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Summary This paper develops an asymptotic theory for a general class of nonlinear non-
stationary regressions, extending earlier work by Phillips and Hansen (1990) on linear coin-
tegrating regressions.The model considered accommodates a linear time trend and stationary
regressors, as well as multiple I(1) regressors. We establish consistency and derive the limit
distribution of the nonlinear least squares estimator. The estimator is consistent under fairly
general conditions but the convergence rate and the limiting distribution are critically dependent
upon the type of the regression function. For integrable regression functions, the parameter
estimates converge at a reduced n1/4 rate and have mixed normal limit distributions. On
the other hand, if the regression functions are homogeneous at infinity, the convergence rates
are determined by the degree of the asymptotic homogeneity and the limit distributions are
non-Gaussian. It is shown that nonlinear least squares generally yields inefficient estimators
and invalid tests, just as in linear nonstationary regressions. The paper proposes a methodol-
ogy to overcome such difficulties. The approach is simple to implement, produces efficient
estimates and leads to tests that are asymptotically chi-square. It is implemented in empirical
applications in much the same way as the fully modified estimator of Phillips and Hansen.

Keywords: Nonlinear regressions, Integrated time series, Nonlinear least squares, Brown-
ian motion, Brownian local time.

1. Introduction

Most of the work done on nonlinear econometric models since the early 1970s has involved non-
trending variables and a substantial body of theory has been developed. Much of the asymptotic
theory for such models is reliant on strong laws and central limit theory for weakly dependent time
series. GMM estimation theory, in particular, has been especially reliant on such conditions for
its development. Two exceptions to the general thrust of this research are Wooldridge (1994) and
Andrews and McDermott (1995). Wooldridge developed asymptotics under high level conditions
that encompass some interesting cases of trending variables, although much work is needed in
verifying the conditions and it is only in doing so that the effects of the trends are understood.
Andrews and McDermott sought to extend the theory of extremum estimation to situations where
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2 Yoosoon Chang et al.

deterministic trends (but not stochastic trends) appear in the nonlinear model by using triangular
array asymptotics. Both papers gave qualitatively similar results, indicating that the asymptotic
distributions of extremum estimators are generally the same (i.e. normal and chi-squared) with
deterministically trending variables as for nontrending variables (Andrews and McDermott, 1995,
p. 343).

One of the main difficulties of dealing with general nonlinear functions of trending variables
is that the asymptotic behavior of sample partial sums of the functions is no longer immediately
apparent. For instance, if xt is a strictly stationary and ergodic time series, then the function
1/(1 + θx2

t ) is measurable and, therefore, stationary and ergodic. Since the function is also an
integrable function, it follows by the ergodic theorem that

1

n

n∑
t=1

1

1 + θx2
t

→a.s. E
(

1

1 + θx2
t

)
, (1)

and the convergence is clearly uniform over θ ∈ �, for any compact set � in R+. On the other
hand, when xt = t is a linear trend we have the following quite different behavior

n∑
t=1

1

1 + θ t2 <
1

θ

n∑
t=1

1

t2 <
1

θ

∞∑
t=1

1

t2 < ∞, (2)

for all θ > 0, and uniformly so for θ in a compact set � ⊂ R+. The situation is much more
complex when xt is a stochastic trend and very different results apply. The analysis of sample
mean asymptotics in this case was done recently in Park and Phillips (2000) using some new
techniques of spatial analysis for nonstationary processes.

When the nonlinear function of a trend is homogeneous, like a polynomial, an automatic
restandardization is possible. Thus, if f (λt) = λk f (t), then the sample partial sums behave like
Riemann sums and can be approximated as follows:

1

n1+k

n∑
t=1

f (t) = 1

n

n∑
t=1

f

(
t

n

)
∼

∫ 1

0
f (r)dr.

This suggests that one approach to developing an asymptotic theory for trending series is to ‘force’
a nonlinear function into a framework where the sample moments behave like Riemann sums.
The triangular array approach of Andrews and McDermott (1995) can be viewed in this light.
Some of the disadvantages of this approach are mentioned in their paper. In the present case, it
suffices to point out that the approach implies that sample means like (2) can, for some given n0,
be written in the approximate form (for large n and large fixed n0)

n∑
t=1

1

1 + θn2
0(t/n)2

. (3)

Then,
1

n

n∑
t=1

1

1 + θn2
0(t/n)2

→
∫ 1

0

1

1 + θn2
0r2

dr, (4)

as n → ∞, implying that (3) is of order O(n), whereas the original sample moment (2) is O(1).
Thus, one possible effect of forcing sample partial sums into a Riemann sum framework is to
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Nonlinear econometric models with cointegrated and deterministically trending regressors 3

materially change their order of magnitude.1 Clearly, to the extent that such changes influence the
excitation property in a regression, they can affect properties, like the consistency of an estimator.
This is indeed what happens in a nonlinear regression model of the form

yt = 1

1 + θ t2 + ut , (5)

where the parameter θ is to be estimated and the errors ut are i.i.d (0, 1). For, in (5), when
t is large the model becomes asymptotically equivalent to yt = 1/(θ t2) + ut , there is little
information in the data yt about the parameter θ , and the persistent excitation condition fails
because

∑∞
t=1 t−4 < ∞, just like (2). On the other hand, when we replace the true model with

the approximate formulation

yt = 1

1 + θn2
0(t/n)2

+ ut , (6)

it is apparent that, for large t , the model retains its form and there continues to be information in
the mean of yt about θ . Indeed, the marginal information is contained in the derivative

n2
0(t/n)2

{1 + θn2
0(t/n)2}2

for which we have

n∑
t=1

n2
0(t/n)2

{1 + θn2
0(t/n)2}2

∼ n
∫ 1

0

n2
0r2dr

(1 + θn2
0r2)2

= O(n), (7)

and persistent excitation follows.2 In short, θ is consistently estimable in (6), but not consistenty
estimable in (5). Thus, the net effect of forcing sample partial sum functions into a Riemann
summable form is to lose some of the essential features of the nonlinearity. In the case of (5),
what is lost is that the trend is evaporating (i.e. effectively temporary), so that the information that
it carries about θ also evaporates as t becomes large. What (6) does, is to reformulate the function
so that every observation continues to count, just as it does in the stationary and ergodic case (1).
Thus, when we force sample mean functions into a Riemann Stieltjes form, we effectively force
the asymptotics into the framework that applies in the case of weak dependence and little that
is new is learnt about the effect of the nonlinearity and, in some cases, like (2), some important
characteristics are lost.

This paper seeks to develop an asymptotic theory for a general type of nonlinear nonstationary
regression without using the device of a triangular array. It may be considered as continuation of
the research program of Phillips and Durlauf (1986), Park and Phillips (1988, 1989) and Phillips
and Hansen (1990) to the nonlinear case. The latter paper developed an efficient estimation
technique for linear cointegrating regressions. That method is very convenient in practice and is
now widely used in empirical research. One of the objectives of the present paper is to extend the
machinery of Phillips and Hansen (1990) to nonlinear cointegrating regressions. In particular, the

1In this analysis, we may use a more general approach of double index sequential asymptotics in which, for example,
we allow n → ∞ followed by n0 → ∞ (see Phillips and Moon (1999)). Note that, in this event, the expression (4)
is O(n−1

0 ), thereby altering the order of magnitude again. According to this approach the original expression (3) is
effectively O(n/n0).

2Again, if we were to employ double index sequential asymptotics we would find that (7) is O(n/n0). In this case,
therefore, persistent excitation would depend on the relative rate of divergence of the two indexes n and n0.
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4 Yoosoon Chang et al.

paper builds on the theory for nonlinear regression with integrated time series constructed recently
in Park and Phillips (1999, 2000). The theory there was developed for scalar I(1) regressors and
no deterministic functions of time were included. That theory is extended here to allow for
multiple integrated regressors and for the presence of both deterministic trends and stationary
regressors. In doing so, it leads to a framework of efficient nonlinear regression for time series
that have deterministic and stochastic nonstationarity as well as stationary components. As such,
the theory should be applicable in many practical cases of nonlinear econometric models with
deterministic and stochastic trends. In this sense, the estimation method proposed here provides
a natural generalization of the Phillips and Hansen (1990) approach to nonlinear cointegrating
regressions.

In nonlinear regressions with integrated time series, the asymptotic theory for multiple regres-
sion turns out to be different from that of simple regression in a nontrivial way. This is so, since
integrated time series behave like Brownian motion asymptotically, and, as is known in the theory
of stochastic processes, the behavior of nonlinear functionals of a vector Brownian motion can
be drastically different from that of a one-dimensional Brownian motion. It transpires that these
differences show up in important ways in regression asymptotics with nonlinear functions of I(1)
processes and are further complicated by the presence of deterministic trends. These differences
are explored in the present paper.

The plan of the paper is as follows. Section 2 lays out the model and assumptions. Section 3
gives some preliminary asymptotic theory for sample moments that provides the foundation of
our analysis. The nonlinear regression theory is developed in Section 4. Section 5 considers
issues of efficient estimation and develops a practical approach to estimation that is suitable for
implementation in empirical research. Section 6 reports some simulations that show how the new
methods work in some simple nonlinear models of cointegration. Section 7 concludes and proofs
are collected together in Section 8.

A word about our notation. For a vector x = (xi ), the notation ‖x‖ stands for the standard
Euclidean norm, i.e. ‖x‖2 = ∑

i x2
i . When applied to a matrix, ‖A‖ signifies the operator norm

defined by ‖A‖ = supx ‖Ax‖/‖x‖. The same notation is also used to signify the supremum
norm for a function, and, in particular, for a vector-valued function f = ( fi ), fi : R → R,
we let ‖ f ‖ = supx∈R ‖ f (x)‖. We use the notation ‖ f ‖K if the supremum is taken over some
compact subset K of R. The indicator function is written as 1(·), the class of integrable functions
is denoted by (calligraphic) I, the identity matrix is denoted by I , and ⊗ denotes, as usual, the
Kronecker product.

2. The Model and Assumptions

We consider the nonlinear regression model for yt given by

yt = f (zt , θ0) + ut

= τ(t, π0) + p(wt , α0) + q(xt , β0) + ut , (8)

where wt and xt are stationary and integrated regressors, respectively, and the functions τ, p and
q are assumed to be all known. The regression (8) generalizes the model studied previously by
Park and Phillips (1999, 2000) in two important directions. While those papers concentrate on
bivariate nonlinear regression, we allow for multiple integrated regressors, and for the presence
of a deterministic trend and stationary regressors. When specialized to linear functions, (8)

c© Royal Economic Society 2001



Nonlinear econometric models with cointegrated and deterministically trending regressors 5

reduces to a conventional cointegrating regression, possibly with a time trend and other stationary
regressors. The statistical theory for such regressions was developed in Phillips and Durlauf
(1986) and Park and Phillips (1988, 1989), and is now heavily utilized in both theoretical and
practical work.

