+ > +1 211+ 2
e > ML {(1+ €)X

P(X,y,1), 4

-1
sz|¢<z>|2) =Nyp. (6)

| [ axaspwoxy=n
II. THE MODEL

It is convenient to introduce the scales characterizing the

) o ) trapping potential; the length, time, and wave function are
A BEC trapped in an external potential is described by ascaled as

“macroscopic wave function'?(r,t) obeying the GP equa-

tion. In the frame rotating with the frequen€y around thez T ~

axis the GP equation reads x=apxX,t=—, =N, v
y w, y D ah,

A. Formulation of the problem

v h?
ih—=| — — V2 — 2_
o 2mV FVinapt Vi~ Q[ V[T 0L, |V respectively, witha,= VA/2mw, . Then the GP equation is

(1) reduced to a dimensionless form as
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P 2 2 B. Numerical method
R d d 1 5 5
e ol a_yz + Z{(1+€x)x +(1+€)y} The numerical calculations of E¢7) are done using an
alternating direction implicit metho{27]. Defining a time
step 6; and space meshek=6,= 49, and denoting the dis-
—u+ClyY|2=QL,| ¢, (7)  crete wave function ag] = (j 8, ,ké, (n/atz #; « develops
n+1 n-+(1/2s

into ¢ as

via the intermediate statg;
whereC=8maznN,p and the tilde is omitted for simplicity.

The two-dimensional approximation may be valid for the n+1/2_ n _ E 2 n+(12) 4 4240

: « » . lﬂj,k wj,k 2(‘9X¢J,k +‘9y¢1,k)

condensate in a “pancake-shaped” potential<{(w,/w, 1)
>1) or the central part of the condensate in a “cigar-
shaped” potential X<1). These two types of situations
yield different forms of the mean-field interaction stren@th
For\>1 andf w, larger than the interaction energy(z) is
approximated by the one-particle ground-state wave function
in a harmonic potential:

—i1QAt(ka s M= ja gl )

At
+ AVt Cly W2 g (2

+(Vj,k+C|l//?,k|2)'lf?,k} (12
172
1 z* and
(z)=< exp — —5 (8)
¢ V2map, 4a?, At
n+l_ o n+(U2)_ =" 42,n+(1/2) 2 n+1
with a,,,= Vi/2mw,=a,/\\. Then,N,p=N and the param- Vi =ik 52 (Fxthiac " ay¥y0)
eterC becomes . +(12)_; +1
R —iQAt(ka ] Y= a0
C=8maNn=4\7AN—. 9 At
B AV Sl
On the other hand, for a cigar-shaped condensate lith 12\ 2 2
<1 one can approximate the system with cylindrical con- + (V) Clyf i H2)2) g V2 (13

figuration, i.e., translation symmetry along thalirection.

By neglecting the spatial derivative term of theomponent

in Eq. (1), and the third term on the right-hand side of Eq.

(2), the two-dimensional GP equation of Hd) is obtained.
Then the parametet is written by

[lo@laz g0

2T OR,
f |¢<z>|2dz) ‘
(10)

C=8manyN,p=8maN

Here we denoteAt=6/2i, o, =44 1x—¥-1))/2,
R = U= 200t ]y, and V={(1+€)(j 8)
+(1+¢€,)(ko)?H4. We used thg —128<j k= +128] dis-
cretized space for the two-dimensional numerical simulation.
The time steps,=1.0x 102 is sufficient to ensure the nu-
merical stability over sufficiently long propagation.

11l. QUADRUPOLE OSCILLATION OF A ROTATING BEC
A. Time development of the deformation parameter

We start by discussing the time evolution from a station-

Here R, is assumed to be the Thomas-Fermi radiusary solution in a nonrotating trap. We turn on a rotating drive

\/2,u/mmz2 along thez axis with the chemical potential
evaluated at the parametey,=0 and()=0:

15 a 2/5

,u,=ﬁwl(—N)\—

g o (12)

The approximation foh <1 is suitable for the ENS experi-

following the experimental procedure of Madisehal. [5].
The rotation with a frequenc§) starts att=0, and the trap
anisotoropye={(1+€,) —(1+¢€)}/{(1+e)+(1+¢€)} is
increased rapidly from zero to its final value 0.025 in 20
msec, wheree, is fixed to be zero. The strength of interac-
tion C is set to be 500, corresponding &=5.77 nm, N
=3x10, andw,=11.8X27, A=w, /w,=9.2[5]. The unit

ment[1] which was made under the cigar-shaped potentialof length isa,= VA /2mw, =0.728 ums and the period of

whereC [Eq. (10)] takes the value between 200 and 500. Forthe trap 9.21 msec.

the large condensate in the MIT experiméat C~ 10 000, A rapid modulation of the trapping anisotropy induces an

though they did not use the cigar-shaped potential. elliptic oscillation of the condensate. The elliptic oscillation
In the two-dimensional analysis, the effect of vortex bend-is characterized by the deformation param¢gs28]

ing [24,25 is not taken into account. Recent experiments 5 )

[26] showed that the time scale of the vortex bending is _ _Q<X )—(y*)

found to be longer than 1 sec, which is much longer than the (X3 +(y?)’

time scale of the dynamics of vortex lattice formation

(~100 msec). We, therefore, consider our two-dimensionalvhere{A) means/dxdyy* Ay. The time evolution ofx for

analysis effective for the present problem. several values of) is shown in Fig. 1. For relatively small

