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Abstract-This  paper  describes  a  new  technique  for  implementing 
an  echo  canceller  for  full-duplex  data  transmission  (such  as in digital 
subscriber  loops  and  voiceband  data  sets).  The  canceller  can  operate 
in  spite  of  time-invariant  nonlinearities in the  echo  channel or in  the 
implementation  of  the  echo  canceller  itself  (such  as in the D/A 
converters).  The  basic  structure  of  the  linear  echo  canceller  is  not 
changed, but taps  are  simply  added to account  for  the  nonlinearity. 
The  number of taps  which  must  be  added  depends on the  degree  of 
nonlinearity  which  must  be  compensated.  Numerical  results  based  on 
computer  simulation  are  given  which show that  typical  nonlinearities 
encountered  in MOS D/A converters  can be compensated by a  rela- 
tively  small  number  of  taps  added  to  the  linear  echo  canceller, and 
substantial  improvement  in  the  cancellation  results. 

I. INTRODUCTION 

D ATA echo cancellers have  received considerable attention 

in recent  years in connection  with digital subscriber loop 
modems [l] and  full-duplex  voiceband  data  modems zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 2 ] .  A 

typical configuration for  a canceller in a digital subscriber loop 
is shown in Fig. 1 (the voiceband  data  modem  application is 
similar). An  inherent  two-wire  transmission facility is turned 

into an  equivalent  four-wire  connection using a  hybrid  at  each 
end.  Data  can then be  transmitted  simultaneously  in  both di- 

rections. However, the  attenuation of  the  hybrid between its 
two  four-wire inputs can be  as low as approximately 10 dB. 

The  purpose  of the canceller is to remove the “near-end cross- 
talk”  or  “echo” signal which  feeds  through  the  hybrid into 
the local receiver, interfering with  the  data signal coming  from 
a  distant  transmitter.  Since  the  latter  data signal may  be  highly 

attenuated (40-50 dB), the  required attenuation  of  the  echo 
signal  is large, on  the  order of 50-60 dB,  in order to achieve an 
acceptable  signal-to-echo  interference  ratio at  the receiver in- 
put  for  the  maximum  expected line attenuation. 

Most canceller  implementations  described so far completely 
neglect  the effect of  nonlinear  distortion  in the  echo  path  or in 
the  echo replica. An  exception to this uses an  echo  canceller 
with  taps to synthesize an impulse  response  of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN samples 
[3]. This canceller, called a  “memory  compensation”  or 
“table  look-up” canceller, assigns an  independent  output  to 
each  possible  combination  of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN transmitted  bits  and,  thus, is 
completely  general as to  the  kind of  nonlinearity  that it can 

correct. The  price paid for this  generality is 2N taps, rather 
than N ,  and  a  structure in which,  at  each  sample  time,  only 

one  tap weight can  be  updated.  The  consequences  of  this are 
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Fig. 1. Subscriber  loop  modems  communicating  on  two  wires.  Echo 
cancellation  techniques  ensure full duplex  transmission  with  ade- 
quate  channel  separation. 

that  for large N the required  memory  becomes very  large and 

the  adaptation  very slow. 
Achieving a 50-60 dB cancellation in a  monolithic  echo 

canceller is  challenging in the face  of the  inherent nonlinearities 

in monolithic  A/D  and  D/A  converters  due to processing varia- 
tions  and  component variations. Nevertheless,  these  systems 

have to deal  with small amounts  of  nonlinear  distortion, i.e., a 
channel  which is “almost” linear. An  algorithm to allow cor- 

rection of  small amounts of nonlinear  distortion  without  a 
large complexity  penalty  or  adaptation  speed  penalty is highly 

desirable. In this paper we present  an  algorithm that is inter- 

mediate  between the linear and the  completely  general  non- 
linear t ab le  look-up a lgor i thms mentioned above. It can cor- 

rect nonlinearity  using  extra taps, and the  number  of  extra 
taps  increases in direct relation to  the degree  of the nonlinearity 
that  it is required to track. As a limiting case for very strong 
nonlinearity, 2N taps  are  required, in which case it becomes 
equivalent to  the table look-up  algorithm [3]. 

As an  example  of the kinds of nonlinearity  appearing  in  a 
practical system,  consider  the  subscriber loop modem  shownin 
Fig. 1. The  following  sources  of  nonlinear  distortion  can be 
identified. 

1) Transmitted  Pulse Asymmetry: When nominally  balanced 
positive and negative  pulses are transmitted, in practice  there 
will be  a slight imbalance  which  cannot  be  compensated  for  by 
a linear echo canceller. To achieve 50 dB or  more of echo  can- 
cellation, a linear echo  canceller  would  require that  the un- 

compensated  transmitted  pulse  asymmetry be kept below 
some -60 dB, which  can be  achieved with careful circuit de- 

sign at  the  cost  of increased  complexity. 

2) Saturation in Transformers: This will lead to a slight non- 
linearity  which  can  be  controlled by choice  of  a  bulkier trans- 
former. 

3) Nonlinearity of Data  Converters: The  echo  canceller is 
typically  implemented as a digital processor, since its  input 
consists of an  inherently digital bit stream.  This suggests that 
the  actual  cancellation be done digitally, requiring A/D con- 
version  of the received  signal (containing the echo), or  the can- 
cellation can  be  done in analog,  requiring  D/A  conversion  of 
the canceller output. These  data  converters constitute  the 

0090-6778/82/1100-2421$00.75 0 1982 IEEE 



2422 IEEE  TRANSACTIONS ON COMMUNICATIONS, VOL.  COM-30,  NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11, NOVEMBER 1982 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 
SIGNAL 
W/OUT 

ECHO 
+ ECHO 

TRANSVERSAL 
F ILTER 

& 12 BIT1160KH2 

& -  160 KHz 

+ .  

SIGNAL  W/OUT  SIGNAL + ELHO 
ECHO 

(b) 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. Alternative  echo  canceller  configurations.  (a)  Fully  digital 
echo  canceller. (b) Digital  transversal  filter  and  analog  cancellation. 

most  important source of nonlinearity, particularly where 
monolithic  converters  without  trimming are to be  employed. 

Examining the alternatives in  the use of data  converters in 

greater detail, Fig. 2 shows two possible configurations. In 
Fig.  2(a) a purely digital echo canceller using a front end A/D 
is considered. For a digital subscriber loop  with a bit  rate  of 
80 kbits/s and a minimum of 50 dB of  echo cancellation, the 

A/D needs a resolution  of 12 or  more  bits  with  1/2 LSB in- 
tegral linearity  and a conversion time  of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAps or less. In Fig. 

