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Abstract

Nonlinear dynamics optimization is carried out for a low emittance upgrade
lattice of SPEAR3 in order to improve its dynamic aperture and Touschek
lifetime. Two multi-objective optimization algorithms - a genetic algorithm
and a particle swarm algorithm are used for this study. The performance of
the two algorithms are compared. The result shows that the particle swarm
algorithm converges significantly faster to similar or better solutions than
the genetic algorithm and it does not require seeding of good solutions in the
initial population. These advantages of the particle swarm algorithm may
make it more suitable for many accelerator optimization applications.
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1. Introduction

SPEAR3 is a third generation light source that was rebuilt on the foot-
print of its predecessors in 2003-2004. Its present horizontal emittance is
10 nm (including radiation damping effect of insertion devices). In order to
significantly improve the photon beam brightness, we have carefully studied
the lattice potential of this machine [1], from which a lattice that would re-
duce the emittance to nearly 6 nm was developed and tested in experiment.
However, the tested lattice is not yet suitable for user operation due to the
reduced dynamic aperture. Although a proposed upgrade of the septum mag-
net that decreases the separation between the injected beam and the stored
beam will substantially alleviate the problem of dynamic aperture deficit, it
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is still necessary to improve the dynamic aperture through nonlinear lattice
optimization.

Typically the goals of nonlinear dynamics optimization of a lattice are to
improve injection efficiency and Touschek lifetime, which translate to large
dynamic aperture and momentum acceptance. The optimizing variables,
or the “knobs”, are usually the sextupole magnets in the lattice. Because
a lattice with a large dynamic aperture does not necessarily also have a
large momentum acceptance, it is desirable to optimize both objectives with
multi-objective optimization algorithms and choose the best solution from
the solutions in the Pareto front afterward [2]. Both the dynamic aperture
and the momentum acceptance of a storage ring lattice are difficult to opti-
mize because they are strongly nonlinear functions of the optimizing variables
and there are usually many local minima that make the terrain of objective
functions in the optimizing variable space very corrugated and non-smooth.
Advanced algorithms are needed to reach the global minimum for the non-
linear beam dynamics optimization problem.

Multi-objective genetic algorithms (MOGA) are a powerful method for
the optimization of multi-variable, multi-objective problems with a complex
terrain. They have been widely used in the accelerator community in many
optimization problems [4, 5, 6, 7, 8], in particular, in the optimization of non-
linear beam dynamics of storage rings [6, 8]. A MOGA algorithm has been
used in our SPEAR3 nonlinear dynamics optimization problem. Recently
the multi-objective particle swarm optimization (MOPSO) method has been
demonstrated to be a useful technique in the optimization of accelerator prob-
lems [9], where it was shown that MOPSO has much faster convergence than
MOGA for the problems studied. Because nonlinear dynamics optimization
is usually time consuming, high efficiency is very desirable for the optimiza-
tion method. We have applied MOPSO to SPEAR3 nonlinear dynamics
optimization and compared its performance to that of MOGA.

In Section 2 we will first briefly describe the SPEAR3 emittance upgrade
lattice and the nonlinear dynamics optimization problem. Then the appli-
cation of both MOGA and MOPSO to this problem is shown in Section 3.
Conclusion is given in Section 4.

2. The SPEAR3 emittance upgrade lattice

The SPEAR3 lattice consists of 18 double-bend-achromat (DBA) cells,
14 of which are standard ones and the rest are matching cells. After a
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thorough examination of the potential of the standard cell with the global
search of stable solution technique [3], we concluded that the only approach
of reducing emittance is to increase the horizontal tune and the dispersion
leak [1]. Two upgrade lattice options have been extensively studied both
in simulation and in experiments. Their key lattice parameters are listed
in Table 1 in comparison to the present nominal lattice. Lattice option I
increases the horizontal tune by one unit and keeps the dispersion leak at
0.1 m. The effective emittance, which includes the contribution of the finite
dispersion function at the insertion devices and the beam momentum spread,
is reduced from the present value of 10.3 nm to 7.2 nm. Lattice option II
increases the horizontal tune to 15.32 and increases the dispersion leak to 0.12
m, which leads to a further reduction of emittance. The effective emittance
of option II is 6.7 nm.