(14
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time (sec) FIG. 2. The density profiléa) and phase profiléb) of the con-
densate withQ)/w, =0.75 at 105 msec. Iiib), the value of the
FIG. 1. Time evolution of the deformation parameterfor phase changes continuously from(iBlack) to 27 (white). There
A/, =0.65, 0.70, 0.75, 0.80, and 0.85. Note thashows aperi-  appear some lines, where the phase changes discontinuously from
odic behavior a)/w, =0.75, where the rotating drive resonantly black to white. These lines correspond to the branch cuts between
hits the quadrupole mode. the phases 0 and72 and their apexes around which the value of
the phase rotates continuously from O ta 2epresent phase de-

values ofQ, « undergoes a simple periodic oscillation with f€¢tS: I-€., quantized vortices.

positive values; the initial axisymmetric condensate is elonsingularities, named “ghost vortices” in our previous paper
gated along thg axis because of the small trap anisotrapy [14], are located in the density hollows produced by the sur-
(ex>€y). As () increases from zero, both the amplitude andface ripples.

the period increase gradually, leading to the large amplitude In the energy-conserving dynamics, such irregular dynam-
oscillation nearQ=0.7w, . For Q=0.75», , however,a«  ics are caused by the dynamical instability associated with
shows aperiodic behavior as shown in Fig. 1.Asncreases the imaginary frequency of the excitation modes. Sinha and
further, the periodicity is restored, but the signiothanges Castin[12] made a linear stability analysis of an oscillating
to negative and its absolute value become smaller angondensate with a quadrupolamsatz and found the growth
smaller. The negativer means that the longer axis of the of the fluctuation to be described by polynomials of degree

condensate ellipse is perpendicular to the longer axis of thB=3 around/w, =0.73. They proposed that the associ-
anisotropic trap. ated dynamical instability triggers vortex nucleation in a

This shape oscillation mainly consists of the coIIectivecondensate_ rotating in an anisotropic_harmonic pote_ntial.
surface mode with angular momentum 2, i.e., quadrupole However, Fig. 2 suggests that t_he ge_nerated surfgce ripples
mode. In the Thomas-Fermi limit, the dispersion relation forShOUId be described by polynomials with degrees higher than

h ; de red 0 5 h n=3. Thus, we also make a linear stability analysis fior
the surface mode reducesdg=ylw, [29]. Due to the cen- _ ; on4 g py following Ref[12], and find that the growth
trifugal term —QL,, the surface-mode frequency is shifted

o rates of these higher-order modes are as highhas.

by —1€). Forl=2, hence, itis expected that the quadrupoleyence, the dynamical instability excites such higher-order
mode is resonantly excited ft/w, =2/2=0.707. As dis- excitation modes, generating the surface ripples. These
cussed later, the single resonance does not occur because lples slightly increase the total angular momentum because
quadrupole mode couples with various higher-energy modesf the presence of ghost vortices, but they never penetrate
through the nonlinear interaction, giving rise to the compli-into the condensate to form a lattice. Therefore, it is con-
cated dynamics. We find that for a range of the rotation frecluded that the dynamical instability alone does not lead to
guency 0.7 Q/w, <0.78, the oscillation becomes irregu- “vortex nucleation” as observed in the ENS experiments. In
lar. The deviation from the pure resonance frequencysec. IV, we will show that the dissipation-assisted instability
Q/w, =0.707 is due to the effect of the trap anisotropy andcan make the surface ripples develop into the quantized vor-

the nonlinear interactiofsee Eq.(23)]. tices.
Figure 2 shows the profile of the condensate density o o
|I/I(X,y,t)|2 and that of the phase 6(xy,t) B. Quasiparticle projection method
=tan }(Imy/Rey) (0<H<2m) when the irregular oscilla- The dynamics of the elliptic oscillation can be well ex-

tion occurs. On the surface of the condensate, there appeplained by decomposing the whole dynamics into an assem-
surface ripples, which are violent short-wavelength densitybly of fundamental excitation modes. The quasiparticle pro-
fluctuation. In addition, the phase profile shows that manyjection method, developed by Morgaat al. to study the
phase singularities, i.e., quantized vortices, come into th@onlinear mixing of collective excitatiorj22], enables us to
condensate surface, while inside the condensate the phadecompose a wave function into a condensate and noncon-
features the form of the quadrupoler fld®,28]. Since the densate modes, and monitor the time evolution of their popu-
phase singularities lie on the outskirts of the condensattations. Here we will use this method to study the time de-
where the amplitudgy| is very small, they hardly contribute velopment of the surface modes excited by the anisotropic
to both the energy and the angular momentum. Such phasetating trap.
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To construct the mode functions for the projection, we use (a) Q=0.7w
the solution of the time-independent GP equation with a non- N : - T, el A
rotating axisymmetric trap '-,|1+bgl'j.’ S A T S
o8F Y Vv ooy oy oy ]
d? r? X [ Y A U A T
T2 rdr 2 +Cyg|* |¢hg(r) = pipg(r), (15 061 VoS NS W]
b2 |
where ¢4 corresponds to the initial nonvortex state in our 04 Ni=a ]
simulation. The quasiparticle mode functionsi(r) =
=u;(r)e"? and vi(r)=v;(r)e'’ are obtained by the 0l 1
Bogoliubov-de Gennes equations '
R 1d 12| g2 . 0 ZANRV ANV AN\
r
Y I D 210 0 0.1 0:2 0.3 0.4 0.5
(drz rdr 2] 4 * 2C gl ui(r) time (sec)
. | (b)Q=0.75 w
+Cyui(n)=wui(r), (160 AP
‘.'I1+bgl . .
¢ 1d By et 081 AN P p
\getrar ) ta e |ihgl* [0i(r) sl b ih P Q4 ;]
A2 ()= — oo Ib 1> o Vo
+Clg “ui(r) = — wjv;(r). (16b 1

0.4

The mode functions are subject to the orthogonality and
symmetry relations 0.2

f d’r{ui(nuy (nN-vi(nof(ni=8&;, (173 % 0.1 0.2 0.3 0.4 0.5
time (sec)