2(b) the  output of the echo canceller is converted to analog 
and  the  cancellation is performed in the analog domain. The 

error signal needed by  the digital processor echo canceller is con- 

verted to digital by a lower resolution (possibly only one bit) 
A/D  converter.  The required resolution is at least 12  bits  with 
1/2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALSB integral linearity  in  the  D/A  and  as  many as 8 bits  in 
the  A/D (which needs to be  monotonic,  but  not necessarily 

linear). The problem of the  linearity  of  the  data  converters is 
a very important one in  the  context of an MOS monolithic 

implementation of these modems. Specifically, the configura- 
tion  of Fig.  2(b)  is particularly attractive, since D/A  converters 
of the required speed and  resolution have already been  demon- 
strated  in MOS technology [4]. However, the  linearity require- 
ments  can only be achieved  using self-correction or trimming, 

which are costly solutions. An  alternative  solution to the prob- 
lem, in which the transversal filter  summation is done  by ana- 

log circuitry  and,  thus,  the  adaptation  can  compensate  for  the 
D/A  nonlinearity, is shown in Fig. 3 and  has also been  demon- 
strated [ 51 . However, it cannot  correct  other sources of distor- 

tion like pulse asymmetry  or saturation in transformers. Fur- 
thermore, digital circuits  benefit  more  from  the shrinking de- 
sign rules and are easier to design than  their analog counter- 
parts,  and  thus a technique  amenable to digital implemen- 

tation like the  one presented  here is likely to be  preferred  in 
the  future. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 3. Echo  canceller  configuration in which  the D/A nonlinearity is 
compensated  by  the  adaptation  algorithm. 

The technique described here is  also interesting in other 
respects. It leads to a systematic design procedure for using a 

binary transversal filter (where the delays are implemented by 
shift registers)  even in the  context  of a multilevel transmitted 
signal and line codes with memory. The design procedure can 

also take advantage of redundancies in the  transmitted line 
code in  the  form of simplification of  the  echo canceller hard- 

ware. The technique is  also applicable to  the implementation 

of  the decision feedback equalizer [ 6 ]  feedback fdter, which 
has a structure very  similar to  that of the echo canceller, al- 

though  the requirements on this filter are relatively relaxed 
and compensation for nonlinearities may not be  required. 

In Section I1 a method of expanding an  arbitrary  nonlinear 
function of a number of bits in a series with a finite  number 

of terms is presented.  This  expansion serves  as the basis for  the 
nonl inear  echo cancel ler   design  procedures  described later. 
Then, in Section I11 the  application  of  this expansion to multi- 
level transmitted signals, redundancies in the  line  code, and 
nonlinearities in the echo  channel  and the canceller itself are 

considered. Section IV  gives simulation results for  the  types  of 
nonlinearities typically encountered in MOS D/A converters. 

These results indicate  that, depending on  the number of  bits  in 
the D/A converter, a 20 dB or greater increase in echo  attenua- 

tion  canbeobtained  by  incorporating compensation for  the  D/A 
nonlinearity  with a modest increase in canceller complexity. 
Readers desiring  less detail  may wish to skip Section 111, 
concentrating  instead on  the results in Section IV. 

11. A BINARY SERIES EXPANSION OF A NONLINEAR 
FUNCTION 

Let f (Bo ,  - - a ,  BN-l)  be an  arbitrary (nonlinear) function 01 
N bits, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABi assumes only two values. In  the following de. 
rivation we will  assume that  the  two values are 0 and 1. How, 
ever, the expansion is  also  valid for  other pairs of values, in  
cluding the pair of values +1 and -1 which is particularly use 

ful in many circumstances. Over zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall combinations of N bits thi: 
function assumes a total  of 2N possible values (which are no 
necessarily distinct). We now show that  this  function can bc 
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represented as a series with a finite  number of terms, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx fL(k1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk2t kL)BklBk*  "'BkL 

k 1 # k2  #...# k~ 

N -  1 

+ 2 fN-l(k)BO!l  '"Bk-lBk+l  ..*BN-l 
k=O 

fNBoB1 **. BN- 1 .  (2.1) 

The general Lth-order sum is  over  all combinations of L of  the 
N indexes. Thus, for example, in the second-order term B1B2 
only  appears  once,  and not as a separate B2Bl term.  To reduce 
the number of arguments, the subscripts of  the missing bits 
have been used  as arguments of the last N/2  coefficients f , ( * ) .  
The  total number of terms can be obtained by observing the 
number of combinations of N bits  taken L at a time is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe), Thus, 
the  total number of terms in the  representation is 

5 (;)= 2N. 
L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=o 

Since there are, thus, 2N free f parameters in the sum of (2.1), 

it is not surprising that a function  with 2N values can be repre- 

sented. When the N bits in (2.1) are taken as N bits out  of a 
continuous bit stream,  then  the  expansion  of (2.1) becomes 

similar to a Volterra series expansion of a general nonlinear 
time-invariant system [ 7 ]  , with the  important exception that 
only a finite  number of terms is required for  an  exact repre- 

sentation. 
Expansion (2.1) can be  roven simply by writing a system 

of 2N equations for  the 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK possible  values of  the  nonlinear 

function. Since the system also has 2N unknowns,  it is  possible, 
although usually difficult, to solve it. However, solving the sys- 
tem is particularly easy in the -1, + I  representation, since, in 

that case, the  matrix  of  the system can  be  shown to be  orthog- 
onal, and  its inversion becomes trivial. Furthermore,  it  can be 
shown that  this  matrix is a Hadamard  matrix, which is impor- 
tant  in  other areas of signal  processing such as  image encoding 
[ 121. These results will be given in more  detail in a future 
paper, where other  applications  of  expansion (2.1) will  also be 
analyzed. 

Here we  give a simple proof  of (2.1) by  induction  for  the 

1.0 case, and extend  this  proof  to  other pairs of values in Sec- 
tion 11-B. Note first that 

the  function evaluated for all zeros, since  all the higher order 
terms are zero. Then, evaluating the  function  for a single 1 in 
the argument at position k ,  all the second- and higher order 

terms  are  zero and 

f l (k)=f lOO  010 ... 0)- fo  (2.4) 

where the single 1 is in position k .  Similarly, when the  func- 
tion is evaluated for  two ones in  positions k ,  and k , ,  all the 

third-  and higher order  terms are zero  and 

fZ(k1,  k2) = f (0  ... 010 *.' 010 0)  

- f l ( k l ) - f l ( k z ) - f o ~   ( 2 . 5 )  

Proceeding by  induction, all the  constants in the expansion 
can  be evaluated. Not only does this prove the result, but it 
also elaborates a procedure by which the  constants  of  the ex- 
pansion can actually be evaluated for a given function of N 
bits. 