Table 1: Parameters for SPEAR3 lattices

Parameter nominal option I option II
νx 14.13 15.13 15.32
νy 6.22 6.22 6.18
Dx (m) 0.1 0.1 0.12
µx/cell 0.779 0.829 0.838
ǫ (nm) w/ID 9.7 6.8 6.1
ǫeff (nm) w/ID 10.3 7.2 6.7

Both lattice options were tested on the machine experimentally. There
are two main difficulties that prevent us from delivering user beam in these
lattices without some hardware upgrade. Both are related to beam injection.
First, one of the three injection kickers is too weak to form a closed kicker
bump of the required magnitude for the new lattices due to the change of
the horizontal phase advance per standard cell (see Table 1 for µx/cell). The
three kickers are placed in adjacent standard straight sections with the middle
one (K2) sharing a straight section with the injection septum. Because the
present horizontal phase advance between the first (K1) and the third (K3)
kickers is nearly 3π, only a small kick is required from K2 to form a closed
kicker bump. However, as the phase advance between the kickers is increased,
a significantly larger kick is needed from K2 for the new lattices, which
exceeds its present strength limit. To solve this problem, we plan to move
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the septum magnet closer to the stored beam in order to reduce the size of
the kicker bump from 22 mm to 13.5 mm. In addition, an upgrade of K2
pulser circuit is planned to increase the maximum kick by 50%.

Second, the dynamic apertures of the new lattices are not sufficient for
high injection efficiency. The new lattices have smaller dynamic aperture be-
cause the tune shifts with oscillation amplitude have significantly increased
due to the the change of horizontal phase advance between the sextupole mag-
nets. For example, the calculated coefficient ∂νx/∂ǫx for the nominal lattice
and the two new lattice options are 1800, 7700 and 11900, respectively, where
ǫx = 2Jx and Jx = [x2 + (αxx + βxx

′)2]/βx is the Courant-Snyder invariant
for the horizontal motion. The large tune shifts with amplitude cause the
beam to reach lower order resonances at smaller oscillation amplitude and
therefore reduce the dynamic aperture. The measured dynamic aperture for
the new lattices are 2 to 3 mm smaller than the nominal lattice. Conse-
quently even after a considerable effort to experimentally optimize injection
the highest injection efficiency for lattice options I and II are only 55% and
30%, respectively.

To accommodate the reduced dynamic aperture, an upgrade of the sep-
tum magnet is planned to reduce the septum wall thickness from approxi-
mately 6 mm to 2.5 mm. This would significantly reduce the requirement
of dynamic aperture and may enable user operation with the lattice options
listed in Table 1. However, in order to have some safety margin, it is still
desirable to further optimize the nonlinear dynamics of these lattices.

The experimental, beam-based optimization of lattice option II included
scans of horizontal and vertical phase advances per cell with the working
points fixed. It was found that the dynamic aperture (and hence injection
efficiency) depends on the horizontal phase advance sensitively (Figure 1).
The lattice we chose corresponds to the highest injection efficiency. However,
for this lattice the vertical beta function at the middle of matching straight
sections is βy = 4.0 m, instead of the more desirable standard value of 2.5 m.
The lattice that gives βy = 2.5 m at the matching straight sections (which
has µx = 0.842 for a standard cell) has poor dynamic aperture such that
injection cannot be established. So another strong reason that requires us
to optimize the nonlinear beam dynamics is to enable user operation of the
lattice that satisfies the vertical beta function requirement at the matching
straight sections. This is discussed in the next section.
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Figure 1: Injection efficiency vs. horizontal phase advance per cell. Not all injection
conditions were optimized for the scan.