The theory of regressions on time trends and stationary time series is well established and
can be found, e.g. in Wooldridge (1994). Here, we include such regressors in our expanded
model to study the effect of their inclusion in nonlinear regressions which also involve integrated
regressors. To highlight the additional effects, we take the case where both the deterministic and
stationary components of the regression function are linear, and we specify τ and p simply as

τ(t, π) = π ′dt and p(wt , α) = α′wt , (9)

where dt is a deterministic sequence such as constant and a linear time trend. It should be
emphasized here, however, that our subsequent theory may well apply to models with more
general specifications of τ and p. Of course, much more general nonadditive functions of t and
wt together would be accommodated if we were to use the simplifying approach outlined in the
introduction (as in (6)) and used in Andrews and McDermott (1995).

For our subsequent theory to be applicable, it is essential to have additivity between the parts
of the regression function driven by integrated processes and by other deterministic and stationary
processes. In particular, we cannot accommodate nonadditive functions of t, wt and xt in our
present framework. In our model (8), we further specify q as

q(x, β) =
∑
i∈I

qi (xi , βi ) +
∑
i∈H

qi (xi , βi ) (10)

where x = (x1, . . . , xm)′ and β = (β ′
1, . . . , β

′
m)′ with β0 = (β0′

1 , . . . , β0′
m )′. The index sets I

and H are mutually exclusive and exhaustive, i.e. it is assumed that either i ∈ I or i ∈ H for
each and every i = 1, . . . , m. These sets refer to the class of integrable functions and the class
of asymptotically homogeneous functions, respectively. That is, qi (·, βi ), i ∈ I, is an integrable
function, while qi (·, βi ), i ∈ H, is a function which behaves asymptotically as a homogeneous
function.

The concept of an asymptotically homogeneous function was introduced in Park and Phillips
(1999) as part of their asymptotic analysis of nonlinear transformations of integrated processes.
If T : R → Rk is asymptotically homogeneous, it has the representation

T (λs) ≈ κ(λ)H(s),

for large λ. The transformation T is thus expected to behave asymptotically like a homogeneous
function, as λ → ∞. We call κ and H , the asymptotic order and the limit homogeneous function of
T , respectively. We assume lim infλ→∞ κ(λ) > 0 and H is not identically zero. These conditions
ensure that the index setsI andH are disjoint. The class of asymptotically homogeneous functions
includes, among others, polynomials, logarithmic functions and all distribution function-like
functions. In particular, the asymptotically homogeneous functions T (s) = |s|k, log |s|, 1/(1 +
e−s) have asymptotic orders κ(λ) = λk, log λ, 1 and limit homogeneous functions H(s) =
|s|k, 1, 1(s ≥ 0), respectively. The reader is referred to Park and Phillips (1999) for further
details and discussion.3

3The notion of asymptotic homogeneity is closely related to that of regular variation (see e.g. Feller (1971, p. 275)).
The former can indeed be regarded as the latter with some additional regularity conditions. The asymptotic order of an
asymptotically homogeneous function is, however, different from the exponent of a regularly varying function. For the
logarithmic function, as an example, the former is log λ whereas the latter is 0.
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6 Yoosoon Chang et al.

In our specification (10), the nonstationary stochastic part of the model itself is also assumed
to be additively separable. The assumption of additive separability here is also important for our
subsequent results to hold, and asymptotic results for models with nonadditive functions of two
integrated regressors can be expected to be quite different. This is because, moments of functions
of integrated processes behave asymptotically as functionals of Brownian motions and, as is well
known, the theory of functionals of a vector Brownian motion is generally very different from that
of a scalar Brownian motion. Note in (10) that xi is scalar, but βi may be a vector. Therefore, each
additive term may only include a single integrated regressor, but can have multiple parameters.

For regression with integrated regressors, the I- and H-regularities introduced in Park and
Phillips (2000) define appropriate regularity conditions on a regression function, which is a func-
tion of both a regressor and a parameter. As a function of the regressor, these conditions require
that the regression function be integrable or asymptotically homogeneous, while, as a function of
the parameter, some continuity and identifying conditions are needed. Roughly speaking, all re-
gression functions that are integrable as functions of the regressor are I-regular, if they are bounded
and piecewise smooth. Indicators over compact intervals such as qi (xi , βi ) = βi 1(0 ≤ xi ≤ 1)

and other smooth functions like qi (xi , βi ) = e−βi x2
i are some obvious examples. In general, we

may allow for less smooth functions, provided we require the existence of higher moments of
the underlying process. On the other hand, regression functions that are asymptotically homoge-
neous as functions of the regressor are H-regular under very mild conditions. Examples include
regression functions such as qi (xi , βi ) = xiβi , |xi |βi , βi log |xi |, (|xi |βi − 1)/βi , βi 1(xi ≥ 0),
among many others. For more examples, see Park and Phillips (2000).

To introduce our assumptions on qi , we let q̇i , q̈i and
...
qi denote, respectively, the first, second

and third derivatives of qi with respect to βi . We assume that they are all vectorized and arranged
by lexicographic ordering of their indices. For H-regular qi , we denote by κ̇i , κ̈i and

...
κ i the

asymptotic orders of q̇i , q̈i and
...
qi , respectively, and ḣi signifies the limit homogeneous function

of q̇i . In general, the asymptotic orders of H-regular q̇i , q̈i and
...
qi depend on βi . If they are the

same for all values of βi , then we say that they are H0-regular.

Assumption I. The functions qi , i ∈ I, satisfy the following conditions.

(a) q̇i , q̈i ,
...
qi are I-regular.

(b)
∫ ∞
−∞ q̇i (s, β0

i )q̇i (s, β0
i )′ds > 0.

Assumption H. The functions qi , i ∈ H, satisfy either (a1) or (a2), and (b) below.

(a1) q̇i , q̈i ,
...
qi are H0-regular with ‖(κ̇i ⊗ κ̇i )

−1κ̈i‖, ‖(κ̇i ⊗ κ̇i ⊗ κ̇i )
−1 ...

κ i‖ < ∞.
(a2) If we let Ni (δ) = (βi : ‖βi − β0

i ‖ < δ) for δ > 0, then there exists ε > 0 such that
λ−1+ε‖κ̇i (λ, β0

i )−1‖ → 0 and

λε

∥∥∥∥(κ̇i ⊗ κ̇i )(λ, β0
i )−1

{
sup
|s|≤s̄

sup
βi ∈Ni (δ)

|q̈i (λs, βi )|
}∥∥∥∥ → 0,

for any s̄ > 0.
(b)

∫
|s|<δ

ḣi (s, β0
i )ḣi (s, β0

i )′ds > 0 for all δ > 0.

In both Assumption I and H, condition (a) gives the regularity conditions on the regression
function, while condition (b) is for identification purposes. Throughout the paper, we assume that
qi , i ∈ I and qi , i ∈ H satisfy the conditions in Assumptions I and H above. The conditions are

c© Royal Economic Society 2001



Nonlinear econometric models with cointegrated and deterministically trending regressors 7

mild enough to accommodate virtually all functions used in practical nonlinear analyses, except
for exponential functions. We could allow for exponential functions in our model. However, it is
not done in the present paper to make our model, assumptions and theoretical results simple and
more presentable. The gains from including exponential functions seem slight, as exponential
functions of an integrated process have exaggerated explosive behavior and they seem to be of
little empirical relevance.

We now introduce precise assumptions on the data generating processes. As mentioned earlier,
xt is assumed to be an integrated process, so we let vt = �xt be a stationary process with certain
properties. We specify vt and wt as general linear processes given by

vt = �(L) εt =
∞∑

k=0

�kεt−k and wt = �(L) ηt =
∞∑

k=0

�kηt−k, (11)

with �0 = I and �0 = I . Define ξt = (ξi,t ) = (ut , ε
′
t+1, η

′
t+1)

′ and the filtration Ft =
σ {(ξs)

t−∞}, i.e. the σ -field generated by (ξs)s≤t . The following conditions are made on the
innovation process ξt .

Assumption 1.

(a) (ξt ,Ft ) is a stationary and ergodic martingale difference sequence,
(b) E(ξtξ

′
t |Ft−1) = �,

(c) supt≥1 E(‖ξt‖r |Ft−1) < ∞ for some r > 4.

Condition (a) implies that the regressors xt and wt are predetermined, i.e. E(xt |Ft−1) = xt and
E(wt |Ft−1) = wt . We therefore have E(yt |Ft−1) = f (zt , θ0), as in usual nonlinear regression
theory. The moment conditions in (b) and (c) are fairly standard. We partition � as

� =
(

σ 2
u σuε σuη

σεu �εε �εη

σηu �ηε �ηη

)
,

conformably with ξt .
The martingale difference assumption on the error process can be relaxed under certain cir-

cumstances. For instance, the assumption would be unnecessary for the consistency of the least
squares (LS) estimator if there were only linear functions of integrated regressors in which case
our model (8) would reduce to a simple cointegrating regression. This is, of course, well known.
Also, consistency of the nonlinear least squares (NLS) estimator under more general errors can
be established if the regression includes only certain classes of asymptotically homogeneous re-
gression functions such as polynomials. On the other hand, a full generalization of our theory
allowing for correlated errors would involve a substantial additional level of complexity and is
not attempted here. However, it does not seem overly restrictive at this point to assume the
absence of serial correlation in the errors, especially given our flexible nonlinear specification of
the regression function and the presence of stationary regressors in the model.

Assumption 2.

(a) �(1) is nonsingular,
∑∞

k=0 k‖�k‖ < ∞, and
(b)

∑∞
k=0 k1/2‖�k‖ < ∞.

c© Royal Economic Society 2001



8 Yoosoon Chang et al.

Summability conditions like those for �k and �k in Assumption 2 are standard, are routinely
imposed in stationary time series analysis and permit the use of the device in Phillips and Solo
(1992). Of course, 1/2-summability in (b) is weaker than 1-summability in (a). The nonsingularity
of �(1) implies that xt is full rank integrated of order one and not cointegrated. For the innovation
process εt of xt , we impose some stronger conditions.

Assumption 3. εt is i.i.d with E‖εt‖r < ∞ for some r > 8, and its distribution is absolutely
continuous with respect to Lebesque measure and has characteristic function ϕ for which ϕ(λ) =
o(‖λ‖−δ) as ‖λ‖ → ∞ for some δ > 0.

Assumption 3 is strong, but is still satisfied by a wide class of data generating processes, including
all invertible Gaussian ARMA models.

For ut and vt , we define stochastic processes

Un(r) = 1√
n

[nr ]∑
t=1

ut and Vn(r) = 1√
n

[nr ]∑
t=1

vt (12)

on [0, 1], where [s] denotes the largest integer not exceeding s. The process (Un, Vn) takes values
in D[0, 1]1+m , where D[0, 1] is the space of cadlag functions on [0, 1]. Under Assumptions 1
and 2(a), an invariance principle holds for (Un, Vn). That is, we have as n → ∞

(Un, Vn) →d (U, V ) (13)

where (U, V ) is (1 + m)-dimensional vector Brownian motion, as shown in Phillips and Solo
(1992). For more general invariance principles relevant to the analysis of models with integrated
processes, the reader is referred to Phillips and Durlauf (1986) and Hansen (1992), and the
references cited there.

The covariance matrix of the limit Brownian motion (U, V ) is written as

� =
(

ω2
u ωuv

ωvu �vv

)
.

Note that ω2
u = σ 2

u , since ut is a martingale difference sequence. We also have

ωvu = �(1)σεu and �vv = �(1)�εε�(1)′ (14)

as is easily checked.