Understanding of  this  expansion  can  perhaps  be  enhanced 

by a simple example. For a function  of  three bits f (Bo ,   B ,  , 
B,)  the expansion becomes 

f ( B o , B , , B , ) = f o   + f l ( O ) B o   + f ~ ( l ) B l   + f 1 ( 2 ) B 2  

+f2(2)BoB1  +f , ( lPoBz 

+fi(O)BlB2 + f 3 B O B 1 B 2  (2.6) 

where there are 23 = 8 terms  total.  Interestingly,  this  expan- 

sion can be written in the form 

f ( B o > B I , B , ) = f o  + f l ( W O  + B l ( f l ( l ) + f 2 ( 2 ~ ~ 0 )  

+B , ( f l ( 2 )   + f , ( l )BO)  

+Bl( f i (O)  +f3BO),  (2.7) 

a form which easily  generalizes to  the general  case of N bits. 
This latter form results in a tree of switches and adders as 
shown in Fig.  4(a). The leaves of  the  tree are the values of  the 

constants in the expansion, and the switches closest to  the 
leaves are closed when Bo = 1 and are open when Bo = 0,  and 
similarly for  the switches in the  other  two levels of  the tree. 
Note that in general a number of  constants in the expansion 
contribute to the value of  the  function, from a minimum of 
one  for  the all zeros case to a maximum of eight for  the all 
ones case. A number  of summations have to be evaluated to 

determine the  function,  from a minimum of  zero in the all 
zeros case to a maximum of seven in the all ones case. 

An alternate  representation  for  the  function, also requiring 
eight constants, is shown in Fig.  4(b). This tree also has three 
levels  (or in general N levels for N bits) but in this case  every 
branch  has a switch. The convention is that  the switches are 
shown for  the B = 0 condition,  and reverse for  the B = 1 con- 
dition.  In Fig.  4(b), when the  function is evaluated one and 
only one  path through the  tree has all the switches closed. 
Thus, only  one  of  the  constants  contributes  to  the  function 
evaluation, and no summations are actually required. This 
method is, of course, simply a table  look-up, in which the 
eight functional values are stored. 
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Fig. 4. Binary tree  representation of nonlinear function. (a) Binary 

series expansion. (b) Table  look-up method. 

One  might ask what value the  expansion  of Fig. 4(a) has 

when it requires  the  storage  of  eight  constants, the same as for 
the  method of Fig. 4(b), but unlike Fig. 4(b), it also requires 

summations. The answer is that in  many  practical  situations 
not all of  the  terms in the series expansion  need be retained. 
For  example, if the  function is “linear,” then 

f (~o ,B l ,B2)= f l (O~BO  + f l ( l )B l   + f l (2P2 (2.8) 

and  only  three  terms  of  the  expansion  of Fig. 4(a) need to be 

retained while all eight terms  of  the  expansion  of Fig. 4(b) are 
always  required.  This is of  considerable  importance  when N is 
large and the  function is linear  or  nearly  linear.  Specifically,  in 

most prqctical cases of  interest,  the  nonlinear  function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(*) de- 
parts  only  slightly  from  a  linear  function.  Then, as  will be 
shown  in  Section 111-E, only  a few of the 2N  terms need to be 
retained. It is in  this  property that  the usefulness  of (2.1) 
resides. 

Representations  of  these two  methods in  a  form  more ap- 
propriate  for  hardware  realization  are  shown in Fig. 5. In Fig. 
5(a), note  that  the  products  of  bits are easily generated using 
“and” gates. While the  representation  of Fig.  5(b) for  the 
table  look-up  method  does  not  make  any sense (simply storing 
the values in  a RAM or ROM  is more  reasonable),  this  form is 
conceptually  valuable when the  adaptive  filtering  application 
is considered  in  the  next  section. 

f(B,.B,,B,l 

(b) 

Fig. 5.  Hardware implementation of nonlinear function. (a) Binary 
series expansion. (b) Table  look-up method. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAExpansion of Incompletely  Specified  Functions 

When the  function f (Bo ,  -, BN- 1)  is not specified for 
some  particular  N-bit  sequences,  a  corresponding  reduction in 

the  number  of  terms in the  expansion  of (2.1) can be obtained. 

An application of this  fact is  given in Section 111-A. 
Suppose that  the  function is specified for M < 2N values of 

its  arguments.  Then,  no  more  than M terms in the  expansion 
are required. To see this,  the  procedure to determine  the  ex- 

pansion  coefficients can be modified as follows. When the pro- 
cedure  reaches  one of the N-bit  sequences,  for  which  the value 

of the  function is not specified,  the value of the expansion is a 
“don’t  care”  for  this  particular  argument.  Therefore,  the ex- 

pansion  coefficient being determined  can be set to any  arbitrary 
value. In  particular,  a value of zero  effectively  eliminates  one 

of  the  terms of the  expansion.  Setting to zero the coefficients 
of  all the terms  corresponding to bit  patterns  for  which  the 
function is not specified results  in precisely (2N - M) zero  co- 

efficients, leaving a  maximum  of M nonzero  coefficients. 
A natural  application is to  obtain an expansion  such as (2.1) 

for  a  function f(C) where C assumes one of M values. Then, 
for N, chosen  such that > M ,  M different  N-bit  sequences 

can be  assigned to each  of  the M values of C. An expansion  of 
the  form  of (2.1) with  a  maximum  of M terms then results. 
This  procedure will  be illustrated in Section 111-A for  a  multi- 
level transmission  application. 



AGAZZI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al.: NONLINEAR ECHO  CANCELLATION OF DATA SIGNALS 2425 

B.  Expansion in Terms of Other Binary  Variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In  some  applications,  it is desirable to  obtain  an expansion 

of the form of (2.1) in a set of variables in  which  each assumes 
two values, like Bk ,  but  not  the particular values zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 and 1. For 
example, in data  transmission,  it is common to transmit levels 

1 and -1 rather than 0 and 1.  The  former values have the’ad- 

vantage, as  will  be  seen later, of having statistical  properties 
which  are easier to handle. 

Let the variable ck assume  one of two values. Then,  it  fol- 
lows from (2.1) that 

C k = a + b B k  (2.9) 

where Bk assumes the values 0 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, and a and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb are  some 
appropriately chosen constants. It is shown  in the  Appendix 

that an expansion  of  the  form of (2.1) can be obtained  with 

Bk replaced by ck, 0 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk < N - 1.  Furthermore,  a  procedure 
is  given which  enables  one to determine  the coefficients  of this 
expansion  starting  from  the  coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof (2.1). 