3. Nonlinear dynamics optimization

3.1. Optimization objectives and tracking setup

We only discuss the nonlinear dynamics optimization study for the lattice
with the working point (15.32, 6.18) and dispersion leak ofDx = 0.12 m which
satisfies the requirement of βy = 2.5 m at the matching straight sections. This
is the most desirable lattice for user operation and has not been successfully
implemented due to its poor nonlinear dynamics performance.

SPEAR3 has two families of sextupole magnets (SF and SD) in each cell
for chromaticity correction. All SF and SD magnets in standard and match-
ing cells are powered in series separately. So there are four individual sex-
tupole controls (i.e., knobs). We have experimentally optimized the sextupole
knobs in matching cells while using the standard cell sextupoles to keep chro-
maticities fixed [1]. To achieve better nonlinear dynamics performance, we
need more sextupole knobs that can effectively adjust the nonlinear dynamics
behavior. We have studied the approach of adding sextupole magnets to the
machine and found that it is not cost-effective. In the end we decided to add
new power supplies to split the sextupole series into smaller groups for addi-
tional knobs. Among the several splitting options, the one we favored may
be represented as “xyaazaayx”, where each letter stands for a cell in one half
of the ring and the other half is its mirror reflection. Sextupoles SF and SD
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in the x, y and z cells are free variables and those in the a cells are powered
in series for chromaticity correction. There are six free sextupole variables
in total. A proper range is assigned to each of the free variables according
to the power supply limit. In our implementation of the optimization codes
each parameter is normalized so that its numerical range is from 0 to 1.0. In
other words, the parameter space is a unit hyper-cube.

The nonlinear dynamics performance of a storage ring lattice may be
characterized by the dynamic aperture and the momentum acceptance (also
called momentum aperture). Therefore these parameters are used as the
optimization objective functions. Both dynamic aperture and momentum
aperture are evaluated with particle tracking simulation. In the lattice model
a 3 mm vertical physical aperture is placed at the septum. For dynamic
aperture evaluation particles distributed on 19 rays extending from the origin
of the x-y plane on and above the mid-plane are launched and tracked for
5000 turns. The angles between the rays are distributed so that there are
enough particles near the mid-plane. We found it was necessary to track a
large number of turns because in both simulation and experiment (as shown
in Figure 2) there can be considerable loss of the injected beam even after a
few thousand turns.

−20 −10 0 10 20
0

0.5

1

1.5

2

2.5

3

3.5  

x (mm)

 

y 
(m

m
)

0   

1000

2000

3000

4000

5000

0 2000 4000 6000 8000 10000 12000
0

100

200

300

400

500

600

turn

ch
ar

ge
 (

a.
u.

)

 

 
1/3× charge, nominal (10 nm)
charge, lattice option 1 (7 nm)

Figure 2: Dynamic aperture as indicated by particles lost in tracking (left) and the mea-
sured beam current vs. the number of turns after injection for lattice option I (right).
Color code in the left plot indicates the number of turns when particles get lost. The
beam current was measured with turn-by-turn beam position monitor (BPM) sum signal
in the right plot. Part of the initial decrease of the sum signal is due to the BPM response
to changing bunch length.

The dynamic aperture is measured with the area under the curve that
connects the lost particles closest to the origin on each ray. For the nominal
SPEAR3 lattice the horizontal phase space ellipse at the septum is asym-
metric at large oscillation amplitude. The intersection on the negative side
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(x < 0) is bigger than the positive side. This facilitates injection because the
injected beam comes from the negative side (inside the ring). We would like
to encourage this asymmetry for the new lattices. Therefore the dynamic
aperture objective is defined as the area under the negative side of the curve
plus one half of the area of the positive side.