2 * * © 0=0.75w
f der{uj(r)v; (r)—ov;(r)ui(r)}=0. (17b L 7 aas
08f% Py
Following the method of Ref[22], we introduce a set of
excitations that are orthogonal t,. This is achieved by
projecting out the overlap witkyy from the solutions of the 0.4}
Bogoliubov-de Genne equations, the resulting quasiparticle02
wave functions being defined by “1
0 L L L L L L L
~ 0 01 02 03 04 050 01 02 03 04 05
ui(r):ui(r)_cilpg(r): (1869 time (sec) time (sec)
;i* (N=v¥(r)+c* o(r), (18b) FIG. 3. Time evolution of the surface mode populatifim$? for

(@ Q/w, =0.7 and(b) Q/w, =0.75. (c) represents the time evolu-
where Ci:fdzr[z/f;ui]: —fdzr[z//gvi]. The orthogonal re- tion of |1+bg|_2 (dashed curveand |b,|? (solid curvg in the two-
lations Eq.(17) still hold for these modified wave functions. Mde approximation.

The wave function can be expanded as
In the following discussion, we take only those mode

~ ~ functions that carry angular momenturbut do not possess
r,t)y={1+b,(t r)+ ui(Nb(t)+ov’ (r)bf (1)}. ) . AP
YD ={1+ bg(D)} (1) 2’0{ (B0 o7 (Db (D)} any radial node, i.e., surface modes. Here the irideku;

(19 and?y, is replaced withl. For|#0, the overlap integrat,
i 7 peil f— ~ ~_
It is easy to show that b, andb; satisfy the relations vanishes becausf"dge =0, so thafu,=u andv,=v, .

Since our system has even parity for the spatial coordinate,
no surface modes with oddare excited.

1+bg(t)=f d2r s (r)ep(r b, (20)

C. Fermi-Pasta-Ulam recurrence and chaotic dynamics

bi(t):f d?r{uf (Ng(r,H—vf (NyY*(r,}. (21 By using Eq.(21), we project the time evolution of the
excitation modesb,|? with =24, . .. ,20from (r,t). Fig-
The populations of the ground state and the excitation arere 3a) shows the time evolution db,|?, |b,|?, |bg|?, and
given by|1+by|? and|b;|?. |1+bgy|? for Q=0.7w, ; other|b|*s are negligibly small.
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The rotating potential of Eq(3) dominantly excites thé ing terms withC couple the various modes with the same
=2 mode which causes the elliptic deformation. The smalparity to each other, resulting in a complicated time evolu-
populations of higher moded 4,6, . ..) also appear fol- tion.
lowing the increase offo,|?. After a certain period of time As seen in Fig. &), the dominant contribution to the
populations of all excited modes return to the initial valuesdynamics comes from the change of the populatibhs
almost completely. This simple recurrence repeats periodi+ bg|2 and|b,|?. To understand the basic properties, we take
cally in time. only terms withl=0 and 2(two-mode approximation In
For =0.750w, , the evolution is somewhat complicated addition, we neglect the contribution of(r), because this
as illustrated in Fig. @). The recurrence is no longer com- term represents the excitation traveling oppositely to the ro-
plete, but some quasiperiodicity still remains. As comparedation. Then Eqs(22) and(23) reduce to
with the simple recurrence dynamics, the depletion of the
ground-state population becomes remarkably large, which
means that more higher-energy modes are excited. The su- i&—tg=Too(1+ bg) + Poo{2Re(bg) + |bg|*H(1+by)
perposition of such higher-energy modes produces the sur-
face ripples in the copdensate density as shown in Fig. 2. +Po(1+ bg)|b2|2+ Tosbs, (243
From a general point of view, we face the problem known
as the Fermi, Pasta, and Ulam recurrence phenomig8n
They studied statistical behavior in the chain of nonlinearly b,
coupled oscillators, and found a quasiperiodic behavior of '7
this system characterized by returns of the energy to the ini-
tial excited mode. Later, it was shown that there exists a + |bg|2}b2+T02(1+bg), (24D
threshold for the onset of “stochastization” which is brought
by high-energy excitations. For BECs in an anisotropic po-Vhere
tential, the nonlinearities inside the condensate may give rise
to the stochasticity in its time evolutidi30—32.

= (wz_ 29+T22)b2+ P22| b2|2b2+ Poz{ZRng)

TOOZJ d?r wgvrotwgv
D. Two-mode analysis

The simple analysis of the equation of motion for the
quasiparticle population helps us understand the behavior of T22=J dzru’z‘vrotuzT()z:f d?r i Vol
Figs. 3a) and 3b). Substituting Eq(19) into Eq.(7), we get
db :f dzrugvrot'pga
ia_tg:J d2r¢;vmt(¢g+A)+cf d?r[ (bg+b} )| vgl*

+ 2| A g2+ A%05 2+ A|A 2], (22 Pa=C [ drlugl,
.9by 2, % 2 4
|E=(w|—lﬂ)b|(t)+ druf Vg g+ A) Po,=C | d°r|uy|?,
+cf d2ruf[2|A|2 g+ A2yt + A|A|?
SRR Po=2C [ 0Pt ygf7ugl.
2 2
+ gl ¢g(bg+b3)]+f drof Viel g+ A™) It is convenient to represent the complex valbggandb, in
terms of the amplitude and the phase as-hbl=|1
0 = "%, Since the total populationl
+Cj A2ru* 12| AL2U* + A* 24+ A* A2 +bgle'% and b, |b,|e : pop
vi [21A1Y; g Al +by|?+|by|? is a constant of motion, Eq$24) have two
2 % N variables: population differencgy=|1+by|?—|b,|*> and
+|¢9| g (bg+bg )], 23 relative phase= 64— 6,. Then, Eqs(24) reduce to
where Azbzqz/;g+2|{u|(r)b,(t)+v|*(r)b,*(t)} and V4 dp
= (exX*+ €yy?)/4. The presence of , makes the integrals — =2TgV1—p?siné, (25
Jd?r g Voo or Jd?ruf, Vi, - - - finite, and these terms dt
are reduced to the formyd, | +T16) 11—+ T28, /4, after
the integral of & component(if e,=e¢,, the off-diagonal do 2p
terms vanishes Hence, the ground state is coupled directly —=Up—Ty ——— cosf—Aw (26)
only to thel =2 mode in Eq(22) throughV,;. The remain- dt V1-p?
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I - lattice corresponds to a local minimum of the total energy in