Assumption 4. There exists a nonsingular sequence of normalizing matrices κnd such that if
dn(r) = κ−1

nd d[nr ] on [0, 1], then

(a) supn≥1 sup0≤r≤1 ‖dn(r)‖ < ∞, and

(b) dn →L2 d as n → ∞ for some d ∈ L2[0, 1] such that
∫ 1

0 d(r)d(r)′ dr > 0.

The conditions in Assumption 4 are general enough to allow for deterministic regressors such as
constant and time polynomials, possibly with breaks, which are commonly used in time series
analyses (see Park (1992), for the asymptotics of integrated processes with such time trends).
Condition (b) is quite weak, as in most cases of practical interest we will have uniform convergence
‖dn − d‖ → 0.

c© Royal Economic Society 2001



Nonlinear econometric models with cointegrated and deterministically trending regressors 9

3. Preliminary Results

This section outlines some background theory and gives some preliminary results that are crucial
for the asymptotic analysis of our model. The first asymptotic theory for nonlinear regressions
with integrated processes was developed in Park and Phillips (1999, 2000). Their results provide
the essential tools for the analysis of the asymptotic properties of the NLS estimator, but are
applicable only to regressions with a single integrated regressor. Here, we extend those results to
allow for multiple integrated processes as well as a time trend and stationary regressors.

The theory relies heavily on the local time of Brownian motion, which is described briefly for
convenience here, while referring the reader to a standard source such as Revuz and Yor (1994)
for a detailed discussion. The local time of a Brownian motion B is a two parameter process,
written as L B(t, s), with t and s respectively being the time and spatial parameters, satisfying the
important (so-called occupation time) formula∫ t

0
T {B(r)} d[B]r =

∫ ∞

−∞
T (s)L B(t, s) ds, (15)

for locally integrable T : R → Rk , where [B]r is the quadratic variation process of B. If we
apply (15) to the function T (x) = 1(a ≤ x ≤ b) for a, b ∈ R, then∫ t

0
1{a ≤ B(r) ≤ b} d[B]r =

∫ b

a
L B(t, s) ds,

and, correspondingly, when the local time L B(t, s) is treated as a function of its spatial parameter
s, it can be viewed as an occupation time (or soujourn) density. The time that B stays in the
interval [a, b] is measured by d[B]r , which can be thought of as a natural time scale for B. Also,
due to the continuity of L B(t, ·), we have

L B(t, s) = lim
ε→0

1

2ε

∫ t

0
1{|B(r) − s| < ε} d[B]r .

Therefore, L B(t, s) measures the time (in units of quadratic variation) that B spends in the
neighborhood of s, up to time t .

Write V (r) = {V1(r), . . . , Vm(r)}′, and denote by LVi the local time of Vi , for i = 1, . . . , m.
Define

Li (t, s) = (1/ω2
i )LVi (t, s) = lim

ε→0

1

2ε

∫ t

0
1{|Vi (r) − s| < ε} dr,

where ω2
i is the variance of Vi , for i = 1, . . . , m. Clearly, Li is just a scaled local time of Vi that

measures time in chronological units. Our asymptotic results will be presented using Li , instead
of LVi . Using Li , the occupation time formula (15) is rewritten as∫ t

0
T {Vi (r)} dr =

∫ ∞

−∞
T (s)Li (t, s) ds, (16)

since d[Vi ]r = ω2
i dr . In the rest of the paper, we refer to (16) as the occupation time formula.

In addition to the Brownian motions U and V = (V1, . . . , Vm)′, we need to introduce another
set of independent Brownian motions W1, . . . , Wm . Throughout the paper, the Brownian motions
Wi will all be independent of U and Vi , and all will have the same variance σ 2 = σ 2

u .
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10 Yoosoon Chang et al.

Much of our subsequent theory is based on the following lemma, which contains several new
results and characterizes the asymptotic behavior of various sample product moments involving
nonlinear functions of integrated processes.

Lemma 5. Suppose that xt , ut , wt and dt satisfy Assumptions 1–4, and ai , bi : R → Rki for i =
1, . . . , m. Let ai be I-regular, and bi be H-regular with asymptotic order κi and limit homogeneous
function hi . Assume that κni = κi (

√
n) is nonsingular, and hi is piecewise differentiable with

locally bounded derivative. Define bni = κ−1
ni bi and dnt = κ−1

nd dt . Then, the following hold as
n → ∞:

(a) 1√
n

∑n
t=1 ai (xit ) →d Li (1, 0)

∫ ∞
−∞ ai (s) ds.

(b) 1
n

∑n
t=1 bni (xit ) →d

∫ 1
0 hi {Vi (r)} dr.

(c) 1
4√n

∑n
t=1 ai (xit )ut →d {Li (1, 0)

∫ ∞
−∞ ai (s)ai (s)′ ds}1/2Wi (1).

(d) 1√
n

∑n
t=1 bni (xit )ut →d

∫ 1
0 hi {Vi (r)} dU (r).

(e) 1
n3/4

∑n
t=1 ai (xit )w

′
t →p 0.

(f) 1
n

∑n
t=1 bni (xit )w

′
t →p 0.

(g) 1√
n

∑n
t=1 dnt ai (xit ) = Op(1).

(h) 1
n

∑n
t=1 dnt bni (xit ) →d

∫ 1
0 d(r)hi {Vi (r)} dr.

(i) 1√
n

∑n
t=1 ai (xit )ai (xit )

′ →d Li (1, 0)
∫ ∞
−∞ ai (s)ai (s)′ ds.

(j) 1√
n

∑n
t=1 ai (xit )a j (x jt )

′ →p 0 for i �= j .

(k) 1√
n

∑n
t=1 ai (xit )bnj (x jt )

′ = Op(1).

(l) 1
n

∑n
t=1 bni (xit )bnj (x jt )

′ →d
∫ 1

0 hi {Vi (r)}h j {Vj (r)}′ dr.

The weak convergence in (a), (b), (c), (d), (h), (i) and (l) holds jointly.

The results in parts (a), (b), (d) and (i) of Lemma 5 are shown in Park and Phillips (1999,
2000) and are included here for completeness. For each i , part (c) is also derived there. Our result
shows that, in addition to the weak convergence, the limit processes Wi are independent of U for
all i , and Wi and W j are independent for i �= j in the representation of the limiting distribution.
As indicated above, there are also some useful new results in Lemma 5. In particular, parts (e)–(h)
are needed to obtain our limit theory for models with time trends and stationary regressors. Also,
parts (i)–(l) are used in dealing with multiple integrated regressors. Each of these is new.

Park and Phillips (1989) show that integrated regressors are asymptotically orthogonal to
stationary regressors in linear regression models. That this result also applies between nonlin-
ear functions of integrated regressors and stationary regressors is an interesting consequence of
parts (e) and (f) of Lemma 5. Asymptotic orthogonality applies not only between integrated
regressors and stationary regressors. In nonlinear regressions, it also applies between different
types of functions of integrated regressors. Indeed, the result in part (k) shows that integrable
and asymptotically homogeneous functions do not interact in the limit. If the functions involved
are integrable, we even have asymptotic orthogonality between any transformations of two inte-
grated regressors, regardless of how correlated these individual regressors may be. This follows
from part (j). As will become apparent in the next section of the paper, these orthogonalities
help to simplify the asymptotics of nonlinear regressions with multiple integrated and stationary
processes.
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Nonlinear econometric models with cointegrated and deterministically trending regressors 11

The limiting distribution in part (c) is mixed normal. Note that, for each i , Wi is independent
of Vi , as mentioned earlier, and hence Wi is also independent of Li . However, the limiting
distribution given in part (d) is a normal mixture only in the special case where Vi is independent
of U . If this is the case, then we have∫ 1

0
hi {Vi (r)}dU (r) = d

[∫ 1

0
hi {Vi (r)}hi {Vi (r)}′dr

]1/2

Wi (1).

Independence of U and Vi holds when ut is uncorrelated with future values of vt , as well as its
present and past values. This will, of course, rarely be satisfied in practical applications. So, in
general, the distribution is not mixture normal and will depend on the correlation between U and
Vi .

In addition to the results listed in Lemma 5, our subsequent theory also relies on the limits

1√
n

n∑
t=1

dnt ut →d

∫ 1

0
d(r) dU (r) = d N

{
0, σ 2

∫ 1

0
d(r)d(r)′dr

}
(17)

and
1√
n

n∑
t=1

wt ut →d N(0, σ 2�ww). (18)

In view of Assumptions 1, (17) and (18) follow directly from the martingale central limit theorem
of McLeish (1974). Moreover, since ut is a martingale difference, and wt is Ft−1 measur-
able we have E(wt ut us) = 0 for all t, s ≥ 1. Also, under Assumption 1(a) and (b), we have
E(utvt+1+k |Ft−1) = �kσεu for all k ≥ 0 and 0 otherwise, and it follows that E(wt utvs) = 0 for
all t, s ≥ 1. The limit distribution in (18) and (U (r), V (r)), 0 ≤ r ≤ 1, are therefore uncorrelated
and, being Gaussian, are independent. Consequently, the limit distribution in (18) is independent
of the limit distributions in (c), (d), (h), (i) and (j) of Lemma 5, and that in (17).

4. Asymptotic Theory

We suppose that model (8) is estimated by nonlinear least squares (NLS) and let

θ̂n = (π̂ ′
n, α̂′

n, β̂ ′
n)′

be the NLS estimator of θ = (π ′, α′, β ′)′, i.e.

θ̂n = argmin
θ∈�

n∑
t=1

{yt − f (zt , θ)}2,

obtained in the usual way by numerical optimization. Following convention, we assume here that
the parameter set � is convex and compact, and that the true value, θ0, is an interior point of �.

Let

Qn(θ) = 1

2

n∑
t=1

{yt − f (zt , θ)}2,

and define Q̇n = ∂ Qn/∂θ and Q̈n = ∂2 Qn/∂θ∂θ ′. The first order Taylor expansion of Q̇n(θ̂n)

around θ0 yields
Q̇n(θ̂n) = Q̇n(θ0) + Q̈(θn)(θ̂n − θ0),
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12 Yoosoon Chang et al.

where θn lies on the line connecting θ0 and θ̂n . From this expansion we may obtain the asymptotic
distribution of θ̂n , under suitable regularity conditions.

To derive the asymptotic distribution of θ̂n , we need to introduce some additional notation.
Let ḟ and q̇ = (q̇i ) be the derivatives of f , q and qi respectively with respect to θ , β and βi .
Notice that

ḟ (zt , θ) = {d ′
t , w

′
t , q̇(xt , β)′}′.

We let νni = 4
√

n and
√

nκni respectively for i ∈ I and i ∈ H. Let

νn = diag (νn1, . . . , νnm),

and subsequently define
Dn = diag(

√
nκnd ,

√
nI, νn),

where the partition is made conformably with ḟ given above.
Define

Mn = D−1
n

n∑
t=1

ḟ (zt , θ0) ḟ (zt , θ0)
′ D−1

n and Rn = D−1
n

n∑
t=1

F̈(zt , θ0) ut D−1
n ,

where F̈ = ∂2 f/∂θ∂θ ′, so that Mn = D−1
n Q̈n(θ0)D−1

n + Rn , and let Zn = −D−1
n Q̇n(θ0).