The momentum aperture as determined by transverse beam dynamics
tends to be small at locations with large dispersion invariant, such as in
the arc of a DBA cell. In fact the momentum aperture is usually limited
by transverse dynamics only in the arcs (elsewhere it is limited by the RF
bucket height). Therefore the momentum aperture objective is set as the
average momentum aperture at the central quadrupoles of the 7 standard
DBA cells in one half of the ring. At each of these locations particles with
initial energy error from -0.035 to -0.01 and 0.01 to 0.035 with a step size of
0.001 are launched and tracked for 1000 turns. It is determined that tracking
1000 turns is sufficient for the momentum aperture after comparison is made
between results of tracking with 1000 turns and 5000 turns. The momentum
aperture is determined from the initial energy error of the surviving particles.
Because the optimization algorithms are implemented for minimization, a
negative sign is added to both objective functions to effectively maximize
them.

Evaluation of the objective functions described above is time consuming.
It is critical to use an efficient particle tracking code in the calculation. The
optimization of nonlinear beam dynamics requires the evaluation of thou-
sands of solutions. Since both the MOGA and MOPSO algorithms make
program decisions in each step after a population of solutions are evaluated,
it is natural to simultaneously evaluate many solutions on cluster computers.
For these purposes, a standalone tracking code was developed and used in
this study.

3.2. Setup for the MOGA algorithm

The widely used MOGA algorithm NSGA-II [11] is adopted in our study.
This algorithm manipulates a population of solutions with a fixed size over
a number of generations. At each generation the crossover and mutation
operations are performed to generate new solutions (i.e. children). After
the new solutions are evaluated, they are combined with the old population
(i.e., parents) and a non-dominated sorting is conducted to select the best
solutions to pass on to the next generation. Crowding distance is used in the
selection of solutions with the same rank to promote diversity in the surviving
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population. The selection operation essentially applies a pressure that drives
the population to evolve toward the best solutions in the parameter space
(which are called the Pareto front).

A population size of 100 is used. The crossover probability ρc of 0.8 and
0.95 have been tried. In the case below for comparison with MOPSO the
crossover probability is 0.8 because this case is considerably better than the
case with ρc = 0.95. This can be seen in Figure 6 left plot where the solutions
of MOPSO totally dominate the MOGA with ρc = 0.95 case while they do
that only partially to the MOGA with ρc = 0.8 case. The indices that control
the random number distribution in crossover and mutation are set to µc = 20
and µm = 40, respectively. Similar performance was found for a case with
the mutation parameter changed to µm = 20. Two approaches have been
used to generate the initial population. The first one is completely random.
Each parameter of the initial solutions is drawn from a uniform distribution
between 0 and 1. Because this approach does not perform well, we adopted
a second approach in which the nominal solution and 49 other solutions
around it are seeded to generate the initial population. The nominal solution
corresponds to the condition when all SF/SD sextupoles in standard cells are
set to equal values, respectively. Parameters for the other 49 solutions are
drawn from a Gaussian distribution with a standard deviation of 0.15 that is
centered on the nominal solution. The rest of the initial solutions are random
from a uniform distribution.

3.3. Setup for the MOPSO algorithm

The MOPSO algorithm is similar to MOGA in that it also manipulates
a population of solutions with random operations. Here each solution in
the population is considered a moving particle in the parameter space. The
position of each particle is updated at every iteration by adding an amount
called its velocity, i.e.,[9]

xt+1
i = xt

i + vt+1
i , (1)

where xt
i and vt

i are vectors that represent the position and the velocity of
the i’th particle at iteration t, respectively. The velocity is calculated as the
weighted sum of three terms,

vt+1
i = wvt

i + c1r1(p
t
i − xt

i) + +c2r2(g
t
− xt

i), (2)

where the terms on the right-hand side represent the previous velocity, the
distance between the present position and the position of the best solution
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for the history of this particle (i.e., personal best, pt
i) and the distance be-

tween the present position and a global best solution, gt, respectively. For
multi-objective problems the global best solution is not unique and it is thus
randomly selected from the archived global best solutions. Parameters w,
c1,2 and r1,2 control the behavior of the algorithm. Mutation operation is
also performed to a small fraction of randomly selected solutions. After the
initial position and velocity distributions are given, the particle population
then start to move in the parameter space.