1 the configuration spade&4,35. Preliminary results were re-
ported in Ref[14]. This section deals with the detailed dy-
namics by following the time development of the condensate
density and the phase simultaneously, and presents a number
of previously unpublished results. Although the dissipation is

06

o) i 0 treated phenomenologically in the GP equation, the simula-
%’04 06 0.7 (9/'?0 09 1 tion reproduces the experimental results very well.

g L The results show that the generation of surface ripples is
also achieved by the instability of negative eigenvalue

0.2 modes, i.e., Landau instability, and the following time devel-
opment certainly leads to vortex penetration into the conden-
0 E e S R - sate. The experimental results on vortex nucleation by the

05 0.6 0.7 038 0.9 1 ENS group[1,5] can be understood by taking into account

Q/WL both the dynamical instability and the Landau instability.

This is described in Sec. IV E.
FIG. 4. The dependence of the maximum|bf|2 on Q/w, in

the two-mode approximation foe=0.01, 0.025, 0.05, and 0.08.

A . . . A. Phenomenological dissipative equation
The shaded region in the inset shows the parameter region in which 9 P q

the large amplitude oscillation with m4lsg?)>0.4 occurs. Before discussing the detailed dynamics, we make some
comments on the dissipation. As in the previous stid4,
with the conserved Hamiltonian the dissipation is treated phenomenologically in the GP equa-

tion. The time derivative term of Eq7) is modified as
H(p,0)=31Up?+2Ty,W1—p?cosd—Awp, (27)
Iy

where U=(PootPy—2Pgp)/2 and Aw=w,—20+T,  (i=y) o=
—Toot U. These formula are the same with those used in the
Josephson dynamics of the condensate in a double-well po-

tential, and the exact solution @f(t) is expressed by the —u+Cly|2—QL,
Weierstrassian elliptic functiofi33]. For C=500, we nu-

merically find asw,=1.438», , U=—0.05, Sw=w,—2Q) . . )
+3e—0.05 andT o= 1.14e from the calculateds, and u,. where the dimensionless paramejedescribes the degree of
The solutions of Eqs(25) and (26) with these gparameter dissipation. This form of the dissipative equation follows the
values are shown in Figs(@. The periodicity and the am- study of Qhoiet al.[36] gnd that of other superfluid systems
plitude of |1+by|? reproduce well the results of the GP [37]. Choi et al. determined the value of to be 0.03 by
equation. fitting their theoretical results with the MIT experiments on

Figure 4 shows the dependence of the maximurtbglf? collective damped o.scillation§3.8]. Thqs, \./ve'als'o usey
on Q/w, . The maximum grows ned2=0.7w, . Note that =0.03 throughout this work. Since this d|SS|pat|_ve term is
as e increases the peak is shifted from the plire2 reso- muph.smaller than other terms in the GP equat.|on_, a small
nance frequency) =w,/2=0.7190, to the larger value of Varation ofy does not change the dynamics qualitatively but
Q. The dynamics of the GP equation does not show pro®nly modifies the relaxation time scale.
nounced resonance [if,|? because the transition into higher The phenomenolc_)glcal dissipative Eg8) may be related
energy modes occurs. Fer=0.025, we found that the cha- to the recent numerical work by Jackson and Zarefitsq
otic oscillation occurs in 0.7 <0.78, which corresponds on the cogplgd dyn.amlg:s of a condensate and a nor_wconden-
to the range where the maximum|t|2 exceeds 0.4 in Fig. sate. Their simulation is based on the the generalized GP

4. Following this criterion, we obtain th& — e parameter equation at finite temperatures

region where the large amplitude oscillation is expected, as o 72y2 B

shown in the inset of Fig. 4shaded region In this region, ih—=| — —5—+Vyptgn+2gn—ill|¥. (29
the mode coupling via the nonlinear interaction becomes im- Jt 2m

portant, leading to chaotic dynamics. We confirm by the M-rhis equation was derived by Zaremba, Nikuni, and Griffin

merical simulation that the simple recurrence is indeed los - P .
in this region. We will discuss the relevance of such a non—EA'O]’ wheren(r,t) =|¥(r,t)|* is the condensate density and

linear coupling to vortex nucleation in Sec. IV E n(r.t) is the noncondensate density. The dynamics of the
noncondensate was described by the Boltzmann kinetic

equation for the distribution function of the noncondensate

atoms. The noncondensate atoms are assumed to possess the
In this section, we focus on the dissipative dynamics of asingle-particle Hartree-Fock spectrum in their formulation.

trapped condensate following the sudden turn on of rotationThe numerical simulation by Jackson and Zaref88] well

The dissipation is necessary to simulate the dynamics of voexplains the experimental results by Maragoal. [41] and

tex lattice formation by the GP equation, because a vortexin et al. [42].

9?9

1
" + pYe + 71+ &)X2+(1+€)y?}

b, (28)

IV. DYNAMICS OF VORTEX LATTICE FORMATION
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FIG. 5. Time development of the condensate denbftl? after the trapping potential suddenly begins to rotate=ad with Q
=0.7w, .