111. APPLICATION TO ECHO CANCELLATION 

The usual assumption  in  the design  of an echo canceller for 

data transmission is that  the  echo signal consists  of a linear 

superposition of N data symbols, 

N -  1 

ek = Ck-jhj (3.1) 
j = O  

where ek is the  current  echo signal, ck is the  current  transmit- 
ted  data  symbol, assuming one of M possible values  (M-ary 
transmission), and ho, -, hN-l are the impulse response 
samples of the  echo channel. In this  section we relax this 
linearity  assumption  and show how  nonlinearities  in the  echo 

channel  and in the  echo canceller itself can be compensated 

in the canceller using the series expansion of (2.1). It will be 
shown that this method is considerably  more  attractive  than 
the table  look-up  method [3], particularly  when the  number 

of bits N is large and the nonlinearities are mild. 
In Section 111-A the  application of this  expansion to multi- 

level data transmission will  be discussed. Then’, in Section 111-B 

the  application to a nonlinear  channel  and/or  a  canceller,  which 
for  implementation reasons is nonlinear, will  be explored. Sec- 
tion 111-C explores  the  modifications  which are desirable when 

typical  line  codes  are  employed.  Section 111-D derives an  adap- 
tive algorithm  which  can  be used to “learn”  the  characteristics 
of  the  nonlinear  channel  and  the  nonlinearity of the canceller 
itself (this adaptation  algorithm  turns  out  to be essentially the 

same  as for a linear canceller). Section 111-E considers *e 
truncation of expansion (2,l) to  a relatively small number of 

terms,  and describes a  procedure  for  determining  which  terms 

to retain.  Finally,  Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIV will  give numerical results based 
on  computer  simulations for reasonable channel  and canceller 
models to illustrate the viability of the  techniques.  Readers  in- 
terested in  less detail are encouraged to skip to Section IV. 

A.  Multilevel  Transmitted Signals with Linear  Canceller 

It was first  pointed  out  by Mueller [8] that  the  echo  can- 
celler for data  transmission  is  particularly  attractive to imple- 

ment when the  transmitted  data  bits are inputted directly to 

the canceller, resulting in a  “binary transversal filter’?  in  which 

the delay elements  store individual bits  rather than qa log  
values and the need for  multiples is eliminated. When the 

transmitted  data  symbols are multilevel, as  is usually  the case, 
for  example,  in voiceband data  transmission,  then  this ad- 
vantage would seem to be  partially negated. For M transmit- 
ded levels, the transversal filters  require the  storage of M values 
at each stage and  multiplies of the  tap-weights  by  one  of  the 
transmitted  data levels. For certain signal constellations, the 
latter values can be particularly  inconvenient, as, for  example, 

the  square root of 2. 
In the  instance  of multilevel data  the  expansion (2.1) can 

be used to obtain a simpler implementation.  Let L be an in- 
teger such that 2L > M .  Then,  the  transmitted level ck can be 

represented as a  function of L bits 

. ck =f(B1 , k r  B2 , k ,  .*., BL ,k) (3 . a  

which  in turn  can  be  expanded as in (2.1). As shown in Sec- 

tion 11-A, at  most, M terms are required in this  expansion. 

This  result will now be illustrated  for M = 2 through M = 
5 .  For M = 2 level transmission, L = 1 and (2.1) becomes 

ck = a + bB1 ,k (3.3) 

for  some  constants a and b. Section I1 gives a  procedure  for 

finding  the  two  constants,  but in this case it is not necessary 
to find them  since, as will be shown  shortly, the  adaptation 

mechanism of an adaptive canceller will automatically  find 
the right constants  without  need  for  the designer to specify 
them. 

For  a three-level  transmitted signal, let L = 2 and assign the 
bit patterns 00, 01, and 10 to  the  three levels. Then, in the ex: 

pansion of (2.1) the  term  corresponding to the 11 bit  pat- 
tern, which is f 2 ,  can be set to zero, resulting in an expansion 
of the  form 

C k = a + b B l , k f C B 2 , k  (3.4) 
. .  

where  there  are three  constants.  Alternatively, if the bit pat- 

tern 01 is not assigned, then  the fl(2) coefficient  can be set to 
zero  and 

c k  = a + bB1 ,k + CB1 ,k&,k (3.5). 

which is of a slightly different  form  but still has three.com 

stants. Similarly, ‘there are two  other possibilities fQr the ex- 

pansion,  corresponding to  not assigning the 00 or 10 bit 
patterns. 

When the  number  of  transmitted levels is four,  the  expan- 

sion of (2.1) directly  becomes the  form 

ck = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa + bB1 ,k + cB2 ,k + dB1  ,kB2 ,k (3.6) 

for  some  constants (a, b,   c ,  6). Finally,  for M = 5 ,  choose 

L = 3, and assign the bit patterns 000, 001, 010, 100, and 
01 1 to  the five levels. Then,  ‘the  expansion is of  the  form 

ck = a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4- bB1 ,k -I- cB2 ,k + dB3,k 4- eB2 ,kB3,k (3.7) 

http://three.com
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where  there are, in  this case, 5 5  other ways  in which  the five 
levels can be  assigned to  patterns of  three bits, each resulting 

ip  a  different  form  of  the  expansion. 

It should be emphasized that in any  of  these  Uustrative 
expansions one or  more  of  the  constants  can be zero. In fact, 

one  criterion  for  choosing  from  among  the possible expansions 
is the  number  of  nonzero  terms  which result for the particular 

transmitted levels. 

Using these  expansions, the received echo signal of (3.1) 
can be represented in a different form, in which  the  terms are 

represented in terms  of  binary  rather  than M-level data sig- 

nals. For example,  for the four-level signal  of  (3.6),  (3.1) 
becomes 

N -  1 

e k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx hj(a f bB1 , k - j  C B 2 , k - j  dB1 , k - j B ~ , k - j ) ,  
j = O  

(3.8) 

a  representation  of  which is shown  in Fig. 6.  The echo re- 

sponse is represented as a transversal filter with 3N + 1 taps, 

each  of  which  needs to store  only  a single bit. The  delay line 

can thus be implemented  by  a shift register as in  the binary 
transmission case, and  the  tap-weights do  not require multiplies. 

The  equivalent  echo  impulse  response (go, -., g 3 N + 1 )  is a 

function  of  the  actual  channel  impulse  response as  well as the 

constants (a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb, c, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6). If an  adaptive  echo  canceller is con- 
structed  from  the  model of Fig. 6, there is no need to explicitly 

incorporate  these  latter  constants  into  the design,  since the 
adaptation mechanism w@ automatically  incorporate  them. 
This  should  become clearer in Section 111-E where  adaptive 
filtering in  the  context  of  the expansion (2.1)  will  be elaborated. 

When the transmission is two-level, then only  one of the 
three  shift registers is required, so that  there are N + 1  total 

taps. For three-level transmission,  only two of the shift registers 
are required, so that  there are 2N + 1  total taps. 

In general, for M-level transmission,  the  structure of a 
multiply-free  binary transversal filter can be retained  and the 

details of the multiple level transmitted signal can be left to 

the  adaptation mechanism to sort  out.  In  each case, a maxi- 

mumof (M - 1)N + 1  taps are required in the binary trans- 
versal filter. This  technique  has  two  advantages.  First,  the 

implementation is simplified by  incorporating  the details of 
the multilevel signal into  the  tap weights.  Second,  in  practice 

there will be  some uncertainty  in  the  transmitted levels due to 

component  tolerances, etc., for  which the canceller will auto- 

matically  compensate. For example, a mismatch  between  a 
positive and negative transmitted level  will  have no adverse 
effect on the  echo  attenuation which  can be  achieved. 