We implemented the MOPSO algorithm described in Ref. [9] with small
modifications. As in Ref. [9], we set the parameters w = 0.4, c1 = c2 = 1.0.
Several ways of choosing parameters r1 and r2 are tried, including setting
them to random numbers drawn from the uniform distribution in (0, 1) or a
Gaussian distribution centered at µ = 0.5 with standard deviation σ = 0.15
each iteration, and setting them to constants r1 = r2 = 0.5 or r1 = r2 = 1.0.
It was found that the case with r1 = r2 = 1.0 yields the best performance
and this is the case presented below. The mutation probability is set to
16.7% (which is 1/the number of optimization variables). We update the
global best archive by simply combining the previous archive and the new
solutions, performing non-dominated sorting and keeping the best solutions
up to the quota. The crowding distance criterion is used to select solutions
from the middle front of the combined population that can only partially
enter the global best archive. And, because the archive is already sorted with
non-dominated sorting, no sorting with crowding distance is needed before
updating the velocity and position data of the particles. Both approaches
of generating initial population as described in the previous subsection are
tried. The initial velocity distribution is drawn from a uniform distribution
in [0, 0.1]. The population size is 100. The algorithm is run for 100 iterations.

3.4. Comparison of results

The performance of a multi-objective optimization algorithm may be mea-
sured by the objective functions of the final population and the speed of con-
vergence. For each of the two algorithms we studied, several setup conditions
have been used. For example, the initial population can be purely random or
can be seeded with the nominal solution and a compact random distribution
around it. It is found that the MOGA algorithm depends significantly on the
initial distribution. If initial seeds are not provided, it converges prematurely
to a set of solutions that are far worse in both objectives than the solutions
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found by the run with seeds. The MOPSO algorithm, however, is not de-
pendent on the initial distribution. Figure 3 shows the objective functions
of the best solutions at the final generation (after 10100 lattice evaluations)
for MOGA and MOPSO, with or without initial seeds.
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Figure 3: Comparison of objective functions after 10100 lattice evaluations for MOGA
(left) and MOPSO (right) with or without initial seeds.

To better compare the history of the optimization runs, we define weighted
sums of the two objective functions after normalization as follows

Fw =
∑

population

w1

f1 − f target
1

s1
+ (1− w1)

f2 − f target
2

s2
, (3)

where w1 and 1 − w1 are weights for the objective functions, f1 and f2 the
momentum aperture and dynamic aperture objective functions, respectively,
the target values f target

1 = −0.02 and f target
2 = −50 mm2 and the scaling con-

stants s1 = 0.02 and s2 = 50 mm2. Five combinations of weights are chosen,
with w1 = 1, 0.75, 0.5, 0.25 and 0, respectively. Figure 4 shows the history of
the weighted objective with these weight combinations for MOGA (left) and
MOPSO (right), with or without initial seeds. The objectives make quick
gains initially and slow down after 10 or 20 generations for both algorithms.
For MOGA algorithm, the run with initial seeds clearly reached a better set
of solutions after about the 30th generation. However, the initial seeds do
not seem to make a difference for MOPSO except at the very beginning. In
general, it is desirable for an algorithm to reach final results without initial
seeds because in such cases the search of the parameter space is unbiased.

Next we compare the performance of MOGA and MOPSO. Figure 5 shows
the objective functions for the two algorithms at four stages. Figure 6 left plot
shows the percentage of MOPSO solutions in the 100 best solutions when
the best solutions of the two algorithms at each generation are combined
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Figure 4: Comparison of the history of weighted objective functions in 100 generations for
MOGA (left) and MOPSO (right) with or without initial seeds.