Equation(28) can be derived from Eq29) with some increased as the system evolved. In actual experiments, such
additional approximations. We treat the noncondensate as ba-loss in the number of condensate atoms is caused by the
ing in static thermal equilibrium, and neglect the mean fieldrotation-induced heatin§3], so that the generated thermal
of the noncondensate under the assumptism. Then, the ~component might affect the dissipative dynamics of the vor-
dissipation of the condensate motion is associated with thé€x generation. However, under the phenomenological
term T'(r,t)=(%/2n)T 1= (A/2n) [{dp/(27%)3}C1, with mode_l, the change o_f the norm is only a few percent,_be_the
the collision integralC,, between the condensate and non-chemical potential fixed or not. The detailed quantitative
condensate atoms. Under the local equilibrium distributiorstudy of a loss of atoms is beyond the scope of this paper;
of the thermal atomd; 1, is proportional to the difference of OUr treatment using the fixed chemical potential is adequate
the local chemical potential between condensate and noncof describe the actual dissipative dynamics.

denate as 'y, pundr,t)— w(r,t) [40]. Approximating The assumption of the static noncondensate may be appli-
wu(r,)yW=—i%(aW/at) [44], we obtain cable to the experimental condition in R€fs-3,5. Accord-
ing to the estimation by Guery-Odelj#7], the spin up time

) d h? ] for the whole noncondensed atoms to catch up with the ro-

(I=Ph—==|— ﬁvz—"vtrap—" 9|‘I’|2—'3’Mnc>q’- tating trap is about 15 sec in collisionless regime. Since the

(30) typical time for the vortex formation of the condensate is a
few hundred milliseconds, the condensate motion is sepa-
Compared with Eq(28), the chemical potential of this equa- rated from the noncondensate one under the rotating pertur-
tion is replaced by that of noncondensatg., yielding the bation. However, the dynamic coupling via the mean-field
imaginary termi yu,.. Note that the relatiom = u, is sat-  interaction between condensate and noncondenate causes the
isfied for the equilibrium condensate. If the space and timeondensate motion to be dampg@shown as Landau damp-

dependence of, is neglected, this equation becomes Eg.ing), which is not included in E¢(28).
(28) by the transformationl? —We ™ '#nd'" and wnc— u. The value ofy is estimated by following the formulation

The time development of Eq28) conserves neither the for a uniform Bose ga$43]. The parametery, in which
norm of the wave function nor the energy. In our simulation,length and energy are scaled &y and% w, , has the form
the chemical potential. is adjusted at each time step in

order to conserve the norm and to decrease the total energy [Tc [ho, 31
monotonically. Recently, Eq.30) was also derived by Gar- T keT" (3D
diner et al. by another approach#5], applied to the simula-

tion of vortex lattice formation from a rotating thermal cloud Here A is a factor of order unity forT>0.5T. and ap-
[46]. They made the numerical simulation with the fixed proaches zero a§—0. Using typical experimental param-
chemical potential, finding that the norm @#f decreased or eters, for exampleT=0.5Tc, T¢c=500 nK,a=5.5 nm,n

y=16y27Ana’

ap
a
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FIG. 6. Phase profiles af corresponding to the density profiles of Fig. 5. The value of the phase changes continuously(blackO
to 27 (white). The discontinuous lines between black and white correspond to the branch cut of the complex plane, and their edges represent
quantized vortices. The unit of length is the same as that of Fig. 5.

~10"%* cm™3, and w, =100X27 Hz, we obtain y~A in Vyqp- This perturbation allows the system to develop into
X 10" 2 which is consistent with 0.03 used in this paper.  an a fivefold symmetric steady state as shown in Fib),5
the energy of which is lower than that in Figgb. It takes a

B. Dynamics from a nonvortex state to a vortex state few hundred milliseconds for the transition from Figgbto

Using E_q.(28), we discuss the dynamics of vortex lattice T.he corresponding time development of the phase of
formation in more detail. As in the preceeding section, a (x,y,t) is shown in Fig. 6. As seen in the energy-

sudden switch on of rotation is made for the condensate wit onserving dynamics, as soon as the rotation starts, the phase
C=500. Figure 5 shows the time development of the CON%ield inside the condensate takes the form of quadrupolar

- 2 _ g
densate densityy(x,y,t)|* for Q/w, =0.7[48]. Initially, the flow 6(x,y)= axy+const, and just outside the Thomas-

condensate undergoes a quadrupole oscillation, but the oscil- = . S
lation is damped due to dissipation. After a few hundred ermi boundary there appear ghost vortices; for example,

milliseconds, the boundary surface of the condensate bé:-'g' &(b) shows about 20 vortices. Ghost vortices move to-

comes unstable, generating the surface ripples that propagé_’f’@rd the rotation axis, but their in_vasion into the condensate
along the surface as shown in Figch The excitations are 'S prevented at the Thomas-Fermi boundary. However, as the

likely to occur on the surface whose curvature is low, i_e_,surface ripples are generated, the ghost vortices start to pen-
parallel to the longer axis of the ellipse. Then the waves oretrate the condensate. There takes place the selection of the
the surface develop into the vortex cores in a very short timélefects to penetrate, because their further invasion costs en-
[Figs. 5d) and 5e)]. As is well known in the study of rotat- €rgy and angular momentum. For example, Fig. 6 shows that
ing superfluid heliun{34,35, the rotating drive pulls vorti- SiX vortices enter the condensate and form a lattice, while
ces toward the rotation axis, while repulsive interaction be-other excessive vortices are repelled and escape to the out-
tween vortices tends to push them apart; this competitioside.
yields a vortex lattice whose vortex density depends on the As seen from Fig. 5, vortex invasion is likely to occur on
rotation frequency. In the presence of dissipation, six vorticeghe surface parallel to the longer axis of the ellipse. This is
enter the condensate, eventually forming a vortex lattice. Asimply understood by the velocity field of the elliptic con-
the vortex lattice is being formed, the axisymmetry of thedensatev=V axy=(ay,ax) as seen in Fig. ®). Near the
condensate shape is recovered. condensate surface parallel to the longer axis of an ellipse,
The rotating potentiaV/,,; has even parity with respect to this velocity field has the same direction as the velocity field
the coordinate. Accordingly, the number of the generategroduced by the ghost vortices. There the additive velocity
vortices is always even. To remove this restriction, we introfield v works as an attractive force that pulls the ghost vor-
duced an infinitesimal artificial perturbation with odd parity tices into the condensate. On the other hand, the velocities of
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the condensate and the ghost vortices have the opposite d 40 ——
rection near the surface parallel to the shorter axis, where thi I
condensate dislikes the invasion of the ghost vortices. There §
fore, the vortices enter the condensate from the surface pa.g 30
allel to the longer axis. )
Figure 7 shows the time evolution of the deformation pa- >