Moreover, let Dnδ = n−δ Dn for δ > 0, and define

�n = {θ : ‖D−1
nδ (θ − θ0)‖ ≤ 1}.

Our model (8) includes integrated regressors, but the approach by Wooldridge (1994) for nonsta-
tionary regressions is still applicable. A trivial modification of his result is introduced below as
a lemma for easy reference.

Lemma 6. Suppose that

(a) (Mn, Zn) →d (M, Z),
(b) Rn = op(1),
(c) M > 0 a.s., and
(d) D−1

nδ {Q̈n(θ) − Q̈n(θ0)}D−1
nδ →p 0 uniformly in θ ∈ �n for some δ > 0.

Then we have Dn(θ̂n − θ0) →d M−1 Z as n → ∞.

Once we show that the conditions of Lemma 6 are met for our model, the limiting distribution
of θ̂n can be obtained readily. Conditions (a) and (b) follow immediately from the results in
Lemma 5. Condition (c) is guaranteed by a suitable identification condition. The most difficult
part is to establish condition (d).

To represent the limiting distributions of (β̂i )i∈H compactly, we let

βH = (βi )i∈H and q̇H (x, β) = {q̇i (xi , βi )}i∈H

which are vectorized into column vectors by vertical stacking. Also, we define β̂n
H and β0

H

accordingly from β̂n
i and β0

i , respectively, for i ∈ H. Moreover, for i ∈ H let

q̇i (λs, βi ) ≈ κ̇i (λ, βi )ḣi (s, βi ),
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Nonlinear econometric models with cointegrated and deterministically trending regressors 13

and let κ̇ni = κ̇i (
√

n, β0
i ). Then we define

κ̇n = diag(κ̇ni )i∈H and ḣ(x, β) = {ḣi (xi , βi )}i∈H.

so that κ̇n is a block diagonal matrix with κ̇ni , i ∈ H, on the i th block diagonal, and ḣ(x, β)

stacks ḣi (xi , βi ), i ∈ H, as a column vector. The following theorem presents the asymptotic
distribution of θ̂n .

Theorem 7. Under Assumptions 1–4, we have as n → ∞
(a)

√
n(α̂n − α0) →d N(0, σ 2�−1

ww)

(b) 4
√

n(β̂n
i − β0

i ) →d {Li (0, 1)
∫ ∞
−∞ q̇i (s, β0

i )q̇i (s, β0
i )′ds}−1/2Wi (1)

(c)
√

n

{
κnd(π̂n − π0)

κ̇n(β̂n
H − β0

H )

}
→d {∫ 1

0 N (r)N (r)′dr}−1
∫ 1

0 N (r) dU (r)

where i ∈ I and N (r) = [d(r)′, ḣ{V (r), β0}′]′. The convergences in (a)–(c) hold jointly, and the
limit distribution in (a) is independent of those in (b) and (c).

The convergence rates of the NLS estimates for the coefficients of the stationary and deterministic
regressors are given respectively by

√
n and

√
nκnd , as in standard regressions. Those for the NLS

estimates of the parameters in functions of the integrated regressors are different, however, and
they are dependent upon the types of functions involved. For integrable functions of integrated
regressors, the rate is 4

√
n, i.e. an order of magnitude smaller than the usual rate

√
n for the NLS

estimates in the standard stationary regressions. For the asymptotically homogeneous functions,
the convergence rates are determined by their asymptotic orders, and are given by

√
nκ̇n . For

functions with increasing asymptotic orders, they are therefore faster than the usual rate
√

n.
The limiting distribution of the NLS estimate of the coefficients of the stationary regressors

is normal. The NLS estimators for the parameters in the integrable functions of the integrated
regressors have asymptotic distributions that are mixed normal with mixing variates essentially
given by the local times of their limit Brownian motions. That the estimators have limiting normal
or mixed normal distributions has important implication for asymptotic inference, i.e. it implies
that the usual chi-square tests are possible. On the other hand, the asymptotic distributions of the
NLS estimators of time trend coefficients or the parameters in the asymptotically homogeneous
functions of the integrated regressors are generally non-Gaussian. Only in the very special case
where the integrated regressors are strictly exogenous, do they have mixed normal distributions.
The limiting distributions are thus biased, and the usual chi-squared approach to inference is not
possible. The critical values of the tests are dependent upon nuisance parameters.

To look at the asymptotic results in Theorem 7 more closely, we consider the following
regressions:

yt = α′wt + ut

yt = qi (xit , βi ) + ut for each i ∈ I
yt = π ′dt +

∑
i∈H

qi (xit , βi ) + ut . (19)

The set of regressions introduced in (19) are nothing but regressions on some of the additive terms
in (8) separately. The first regression is one exclusively on stationary regressors, the second set
of regressions are those on each I-regular function of an integrated regressor, and the third is the
multiple regression on a deterministic trend and all H-regular functions of integrated regressors.
We denote by θ̃n the LS estimators of the parameters in the regressions (19).
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14 Yoosoon Chang et al.

Corollary 8. Under Assumptions 1–4, the limiting distributions of θ̂n and θ̃n are identical.

Corollary 8 implies that various asymptotic orthogonalities hold for the regressors included
in our model (8). First, the stationary regressors are asymptotically orthogonal to any function of
the integrated regressors, as well as to the deterministic trends. Therefore, the NLS estimator of
the coefficients of stationary regressors in our model (8) behave asymptotically as if it were from
a regression with only these variables. Naturally, the usual normal asymptotics apply to such
regressions. Second, integrable functions of integrated processes are orthogonal in the limit not
only to other asymptotically homogeneous functions of integrated regressors, but they themselves
also become orthogonal each another. The NLS estimator of a parameter in any integrable function
of an integrated regressor thus behaves as if there were no other functions of integrated regressors
in the regression.

As an illustrative example, we look at the regression with deterministic part d ′
tπ = π1 + π2t

and

q1(x1, β1) = e−β1x2
1 , q2(x2, β2) = β2x2, q3(x3, β3) = 1

1 + e−β3x3
, (20)

where β1, β2, β3 ∈ R+. We may assume w.l.o.g. that there are no stationary regressors, since they
are asymptotically independent of the integrated parts of the model. To derive the asymptotics
for the β̂i ’s, it is more convenient to consider the regression with q1, q2 and

q∗
3 (x3, β3) = q3(x3, β3) − 1(x3 ≥ 0)

= 1

1 + e−β3x3
1(x3 < 0) − e−β3x3

1 + e−β3x3
1(x3 ≥ 0) (21)

in place of q3.
The regression function q3, indeed, does not satisfy the regularity conditions in Park and

Phillips (2000). As one can easily see, q3(·, β3) is asymptotically homogeneous with asymptotic
order 1 and limit homogeneous function 1(· ≥ 0). This is true for all values of β3. The limit
homogeneous function thus does not depend upon β3, which implies that β3 is not asymptotically
identified in q3. On the other hand, β3 is identified in q∗

3 . Obviously, the NLS estimators from
the regression with q1, q2 and q3 are identical to those from the regression with q1, q2 and q∗

3 .
Now it is immediate from Theorem 7(b) that

4
√

n(β̂n
1 − β0

1 ) →d

{
3
√

2π

32β
5/2
10

L1(1, 0)

}−1/2

W1(1),

4
√

n(β̂n
3 − β0

3 ) →d

{
π2 − 6

18β3
30

L3(1, 0)

}−1/2

W3(1),

where we write β10 = β0
1 and β30 = β0

3 . Moreover, we have


n1/2(π̂n
1 − π0

1 )

n3/2(π̂n
2 − π0

2 )

n(β̂n
2 − β0

2 )


 →d

{∫ 1

0
N (r)N (r)′dr

}−1 ∫ 1

0
N (r) dU (r),

from Theorem 7(c), where N (r) = {1, r, V2(r)′}′.
Nonlinear models often include a function like

β4q3(x3, β3) = β4

1 + e−β3x3
, (22)
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instead of q3. It can be shown as in Park and Phillips (2000) that the regression with β4q3(x3, β3)

in (22) is the same as the regression with two functions

β0
4 q∗

3 (x3, β3) = β0
4

{
1

1 + e−β3x3
1(x3 < 0) − e−β3x3

1 + e−β3x3
1(x3 ≥ 0)

}
q4(x3, β4) = β41(x3 ≥ 0)

where q∗
3 is defined in (21). Their result easily extends to our general regression, which one can

easily see from the proof of Theorem 7. That is, the regression with q1(x1, β1), q2(x2, β3) and
β4q3(x3, β3) respectively in (20) and (22) behaves asymptotically the same as the regression on
q1(x1, β1), q2(x2, β2), β

0
4 q∗

3 (x3, β3) and q4(x3, β4). The limiting distributions of the parameters
can therefore be easily obtained.

5. Efficient Estimation

In this section, we develop an efficient method of estimating our model (8). The usual NLS
estimator θ̂n considered in Section 4 is generally not efficient, because it does not utilize the
presence of the unit root in the regressors. We may obtain a more efficient estimator if such
information is used, in the same manner as shown by Phillips (1991) for linear cointegrating
regressions. Inefficiency of the estimator also results in invalidity of the usual t- or chi-squared
test on the parameter in the asymptotically homogeneous regression functions. We now introduce
a more efficient estimator (in the sense of Phillips (1991)) along the lines of Phillips and Hansen
(1990) and Park (1992). The estimator has a mixed normal limit distribution and thus yields
asymptotically valid t- or chi-square tests in the usual manner.

Here we concentrate on the parameter in the nonlinear functions of integrated regressors,
together with those of the deterministic regressors. As shown in Section 4, the limiting distribution
for the estimated coefficient of the stationary regressors is not affected by the inclusion of the
regressors with trends. Due to this asymptotic orthogonality, we may not increase the efficiency of
the coefficient estimator for the stationary regressors by utilizing information on the presence of the
unit root in the nonstationary regressors. In what follows, we simply assume that p(wt , α0) = 0
and is known in (8). This is just to make our exposition simple. Our subsequent methodology is
applicable for the regression with stationary regressors, if we run the first step regression to get
α̂n and consider the regression

yt − p(wt , α̂n) = τ(t, π) + q(xt , β) + ut

to efficiently estimate π and β.
For the development of our method, we need to introduce some additional assumptions on

the innovation process vt = �(L)εt of the integrated regressor xt defined in (11).

Assumption 9. We assume that

(a) �(z) is bounded and bounded away from zero for |z| ≤ 1, and
(b) if we write �(z)−1 = 1 − ∑∞

k=1  k zk , then !s ∑∞
k=!+1 ‖ k‖2 < ∞ for some s ≥ 9.

To estimate our model efficiently, we first run the regression

vt =  ̂1vt−1 + · · · +  ̂!vt−! + ε̂!,t
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where we let ! increase as n → ∞. More precisely, we let ! = nδ , and select δ so that

r + 2

2r(s − 3)
< δ <

r

6 + 8r
, (23)

where r is given by the moment condition for (εt ), i.e. E‖εt‖r < ∞ for some r > 8 as given in
Assumption 3. It is easy to see that δ satisfying condition (23) exists for all r > 8, if s ≥ 9 as
is assumed in Assumption 9. For Gaussian ARMA models, Assumptions 3 and 9 hold for any
finite r and s. Then, we may choose any δ such that 0 < δ < 1/8.