B. Nonlinear Channel with Nonlinear Canceller 

The  most interesting application  of the expansion  of  Sec- 
tion I1  is to  the  compensation of  nonlinear as well  as linear 
effects  in  the  channel, as  well  as in  the canceller itself. The 
method by  which  this  can be done will  be considered in this 
section. 

Assume that  the  echo signal  is not  a linear superposition  of 
data digits as in (3.1), but  rather  that  the  echo is a  general  non- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 6 .  Linear  echo  canceller for multilevel  transmitted signals. 

linear function of  the  current  and  past N - 1 data digits, 

This  model  precludes  the possibility of the  function f being a 

function  of k and,  thus,  requires  that  the  nonlinear  echo  chan- 

nel  be time invariant. This is the same  assumption  required  for 

the Volterra series representation of a  nonlinear  system [7]. 
However, when the canceller is made  adaptive as in  Section 

111-E, the  canceller  can  compensate  for  a  nonlinear  echo  chan- 

nel which is a slowly varying function  of  time. 

Further assume, for simplicity, that  the  data digits are bi- 

nary, assuming one  of  two values. As was mentioned  in  Sec- 
tion 11-B, the expansion  of (2.1)  is  valid for an  arbitrary  two- 

level  signal c k  as  well  as for  a signal Bk which  assumes the 
values 0 and 1. It is convenient to write  this  expansion  in  a 

vector  inner  product  notation.  Toward  this  end,  define  a  2N- 
dimensional  “augmented  transmitted  data  vector” 

where  each  term  in the series representation  of (2.1)  is repre- 
sented  and the superscript T denotes  transpose.  The  subscript 

k on ck reflects the  fact  that  this vector is changing  with  time 
in accordance  with the  current  and last N - 1 bits of the  data 
sequence. 

In a similar way,  define  a  2N-dimensional  “augmented  echo 
path  vector” 

which is a  vector  of coefficients of  an  expansion  of the  form 

(2.1) and,  in accordance  with (3.9),  is not  a  function  of k. 
Then,  a  more  compact  notation for expansion (2.1)  is  as an 

inner  product  of  an  augmented  data  vector  with  the  augmented 
echo  path vector 

ek = ck g. 1’ 
(3.12) 

It is natural to assume that  the canceller  implements an  ex- 
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Fig. 7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANonlinear echo canceller for nonlinear channel. Distortion 
introduced by the channel and by the D/A nonlinearity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd ( - )  are 
both compensated. 

pansion of  the form of (3.12) with tap  vectora, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a = (ao, a,(O>,a,(l), .*., %(N-  1>,02(0,  l), *.., 

a2(N- 2,N-  I) ,  ”’, a N )  (3.13) 

so that  an  arbitrary nonlinear echo  can be  exactly cancelled. 

A hardware realization of  this canceller  is shown in Fig. 7 for 
the case where c k  assumes the values 0 and 1.  Also included in 

Fig. 7 is a nonlinearity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd(.) which models the undesired but 

unavoidable nonlinearity of the D/A converter  at  the canceller 

output  in Figure 2(a). This  nonlinearity follows an ideal D/A 
converter. Ignoring the  quantization  due to  the D/A  converter, 
the echo replica can be written as 

2k = d(CkT * a). (3.14) 

The  interesting  question which arises  is whether the in- 

corporation of the augmented  transmitted  data  vector  into  the 

canceller can  compensate for  the (D/A) nonlinearity d(*) as 
well  as the echo  channel nonlinearity. To answer this  question, 
note  that since  (3.14)  is a (nonlinear) function o f N  bits, it fol- 

lows  from  Section 11-B that  there exists a 2N-dimensional vec- 
tor-valued functionD [a] of a 2N-dimensionalvectora  such that 

d [ C k T  ’ a ]  = c k T  ’ D[a]  (3.15) 

where D[a]  is a 2N-dimensional vector-valued nonlinear trans- 
formation induced by  the nonlinear function d(0) on  the coef- 
ficient  vector a. Note  that  this relation is still linear in the aug- 
mented  transmitted signal vector. As long as a vector a can be 

found such that 

c k T  * g = c k T  * D [ a ] =  d(CkT * a) (3.16) 

for every  signal vector c k ,  then ek = &k and,  in principle, the 
echo canceller can cancel the echo  completely even in the face 
of  the nonlinearities. A simple sufficient condition  for (3.16) 
to be possible is  if the inverse D/A nonlinearity d- ’ ( - )  exists, 

since then (3.16) becomes 

C k T   ‘ a = d - ’ ( C k T  .g ) .  (3.17) 

Since the right side of (3.17)  is a function of N bits, Section 

11-B guarantees the existence of a vector a satisfying (3.1 7) 

and,  furthermore, gives a procedure  for finding it. It is inter- 

esting to  note from (3.1  7) that even when the echo  channel 
isjinear (all but  the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN linear taps of g are zero), the canceller 

needs more than  the N linear taps in order to compensate for 

the D/A nonlinearity. 
The addition  of  extra nonlinear taps should partially or en- 

tirely mitigate the  effects of D/A  nonlinearity, allowing the 
full resolution of the  D/A  to be useful. There are monolithic 

D/A  converter realizations which are inherently  monotonic, 

which is sufficient for  the existence of d- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘(e). Of course, in 

practice the  quantization  due to  the D/A converter will pre- 

vent an  exact cancellation of  the echo. 
The conclusion is that a linear canceller algorithm can still 

be used in the face of a nonlinear channel  and nonlinear can- 

celler implementation. What  is  necessary  is to augment the N 
bits, which are input to  the canceller by  the remaining bits 
in the augmented signal vector, resulting in a nonlinear can- 
celler with 2N taps. Of course, the  hope is that considerably 
fewer taps  than  this will be required in practice. 

C. Line Codes with Memory 

It is often desirable to use line codes which incorporate 

memory  for  the  purpose  of limiting dc wander, RFI, cross- 

talk, etc. A common example is the  “bipolar” or “alternate 

mark inversion” line code, in which a binary signal  is trans- 

mitted as a three-level  signal. Each input  data  bit Bk = 0 is 
transmitted as C, = 0, while zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABk = 1 is transmitted alter- 
nately as c k  = -1 and + I .  We will  use this example to il- 

lustrate  how  the presence of a line code can be incorporated 

into  the canceller  design. 