— 20

i15

rameter and that of the angular momentum per atgith |20 ] 10%
= [dxdyy* (L,/%) & in our dynamics of Figs. 5 and 6. They & [ ]

very well reproduce the experimental results of REf. Be- "g 10k 15
fore 300 msec, botlw and €,/% undergo damped oscilla- 3 - .

tions. When vortices enter the condensatdalls abruptly to = L ]

a value below 0.05 and,/% increases to 4 reflecting the 0 L 7, 1o
number of the generated vortices. 0.4

The final equilibrium value of , depends on the number
of the vortices that form a lattice. Figure 8 shows the depen-

dence of the number of vortices on the frequefiy», and FIG. 8. The number of vorticegsolid curve and angular mo-

the angular momentum per ato@/h for C:250’_ 500, anq mentum per atontdotted curve versusQ/w, , for C=250 (with
1500 at 800 ms after the rotation starts. The increas€ in empty circles, 500 (with filled circles, and 1500(with crossels

stabilizes the lattices of more vortices for the same fre-
guency, and reduces the critical frequency at which the first 20 mOR?
vortex appears. Note that the valuefgi# is about a half of Nlatice— 7 R2n = 7R2— = , (33
the number of vortices. This is understood by the simple K h
model in which the condensate with a vortex lattice makes a
rigid-body rotation. Then the mean angular momentum pewheren, represents the number of vortices per unit area and
atom atr=\x?+y? is €,/A=mQr2. The average of the « the quanta of circulation. Hence, one obtaif%,/7)
angular momentum per atom averaged over the whole con=N2"¢2_ The numerical result better agrees with this esti-
densate is given by mation for largerQ) and largerC because the condensate
with a dense vortex lattice mimics a rigid-body rotat{d®)].
J' ||2(¢,/7)dr 'I_'he small disagreement may be a}ttributed to a small d_evia-
. (32) tion from Feynman’s rule and the inhomogeneous density.
[t
C. Dynamics starting from an initial state with one vortex:
Metastable state

Assuming the spatially homogeneous density, we obtain Next, we discuss the time evolution starting from a one-
(£,/1)y=mQR?/2% with the typical radiusR of the conden-  vortex state. As seen from Figs. 5 and 6, as soon as the

sate. In the limit of a rigid-body rotation, the number of rotation is turned on to the irrotational condensate, the con-
vortices N!2® at the rotation frequency) is given by densate makes the quadrupole deformation and its phase

(0, 1h)=

Feynman'’s rule, takes the formé(x,y) = axy+ const. This behavior will be
changed if the dynamics starts from the initial state with one
03— 5 vortex that has already the circulating phase field. References
. o] [19] and[20] discuss the stability of the condensate with a
025F % e - 4 vortex against the quadrupole mode. To investigate this prob-
] - ] lem, we prepare an initial state with one vortex @500
0.2} ,’ ] and()=0.4w, that is larger than the thermodynamical criti-
a ' ) 134, cal frequency for the stabilization of a one-vortex state
W 0.15 ¢ ! ' h [8,9,11,24. We then start to rotate the system wifh
. 12 =0.7w, as before. The time evolution of the phase is shown
0.1 Fd ] in Fig. 9. The numerical simulation reveals the nontrivial
LV A e 1’ B 11 structure of the phase field; at the center of the condensate

A / the phase maintains the circulation carried by an original
I/ N NN v . . vortex, while in the outer region the phase makes the qua-
0 0.2 0.4 0.6 0.8 drupolar flow[Fig. Ab)]. Therefore, the condensate with one
vortex also makes quadrupole deformation. The correspond-
ing time evolution of the deformation parameteiis shown

FIG. 7. Time evolution of the distortion parameter (solid  In Fig. 7 by the dotted curve. The small amplitude ®f
curve and the angular momentum per atégi# (dashed curvein ~ compared to the previous result is due to the shift of the
the dynamics of Figs. 5 and 6. The dotted curve shawier the  resonance frequency of the quadrupole mode because of the
dynamics starting from the initial state with one vortex. presence of a vorteps0].

time (sec)
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FIG. 9. Phase profile of the simulation starting from one-vortex |b1|2 [
state.

0.4 0.24 ti?r?e " eocge 0.42]
After that, the dynamics follows the same process as be:
fore. The final steady state is the lattice with seven vortices.
This state is energetically higher than that of Figh)5with
six vortices. Therefore, by starting from different initial
states, one can obtain various metastable states with differer
configuration of a vortex lattice, as studied in rotating super-
fluid helium [34].