We define
y∗

t = yt − σ̂uε�̂
−1
εε ε̂!,t+1,

where

σ̂uε = 1

n

n∑
t=1

ût ε̂
′
!,t+1 and �̂εε = 1

n

n∑
t=1

ε̂!,t ε̂
′
!,t ,

with the first step NLS residual ût . Then consider the regression

y∗
t = f (zt , θ0) + u∗

t , (24)

in place of (8).
The efficient estimator that we propose is the NLS estimator θ̂∗

n of θ0 computed from the trans-
formed regression (24), which we call efficient nonstationary nonlinear least squares (EN-NLS)
estimator. In its motivation, the EN-NLS is closely related to the FM-OLS method by Phillips
and Hansen (1990) and the CCR method by Park (1992), which both yield efficient estimates for
the coefficients in the linear cointegrating regression. Just as for the FM-OLS and CCR methods,
the EN-NLS corrects the long-run dependency between the regression errors and the innovations
of the integrated regressors. However, the EN-NLS achieves the goal while maintaining the mar-
tingale difference condition on the regression errors. The latter condition is more important for
nonlinear nonstationary regressions, in contrast to linear cointegrating regressions where we may
allow for more general error processes in FM-OLS and CCR regressions.

Theorem 10 below presents the limit theory for the EN-NLS estimator θ̂∗
n . Let θ̂∗

n = (π̂∗′
n , β̂∗′

n )′
and define β̂n∗

i and β̂n∗
H similarly as before. Recall that we assume there are no stationary regressors

in the regression. Also, define
U∗ = U − ωuv�

−1
vv V .

The process U∗ is independent of V , and its variance is given by

σ 2∗ = σ 2
u − ωuv�

−1
vv ωvu,

i.e. the long-run conditional variance of U given V . In the same way as W1, . . . , Wm , let W ∗
1 , . . . ,

W ∗
m be an independent set of Brownian motions that are independent of V and have the variance

σ 2∗ .

Theorem 10. Under Assumptions 1–4 and 9, we have

(a) 4
√

n(β̂n∗
i − β0

i ) →d {Li (0, 1)
∫ ∞
−∞ q̇i (s, β0

i )q̇i (s, β0
i )′ds}−1/2W ∗

i (1)

(b)
√

n

{
κnd(π̂∗

n − π0)

κ̇n(β̂n∗
H − β0

H )

}
→d {∫ 1

0 N (r)N (r)′dr}−1
∫ 1

0 N (r) dU∗(r)

where i ∈ I and N (r) = [d(r)′, ḣ{V (r), β0}′]′. The convergences in (a) and (b) hold jointly.
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Asymptotic variances are seen to be reduced for the EN-NLS estimates of the parameters
in the integrable functions of integrated regressors. Strict variance reduction occurs whenever
the regression errors are correlated with the future or past as well as the present values of the
innovations of the integrated regressors. We have similar reductions in the asymptotic variances
of the EN-NLS estimators for the time trend coefficients and the parameters in the asymptotically
homogeneous functions of integrated regressors. In particular, the estimators have limit distri-
butions that are unbiased and mixed normal. Their asymptotic bias and non-normality are thus
removed by the EN-NLS method. This, in particular, implies that the usual t- and chi-square tests
are now possible for all parameters using these EN-NLS estimators.

There are other ways of obtaining asymptotically efficient estimators for the parameters in
the nonlinear regression (8). It is indeed easy to see that we would get an estimator which is
asymptotically equivalent to the EN-NLS estimator if we were to fit the nonlinear regression

yt = f (zt , θ0) + ε̂′
!,t+1δ0 + et . (25)

Note that we may set et ≈ u∗
t with δ0 = �−1

εε σεu , since ut = ε̂′
!,t+1δ0 + et . However, fitting (25)

involves the estimation of a nonlinear regression with an additional regressor, and seems less
preferable to EN-NLS which directly corrects the regressand. It is also possible, at least theo-
retically, to get an asymptotically efficient estimator by including leads and lags of �xt in the
regression (as in Phillips and Loretan (1991), Saikkonen (1991), and Stock and Watson (1993)).
Such a scheme, however, requires that the number of included leads and lags of �xt increases
as the sample size n → ∞. This makes it necessary to estimate large dimensional nonlinear
regressions, which seems undesirable and impractical especially when the sample size is large.

6. Simulations

This section investigates the finite sample performance of the NLS and the EN-NLS estimators
in a specific nonlinear regression model. We choose the following additive nonlinear model that
combines both integrable and asymptotically homogeneous functions, thereby having some of
the elements of our general theory. The model has the form

yt = π0 + exp(−β0
1 x2

1t ) + β0
2

1 + exp(−x2t )
+ ut . (26)

The regression error ut and integrated regressor xt , with xt = (x1t , x2t )
′, are generated from

ut = ε0,t+1/
√

2 + (ε1,t+1 + ε2,t+1)/2,

and

�xt = vt =
(

ε1t

ε2t

)
+

(
0.2 0
0 0.5

) (
ε1,t−1
ε2,t−1

)
,

where (ε0t ), (ε1t ) and (ε2t ) are drawn from independent N(0, σ 2) distributions with σ 2 = 0.12.
The true values of the parameters are set at π0 = 0, β0

1 = 1 and β0
2 = 0.

By construction, the regression error ut is a martingale difference sequence and is asymp-
totically correlated with the innovations that generate the integrated processes xt . The Gaussian
function exp(−β1x2

1t ) appearing in the simulation model (26) belongs to the I-regular class. The
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logistic function β2/(1 + e−x2t ) in the model is asymptotically homogeneous with asymptotic
order 1 and with limit homogeneous function β21(x2 ≥ 0) and it belongs to the H-regular class.
As shown in Theorem 7, the NLS estimator for the parameter β1 inside the integrable function
converges at a slower rate n1/4 to a mixed normal distribution, even when the corresponding
integrated process x1t is asymptotically correlated with the regression error. However, due to the
asymptotic correlation of ut and x2t , the NLS estimator for the constant term π and the coefficient
β2 on the logistic function converge at the rate

√
n to non-Gaussian limit distributions, which are

biased.
As shown in Theorem 10, the limit distributions of the EN-NLS estimators for π and β2,

as well as that for β1, are mean-zero mixed normal. Moreover, the EN-NLS estimators for all
three parameters π, β1 and β2 have reduced variances, compared with the NLS estimators. More
precisely, for the DGP used for our simulation, we have σ 2 = 0.12 and σ 2∗ = 0.12/2. This implies
that the variance of the errors in the transformed regression (24) is one-half in magnitude of that
in the original regression (8). The utilization of the information on the presence of the unit root
in the regressors may thus reduce the error variance in half.

In the simulation, the samples of sizes 250 and 500 are drawn 5000 times to estimate the NLS
and EN-NLS estimators and t-statistics based on these estimators. For the construction of the
EN-NLS correction terms, we use one-period ahead fitted innovations ε̂!,t+1, which is obtained
from the !th order vector autoregressions of vt with ! = 1, 2, respectively for n = 250 and 500.
For the nonlinear estimation, we use the GAUSS optimization routine and the Gauss–Newton
algorithm. The simulation results are summarized in Figures 1–3. Figures 1 and 2 present
the density estimates for the NLS and EN-NLS estimators for sample sizes n = 250 and 500,
respectively. The estimators are scaled with their respective convergence rates, and the density
estimates for the scaled estimators are also included in Figures 1 and 2.

The finite sample performances of the NLS and the EN-NLS estimators are much as would be
expected from the limit theory. As can be seen from Figures 1 and 2, the sampling distributions
of the estimators well reflect their theoretical convergence rates. The estimators for the parameter
β1 inside the integrable function converge slower than the estimators for the intercept π and the
coefficient β2 on the logistic function. As expected, the finite sample distribution of the NLS
estimator for β1 is symmetric and well centered. However, those for π and β2 are skewed and
suffer from bias that does not seem to vanish as the sample size increases. On the other hand,
the empirical distributions of the EN-NLS for π and β2 as well as for β1 are all symmetric and
noticeably more concentrated around zero both in the small and large samples. Our EN-NLS
estimators thus seem more efficient than their NLS counterparts.

The sampling behavior of the t-statistics based on the NLS and EN-NLS estimators also
corroborate our limit theory. As can be seen clearly from Figure 3, the finite sample distributions
of the t-statistics based on the NLS estimators for π and β2 are noticeably biased, while those based
on the NLS estimators for β1 are symmetric and well centered, reasonably well approximating
their limit N(0, 1) distribution. This is as expected from the limit theory of the NLS estimators. On
the other hand, the sampling distributions of the t-statistics based on all of the EN-NLS estimators
approximate closely their limit N(0, 1) distribution, and the approximation becomes even closer
as the sample size increases. This indicates that our EN-NLS correction works in nonstationary
nonlinear regressions, which in turn implies that we can conduct conventional hypothesis testing
using statistics, such as t-statistics or χ2 tests, constructed from the EN-NLS estimators.
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Figure 1. Densities of NLS and EN-NLS estimators, n = 250.

7. Conclusions

This paper develops an asymptotic theory of regression for models with deterministic trends,
stationary regressors, and nonstationary integrated regressors. In many respects, this work con-
tinues the program of research that started with the (Phillips and Durlauf, 1986) study of multiple
regressions with integrated time series. One of the conclusions of their study was that while least
squares regression in models with nonstationary regressors produces consistent estimates, and at
the faster Op(n−1) rate than in models with stationary regressors, the limit distribution theory is
nonnormal and standard tests no longer typically yield asymptotic χ2 criteria. The present paper
shows that, when the models are nonlinear, least squares regression continues to be consistent,
but the rates of convergence can be slower as well as faster than the conventional Op(n−1/2) rate
of stationary time series regression. Thus, the nature of the nonlinearity plays a major role in
the asymptotic theory, sometimes attenuating the signal and sometimes strengthening the signal
from a nonstationary regressor. Moreover, as in the linear theory, least squares regression yields
estimators that are generally inefficient and produce invalid statistical tests. The next step forward
from the Phillips–Durlauf regression theory was the development of modified linear regressions
that produced efficient estimates and asymptotic χ2 test criteria. That step was taken in the work
of Phillips and Hansen (1990) and Park (1992) with fully modified least squares regression and
CCR estimation, and it has had many empirical applications. The present paper proposes a related
methodology for nonlinear regression, leading to the EN-NLS estimator discussed in Section 5.
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Figure 2. Densities of NLS and EN-NLS estimators, n = 500.

The approach is simple to implement, produces efficient estimates and leads to test statistics that
are asymptotical χ2 test criteria.

The analytic framework of Phillips and Durlauf (1986) also made headway by allowing for the
nonparametric treatment of weak dependence in the regression errors. The theory was therefore
applicable in the context of quite general cointegrating regressions with stationary errors. The
present theory for the nonlinear case is more delimited. Our analytic framework allows for
martingale difference regression errors and is therefore more directly suited to the estimation of
nonlinear equations that arise from the solution of rational expectations or dynamic stochastic
general equilibrium models. In such cases, it is more natural to take the innovations on an efficient
macroeconomic equilibrium, for example, to be martingale differences. Extensions of our theory
to accommodate the more general context of broad empirical relationships between time series
variables that move together over time, but possibly in a nonlinear manner, is important and it is
an ongoing area of research for the authors.
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Figure 3. Densities of t-statistics, n = 250 and 500.