Section 111-A showed how the three-level c k  could be rep- 
resented by two bits B ,  ,k and B 2 , k ,  and the  transmitted level 

could be represented as in (3.4). In  the presence of a nonlinear 
echo  channel,  the received echo signal of (3.9) can  be  rewritten 
as a function of 2N bits, and an expansion with  22N  terms re- 
sults.  However, due  to  the  fact  that  the signal  is  three-level, 
and  due to  the redundancy in the line code,  many  of these 
terms are unnecessary. For example, since B ,  , k -  I = B,  ,k -  = 
1  can never occur in the  transmitted signal,  all terms in the ex- 
pansion  containing  the  product B ,  ,k - IB, ,k - 0 < 1 < N - 1 

can  be eliminated. This will reduce the number of terms in the 
expansion to 3N. In  addition,  the  memory in the line code will 
reduce the number of terms further.  For example, since c k  = 
1 cannot be preceded by C k - ,  = 1, and similarly for -1, the 

terms B l , k - l B l , k  and B 2 , k - 1 B 2 , k  can  be eliminated. Elim- 
ination  of all terms of  this  type will, of  course, reduce the 

total number of terms to 2N, the number of possible input 
data sequences. 

The  fact  that we end up with 2N terms by such a cumber- 
some  procedure suggests that  there  must  be  an easier approach, 
and indeed there is. The bipolar encoding can  be accomplished 
by the  circuit shown in Fig. 8 [9]. A modulo 2 accumulation 
of all the  past  input  bits is first performed, resulting in the bi- 
nary variable A,. The three-level c k  is obtained by  taking  the 
difference  of successive A k .  All we have to  do is input  to  the 
canceller A k  rather  than C,, since the linear first difference 
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Fig. 8. Bipolar encoder. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
filter  can  then be thought of  as  being a  part of the  echo chan- 
nel  and  can be  easily compensated  by the linear taps  of  the 
canceller. When the  input  data sequence is independent  and 
equally likely, the Ak are likewise independent  and  equally 

likely, and  the  operation  of  the canceller, even when  adaptive, 
is not adversely affected. The  canceller will require 2N taps 

as before, but  with  a  lot less effort! 

D. Adaptation  Algorithm 

In  this  section  we  show  how  the  usual zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALMS adaptation al- 

gorithm  can also be used  in the presence  of  nonlinear  distor- 

tion.  From Fig. 9 ,  the residual signal after  echo  cancellation is 

where sk is the  data signal coming  from the  remote  transmitter 

and nk is the noise term,  and  both are assumed to be uncor- 

related with  the  echo. If the  data digits ck are assumed to be 
uncorrelated  and  assume  the values +I  and - 1  with  equal 

probability,  it is  easily verified that  the elements  of  vector 
ck are uncorrelated  (although  not  independent).  Then, by 

an analysis similar to  that in [ lo ] ,  the mean-squared residual 
can be calculated to be 

where 

is the  total power  of the  remote  data signal and noise. 
Assume initially that  the canceller does not have a  non- 

' linear D/A, so that d(* )  is the  identity  function.  Then, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp of 
(3.19) is quadratic,  and  there is a  unique  global  minimum 
which  can be determined  by setting the gradient  of p with 

respect to  the  tap vector a to zero. As in [ 101 this  becomes 

and  the  minimum p occurs as expected for equal  augmented 
echo  path  vector  and  canceller  tap  vector, a = g. To find  this 

minimum  adaptively, let  the canceller tap vector a be a  func- 
tion of  time ' l k  and  use the  standard  gradient  algorithm 

This  algorithm is illustrated in Fig. 9 for just  one  tap  of  the 
canceller. As usual, the parameter (Y is adjusted to  obtain  the 
desired  tradeoff  between  convergence  rate  and  asymptotic 
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DATA  B ITS  
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Fig. 9. Adaptation of tap weight coefficients is the  same as for  the 
linear canceller. 

excess  mean-square error. This is the same adaptation algo- 
rithm  used  in [lo], and  it is interesting that  the presence  of 
the nonlinearities in the channel  has not affected the  adapta- 

tion algorithm  at all,  aside from  the  augmentation of the 
transmitted signal vector  with  nonlinear taps. 

If there is a  nonlinearity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd(.) in  the  echo replica path,  the 

gradient  of (3.21) becomes 

gradp = - 2  p:?] - - (g- - [a ] ) .  (3.23) 

If the  Jacobian  matrix aD(a)/aa is nonsingular, the  unique 

minimum of p is obtained  for 

-[a1 = g  (3.24) 

as in (3.16). In  this case, the gradient  technique will also ap- 
ply, since there will  be no local minima  in  which the algo- 
rithm  can get lost. The  condition  of  nonsingularity  of  the 

matrix aD(a)/aa is a very  mild  one, since for  the case of 
small nonlinearity  (the case of  interest here), aD(a)/aa differs 

from  the  identity  matrix  by  only  a small perturbation,  and  the 
small  size  of the  perturbation  ensures  that  the  matrix is non- 

singular. Further, since the  function D(a) is not  known  by  the 
adaptation  algorithm, it is necessary that aD(a)/aa be replaced 
by the  identity  matrix.  This is  again justified for small pertur- 

bations  from linearity, and results again  in the  standard LMS 
gradient  algorithm  of (3.22). 

The  speed of convergence  and  asymptotic residual echo  can 
be predicted  from the analysis of [ 101 . Although the elements 
of the vector ck are not statistically independent,  they are un- 
correlated  and  zero-mean for the case where the  data digits ck 
assume the values + 1  and -1 with  equal  probability  and are 
statistically independent.  This  condition is sufficient for  the 
validity of the convergence analysis of [ 101 , yielding  a  ratio of 
asymptotic residual echo to uncancellable signal of 

(3.25) 

In (3.25) the number of elements  in the augmented  transmit- 
ted signal vector  has  been  assumed to be L in anticipation of 
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using only a small number L of  the 2N taps. Hence, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin general zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L 2N  will be  chosen,  and the  asymptotic  error will  be cor- 

respondingly smaller than  for  the  table look-up canceller, 
where L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2N. Similarly, the speed of convergence can be 
measured by the time constant  of convergence, which is [ 101 

1 1 
7 = -  %-. (3.26) 

log, (1 - 4a + 4a2L) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4a 
..,. 

~ .,.:. 
The approximations in (3.25) and (3.26) are valid for practical 

values of a, which are very small. We can  compare the  con- 

vergence of the linear canceller, the nonlinear canceller pro- 

posed here, and the  table look-up canceller by setting the 

asymptotic residual errors  of (3.25) equal for  the  three cases 
and then comparing the  time  constants  of (3.26). The result 

is that  the  time  constant  of  the  nonlinear canceller proposed 
here is L/N times as great as  for  the linear canceller, while it is 
2N/N times as great for  the  table look-up canceller. Thus, we 
pay a convergence time penalty for  the  extra nonlinear taps 
(about a factor  of  two  for  the numerical examples of Section 
IV), but a much larger penalty for  the  table look-up canceller. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E. Truncation of the Series Expansion 

In  the preceding analysis, the full 2N-tap echo canceller has 
been considered. We expect that under the  conditions  of a) 

small nonlinearity  and b) rapidly decaying echo path impulse 
response, most of  the  coefficients  of  vector a are negligible and 

can  be ignored. This will be established in Section IV by simu- 
lation  for typical nonlinearities encountered in MOS D/A con- 

verters. However, it is important  to develop a methodology by 
which the nonnegligible taps  can  be  predicted, in order to de- 
velop insight and to avoid an  inordinate  number  of simulations. 