: 08 1 12 14
time(sec)

FIG. 10. Time evolution of the surface-mode amplitytg? in
the dissipative dynamics fo@@ (1=0.57», and (b) 1=0.86w,
D. Surface ripple excitation via the Landau instability under the same condition in Sec. IV. (h), we plot only modes

As stated above. vortices are initially generated outSidéNith 1=2,10,12, and 14, which are important in the discussion. The
the Th = . ,b d f th ydg ¢ h ¢ inset shows the density profile of the final steady state. The other

e Thomas-Fermi boundary of the condensate, where nﬁ?“" in (b) shows|byg?, |by,l2, and|by? neart=0.3 sec.
energy cost to create phase singularities is small because 0
the extremely low density. However, their penetration into ) ) ) o -
the condensate was accomplished with the help of the sur- Our simulation confirms that this instability actually leads
face ripples, induced by the instabilities in the nonvortext© thelgeneratlon of VOI"[ICE.S, where the hollows of the sur-
state. The quasiparticle projection method is useful to revedfCe ripples always evolve into the vortex cores. The vortex
the instability of the surface mode in this dissipative dynam-core near the condensate surface has the size of the coher-
ics. Note that the time derivative term of Eq82) and (23) ence Ier]gtrf determined by the local density. The number of
is modified as {(—y)d/at. Then, the nonvortex state be- the vortices generated at the condensate surface may be ap-
comes unstable when at least one excitation frequescy proximately given byNy™~ 2R ¢. The; numerical solution
— w,— 10 +0(€) becomes negative, causing the exponentiafhows 2rR/ ¢ is nearly equal t¢c. This is understood by the

. T _ . . act that the surface mode with has the wavelength of the

growth like b;(t)~e~?“I*. Isoshima and Machida examined

) - : ; . ..~ order of¢ as discussed in Reff7].
that the instability associated with the negative excitation ¢ ef7]

. . . Note thatNS""" differs generally from the number of vor-
frequency gives rise to the vortex formatip8], and calcu- tices Ntee g di K i tual vortex latti
lated the critical frequencyl. at which the first vortex ap- _I[(;](_as f v ¢ I e_p;_en ![?19 ?j » 1N an efven uat vortexia 'C?'t
pears within the Bogoliubov theory. GaaeRipoll and Peez- IS fact classi 'ﬁs Suerf yr}g{ﬂ,cs ho a vortex |r:1va§|on Into
Garcéa calculated(), under more realistic conditiorfg1]. WO regimes. WherN,=>N, ™, Eme vortices that invade
The critical frequency can be expressed by the Landau critdhe condensate are chosen froi)"” vortices generated at
rion applied to the rotating BEQF: the surface and form a lattice following the dissipative vortex
dynamics, the extrlS"— N2 yortices being expelled out
[35]. This dynamics is shown in Fig. 1@ in terms of the
quasiparticle populations fa¥ =1,=8 andN2"®=2: for
01 =0.57, , the excitation frequencias, with | =4-14 are
The angular momentum that yields(), takes a value larger negative. At the moment the vortices are about to enter the
than 4 with the parameter used in experimdiit8,15; for ~ condensatett-1.0 sec), the modes witk=4, 6, and §with
C=500 used in this papef,=8 and(}.=0.50, . |b)|2>0.02) are excited. These modes rapidly decay as two

Qc=min(%). (39
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vortices penetrate into the condensate. After the vortex inva- 1000 1=61=4 =2 .
sion, the final growth of the projected population of the [ °
=2 mode reflects the phase structure in the surface region of ‘g goo [
the lattice with two vortices. . g |
On the other hand, iNS“"<N#® the number of the © 600 |
vortices first generated at the condensate surface is not suf- g '
ficient to form a final lattice, so that successive invasion of  § 400 |
vortices is needed. This situation is shown in Fig(dQvith g i
NEtce= 14 The frequencyw, is already negative af) 5 200 |
=0.86w, , which causes the exponential growth |dk]|2. [
When the condensate deforms elliptically &t+0.2 sec, 00’5 0'6 017 0'8 0.9 Ej
many kinds of surface modes are excited violently. Then the Qlw
guasiparticle populations with high angular momentfim +
=10, 12, and 14 are plotted in Fig. ®)] oscillate during a FIG. 11. The circles represent the relaxation time of vortex lat-

short time after this burst. Finallyb;/® grows when 14 tice formation by the numerical simulation f&8=500 and y
vortices enter the condensate completely. Note thatlthe =0.03. Thin solid curves show the= —{y(w,—1Q)w,}~* for |
=14 mode does not grow shortly after the burst, but it grows=2, 4, and 6 obtained from Eq16)

gradually through the excitation of the lower angular mo-

mentum m . . . L I
entu odes cal instability causes stochasticity in condensate oscillations,

leading to the creation of the thermal compongsi—32.
E. Relation between dynamical instability and Landau Indeed, Hodbyet al.in Oxford has reported that temperature
instability in the experiments on vortex nucleation of the system increases from W 5to 0.8T, during the vor-

For an irrotational BEC subject to rotation, we have clari-tex formation procedurgs]. The time spent in this process is
fied by the numerical simulation of the GP equation thatdetermined by the growth time of the dynamical instability,
there exist two instabilities that are relevant for vortex gen-which is expected to be about 100 m¢$é2]. Then, the cre-
eration. The dynamical instability appears when the quadruated thermal component makes the dissipation effective, so
pole surface mode is resonantly excited. The Landau instahe vortices can penetrate into the condensate via the Landau
bility associated with the negative excitation frequency isinstability. To make clear this hypothesis, we need the analy-
effective only in the presence of the dissipation. In this secsis beyond the GP equation and leave this issue for future
tion, we discuss which instability is more important for ac- study.
tual vortex lattice formation by referring to the experimental In the off-resonant regime’ a condensate makes 0n|y a
results. _ stable quadrupole oscillation without dissipation. However,