8. Mathematical Proofs

8.1. Proof of Lemma 5

In the proofs of parts (e), (f), (g), (h), (j) and (k), we assume that ai and bi are scalar-valued. The
proofs for the vector-valued ai and bi can be done simply by looking at each component of them
separately.

Proofs of (a)–(d) 1. The proofs can be found in Park and Phillips (1999). For (c), we must show
that Wi is independent of Vj , j �= i , as well as of Vi . This, however, is straightforward from their
derivation.

Proof of (e) 1. Under Assumptions 1(c) and 2, we have

E‖wt‖r < ∞,

as is well known. Let cn = nδ with some δ such that 1/4 < δ < 1/4(s − 1), and write

1

n3/4

n∑
t=1

ai (xit )wt = 1

n3/4

n∑
t=1

ai (xit )wt 1(‖wt‖ ≤ cn)

+ 1

n3/4

n∑
t=1

ai (xit )wt 1(‖wt‖ > cn). (27)
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We have
1

n3/4

n∑
t=1

‖ai (xit )wt‖1(‖wt‖ ≤ cn) ≤ cn
4
√

n

1√
n

n∑
t=1

|ai (xit )| →p 0, (28)

since δ < 1/4. Moreover,

1

n3/4

n∑
t=1

‖ai (xit )wt‖1(‖wt‖ > cn) ≤ ‖ai‖ 1

n3/4

n∑
t=1

‖wt‖1(‖wt‖ > cn)

≤ 4
√

n
sup1≤t≤n ‖wt‖r

cr−1
n

→ 0, (29)

since δ > 1/4(r − 1). The stated result follows immediately from (28) and (29), due to (27).

Proof of (f) 1. First assume that hi is differentiable with locally bounded derivative ḣi , and define

Ki =
{

min
0≤r≤1

Vi (r) − 1, max
0≤r≤1

Vi (r) + 1
}
. (30)

We have
1

n

n∑
t=1

bni (xit )wt = 1

n

n∑
t=1

hi

(
xit√

n

)
wt + op(1), (31)

as shown in Park and Phillips (2000). Also, if we let

Mn = 1

n

n∑
t=1

hi

(
xi,t−1√

n

)
wt ,

then it follows that
1

n

n∑
t=1

hi

(
xit√

n

)
wt = Mn + op(1), (32)

since
1

n

n∑
t=1

∥∥∥∥
{

hi

(
xit√

n

)
− hi

(
xi,t−1√

n

)}
wt

∥∥∥∥ ≤ 1√
n
‖ḣi‖Ki

1

n

n∑
t=1

‖vi twt‖ →p 0,

as n → ∞.
Due to (31) and (32), it suffices to show

Mn →p 0 (33)

to establish the stated result. To prove (33), we let

wt = �(1) ηt + (w̃t−1 − w̃t ),

as in Phillips and Solo (1992), and write Mn = An + Bn with

An = �(1)
1

n

n∑
t=1

hi

(
xi,t−1√

n

)
ηt

Bn = 1

n

n∑
t=1

hi

(
xi,t−1√

n

)
(w̃t−1 − w̃t )

= 1

n

n∑
t=1

{
hi

(
xit√

n

)
− hi

(
xi,t−1√

n

)}
w̃t − 1

n
hi

(
xin√

n

)
w̃n .
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It follows directly from Park and Phillips (2000) that An →p 0. Moreover, it is not difficult to
see that Bn →p 0, since

1

n

n∑
t=1

∥∥∥∥
{

hi

(
xit√

n

)
− hi

(
xi,t−1√

n

)}
w̃t

∥∥∥∥ ≤ 1√
n
‖ḣi‖Ki

1

n

n∑
t=1

‖vi t w̃t‖ →p 0,

and
1

n

∥∥∥∥hi

(
xin√

n

)
w̃n

∥∥∥∥ ≤ ‖hi‖Ki

1

n
‖w̃n‖ →p 0.

The result in (33) is therefore proved.
Next, we show that (31)–(33) hold for hi (x) = 1(x ≥ 0). Clearly, the stated result would

then follow for piecewise differentiable functions with locally bounded support. It follows from
Park and Phillips (2000) that (31) holds. To deduce (32), it suffices to show that Rn →p 0, where

Rn = 1

n

n∑
t=1

{1(xit ≥ 0, xi,t−1 < 0) + 1(xit < 0, xi,t−1 ≥ 0)}.

This is because

1

n

n∑
t=1

∥∥∥∥
{

hi

(
xit√

n

)
− hi

(
xi,t−1√

n

)}
wt

∥∥∥∥
≤

{
1

n

n∑
t=1

∣∣∣∣hi

(
xit√

n

)
− hi

(
xi,t−1√

n

)∣∣∣∣
2}1/2(1

n

n∑
t=1

‖wt‖2
)1/2

,

by Cauchy–Schwarz, and (1/n)
∑n

t=1 ‖wt‖2 = Op(1).
To show Rn →p 0, we let cn = n−δ for some 0 < δ < 1/2, and bound Rn by Rn ≤ Sn + Tn ,

where

Sn = 1

n

n∑
t=1

1

(∣∣∣∣ xi,t−1√
n

∣∣∣∣ < cn

)
and Tn = 1

n

n∑
t=1

1

(∣∣∣∣ vi t√
n

∣∣∣∣ ≥ cn

)
,

since, if |vi t | < cn
√

n, xit can change sign from xi,t−1 only when |xi,t−1| < cn
√

n. Note that

Sn = d

∫ 1

0
1{|Vni (r)| ≤ cn}dr

=
∫ 1

0
1{|Vi (r)| ≤ cn}dr + op(1) →p 0,

due, in particular, to Lemma 2.5(b) in Park and Phillips (1999). Moreover,

E |Tn| ≤ 1

n

n∑
t=1

P
(∣∣∣∣ vi t√

n

∣∣∣∣ ≥ cn

)
≤ sup1≤t≤n E|vi t |

cn
√

n
→ 0,

since cn
√

n → ∞.
Finally, we show that An, Bn →p 0 to deduce (33) for hi (x) = 1(x ≥ 0). That An →p 0

follows directly from Park and Phillips (2000). It is also not difficult to see that Bn →p 0. We
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then have, by Cauchy–Schwarz

1

n

n∑
t=1

∥∥∥∥
{

hi

(
xit√

n

)
− hi

(
xi,t−1√

n

)}
w̃t

∥∥∥∥
≤

{
1

n

n∑
t=1

∣∣∣∣hi

(
xit√

n

)
− hi

(
xi,t−1√

n

)∣∣∣∣
2}1/2(1

n

n∑
t=1

‖w̃t‖2
)1/2

,

which, together with Rn →p 0, implies that the first term of Bn converges in probability to zero.
Note that E‖w̃t‖2 < ∞ under Assumptions 1 and 2, and we have (1/n)

∑n
t=1 ‖w̃t‖2 = Op(1).

Obviously, the second term of Bn is of order op(1) since hi (x) = 1(x ≥ 0) is bounded.

Proof of (g) 1. This is immediate since

1√
n

n∑
t=1

‖dnt ai (xit )‖ ≤
(

sup
n≥1

sup
1≤t≤n

‖dnt‖
)

1√
n

n∑
t=1

|ai (xit )|,

due to Assumption 4.

Proof of (h) 1. We have

1

n

n∑
t=1

dnt bni (xit ) = 1

n

n∑
t=1

dnt hi

(
xit√

n

)
+ op(1),

which follows easily from the proof of Park and Phillips (1999), since sup1≤t≤n ‖dnt‖ < ∞.
Moreover, we have

1

n

n∑
t=1

dnt hi

(
xit√

n

)
=

∫ 1

0
d(r)hi {Vni (r)} dr + op(1),

because dn converges in L2. The stated result now follows immediately from the continuous
mapping theorem.

Proof of (i) and (!) 1. The proofs are in Park and Phillips (2000).

Proof of (j) 1. The proof heavily relies on the results in the proof of Theorem 5.1 in Park and
Phillips (2000), which will simply be referred to PP in what follows. Let κn and δn be given as in
PP, and denote by ani the simple function approximating ai over the truncated support [−κn, κn),
i.e.

ani (x) =
κn−1∑

k=−κn

ai (kδn)1{kδn ≤ x < (k + 1)δn}.

We may easily deduce

1√
n

n∑
t=1

ai (xit )a j (x jt ) = d
√

n
∫ 1

0
ai {

√
nVni (r)}a j (

√
nVnj ) dr

= √
n

∫ 1

0
ani {

√
nVni (r)}anj (

√
nVnj ) dr + op(1), (34)
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as in (31)–(33) of PP, since ai and a j are both bounded.
To simplify notation in the subsequent derivation of our result, we make the convention

| ∫ 1(A) − ∫
1(B)| = ∫ |1(A) − 1(B)| for indicators 1(A) and 1(B) on A and B. All the

approximation results on the integrals of indicators in PP, which are in turn based on Akonom
(1993), hold in the sense of

∫ |1(A) − 1(B)| as well as that of | ∫ 1(A) − ∫
1(B)|. If we let

Nni (k, δn) =
∫ 1

0
1{kδn ≤ √

nVni (r) < (k + 1)δn}

Nni j (k, !, δn) =
∫ 1

0
1{kδn ≤ √

nVni (r) < (k + 1)δn}1{!δn ≤ √
nVnj (r) < (! + 1)δn} dr,

then we have

|Nni j (k, !, δn) − Nni j (0, 0, δn)| ≤ |Nni (k, δn) − Nni (0, δn)|1/2 Nnj (!, δn)1/2

+Nni (0, δn)1/2|Nnj (!, δn) − Nnj (0, δn)|1/2, (35)

due to our convention. Moreover, if we define

Ni (k, δn) =
∫ 1

0
1{kδn ≤ √

nVi (r) < (k + 1)δn}

Ni j (k, !, δn) =
∫ 1

0
1{kδn ≤ √

nVi (r) < (k + 1)δn}1{!δn ≤ √
nVj (r) < (! + 1)δn} dr,

then it follows that

|Nni j (0, 0, δn) − Ni j (0, 0, δn)| ≤ |Nni (0, δn) − Ni (0, δn)|1/2 Nnj (0, δn)1/2

+Ni (0, δn)1/2|Nnj (0, δn) − N j (0, δn)|1/2, (36)

under the convention.
It is tedious, but rather straightforward, to show that

√
n

∫ 1

0
ani {

√
nVni (r)}anj {

√
nVnj (r)} dr

= √
n

κn−1∑
k=−κn

κn−1∑
!=−κn

ai (kδn)a j (!δn)Nni j (k, !, δn)

=
{ κn−1∑

k=−κn

κn−1∑
!=−κn

ai (kδn)a j (!δn)

}√
nNni j (0, 0, δn) + op(1)

=
{∫ ∞

−∞

∫ ∞

−∞
ai (r)a j (s) dr ds

}
(
√

n/δ2
n)Nni j (0, 0, δn) + op(1), (37)

in the same way as (34) and the first line of (35) in PP, using (35).
Now choose δn so that

(
√

n/δ3
n)|Nni (0, δn) − Ni (0, δn)| = op(1).