Which coefficients need to be retained depends on  the 
shape of  the  echo  path impulse response and the  nonlinearity. 
Knowing them,  it is fairly straightforward to predict  what  taps 

are necessary in  the transversal fdter, as  we wiU show by  ex- 
ample in this section. 

The examples we give here are for memoryless nonlinearities. 
A simple example of a nonmemoryless  nonlinearity, where a 

s m d  number of  nonlinear  taps is required, is transmitted pulse 
asymmetry in bipolar transmission [ 13 J . 

If only L taps  are  used,  it is apparent that  the L taps which 
are largest in absolute value should be chosen. This is con- 

firmed in (3.19), for when D(u) is constrained to have only L 
nonzero elements, p will be minimized by choosing those ele- 
ments  for which g is  largest in  absolute value. For small  devia- 
tions  from  linearity,  this will be the same as choosing the same 
L elements of a to be  nonzero. 

If the characteristics of  the  echo channel  nonlinearity  and 
D/A nonlinearity are known  and are fairly reproducible, then 
the  taps which are  important  can be  predicted.  This will be 
illustrated by example. Suppose the echo  channel  can  be 
modeled by  an FIR fdter followed by a memoryless nonline- 
arity q(*). Then, (3.1) becomes instead 

(3.27) 

Then, the  function q( - )  can be expanded in or  at least ap- 

proxlmated by a Taylor series expansion. Consider, for  ex- 
ample, the square term in this  expansion, whkh becomes 

which can be  simplified by eliminating the  duplicated terms 
and noting from Section 11-B that since ck- i2 is a binary 

function  it can be represented as 

ck2 = a  + bck (3.29) 

for some constants a and b. Then, (3.28) becomes 

N -  1 N -  1 

+ a  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx hi2 + b x hi2Ck-j. (3.30) 
j = O  i= 0 

From  this relationship note  that  this square term contributes 

primarily to  the second-order terms in (2.1), but also to  the 
first-order  term. Also, note  that  the  important terms will  gen- 

erally be  those  for  which hil and hi2 are both large. From  this 

one  can  conclude more generally that large nth-order  terms in 
q( * )  will contribute most heavily to nth-order terms in the  ex- 

pansion of (2.1), and that generally, the large nonlinear taps 
will be  those  containing c k - ,  corresponding to  the larger hi. 

When the D/A is nonlinear, and d- ( 0 )  must  be  incorporated, 
it can  be  expanded in a Taylor series and a similar  analysis can 
be applied to (3.17) to determine which taps in a are  im- 
portant. There  are at least two  methods  for  obtaining  the Tay- 
lor series expansion for d- ' (*) .  One method is to first find  an 
analytical expression for d- '(*), and then expand it  in the 
Taylor series. The second method is to  do a Taylor series ex- 
pansion of d(*), and then use the  method described in [ 11,  p, 
3621 to directly  find  the  Taylor series of  its inverse. This latter 
procedure will  be illustrated in Section IV. 

Note  that  the validity of the expansion of (2.1) to echo 
cancellation does not depend on the existence of a Taylor series 

expansion of d(*) or d- ' ( - ) ,  as can be  seen from (3.17).  When 
the  function d(-) is not  analytic and a Taylor series does not 
exist (as, for example, when the  function is  piecewise  linear), 

then i t  can be approximated to any desired accuracy by a 
polynomial (which is a truncated Taylor series) and we can 
proceed as before. 

IV.  CANCELLATION  MSE  WITH  MOS D/A CONVERTER 

In  this  section we study, using computer simulations, the 
performance of a nonlinear  echo canceller in the  configuration 
of Fig.  2(b). The  operation of the adaptive echo canceller de- 

rived in Section 111-E was simulated in the presence of  certain 
nonlinearities inherent in MOS D/A converters. The purpose 
of simulating the canceller, rather  than using the procedure 

described in Section I1 for finding the  coefficients  of  the  ex- 
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V r d  

Fig. 10. DAC using resistor string and  capacitor array. (Switch con- 
trol is omitted for  simplicity.) 

pansion, was to establish that  the adaptive  algorithm  does  in- 
deed  work  properly  in  the  presence  of  nonlinearities. The 
asymptotic  mean-square  echo  cancellation  residual  error was 
noted as a  function  of  the  total  number  of  taps  implemented 
in the canceller. The particular  taps  which  were  implemented, 
and  the  order  in  which  they were added, was determined by 
first  running  a  program  which  calculates all the coefficients  of 
the expansion  in  accordance  with  the  procedure  of  Section 11 
for  the  particular  nonlinearity being studied.  The  taps were 
then added  in  the  order  of decreasing absolute value. 

In  order to make  the  numerical  examples  realistic, assume 
the D/A converter is to be implemented  in MOS technology 
using the  technique  shown in Fig. 10. The four  most  significant 

bits  are  provided  by  a  string  of  16  diffused  resistors  and  the re- 

maining  bits  (from  6 to 9 in  our  simulations) by a binary 
weighted  capacitor  array. Because of  diffusion  concentration 

gradients, voltage coefficient, and photolithographic mis- 
matches,  the  resistors  cannot be guaranteed to be equal to 
within 1 LSB unless laser trimming is used.  Thus,  in  the  absence 
of  trimming,  a  nonlinear  transfer  characteristic  results.  This 
nonlinearity  can have a  systematic component due to concen- 
tration gradients,  and  a  random component due to photo- 
lithographic  mismatches. 

Two  of  the most common kinds  of  systematic  nonlinearity 

are  shown in Fig. 11. We model  the  transfer  characteristic  of 

Fig. 1 l(a)  by 

d(x)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=ax zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ bx3 (4.1) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = 1.01333  and b = -0.01333, and the  one  in Fig. 

1  I@) by 

d ( x ) = x + b l x l  (4.2) 

where b = -0.005. For  the  characteristic  of  (4$1), the  nature 
of  the inverse can be determined  by  finding  a power series ex- 

pansion  for d- ' (*). Defining this  power series as - 
d- ' ( y )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx bnyn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n=0 

then, we obtain 

(4.3) 

d- ' (d(x)) = x = 2 b n ( w  + bx3)". (4.4) 
n=O 

(b) 
Fig. 11. Typical DAC transfer functions. (a) f ( x )  = 1 . 0 1 3 3 3 ~  - 

0 . 0 1 3 3 3 ~ 3 . ( b ) f ( ~ )  = X  - O.OOS/x/. 