and selected with non-dominated sorting. Clearly MOPSO converges to the
final solutions at a much faster pace than MOGA. At generation 20, the
MOGA population falls behind the MOPSO population significantly while
the latter is already very close to the final population. We think the reason
for the slow convergence of MOGA is its lack of diversity in the population.
To characterize the diversity of the population, we calculated the average
parameter space crowding distance for the best solution population of each
algorithm. Here the parameter space crowding distance is defined for each
solution as the distance (i.e., the 2-norm of the difference vector) between the
solution and its nearest neighbor in the population in the parameter space.
It is worth noting that the global best solution archive of MOPSO is not
used to spawn new solutions. Nonetheless, the average crowding distance of
the global best archive still serves as a good indication of the diversity of
the new solutions. Figure 6 right plot shows the average parameter space
crowding distance of MOGA and MOPSO. The MOGA population becomes
closely packed in the parameter space quickly after the launch, which makes
it very ineffective in searching for better solutions because the new solutions
it generates are very similar to the existing solutions.

By comparing the two bottom plots in Figure 5 we may conclude that
MOPSO converges to roughly the same solutions in the objective space in
20 generations as MOGA does in 100 generations. Fast convergence is ex-
tremely useful if an algorithm is used for online optimization of machine
performance [12, 13], in which case the lattice evaluation is carried out with
measurement. Because online experiments cannot be conducted in parallel
as in simulation and each measurement takes considerable time, high effi-
ciency of the algorithm is essential for an experimental optimization to finish
in reasonable time.
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Figure 5: Comparison objective functions of the populations for MOGA (with initial seeds)
and MOPSO (without initial seeds) at generation 5, 10, 20 and 100.

3.5. Nonlinear dynamics performance of the best solutions

The final solutions found by the optimization algorithms are significantly
better than the initial solution in both dynamic aperture and momentum
aperture. A best solution was chosen from the final population of MOPSO
as a trade-off between the two objective functions. The dynamic aperture
and momentum aperture for this solution are compared to the initial solution
in Figure 7. The color code of the left plot indicates the number of turns
when the particles are lost in tracking for the optimized lattice. There is
a substantial improvement in the dynamic aperture. We also ran dynamic
aperture tracking with random optics errors in the lattice with multiple ran-
dom seeds to generate an rms beta beat of 1% and 0.2% linear coupling. The
average dynamic aperture is -12.9 mm on the negative side, which would be
sufficient for user operation with full capture of the injected beam after the
septum upgrade is complete. The momentum aperture in the right plot are
obtained with tracking of 5000 turns. The corresponding Touschek lifetime
for the optimized solution would be 6.9 hrs under the user operation mode
with a 500 mA beam and a 0.2% linear coupling. The calculated Touschek
lifetime for the initial solution is only 3.2 hrs.
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Figure 6: Left: The percentage of MOPSO solutions in the best 100 solutions selected
by combining the MOGA and MOPSO solutions at each generation and applying non-
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a selected final lattice solution and the initial lattice.

4. Conclusion

We developed new lattices for SPEAR3 to significantly reduce its effective
emittance from the present level. Because of the strong interaction between
the chromatic sextupoles, these lattices have poor nonlinear dynamic per-
formance before optimization of the sextupole strength distribution. The
multi-objective optimization algorithms MOGA and MOPSO are applied to
the nonlinear dynamic optimization problem for the SPEAR3 upgrade study
and their performance are compared. We found that MOPSO has two dis-
tinct advantages. First, the results of MOPSO are not dependent on the
initial distribution of solutions, which allows a thorough, unbiased search of
the parameter space. On the other hand, MOGA requires seeding of good so-
lutions in the initial distribution of solutions in order to converge to the true
global optima. Second, MOPSO converges significantly faster than MOGA.
It reaches the region of the final solutions of MOGA with a factor of five fewer
lattices evaluations than MOGA. These advantages of MOPSO, as demon-
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strated in Ref. [9] and here, make it much more effective than MOGA in
many applications. In particular, the fast convergence makes MOPSO much
more useful than MOGA in online optimization in which lattice evaluation
is done with measurement on the machine. The advantages of MOPSO over
MOGA are probably due to the high diversity in the solutions of the for-
mer because in MOPSO new solutions are not generated from existing good
solutions.
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