Then since
(
√

n/δn)|Nni (0, δn)|, (
√

n/δn)|Ni (0, δn)| = Op(1),
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we have from (36) that

(
√

n/δ2
n)|Nni j (0, 0, δn) − Ni j (0, 0, δn)| →p 0. (38)

However, for large n,

Ni j (0, 0, δn) ≤ Ni j (0, 0, 1) = Op(log n/n) (39)

as shown in Kasahara and Kotani (1979). The stated result now follows easily from (34), (37),
(38) and (39).

Proof of (k) 1. Let Ki be defined as in the proof of (f), and note that

1√
n

n∑
t=1

|ai (xit )bnj (x jt )| = 1√
n

n∑
t=1

|ai (xit )|
∣∣∣∣h j

(
x jt√

n

)∣∣∣∣ + op(1)

≤ ‖h j‖K j

1√
n

n∑
t=1

|ai (xit )| + op(1) = Op(1),

as was to be shown.

8.2. Proof of Lemma 6

See Theorem 8.1 of Wooldridge (1994).

8.3. Proof of Theorem 7

We only need to prove that the condition in Lemma 6(d) holds. The conditions (a)–(c) are easy to
show, given the results in Lemma 5. The stated asymptotic distributions then follow immediately
from Lemmas 5 and 6.

Let εi be given by Assumption H(a2) if qi satisfies the condition there, and let otherwise
it be any number satisfying 0 < εi < 1/2, for i = 1, . . . , m. Subsequently, we define ε =
min(ε1, . . . , εm) and δ to be a number such that 0 < δ < ε/6. It can be deduced from Park and
Phillips (2000) that

n∑
i=1

‖ν−1
ni q̇i (xit , β

0
i )‖2 = Op(1)

nε sup
θ∈�n

n∑
t=1

‖(νni ⊗ νni )
−1q̈i (xit , βi )‖2 = op(1), (40)

and that, due to Cauchy–Schwarz,

nε/2 sup
θ∈�n

n∑
t=1

‖ν−1
ni q̇i (xit , β

0
i )‖‖(νnj ⊗ νnj )

−1q̈i (x jt , β j )‖ = op(1). (41)
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Furthermore, since

n∑
t=1

‖n−1/2κ−1
nd dt‖2 = O(1) and

n∑
t=1

‖n−1/2wt‖2 = Op(1),

we may easily deduce that

nε/2 sup
θ∈�n

n∑
t=1

‖n−1/2wt‖‖(νni ⊗ νni )
−1q̈i (xit , βi )‖ = op(1) (42)

nε/2 sup
θ∈�n

n∑
t=1

‖n−1/2κ−1
nd dt‖‖(νni ⊗ νni )

−1q̈i (xit , βi )‖ = op(1), (43)

by simple applications of Cauchy–Schwarz.
We now let

Q̈n(θ) − Q̈n(θ0) = {Rn1(θ) + Rn1(θ)′} + Rn2(θ) + Rn3(θ) + Rn4(θ)

where

Rn1(θ) =
n∑

t=1

ḟ (zt , θ0){ ḟ (zt , θ) − ḟ (zt , θ0)}′

Rn2(θ) =
n∑

t=1

{ ḟ (zt , θ) − ḟ (zt , θ0)}{ ḟ (zt , θ) − ḟ (zt , θ0)}′

Rn3(θ) =
n∑

t=1

F̈(zt , θ){ f (zt , θ) − f (zt , θ0)}

Rn4(θ) = −
n∑

t=1

{F̈(zt , θ) − F̈(zt , θ0)}ut

and F̈(zt , θ) = ∂2 f (zt , θ)/∂θ∂θ ′.
If we define Q̈(xt , β) = ∂2q(xt , β)/∂β∂β ′ and Q̈i (xit , βi ) = ∂2qi (xit , βi )/∂βi∂β

′
i similarly

as F̈ , then we have

F̈(zt , θ) =
( 0 0 0

0 0 0
0 0 Q̈(xt , β)

)
and Q̈(xt , β) =


 Q̈1(x1t , β1) 0

. . .

0 Q̈m(xmt , βm)


 .

It follows that
‖D−1

nδ F̈(zt , θ)D−1
nδ ‖ = n2δ‖ν−1

n Q̈(xt , β)ν−1
n ‖, (44)

and that

‖ν−1
n Q̈(xt , β)ν−1

n ‖ ≤
m∑

i=1

‖(νni ⊗ νni )
−1q̈i (xit , βi )‖ (45)

‖ν−1
n Q̈(xt , β)ν−1

n ‖2 ≤
m∑

i=1

‖(νni ⊗ νni )
−1q̈i (xit , βi )‖2. (46)
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Here we use the fact that ‖A‖2 ≤ tr (A′ A) ≤ ‖vec A‖2 for any square matrix A, and that
‖A‖ ≤ ∑m

i=1 ‖Ai‖ for A = diag (A1, . . . , Am) with any square matrices Ai .
We want to show

sup
θ∈�n

‖D−1
nδ Rnk(θ)D−1

nδ ‖ →p 0, (47)

for k = 1, . . . , 4. To establish (47) for k = 1, we note that

‖D−1
nδ Rn1(θ)D−1

nδ ‖ ≤
n∑

t=1

‖D−1
nδ ḟ (zt , θ0)‖‖D−1

nδ F̈(zt , θ̄ )D−1
nδ ‖,

for all θ ∈ �n , where θ̄ is on the line segment connecting θ and θ0, and that

‖D−1
nδ ḟ (zt , θ0)‖ ≤ nδ

{
‖n−1/2κ−1

nd dt‖ + ‖n−1/2wt‖ +
m∑

i=1

‖ν−1
ni q̇i (xit , β

0
i )‖

}
.

Therefore, (47) follows immediately from (41), (42) and (43), along with (44) and (45).
To deduce (47) for k = 2, observe that for all θ ∈ �n

‖D−1
nδ Rn2(θ)D−1

nδ ‖ ≤
n∑

t=1

‖D−1
nδ F̈(zt , θ̄ )D−1

nδ ‖2,

where θ̄ lies, as above, between θ and θ0. We then have (47) from (40), (44) and (46). To
prove (47) for k = 3, we write

‖D−1
nδ Rn3(θ)D−1

nδ ‖ ≤
n∑

t=1

‖D−1
nδ F̈(zt , θ)D−1

nδ ‖| f (zt , θ) − f (zt , θ0)|,

and use the fact that

| f (zt , θ) − f (zt , θ0)| ≤ nδ

{
‖n−1/2wt‖ + ‖n−1/2κ−1

nd dt‖ +
m∑

i=1

‖ν−1
ni q̇i (xit , β

0
i )‖.

+1

2

m∑
i=1

‖(νni ⊗ νni )
−1q̈i (xit , β̄i )‖

}
,

together with (41)–(45). Due to (44), the result (47) for the case k = 4 follows immediately from
Park and Phillips (2000).

8.4. Proof of Corollary 8

This is obvious from the proof of Theorem 7, and is omitted.

8.5. Proof of Theorem 10

Define

ε!,t = εt +
∞∑

k=!+1

 kvt−k

v!,t = (v′
t−1, . . . , v

′
t−!)

′,
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and
 (!) = ( 1, . . . ,  !),  ̂(!) = ( ̂1, . . . ,  ̂!).

Then, we have
ε̂!,t+1 = ε!,t+1 − { ̂(!) −  (!)}v!,t+1.

For the proof of the main results, we first need to show

1√
n

n∑
t=1

dnt ε̂
′
!,t+1 = 1√

n

n∑
t=1

dntε
′
t+1 + op(1) (48)

1
4
√

n

n∑
t=1

ai (xit )ε̂
′
!,t+1 = 1

4
√

n

n∑
t=1

ai (xit )ε
′
t+1 + op(1) (49)

1√
n

n∑
t=1

bni (xit )ε̂
′
!,t+1 = 1√

n

n∑
t=1

bni (xit )ε
′
t+1 + op(1) (50)

in the notation defined in Lemma 5.
We proceed by proving a set of technical results that are needed for the proof of (48)–(50).

Throughout the proof, we assume that Assumptions 1–4 and 9 hold.

Lemma A1. Let ! = o(
√

n). Then ‖ ̂(!) −  (!)‖ = Op(!
(1−s)/2) + Op(n−1/2!1/2).

Proof of Lemma A1 1. The stated result follows from Berk (1974, Equation 2.17, p. 493).

Lemma A2. E‖ε!,t − εt‖r = O(!−rs/2) for large !.

Proof of Lemma A2 1. Write

ε!,t − εt =
∞∑

k=!+1

 kvt−k =
∞∑

k=!+1

#kεt−k

where #k’s are defined accordingly. We have, as shown in Berk (1974, Proof of Lemma 2),

∞∑
k=!+1

‖#k‖2 ≤ c
∞∑

k=!+1

‖ k‖2,

for some constant c. However, for all m,

E

∥∥∥∥
m∑

k=!+1

#kεt−k

∥∥∥∥
r

≤ c E
( m∑

k=!+1

‖#k‖2‖εt−k‖2
)r/2

≤ c

( m∑
k=!+1

‖#k‖2
)r/2

E‖εt‖r ,

with some constant c, by Burkholder’s inequality (Hall and Heyde, 1980, p. 23), and Minkowski’s
inequality. The stated result now follows immediately.

Lemma A3. (a)
∑n

t=1 ai (xit )v
′
t−k = Op{n(1+r)/2r } uniformly for k = 1, . . . , !.

(b)
∑n

t=1 ai (xit )(ε!,t+1 − εt+1)
′ = Op{n(1+r)/2r!−s/2}.

c© Royal Economic Society 2001



30 Yoosoon Chang et al.

Proof of Lemma A3 1. We may assume that ai is scalar-valued as in the proof of Lemma 5. Let
et = vt−k and ε!,t+1 − εt+1 respectively for parts (a) and (b), and write

n∑
t=1

‖ai (xit )et‖ ≤ An + Bn,

where

An = cn

n∑
t=1

|ai (xit )| and Bn = ‖ai‖
n∑

t=1

‖et‖1(‖et‖ > cn),

for a sequence cn of numbers. It follows directly from Lemma 5(a) that An = Op(cn
√

n). Notice
for Bn that

E(Bn) = ‖ai‖
n∑

t=1

E‖et‖1(‖et‖ > cn)

≤ n‖ai‖ supt E‖et‖r

cr−1
n

,

by Tchebyshev’s inequality. Part (a) follows immediately if we let cn = n1/2r , since E‖vt−k‖r<∞
uniformly for k = 1, . . . , !. For part (b), we set cn = n1/2r!−s/2 and note that E‖ε!,t+1−εt+1‖r =
O(!−rs/2) due to Lemma A2.

Lemma A4. (a)
∑n

t=1 bni (xit )v
′
t−k = Op{n(4+3r)/4(1+r)!r/2(1+r)}uniformly for k = 1, . . . , !.

(b)
∑n

t=1 bni (xit )(ε!,t+1 − εt+1)
′ = Op(n!−s/2).