Equating  coefficients in (4.4) and solving for  the b,'s, 

(4.5) 

and we see that  the third-order  nonlinearity  predominates  in 

d- ' ( 0 )  as it does in d(.). The even harmonics are missing since 
the  characteristic of (4.1) has odd symmetry  about the origin. 

Thus, we expect that  the  important  terms in the  Volterra series 

expansion will  be the  first-  and  third-order  terms.  For  the  char- 
acteristic  of (4.2), .the easiest method is to find d- ' ( . )  di- 

rectly  and  approximate it by  a  polynomial.  Since  the  nonlinear 

portion  of  this  nonlinearity  has even symmetry, the  odd powers 
will  be  missing, and  the  important  terms  in  the  Volterra series 

will  be the  first-  and  second-order  terms.  These  conclusions  are 
confirmed  by the simulations  which  follow. 

The simple echo  path impulse response assumed in all cases 

was 

The effect of quantization was also included. Runs  with  10, 
11,  12,  and  13  bits  and  with  infinite  resolution were done, 

varying the  number  of  taps  from 1 to 26 in the case of Fig. 
1 1 (a) and  from  1 to  17 for Fig. 1 l(b). As previously  mentioned, 
the  taps were added in the  order  of decreasing absolute value 
as determined  by  another  program. The resulting  order is shown 
in  Table I(a) and (b), together  with  the  residual  cancellation 

error  in Fig. 12(a) and (b). Observe that in both cases, many 
higher order  taps are more  important  than  the  linear  taps be- 

yond  the  tenth.  The importance of the  nonlinear  taps  depends 
on  the number of bits  of  quantization. With 10  bits there is no 
point to using nonlinear  taps in Fig. ll(a), whereas in Fig. 
1  l(b)  the nonlinear  taps give about  a  10 dB reduction in 
asymptotic residual error.  For 13 bits  of  resolution,  with  a 
modest  number  of  nonlinear  taps  a 20-30 dB improvement 
can be obtained.  In  both cases, the  number  of  taps is dramat- 
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TABLE I 
(a) ORDER IN WHICH TAPS WERE INCLUDED IN THE 
SIMULATION OF FIG. 12(a) AND THEIR  NUMERICAL 
VALUE.  (b) ORDER IN  WHICH TAPS WERE INCLUDED 

IN THE SIMULATION OF FIG. 12(b)  AND THEIR 
NUMERICAL VALUE. 

243 1 

(b)- 
Fig. 12. Residual error as  a  function  of  the number of taps. The 

(b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 
order in which  taps are introduced  is  shown  in  Table  I(aj and 



2432 IEEE  TRANSACTIONS ON COMMUNICATIONS,  VOL.  COM-30, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 1 ,  NOVEMBER 1982 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Cancellation Achieved zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(dB) 
Fig. 13.  Histogram  showing  the  results of random zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+l and -1 percent 

perturbations  in  resistor of the  12  bit DAC of Fig. 10,  for 100 
samples. 

ically  smaller than would be required in the  table  look-up 

method  (1024  for a ten  data bit cancellation). 
The  effect of  random  photolithographic mismatches in re- 

sistors was also simulated. Individual mismatches of either +1 

percent  or -1 percent (chosen randomly) were added to each 
of the  16 resistors of a string initially designed to implement a 

12  bit D/A with  the characteristic of (4.1). This level of mis- 
match is typical  of  what would be expected from an MOS 
process, although  it is extremely unlikely that all the resistors 
would be simultaneously mismatched to this degree. This type 

of  mismatch leads to a continuous piecewise linear character- 

istic in the  D/A. In each  simulation  the same set  of  26  taps 
shown in Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 were used (although  many  of them were 
very small). A histogram of the residual error in 100 randomly 
chosen  mismatches is presented in Fig. 13. There is a con- 
siderable spread of 6 dB in the residual error,  due to  the choice 
of the same taps  in each case  (changing which taps were imple- 
mented  for each random  mismatch would presumably narrow 
this range and improve the cancellation). Table I1 shows the 
distribution of the maximum  absolute values of the  taps. Here 

a 0 in  the  intersection  ofcolumn0.001 and row CoC,C2C3 
means that  the corresponding tap was  smaller than 0.001 (in 
absolute value) for all the 100 samples. 

V. CONCLUSIONS 

A technique  for compensating for nonlinearities in the 

echo  channel  and the echo canceller itself has been  proposed. 
It has the desirable features of requiring a modest increase in 
canceller complexity for mild nonlinearities and not resulting 
in a significant slowing of convergence. For a relatively long 
echo impulse response and mild nonlinearities, it achieves a 
dramatic  reduction of complexity  and  speedup  of convergence 
relative to  the table  look-up  approach.  Initial computer simu- 
lations have indicated  that  the increase in  the number of taps 

is indeed  modest for  the  type of nonlinearities in  typical MOS 
monolithic D/A converters, and that impressive echo  attenua- 
tions can be obtained using this  technique in conjunction 
with these converters. These results are indeed very encouraging. 

However, the  model of A/D converter nonlinearity would have 
to be considerably refined before one could  state  with  con- 

TABLE I1 
MAXIMUM VALUES OF TAPS  OVER  THE  100  RUNS OF 

FIG. 13 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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0 
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1 
1 
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- 

fidence how many  taps would be required to achieve a specified 

degree of echo cancellation. Factors which would have to be 
considered in detail would be  the processing variations and 
component mismatches which would be encountered in  the 
manufacture  of  such a device. 

APPENDIX 

The determination of  the  coefficients of the expansion is 
easily done as in Section I1 in  terms  of  the Bk ,  which assume 
the values 0 and  1. However, it is of  interest to transform the 
expansion into  terms of a new  variable C,, which assumes 
two  different values. Substituting (2.9) directly  into (2.1)  re- 

sults  in  an  inordinate  number of cross terms, and is probably 

intractable. However, the new expansion can be determMed as 
follows. Consider just  the terms in (2.1) which  contain Bo;  
there are precisely 2N-1 of them.  Factoring Bo out  of  these 
terms, we get  the decomposition 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf, and f2 are each  expansions identical in  form  with 

2N- terms.  Substituting  for Bo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin terms of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACo 

f(~O,B,~...,BN-l)=fl’(Bl,..~,BN-1) 

+ COfi’(B1, .*., BN- 1) (A.2) 

where 

f i f (B1,- . . ,B~-1)=fi(B1,   . . . ,BN-~) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a 

-;f2(B,,.-.,BN-I) (A.3) 

and 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a 

f2’(B1”’’,B~-1)=-fz(B1;’.,B~-l). (‘4.4) 

Once all the  terms of these two partial expansions have been 
determined as in (A.3) and (A.4), the  two partial expansions 
can be combined to form  a single expansion  for f(Co, B, , - e ,  

BN- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl). When this procedure is repeated  for B1 through  BN- ,, 
the  expansion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf (Co,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC1 , -, CN- 1) is complete. 
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