_ Inthe experiment§1,2,5|, the authors observed that vor- our results show that vortices may be generated at frequen-
tices are nucleated most frequently néxr=0.7w, . Thus,  (jes beyondQ, whenever finite dissipation works. There-
vortices are generated when the condensate becomes reggre i e make the experiment in which the temperature is
nant with the rotating perturbation that excites a quadrupoleﬁigh enough that the dissipation works effectively, it is pos-

mode. These results appear to support the dynamical instg- o . .
- ) . ible to observe the critical frequency given by Landau cri-
bility scenario by Sinha and Cas(i2]. However, they also terion. For the weakly anisotropic rotating potential used in

observed the vortices at lower off-resonant frequenciest,he ENS experiments and in this paper. excitations of hiah-
which cannot be understood by the dynamical instability. On P paper, 9

the other hand, the critical frequency at which the first vor-mOdes can be made only through tre2 excitation, so that

tices appear is extensively discussed by several author¥ takes very long time for the vortex formation near the

based on the Landau criteridid,8,11,15—18 The relation critical frequency. Figure 11 represents the relaxation time

between the dynamical instability and Landau instability isfor vortex lattice formation in our simulation wit&=500
still controversial; thus we discuss these relations in theind y=0.03 (2.=0.5). Here the relaxation time is deter-
range of on- and off-resonant frequency separately. mined as the time needed for the angular momentum of the

In the resonant regime 0.ZX)<0.78, the surface ripples system to become half of the final equilibrium value. We also
are excited, but the dissipation is necessary for vortices t6how the growth time via Laudau instability = —{ y(w
penetrate into the condensate. Here the dissipation may origi=1Q)w, } ~* for =2, 4, and 6. Fo)<0.70, , wherew,
nate in the thermal component, which should be almost neg=2(2>0, the relaxation time is longer tham with |
ligible in the experiment of the atomic gas at very low tem-=4, 6, 8, ..., because high- modes are only excited
peratures. However, in the dynamical process of dhrough thel=2 mode which has no instability. Near the
condensate, there is a possibility that the thermal componegtritical frequency()., one finds a very long relaxation time
will be produced under a strong perturbation. The experi-about 1 sec. Af) increases higher than @8 , where w,
mental result of EN$1] may be explained as follows. Con- —2<0, the relaxation time matches. The ENS group
sider a situation in which there is almost no dissipation afound no vortices in the off-resonant range n@ar, presum-
very low temperatures, namely, Landau instability does noably because the observation time was not long enough
work there. In a quadrupole resonance, however, the dynam{=>1 sec is need for vortex nucleation in this regjme
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V. CONCLUSIONS potential rather than to the instabilities of collective surface

modes. Numerical simulations of the GP equation show that
"the vortex pairs are created by the object that moves faster
%han a certain critical speddl]. Such an excitation is ex-

o Shom e e ot JECEd 10 e 0 the Neain ofhe condenéas threby

bgen clarified so much. In the ener -c%nservin dvnamic< vortex lattice being formed. This different mechanism may
) _energy g aynamics, ake it possible to stabilize a vortex lattice below the critical

we study the quadrupole oscillation induced by an anisos

tropic rotating potential, and the time development of exci—:;eo%ueencyﬂc given by the Landau criterion of the surface
trggg?] anggg(?:mbye tgfethqeuaﬁfg{jClcﬁeprr:é?j??ner?aerthgi'n:n”izze A similar competition between the dynamical instability
I geottheq pole m o g PIUCRd the Landau instability has been found in the center-of-
oscillation causes via the dynamical instability the nonlinear A : : . :
mass oscillation of a BEC in a one-dimensional optical lat-

mode couplmg that leads to the excitations of h|gher-energ¥ice [53]. They observed the critical superfluid speed above
mode. This nonlinear process leads to generation of surface

ripples, but not to nucleation of vortices. In the dissipa’tiveWhICh the dissipative dynamics starts. Its main features, in-

dynamics, the vortex lattice formation is studied in detail.CIUdIng the parameter range of instability, can be explained

The vortex penetration into the condensate is achieved by thtf)ey .the simulation of the dissipationless GP equafitd],
o . . o which means that the observed phenomena may be caused by
surface modes excitation with negative frequencies in the

rotating frame, so that the critical frequency for vortex gen—a dynamical instability. However, the ensuring development

eration is determined by the Landau instability. Two possibleOf a cpnden_sat_e IS not explame_d by th? dynamical instability
. . . . -alone; the dissipation-assisted instability such as the Landau
instabilities for vortex generation are discussed by compari-

son with the experiments. While the dynamical instabilitymStabIIIty is necessary to describe the dynanp&3. These

. . . e[droblems on the dissipative dynamics of BECs associated
helps induce vortex nucleation and may increase a therm

. - . with vortex lattice formation offer a unique testing ground
component, such an instability alone cannot explain the ex:

. . . for a much-needed framework beyond the GP equation.
perimental results. Vortex nucleation and penetration are
eventually caused by the Landau instability.

In this paper, we confine ourselves to the rotating laser
beam whose size is larger than the condensate size. This fact
allows us to use the form of the potential in E8) which We would like to thank T. Nikuni for useful discussions.
excites the collective surface mode. Recently, Ramiaal.  We also thank T. lida for instructive comments on this work.
studied vortex formation by using a narrow stirring beamM.T. acknowledges support from a Grant-in-Aid for Scien-
with two-point patterns, and found no resonance in the numtific ResearciGrant No. 12640357y the Japan Society for
ber of nucleated vortice2]. In addition, they observe vor- the Promotion of Science. M.U. acknowledges support from
tices at lower rotation frequencies thah, of Eq. (34). In a Grant-in-Aid for Scientific ReseardfGrant No. 11216204
this case, the mechanism of vortex nucleation is presumably the Ministry of Education, Culture, Sports, Science and
due to the local instability of the superflow around a narrowTechnology of Japan, and by the Toray Science Foundation.

We investigate the detailed dynamics of a rotating BEC i
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