Proof of Lemma A4 1. As in the proof of Lemma A3, we assume that bi is scalar-valued. It is
shown in Park and Phillips (2000) that

n∑
t=1

bni (xit )vt−k =
n∑

t=1

hi

(
xit√

n

)
vt−k{1 + op(1)},

uniformly in k = 1, . . . , !. We now show that

n∑
t=1

hi

(
xit√

n

)
vt−k =

n∑
t=1

hi

(
xit√

n

)
vt+1 + Op{n(3r+4)/4(r+1)!r/2(r+1)}. (51)

To deduce (51), we write

n∑
t=1

hi

(
xit√

n

)
vt+1 =

n∑
t=k+1

hi

(
xi,t−k−1√

n

)
vt−k +

n∑
t=n−k

hi

(
xit√

n

)
vt+1,

with the convention that h(xi0/
√

n) = 0. It follows that

n∑
t=1

hi

(
xit√

n

)
vt+1 −

n∑
t=k+1

hi

(
xit√

n

)
vt−k

=
n∑

t=n−k

hi

(
xit√

n

)
vt+1 −

n∑
t=k+1

{
hi

(
xit√

n

)
− hi

(
xi,t−k−1√

n

)}
vt−k .
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Clearly,
n∑

t=n−k

∥∥∥∥hi

(
xit√

n

)
vt+1

∥∥∥∥ ≤ ‖h‖Ki

n∑
t=n−k

‖vt+1‖ = Op(!), (52)

uniformly in k = 1, . . . , !.
For h differentiable with locally bounded derivative, we have

n∑
t=k+1

∥∥∥∥
{

hi

(
xit√

n

)
− hi

(
xi,t−k−1√

n

)}
vt−k

∥∥∥∥
≤ 1√

n
‖ḣi‖Ki

n∑
t=k+1

(
k∑

j=0

‖vt− j‖
)

‖vt−k‖ = Op(n
1/2!), (53)

uniformly in k = 1, . . . , !. Now (51) follows immediately from (52) and (53), since ! = O(n1/4).
For hi (x) = 1(x ≥ 0), we start by looking at

1

n

n∑
t=1

∥∥∥∥
{

hi

(
xit√

n

)
− hi

(
xi,t−k−1√

n

)}
vt−k

∥∥∥∥
≤

{
1

n

n∑
t=1

∣∣∣∣hi

(
xit√

n

)
− hi

(
xi,t−k−1√

n

)∣∣∣∣
2}1/2(1

n

n∑
t=1

‖vt−k‖2
)1/2

. (54)

Since
∑n

t=k+1 ‖vt−k‖2 = Op(n) uniformly in k = 1, . . . , !, we may concentrate on the first term
in (54). Define

Rnk = 1

n

n∑
t=k+1

{1(xit ≥ 0, xi,t−k−1 < 0) + 1(xit < 0, xi,t−k−1 ≥ 0)},

and bound it by Snk + Tnk , where

Snk =
n∑

t=k+1

1

(∣∣∣∣ xi,t−k−1√
n

∣∣∣∣ < cn

)
and Tnk =

n∑
t=1

1

(∣∣∣∣
∑k

j=0 vi,t− j√
n

∣∣∣∣ ≥ cn

)
.

We have

Snk ≤
n∑

t=1

1

(∣∣∣∣ xit√
n

∣∣∣∣ < cn

)

= (ncn)
1

cn

∫ 1

0
1(|Vni (r)| < cn)dr = Op(ncn).

Moreover,

E Tnk =
n∑

t=1

Pr

(∣∣∣∣
∑k

j=0 vi,t− j√
n

∣∣∣∣ ≥ cn

)
≤ n1−r/2c−r

n E

∣∣∣∣
k∑

j=0

vi,t− j

∣∣∣∣
r

,

and by Minkowski’s inequality, we have

E

∣∣∣∣∣
k∑

j=0

vi,t− j

∣∣∣∣∣
r

≤ !r E|vi t |r ,
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for all k = 1, . . . , !. The stated result in part (a) now follows immediately, if we let cn =
n−r/2(r+1)!r/(r+1).

To show part (b), we note that∥∥∥∥∥
n∑

t=1

bni (xit )(ε!,t+1 − εt+1)

∥∥∥∥∥ ≤ ‖bni‖Ki

n∑
t=1

‖(ε!,t+1 − εt+1)‖,

from which we may easily deduce the stated result, since ‖bni‖Ki = Op(1) and

E‖ε!,t+1 − εt+1‖2 = O(!−s),

as shown in Lemma A2.

We may now show (48)–(50). To prove (48), write

ε̂!,t+1 = εt+1 − (ε!,t+1 − ε̂!,t+1) + (ε!,t+1 − εt+1),

and use this to rewrite (48) as

1√
n

n∑
t=1

dnt ε̂
′
!,t+1 = 1√

n

n∑
t=1

dntε
′
t+1 − An + Bn,

where

An = 1√
n

n∑
t=1

dntv
′
!,t+1{ ̂(!) −  (!)}′

Bn = 1√
n

n∑
t=1

dnt (ε!,t+1 − εt+1)
′.

To establish (48), it suffices to show An, Bn = op(1). It follows directly from Lemma A2 and
Assumption 4 that

‖Bn‖ ≤ 1√
n

∑
t

‖dnt‖
n∑

t=1

‖ε!,t+1 − εt+1‖ = O(n−1/2)Op(n!−s/2) = op(1),

for δ > 1/s. To show An = op(1), we may first show

n∑
t=1

dntv
′
t−k = Op(

√
n), uniformly in k = 1, . . . , !. (55)

To deduce (55), notice that

n∑
t=1

dntv
′
t+1 =

n∑
t=k+1

dn,t−k−1v
′
t−k +

n∑
t=n−k

dntv
′
t+1,

with the convention dn0 = 0. Then, it follows that

n∑
t=1

dntv
′
t+1 −

n∑
t=k+1

dntv
′
t−k =

n∑
t=n−k

dntv
′
t+1 −

n∑
t=k+1

(dnt − dn,t−k−1)v
′
t−k . (56)
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We have
n∑

t=n−k

‖dntv
′
t+1‖ ≤ sup

t
‖dnt‖

n∑
t=n−k

‖vt+1‖ = Op(!), (57)

uniformly in k = 1, . . . , !, and

n∑
t=k+1

‖(dnt −dnt−k−1)‖v′
t−k‖ ≤

n∑
t=k+1

‖dnt −dnt−k−1‖ ‖vt−k‖ = no(!/n)Op(1) = op(!). (58)

Moreover, following Proof of Lemma 5(f), it can be shown that

n∑
t=1

dntv
′
t+1 = Op(

√
n). (59)

Now we may easily deduce (55) from (56)–(59). Then it follows that

An = O(n−1/2)Op(!n1/2){Op(!
(1−s)/2) + Op(n

−1/2!1/2)} = op(1),

for 0 < δ < 1/3, due to Lemma A1, and therefore An = Bn = op(1) holds for 1/s < δ < 1/3.
For (49), we first show that

1
4
√

n

n∑
t=1

ai (xit )(ε!,t+1 − εt+1)
′ →p 0 (60)

{
1

4
√

n

n∑
t=1

ai (xit )v
′
!,t+1

}
{ ̂(!) −  (!)} →p 0. (61)

One may easily deduce (60) from Lemma A3(b), since

O(n−1/4)Op{n(1+r)/2r!−s/2} = op(1),

whenever δ > (r + 2)/2rs. The condition holds because we set δ > (r + 2)/2r(s − 3). For (61),
apply Lemmas A1 and A3(a), and note that

O(n−1/4)Op{n(1+r)/2r!}Op{!(1−s)/2} = op(1),

and
O(n−1/4)Op{n(1+r)/2r!}Op(n

−1/2!1/2) = op(1),

respectively if δ > (r + 2)/2r(s − 3) and δ < (r − 2)/6r , which are satisfied under our condition
for δ. Note that (r − 2)/6r > r/(6 + 8r) for all r > 8. The stated result in (49) is immediate
from (60) and (61).

To prove (50), we first deduce from Lemma A4 that

1√
n

n∑
t=1

bni (xit )(ε!,t+1 − εt+1)
′ →p 0 (62)

{
1√
n

n∑
t=1

bni (xit )v
′
!,t+1

}
{ ̂(!) −  (!)} →p 0, (63)
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from which (50) readily follows. To show (62), note that

O(n−1/2)Op(n!−s/2) = op(1),

whenever δ > 1/s, which holds because δ > 1/2(s − 3) under our condition. For (63), we note
that

O(n−1/2)Op{!n(4+3r)/4(1+r)!r/2(1+r)}Op{!(1−s)/2} = op(1),

whenever {s −4+1/(1+r)}δ > (r +2)/2(r +1). The condition holds if δ > (r +2)/2r(s −4),
which is in turn satisfied under our assumption δ > (r + 2)/2r(s − 3). Moreover,

O(n−1/2)Op{!n(4+3r)/4(1+r)!r/2(1+r)}Op(n
−1/2!1/2) = op(1),

for δ < r/(6 + 8r).
Finally, we return to the proof of the main results.

Proof of (a) 1. From (49), we have

1
4
√

n

n∑
t=1

q̇i (xit , β
0
i )ε̂′

!,t+1 = 1
4
√

n

n∑
t=1

q̇i (xit , β
0
i )ε′

!,t+1 + op(1),

and this gives

1
4
√

n

n∑
t=1

q̇i (xit , β
0
i )u∗

t = 1
4
√

n

n∑
t=1

q̇i (xit , β
0
i )(ut − σ̂uε�̂

−1
εε ε̂!,t+1)

= 1
4
√

n

n∑
t=1

q̇i (xit , β
0
i )(ut − σuε�

−1
εε ε!,t+1) + op(1).

Notice that
1√
n

[nr ]∑
t=1

εt →d �−1(1)V (r), (64)

and (ut − σuε�
−1
εε ε!,t+1) is a martingale difference sequence with variance

var(ut − σuε�
−1
εε ε!,t+1) = σ 2

u − σuε�
−1
εε σεu = σ 2

u − ωuv�
−1
vv ωvu,

due to (14). Now the stated result follows directly from Lemma 5(c).

Proof of (b) 1. It is immediate from (48) and (11) that

1√
n

n∑
t=1

dnt u
∗
t = 1√

n

n∑
t=1

dnt (ut − σ̂uε�̂
−1
εε ε̂!,t+1)

= 1√
n

n∑
t=1

dnt (ut − σuε�
−1
εε ε!,t+1) + op(1)

→d

∫ 1

0
d(r)d{U (r) − σuε�

−1
εε �−1(1)V (r)}

=
∫ 1

0
d(r)dU∗(r), (65)
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since
U (r) − σuε�

−1
εε �−1(1)V (r) = U (r) − ωuv�

−1
vv V (r) = U∗(r),

due to (64) and (14). Moreover, it follows directly from (50), Lemma 3.1(d) and (64) that

1√
n

n∑
t=1

κ̇−1
n q̇H (xt , β0)u

∗
t = 1√

n

n∑
t=1

κ̇−1
n q̇H (xt , β0)(ut − σuε�

−1
εε ε!,t+1) + op(1)

→d

∫ 1

0
ḣ{V (r), β0}dU∗(r). (66)

Now the stated result follows immediately from (65) and (66).
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